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SHORT COMMUNICATION

Transforming a Matrix into a Standard Form

Akihiro MUNEMASA™ and Pritta Etriana PUTRI*

Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences,
Tohoku University, Sendai 980-8579, Japan

We show that every matrix all of whose entries are in a fixed subgroup of the group of units of a commutative
ring with identity is equivalent to a standard form. As a consequence, we improve the proof of Theorem 5 in
D. Best, H. Kharaghani, H. Ramp [Disc. Math. 313 (2013), 855-864].
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1. Introduction

Throughout this note, we let R be a commutative ring with identity. We fix a subgroup T of the group of units of R,
and set 7o = T U {0}. The set of m x n matrices with entries in Ty is denoted by Tj"". If T = {z € C : |z| = 1}, then
W e Ty™" is called a unit weighing matrix of order n with weight w provided that WW* = wl where W* is the transpose
conjugate of W. Unit weighing matrices are introduced by D. Best, H. Kharaghani, and H. Ramp in [1, 2]. Moreover, a
unit weighing matrix is known as a unit Hadamard matrix if w = n (see [3]). A unit weighing matrix in which every
entry is in {0, 1} is called a weighing matrix. We refer the reader to [4] for an extensive discussion of weighing
matrices, and to [5] for more information on applications of weighing matrices.

The study on the number of inequivalent unit weighing matrices was initiated in [1]. Also, observing the number of
weighing matrices in standard form leads to an upper bound on the number of inequivalent unit weighing matrices [1].
In this work, we will introduce a standard form of an arbitrary matrix in 75" and show that every matrix in 73" is
equivalent to a matrix in standard form.

We equip Ty with a total ordering < satisfying min(7) = 1 and max(7y) = 0. Moreover, let a = (ay,...,a,) and
b= (by,...,b,) be arbitrary row vectors with entries in 7. If k is the smallest index such that a; # by, then we write
a < b provided a; < by. We write a <bifa<bora=>.1f ay,...,a, are row vectors of a matrix A € Tj"" and

a; < --- < ay,, then we say that the rows of A are in lexicographical order.

Definition 1.1. We say that a matrix in 75" is in standard form if the following conditions are satisfied:
(S1) The first non-zero entry in each row is 1.
(S2) The first non-zero entry in each column is 1.
(S3) The first row is ones followed by zeros.
(S4) The rows are in lexicographical order according to <.

The subset of T consisting of permutation matrices, nonsingular diagonal matrices and monomial matrices, are
denoted respectively, by P, D,, and M,,. Then M,, = P,,D,,.

Definition 1.2. For A, B € Tg"*", we say that A is equivalent to B if there exist monomial Ty-matrices M; and M, such
that M[AM2 = B.

We will restate the proof of [1, Theorem 5] as the following algorithm.

Algorithm 1.3. Let W be an arbitrary unit weighing matrix.
(1) We multiply each ith row of W by ;! where r; is the first non-zero entry in ith row. Denote the obtained matrix
by w.
(2) Let ¢; be the first non-zero entry in jth column of W, Let W® obtained from W by multiplying each jth
column by c]-’l.
(3) Permute the columns of W® so that the first row has w ones. Denote the resulting matrix by W®.
(4) Let W® be a matrix obtained from W® by sorting the rows of W® lexicographically with the ordering <.
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Then W@ is in standard form.

The steps (1)—-(4) in Algorithm 1.3 was used in order to prove Theorem 5 in [1]. However, we provide a
counterexample to show that this algorithm does not produce a standard form.

Counterexample 1.4. The matrix

1 —i i 1 0 07
0 1 1 0 i i
1 0 0 -1 —i i
W =
1 0 0 -1 i@ —i
0 1 1 0 —i —i
L1 i —i 1 0 0 |

is a unit weighing matrix, where i is a 4th root of unity in C. Also, we equip the set {0, £i, =1} with a total ordering <
defined by 1 < —1 < i < —i < 0. Since the first nonzero entry in each row of W is one, W) = W. Applying step (2),
we obtain

i —i 0 -1 -1
-1 -1 1 0 0|

Notice that the first row of W® is all ones followed by zeros. So, W& = W) _ Finally, by applying the last step of the
algorithm, we have

11 1 1 0 07
0 i —i 0 1 1
po_ |1 0 0 -1 =1
10 0 -1 1 -1
0
1

1 1 1 0 07

w® —

1

1

1

1 0 0 -1 -1 1
0 i

0

i —i 0 -1 —1]

We see that W™ is not in standard form. So, we conclude that the algorithm does not produce a matrix in standard
form as claimed.

This counterexample shows that the additional steps are needed to complete the proof of Theorem 5 in [1]. In the
next section, we will prove a more general theorem than [1, Theorem 5] by showing that every matrix in 73" is
equivalent to a matrix that is in standard form.

2. Main Theorem

In addition to the conditions (S1)—(S4) in Definition 1.1, we will consider the following condition:
(S3)' The first nonzero row is ones followed by zeros.

Note that (S3)’ is weaker than (S3). The condition (S3)’ is crucial in the proof of Lemma 2.1, where we encounter a
matrix whose first row consists entirely of zeros.

Lemma 2.1. Let
A= [A] Az] € T31X(m+n2),

where A; € T, i =1,2. Then there exist P € P,, and M € M, such that PA,M satisfies (S2) and (S3), and
[PA; PA,M] satisfies (S4).

Proof. Without loss of generality, we may assume A; satisfies (S4). Then there exist row vectors ay,...,a; of A; such
that @) < --- < ai, and positive integers my, ..., my; such that
T
1m| a)
A1 = . . . .

T
1 e ai
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where % m; = m. Write

B,
A= @ |,
By
where B; € T(’)""X”2 fori=1,2,...,k. We may assume B; # 0, since otherwise the proof reduces to establishing the

assertion for the matrix A with the first m; rows deleted. Let b be a row vector of B; with maximum number of nonzero
components. Then there exists M € M,,, such that the vector bM constitutes ones followed by zeros. Moreover, for each
i €{l,...,k}, there exists P; € IP,,, such that the rows of P;B;M are in lexicographic order. It follows that M is the first
row of P{B|M, that is also the first row of PA,M. Set P = diag(Py, ..., Py). Then PA,M satisfies (S3). Since PA; = A,
we see that [PA; PA,M] satisfies (S4).

With the above notation, we prove the assertion by induction on n,. First we treat the case where bM = 1. This in
particular includes the case where n, = 1, the starting point of the induction. In this case, the first row of PA,M is 1,
hence PA,M satisfies (S2). The other assertions have been proved already. ) )

Next we consider the case where bM = [1,,2_,1/2 On/z], with 0 < n, < ny. Define A} € Tg”(nﬁnrnz) and A} € Tgm2
by setting [A] A}] to be the matrix obtained from [A; PA;M] by deleting the first row. By inductive hypothesis,
there exist P’ € P,,_; and M’ € M, such that P'ALM satisfies (S2) and (S3), and [P'A]  P’A,M'] satisfies (S4). By our
choice of b, the row vector bM is lexicographically the smallest member among the rows of PyB{M, and the same is
true among the rows of the matrix P{B{M”, where

I:Inzn’ 0 i|
M' =M 2 .
0 M

It follows that the matrix

1 0 * 0
[A1 PAM" ] =
0 P P'AY PAM

P”—IOP
o P

Since P’A M’ satisfies (S2), while the first row of P”A,M” is the same as that of PA,M which is [(Ln,—n, Oy, the
matrix P"A,M" satisfies both (S2) and (S3)'. We have already shown that the matrix [P”A; P"A,M] satisfies (S4).
O

satisfies (S4). Set

Lemma 2.2. Under the same assumption as in Lemma 2.1, there exist My € M,, and M, € M, such that
[MiA;  M,A;M>] satisfies (S1) and (S4), and M1A; M, satisfies (S2) and (S3).

Proof. We will prove the assertion by induction on m. Suppose m = 1. It is clear that every single row vector always
satisfies (S4). Also, every single row vector satisfying (S3)’ necessarily satisfies (S2). Now, if A; = 0 or n; = 0, then
there exists M, € M, such that A;M, satisfies (S3)" and hence (S1) is satisfied. If A; # 0, then there exist a € T and
M, € M, such that aA; satisfies (S1) and aA, M, satisfies (S3)'.

Assume the assertion is true up to m — 1. First, we consider the case where A} = 0 or n; = 0. Without loss of
generality, we may assume A, # 0. Furthermore, we may assume that the first row and the first column of A, are ones
followed by zeros. Then there exists P’ € P,, such that

1 1 010
AP =|1" B, B |0
0 C G
where B, € Té" %! has no zero column. By Lemma 2.1, there exist P € IP,,, and M € M such that PB,M satisfies (S2)
and (S3)' and [PB, PB,M] satisfies (S4). Let

C,l _ C] |:Ing—n’z—z—l 0 ]

0 M
By inductive hypothesis, there exist M} € M, -1, and M5 € M, such that [M{C} M| CoM,] satisfies (S1) and (S4),
and M| C,M,, satisfies (S2) and (S3)'. By setting
1 0 0 Ly~ 0 0
Mi=|0 P O |, My=P| O M 0 |,
0 0 M 0 0 M,
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the matrix M;A, M, satisfies (S1)-(S4).
Next we consider the case A; # 0. Without loss of generality, we may assume that the first nonzero column in A; is

ones followed by zeros. Write
1" B
Ar = | Opxs 1
0 D

for some ¢ < ny, with B; € Ty" """V and D, € T;*" ™"~V for some m;,m; with m; 4+ my = m and my < m. Then
there exists P’ € IP,,, such that

AP = [32 O, X”’z}
D, C
for some n), > 0, where B, € T(;" 1<z =) has no zero column. By Lemma 2.1, there exist P € IP,,, and M € an,,,/z such

that PB,M satisfies (S2) and (S3) and [PB, PB,M] satisfies (S4). Let C; = [D; D,M]. Then by inductive
hypothesis, there exist M| € M,,, and M) € M, such that [M{C, M;CyM}] satisfies (S1) and (S4), and M| C,M}

satisfies (S2) and (S3)'. By setting
P 0 M 0
M, = ., My=PF ,
0 M, 0 M,

the proof is complete. (I
Theorem 2.3. Every matrix in Tg"™" is equivalent to a matrix that is in standard form.

Proof. Let W € T§"™". Setting A; = @ and A, = W in Lemma 2.2, we see that W is equivalent to a matrix that is in
standard form. 0

Corollary 2.4. Every unit weighing matrix is equivalent to a unit weighing matrix that is in standard form.

Proof. Setting T = {z € C : |z] = 1}, the proof is immediate from Theorem 2.3. [l
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