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1. Introduction

In this proceeding, we study the behavior, as " (> 0) tends to 0, of the solutions u" of the Hamilton–Jacobi equation:

ðHJÞ"
u"t þ H

x

"
;Du"

� �
¼ 0 in Rn � ð0;T Þ,

u"ðx; 0Þ ¼ u0ðxÞ on Rn,

8<
:

where T > 0, the Hamiltonian Hðy; pÞ : Rn � Rn! R, the initial function u0 : Rn! R, respectively, are given
continuous functions. Here are our standing assumptions:
(A1) The function H is uniformly coercive in the y-variable, i.e.,

lim
r!1

inffHðy; pÞ j y 2 Rn; jpj � rg ¼ 1:

(A2) The function y 7!Hðy; pÞ is Zn-periodic for each p, i.e.,

Hðyþ z; pÞ ¼ Hðy; pÞ for any y; p 2 Rn; z 2 Zn:

(A3) u0 2 LipðRnÞ.
This is a singular limit problem of differential equations, which is called homogenization with a background of the

material science. The study of homogenization of nonlinear partial differential equations of the type (HJ)" started from
the famous unpublished work by Lions, Papanicolaou, Varadhan [12].

First, we heuristically derive the behavior of solutions of (HJ)" as " tends to 0. We consider a formal asymptotic
expansion of solutions u" of (HJ)" of the form

u"ðx; tÞ :¼ uðx; tÞ þ "v
x

"

� �
þ Oð"2Þ:

Of course, there are several possibility for ansatzs at this moment, but we will see below that this is a right one. Set
y :¼ x=". Plugging this into (HJ)" and performing formal calculations, we achieve

ut þ Hðy;Dxuþ Dyvþ � � �Þ ¼ 0:

Let P ¼ Dxuðx; tÞ, and vð�;PÞ be a Zn-periodic solution of the stationary problem:

ðCÞP Hðy;Pþ Dvðy;PÞÞ ¼ HðPÞ in Rn;

where HðPÞ is a unknown constant. We call a problem to find a pair ðvð�;PÞ;HðPÞÞ 2 CðRnÞ � R the cell problem for
Hamilton–Jacobi equations.

This formal observation tells us that we can expect that u" converges to the function u as "! 0 which is the solution
of
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(H)
ut þ HðDuÞ ¼ 0 in Rn � ð0; T Þ,
uðx; 0Þ ¼ u0ðxÞ on Rn.

�

We give a proof of the existence result for (C)P in the viscosity sense in Sect. 2. In Sect. 3, we explain an idea of the
perturbed test function method which was introduced by Evans [5] and applied it to prove the homogenization of
solutions of (HJ)".

In Sect. 4, we revisit cell problem (C)P. We emphasize here that in general, solutions to cell problem (C)P are not
unique even up to additive constants. See examples in [16] and [11, Chapter 6] for instance. Therefore, if we consider
an approximation procedure for (C)P, then two natural questions appear:

(i) Does the whole family of approximate solutions converges?
(ii) If it converges, then which solution of the corresponding cell problem is the limit (which solution is selected)?

This type of questions is called a selection problem for cell problem (C)P.
In Sect. 4, we consider a so-called discounted approximation (see ð2.1Þ) for (C)P, and investigate the selection

problem for this approximation procedure. We give an answer for the above questions (i), (ii) based on a recent result
in [16].

2. Existence Result for (C)P

As seen in Introduction, cell problem (C)P plays an important role to determine the limit of solutions of (HJ)". In this
section, we consider cell problem (C)P for Hamilton–Jacobi equations for a fixed P 2 Rn, and prove the existence of a
unknown pair ðvð�;PÞ;HðPÞÞ 2 CðTnÞ � R so that vð�;PÞ solves (C)P in the viscosity sense. We recall the definition of
viscosity solutions in Sect. 3.

In what follows in this section, we consider the situation that everything is assumed to be Zn-periodic with respect to
the spatial variable x. As it is equivalent to consider the equations in the n-dimensional torus Tn ¼ Rn=Zn, we always
use this notation.

Theorem 2.1. Assume that H 2 CðRn � RnÞ and that H satisfies (A1), (A2). For any P 2 Rn, there exists a pair
ðvð�;PÞ;HðPÞÞ 2 LipðTnÞ � R such that vð�;PÞ solves (C)P in the viscosity sense.

This theorem was first proved in [12].

Proof. For � > 0, consider the following approximate problem

�v� þ Hðx;Pþ Dv�Þ ¼ 0 in Tn: ð2:1Þ
Setting M :¼ maxx2Tn jHðx;PÞj, it is easily seen that �M=� are a supersolution and subsolution of ð2.1Þ, respectively.
By the Perron method in the theory of viscosity solutions (we refer to [4], [1] for standard theory of viscosity solutions
for instance), there exists a unique viscosity solution v� to ð2.1Þ such that

jv�j � M=�;

which implies further that Hðx;Pþ Dv�Þ � M. In view of coercivity assumption (A1), we get

jDv�j � C for some C > 0 independent of �: ð2:2Þ

Therefore, we obtain that fv�ð�Þ � v�ðx0Þg�>0 is equi-Lipschitz continuous for a fixed x0 2 Tn. Moreover, noting that

jv�ðxÞ � v�ðx0Þj � kDv�kL1ðTnÞjx� x0j � C;

we see that fv�ð�Þ � v�ðx0Þg�>0 is uniformly bounded in Tn. Thus, in light of the Arzelà–Ascoli theorem, there exists a
subsequence f�jgj converging to 0 so that v�j ð�Þ � v�jðx0Þ ! vð�;PÞ uniformly on Tn as j!1. Since j�jv�jðx0Þj � M,
by passing to another subsequence if necessary, we obtain that

�jv
�jðx0Þ ! �HðPÞ for some c 2 R:

In view of the stability result of viscosity solutions, we get the conclusion. �

Remark 1. 1. Notice that HðPÞ is determined uniquely, which is called the effective Hamiltonian. 2. We notice that
the approximation procedure above using ð2.1Þ is called the discounted approximation procedure. It is a natural
procedure in many senses. Firstly, the approximation makes Eq. ð2.1Þ strictly monotone in v�, which fits perfectly in the
well-posedness setting of viscosity solutions. Secondly, we can easily get a priori estimate on jDv�j as seen in the proof
of Theorem 2.1. Thus, in light of the Arzelà–Ascoli theorem, we get the existence result by a rather soft argument. We
emphasize here that from this argument, we only know convergence of fv�j � v�jðx0Þgj via the subsequence f�jgj. It is
not clear at all at this moment whether fv� � v�ðx0Þg�>0 converges uniformly as �! 0 or not. We will come back to this
question in Sect. 4.
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3. Perturbed Test Function Method

In this section, we give a proof of the homogenization result for (HJ)".

Theorem 3.1 (Homogenization Result). Assume that H 2 CðRn � RnÞ and that H satisfies (A1), (A2). Let u" be the
viscosity solution to (HJ)". The function u" converges locally uniformly in Rn � ð0;T Þ to the function u 2 LipðRn �
½0;T ÞÞ as "! 0, where u is the unique viscosity solution to (H).

This theorem was first proved in [12]. Evans in [5] introduced the perturbed test function method, which is very
versatile to study singular limit problems in differential equations, and applied it to obtain Theorem 3.1.

To have a look at ideas of Evans as simply as possible, let us first formally suppose that u" is smooth. Notice that this
is a completely formal assumption as we cannot expect a global smooth solution u of Hamilton–Jacobi equations in
general. Moreover, take a sequence f"jg with "j! 0 as j!1 so that u"j ! u, and we will observe how we prove that
u satisfies the limit problem (H). Note that u may depend on the choice of a subsequence at this moment, but the
uniqueness of viscosity solutions of (H) easily implies the convergence (for a whole sequence).

First attempt. Take a test function ’ 2 C1ðRn � ½0;T ÞÞ and let ðx0; t0Þ 2 Rn � ð0;T Þ be a point such that
maxðx;tÞ2Rn�½0;T Þðu� ’Þðx; tÞ ¼ ðu� ’Þðx0; t0Þ. Take points ðx"j ; t"j Þ 2 Rn � ð0; T Þ satisfying maxðx;tÞ2Rn�½0;T Þðu"j �
’Þðx; tÞ ¼ ðu"j � ’Þðx"j ; t"jÞ, and ðx"j ; t"j Þ ! ðx0; t0Þ as j!1. Then, we have

0 ¼ u
"j
t ðx"j ; t"jÞ þ H

x"j

"j
;Du"j ðx"j ; t"jÞ

� �
¼ ’tðx"j ; t"j Þ þ H

x"j

"j
;D’ðx"j ; t"jÞ

� �
:

We realize here that because of the term x"j="j in the equation, we cannnot see what happens if we send j!1 here.
Thus, we see that this attempt is a failure.

Second attempt. Take a test function ’ 2 C1ðRn � ½0; T ÞÞ and let ðx0; t0Þ 2 Rn � ð0;T Þ be a point such that
maxðx;tÞ2Rn�½0;T Þðu� ’Þðx; tÞ ¼ ðu� ’Þðx0; t0Þ. Let P 2 Rn (which will be chosen later), and vð�;PÞ be a solution to (C)P.
Suppose here again that vð�;PÞ is smooth. Consider

max
ðx;tÞ2Rn�½0;T Þ

u"jðx; tÞ � ’ðx; tÞ � "jv
x

"j
;P

� �� �
: ð3:1Þ

Let ðx"j ; t"jÞ 2 Rn � ð0;T Þ be a point where the maximum is attained at. Then,

0 ¼ u
"j
t ðx"j ; t"jÞ þ H

x"j

"j
;Du"j ðx"j ; t"jÞ

� �

¼ ’tðx"j ; t"j Þ þ H
x"j

"j
;D’ðx"j ; t"jÞ þ Dyv

x"j

"j
;P

� �� �

� ’tðx"j ; t"jÞ þ H
x"j

"j
;D’ðx0; t0Þ þ Dyv

x"j

"j
;P

� �� �
� !ð"jÞ;

where y ¼ x=", and ! is a continuous function with !ð0Þ ¼ 0.
Here, letting P ¼ D’ðx0; t0Þ, we see that

HðPÞ ¼ H
x"j

"j
;Pþ Dyv

x"j

"j
;P

� �� �
¼ H

x"j

"j
;D’ðx0; t0Þ þ Dyv

x"j

"j
;P

� �� �
;

since vð�;PÞ is a solution to (C)P. Therefore,

’tðx"j ; t"jÞ þ HðD’ðx0; t0ÞÞ � !ð"jÞ:

Sending j!1 yields that

utðx0; t0Þ þ HðDuðx0; t0ÞÞ � 0:

Similarly, we can formally prove that u is a supersolution of (H).
In this argument, we perturb a test function ’ by using a solution vð�;PÞ to (C)P, which is called a corrector.

Therefore, we call this argument a perturbed test function method.
Now, to make this argument rigorous, let us recall the definition of the viscosity solution.

Definition 1 (Viscosity subsolutions, supersolutions, solutions). An upper (resp., lower) semicontinuous function
u : Rn � ½0; T Þ ! R is called a viscosity subsolution (resp., supersolution) of the intial-value problem:

ðCÞ
ut þ Hðx;DuÞ ¼ 0 in Rn � ð0; T Þ,
uðx; 0Þ ¼ u0ðxÞ on Rn,

�
provided that uð�; 0Þ � u0 (resp., uð�; 0Þ � u0) on Rn, and for each ’ 2 C1ðRn � ð0;T ÞÞ, if u� ’ has a local maximum
(resp., minimum) at ðx0; t0Þ 2 Rn � ð0;T Þ then
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’tðx0; t0Þ þ Hðx0;D’ðx0; t0ÞÞ � ðresp:;�Þ 0:

A function u : Rn � ½0;1Þ ! R is called a viscosity solution of the intial-value problem (C) if u is both a viscosity
subsolution, and a viscosity supersolution (hence continuous) of (C).

To prove Theorem 3.1, we prepare two lemmas.

Lemma 3.2. Set

Wðx; tÞ :¼ lim
"!0

supfu�ðy; sÞ j jx� yj � "; jt � sj � "; � � "g ¼ limsup�

"!0

u"ðx; tÞ;

wðx; tÞ :¼ lim
"!0

inffu�ðy; sÞ j jx� yj � "; jt � sj � "; � � "g ¼ liminf�
"!0

u"ðx; tÞ:

Then, W and w are, respectively, a viscosity subsolution and a supersolution of (H).

Proof. We can easily check Wð�; 0Þ ¼ wð�; 0Þ ¼ u0ðxÞ on Rn. We employ the perturbed test function method to prove
that W and w are a viscosity subsolution and supersolution, respectively, of the equation in (H). We only prove that W
is a viscosity subsolution since by symmetry we can prove that w is a viscosity supersolution. We take a test function
’ 2 C1ðRn � ð0;T ÞÞ such that W � ’ has a strict maximum at ðx0; t0Þ 2 Rn � ð0; T Þ. Let P :¼ D’ðx0; t0Þ. Choose a
sequence "m! 0, ðxm; tmÞ 2 Rn � ð0;T Þ such that

Wðx0; t0Þ ¼ lim
m!1

u"mðxm; tmÞ:

Set

 ";�ðx; y; tÞ :¼ ’ðx; tÞ þ "v
y

"

� �
þ
jx� yj2

2�2
;

for � > 0, where v is a viscosity solution of (C)P. For every m 2 N; � > 0, there exist ðxm;�; ym;�; tm;�Þ 2 Rn � Rn �
ð0;T Þ such that

max
R

n�Rn�½0;T Þ
½u"m ðx; tÞ �  "m;�ðx; y; tÞ	 ¼ u"m ðxm;�; tm;�Þ �  "m;�ðxm;�; ym;�; tm;�Þ ð3:2Þ

and up to passing some subsequences

ðxm;�; ym;�; tm;�Þ ! ðxm; xm; tmÞ as �! 0;

ðxm; tmÞ ! ðx0; t0Þ as m!1;
lim
m!1

lim
�!0

u"m ðxm;�; tm;�Þ ¼ Wðx0; t0Þ:

By the definition of viscosity subsolutions, we have

’tðxm;�; tm;�Þ þ H
xm;�

"m
;D’ðxm;�; tm;�Þ þ

xm;� � ym;�

�2

� �
� 0: ð3:3Þ

Since vð�;PÞ is a viscosity supersolution of (C)P, we have

H
ym;�

"m
;Pþ

xm;� � ym;�

�2

� �
� HðPÞ: ð3:4Þ

Note that due the Lipschitz continuity of v, we have

xm;� � ym;�

�2

����
���� � C for some C > 0;

where C is independent of m; �. Thus, by taking a subsequence if necessary, we can assume that ðxm;� � ym;�Þ=�2!
Qm 2 R as �! 0.

Let �! 0 in ð3.3Þ and ð3.4Þ to derive

’tðxm; tmÞ þ H
xm

"m
;D’ðxm; tmÞ þ Qm

� �
� 0 ð3:5Þ

and

H
xm

"m
;Pþ Qm

� �
� HðPÞ: ð3:6Þ

Combine ð3.5Þ with ð3.6Þ to get
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’tðxm; tmÞ þ HðPÞ � H
xm

"m
;Pþ Qm

� �
� H

xm

"m
;D’ðxm; tmÞ þ Qm

� �
� !ðjP� D’ðxm; tmÞjÞ

for some modulus !. Letting m!1, we get the result. �

Note that the effective Hamiltonian is continuous and coercive. By a standard comparison principle in the theory of
viscosity solutions, we can easily prove

Lemma 3.3. The limit problem (H) has the unique viscosity solution.

Theorem 3.1 is a straightforward result of Lemmas 3.2 and 3.3.

4. Selection Problem for (C)P

In this section, we consider the discounted approximation

(D)� �v� þ Hðx;Pþ Dv�Þ ¼ HðPÞ in Tn;

again, and investigate the selection problem, which is addressed in Introduction, appearing in this approximation
procedure. Note here that we add HðPÞ in the right hand side for normalization.

Here is a main theorem.

Theorem 4.1. Assume that

ðA4Þ

H 2 C2ðTn � RnÞ; D2
pH � 0,

jDxHðx; pÞj � Cð1þ Hðx; pÞÞ for all ðx; pÞ 2 Tn � Rn,

lim
jpj!þ1

Hðx; pÞ
jpj

¼ þ1; uniformly for x 2 Tn.

8>>><
>>>:

For each � > 0, let v� be the solution to (D)�. Then, we have that, as �! 0,

v�ðxÞ ! v0ðxÞ :¼ sup
�2E

�ðxÞ uniformly for x 2 Tn; ð4:1Þ

where we denote by E the family of solutions v of (C)P satisfyingZZ
T
n�Rn

v d� � 0 for all � 2M: ð4:2Þ

The set M, which is a family of probability measures on Tn � Rn, is defined in Sect. 4.1.

Remark 2.
(i) The selection problem appearing in the discount approximation procedure was proposed by Lions, Papanicolaou,
Varadhan [12]. See also Bardi, Capuzzo-Dolcetta [1, Remark 1.2, page 400]. It remained unsolved for almost 30 years.
Recently, there was significant progress in the case of convex Hamiltonians. First, a partial characterization of the
possible limits was given by Gomes [9] in terms of the Mather measures. Davini, Fathi, Iturriaga, Zavidovique [2] and
Mitake, Tran [16] gave a positive answer for this question, respectively, by using a dynamical approach and the
nonlinear adjoint method.
(ii) From a view point of the existence result for (C)P, it seems to be natural to consider this selection problem for non-
convex Hamilton–Jacobi equations. However, it seems quite challenging to study this under a general nonconvex
setting. In [10], some partial answers were obtained. We also emphasize that a rate of the convergence (quantitative
results) of Theorem 4.1 remains quite open. In [15], it is demonstrated that error estimates would depend highly on
dynamics of the dynamical systems in general.

4.1 Construction of M

Set HPðx; pÞ :¼ Hðx;Pþ pÞ � HðPÞ. Then, we can rewrite (C)P and (D)� as

HPðx;DvÞ ¼ 0 in Tn; ð4:3Þ
�v� þ HPðx; v�Þ ¼ 0 in Tn;

respectively. We henceforth denote HP by H for simplicity, which hopefully will not confuse readers. . .
Since v�; v are not smooth in general, in order to perform our analysis, we need a regularizing process. For each

�; � > 0, we consider

(A)�� �v�;� þ Hðx;Dv�;�Þ ¼ �2�v�;� in Tn;

where � f :¼
Pn

i¼1 @xixi f for any smooth function f , which is a standard approximation (which is called a vanishing
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viscosity approximation) of (D)�. Due to the appearance of viscosity term �2�v�;�, (A)�� has a (unique) smooth solution
v�;�. The following result on the rate of convergence of v�;� to v� as �! 0 is standard, and we omit the proof here. See
[11, Theorem 4.4] and [11, Proposition 5.5] for instance.

Lemma 4.1. Assume (A4). Then there exists a constant C > 0 independent of � and � so that

kDv�;�kL1ðTnÞ � C; kv�;� � v�kL1ðTnÞ �
C�

�
:

It is time to use the nonlinear adjoint method to construct the set M 
 PðTn � RnÞ in Theorem 4.1, where we denote
by PðTn � RnÞ the set of Radon probability measures on Tn � Rn. For x0 2 Tn fixed, we consider an adjoint equation
of the linearized operator of (A)�� :

(AJ)
�
� ���;� � divðDpHðx;Dv�;�Þ��;�Þ ¼ �2���;� þ ��x0

in Tn;

where �x0
denotes the Dirac delta measure at x0. Note here that since the equation (AJ)�� is a uniformly elliptic equation,

by approximating �x0
by a smooth function and considering the limit, we can construct a smooth solution

��;� 2 C1ðTn n fx0gÞ. By the maximum principle and integrating (AJ)�� on Tn, we obtain

��;� > 0 in Tn n fx0g; and

Z
T
n

��;�ðxÞ dx ¼ 1: ð4:4Þ

Define the linear functional L : CcðTn � RnÞ ! R by

L :¼
Z
T
n

 ðx;Dv�;�Þ��;�ðxÞ dx:

Due to ð4.4Þ, L is bounded. Thus, in light of the Riesz theorem (see [17, Theorem 6.19] for instance), for every
�; � > 0, there exists a probability measure ��;� 2 PðTn � RnÞ satisfyingZ

T
n

 ðx;Dv�;�Þ��;�ðxÞ dx ¼
ZZ

T
n�Rn

 ðx; pÞ d��;�ðx; pÞ ð4:5Þ

for all  2 CcðTn � RnÞ. It is clear that suppð��;�Þ 
 Tn � Bð0;CÞ for some C > 0 due to Lemma 4.2. SinceZZ
T
n�Rn

 ðx; pÞ d��;�ðx; pÞ ¼ 1 for all � > 0; � > 0;

due to the compactness of weak convergence of measures, there exist two subsequences �k ! 0 and �j! 0 as k!1,
j!1, respectively, and probability measures ��j ; � 2 PðTn � RnÞ (see [3, Theorem 4] for instance) so that

��j ;�k * ��j as k!1;
��j * � as j!1; ð4:6Þ

in the sense of measures. We also have that suppð��jÞ; suppð�Þ 
 Tn � Bð0;CÞ. For each such �, set � 2 PðTn � RnÞ so
that the pushforward measure of � associated with �ðx; qÞ ¼ ðx;DqLðx; qÞÞ is �, that is, for all  2 CcðTn � RnÞ,ZZ

T
n�Rn

 ðx; pÞ d�ðx; pÞ ¼
ZZ

T
n�Rn

 ðx;DqLðx; qÞÞ d�ðx; qÞ: ð4:7Þ

Here, the function L : Tn � Rn! R is the Legendre transform of H, i.e.,

Lðx; qÞ :¼ sup
p2Rn

ðp � q� Hðx; pÞÞ for all ðx; qÞ 2 Tn � Rn:

By (A4), L is well-defined, that is, Lðx; qÞ is finite for each ðx; qÞ 2 Tn � Rn. Furthermore, L is of class C1, convex with
respect to q, and superlinear.

Notice that the measure � constructed by the above process depends on the choice of x0; f�kgk; f�jgj, and when
needed, we write � ¼ �ðx0; f�kgk; f�jgjÞ to demonstrate the clear dependence. In general, there could be many such limit
� for different choices of x0, f�kgk or f�jgj. We define the set M 
 PðTn � RnÞ by

M :¼
[

x02Tn;f�kgk ;f�jgj

f�ðx0; f�kgk; f�jgjÞg:

The following simple proposition records important properties of � and �.

Proposition 4.2. Assume that (A4) holds. Let � and � be probability measures given by ð4.6Þ and ð4.7Þ. Then,

(i)

ZZ
T
n�Rn

ðDpHðx; pÞ � p� Hðx; pÞÞ d�ðx; pÞ ¼
ZZ

T
n�Rn

Lðx; qÞ d�ðx; qÞ ¼ 0,

(ii)

ZZ
T
n�Rn

DpHðx; pÞ � D’ d�ðx; pÞ ¼
ZZ

T
n�Rn

q � D’ d�ðx; qÞ ¼ 0 for any ’ 2 C1ðTnÞ.

54 MITAKE



Proof. Equation (A)�� can be rewritten as

�v�;� þ DpHðx;Dv�;�Þ � Dv�;� � �2�v�;� ¼ DpHðx;Dv�;�Þ � Dv�;� � Hðx;Dv�;�Þ:

Multiply this by ��;� and integrate on Tn to getZ
T
n

ð�v�;� þ DpHðx;Dv�;�Þ � Dv�;� � �2�v�;�Þ��;� dx

¼
Z
T
n

ð���;� � divðDpHðx;Dv�;�Þ��;�Þ � �2���;�Þv�;� dx

¼
Z
T
n

��x0
v�;� dx ¼ �v�;�ðx0Þ:

Moreover, Z
T
n

ðDpHðx;Dv�;�Þ � Dv�;� � Hðx;Dv�;�ÞÞ��;� dx

¼
ZZ

T
n�Rn

ðDpHðx; pÞ � p� Hðx; pÞÞ d��;�ðx; pÞ:

Set � ¼ �k, � ¼ �j, and let k!1, j!1 in this order to yield

0 ¼
ZZ

T
n�Rn

ðDpHðx; pÞ � p� Hðx; pÞÞ d�ðx; pÞ

¼
ZZ

T
n�Rn

ðDpHðx;DqLðx; qÞÞ � DqLðx; qÞ � Hðx;DqLðx; qÞÞÞ d�ðx; qÞ

¼
ZZ

T
n�Rn

Lðx; qÞ d�ðx; qÞ;

by ð4.7Þ and the duality of convex functions. Note in the above computation that we have limj!1 �jv
�jðx0Þ ¼ 0 because

v� is the viscosity solution to (D)�.
We now proceed to prove the second part. Fix ’ 2 C2ðTnÞ. Multiply (AJ)�� by ’ and integrate on Tn to getZ

T
n

ðDpHðx;Du�;�Þ � D’Þ��;� dx ¼ �2

Z
T
n

�’��;� dxþ �’ðx0Þ � �
Z
T
n

’��;� dx:

We use ð4.5Þ for � ¼ �j, � ¼ �k, and let k!1 to obtainZZ
T
n�Rn

DpHðx; pÞ � D’ d��jðx; pÞ ¼ �j’ðx0Þ � �j
ZZ

T
n�Rn

’ðxÞ d��jðx; pÞ:

Finally, let j!1 to complete the proof. �

4.2 Mather measures

We are concerned with the following minimization problem

min
�2F

ZZ
T
n�Rn

Lðx; qÞ d�ðx; qÞ; ð4:8Þ

where

F :¼ � 2 PðTn � RnÞ :
ZZ

T
n�Rn

q � D� d�ðx; qÞ ¼ 0 for all � 2 C1ðTnÞ
� �

:

Measures belonging to F are called holonomic measures or closing measures associated with ð4.3Þ. By (ii) of
Proposition 4.3, M 
 F .

Definition 2. We let fM to be the set of all minimizers of ð4.8Þ. Each measure in fM is called a stochastic Mather
measure.

It is worth mentioning that the holonomic condition is equivalent to the invariance condition under the Euler–Lagrange
flow

d

ds
DqLð	ðsÞ; _	ðsÞÞ ¼ DxLð	ðsÞ; _	ðsÞÞ:

This idea was first discovered by Mañé [13], who relaxed the original idea of Mather [14]. Minimizers of the
minimizing problem ð4.8Þ are precisely Mather measures for first-order Hamilton–Jacobi equations.

Proposition 4.3. Fix � 2M. Then � is a minimizer of ð4.8Þ.
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This proposition clearly implies that M 
 fM.

Lemma 4.4. Assume that (A4) holds. We haveZZ
T
n�Rn

Lðx; qÞ d�ðx; qÞ � 0 for all � 2 F : ð4:9Þ

Furthermore,

min
�2F

ZZ
T
n�Rn

Lðx; qÞ d�ðx; qÞ ¼ 0:

Proof of Lemma 4.5 and Proposition 4.4. Let w be a solution of cell problem ð4.3Þ. Since a solution w of ð4.3Þ is not
smooth in general, in order to use the holonomic condition in F , we need to find a family of smooth approximations of
w, which are approximate subsolutions to ð4.3Þ. A natural way to perform this task is to use the usual convolution
technique. More precisely, for each � > 0, let

w�ðxÞ :¼ 	� � wðxÞ ¼
Z
R

n

	�ðyÞwðxþ yÞ dy; ð4:10Þ

where 	�ðyÞ ¼ ��n	ð��1yÞ (here 	 2 C1c ðR
nÞ is a standard symmetric mollifier such that 	 � 0, supp 	 
 Bð0; 1Þ and

k	kL1ðRnÞ ¼ 1).
By the Jensen inequality,

Hðx;Dw�Þ � C� in Tn:

For any � 2 F , one has

C� �
ZZ

T
n�Rn

Hðx;Dw�Þ d�ðx; qÞ �
ZZ

T
n�Rn

ð�Lðx; qÞ þ q � Dw�Þ d�ðx; qÞ

¼ �
ZZ

T
n�Rn

Lðx; qÞ d�ðx; qÞ;

where we use the admissible condition of � 2 F to go from the second line to the last line. Let �! 0 to deduce thatZZ
T
n�Rn

Lðx; qÞ d�ðx; qÞ � 0:

Thus, item (i) in Proposition 4.3 confirms that any measure � 2M minimizes the action ð4.8Þ. This is equivalent to the
fact that M 
 fM. �

4.3 Key estimates

In this section, we give two important estimates.

Lemma 4.5. Assume that (A4) holds. Let w 2 CðTnÞ be any viscosity solution of ð4.3Þ. For �; � > 0, let v�;�, w� and
��;� be, respectively, the solution to (A)

�
� , the function given by ð4.10Þ and the solution to (AJ)

�
� for some x0 2 Tn. Then,

v�;�ðx0Þ � w�ðx0Þ �
Z
T
n

w���;� dx�
C�

�
: ð4:11Þ

Proof. We first calculate, for every x 2 Tn,

j�w�ðxÞj �
Z
R

n

jD	�ðyÞ � Dwðxþ yÞj dy

�
C

�nþ1

Z
R

n

jD	ð��1yÞj dy ¼
C

�

Z
R

n

jD	ðzÞj dz �
C

�
;

which immediately implies �2j�w�j � C�. Thus,

Hðx;Dw�Þ � �2�w� þ C� in Tn:

Subtract (A)�� from the above inequality to yield

�w� þ C�

� �ðw� � v�;�Þ þ Hðx;Dw�Þ � Hðx;Dv�;�Þ � �2�ðw� � v�;�Þ
� �ðw� � v�;�Þ þ DpHðx;Dv�;�Þ � Dðw� � v�;�Þ � �2�ðw� � v�;�Þ;

where we use the convexity of H in the last inequality.
Then, multiplying this by ��;�, integrating on Tn, and using the integration by parts, we get
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Z
T
n

ð�w� þ C�Þ��;� dx

� �
Z
T
n

ðw� � v�;�Þ��;� dxþ
Z
T
n

ðDpHðx;Dv�;�Þ � Dðw� � v�;�Þ � �2�ðw� � v�;�ÞÞ��;� dx

¼ �
Z
T
n

ðw� � v�;�Þ��;� dx�
Z
T
n

ðdivðDpHðx;Dv�;�Þ��;�Þ þ �2���;�Þðw� � v�;�Þ dx

¼ �
Z
T
n

ðw� � v�;�Þ��;� dx�
Z
T
n

ð���;� � ��x0
Þðw� � v�;�Þ dx

¼ �ðw� � v�;�Þðx0Þ;

which implies ð4.11Þ after a rearrangement. �

Proposition 4.6. Assume that (A4) holds. Let v� be the viscosity solution of (D)�, and � 2M. Then, for any � > 0,ZZ
T
n�Rn

v�ðxÞ d�ðx; qÞ � 0:

Proof. Setting

 �ðxÞ :¼
Z
R

n

	�ðyÞv�ðxþ yÞ dy;

we have

�v� þ Hðx;D �Þ � C�:

For any q 2 Rn, we use the convexity of H that Hðx;D �ðxÞÞ þ Lðx; qÞ � q � D �ðxÞ to obtain

�v� þ q � D � � Lðx; qÞ � C�:

Thus, in light of properties (i), (ii) in Proposition 4.3 of �, we integrate the above inequality with respect to d�ðx; qÞ on
T
n � Rn to imply ZZ

T
n�Rn

�v� d�ðx; qÞ � C�:

Let �! 0 to complete the proof. �

We remark that the key idea of Proposition 4.7 was first observed in [9, Corollary 4].

4.4 Proof of Theorem 4.1

Theorem 4.1 is a straightforward consequence of the following two propositions.

Proposition 4.7. Assume that (A4) holds. Let v� be the viscosity solution to (D)�. Then,

lim inf
�!0

v�ðxÞ � v0ðxÞ;

where v0 is the function defined in Theorem 4.1.

Proof. Let � 2 E, that is, � is a solution of ð4.3Þ satisfying ð4.2Þ. Let �� ¼ 	� � � for � > 0.
Fix x0 2 Tn. Take two subsequences �k ! 0 and �j! 0 so that ð4.6Þ holds, and limj!1 v�j ðx0Þ ¼ lim inf�!0 v

�ðx0Þ.
Let � be the corresponding measure satisfying � ¼ �#�. In view of Lemma 4.6,

v�j;�k ðx0Þ � ��k ðx0Þ �
Z
T
n

��k��j ;�k dx�
C�k

�j
:

Let k!1 to imply

v�jðx0Þ � �ðx0Þ �
ZZ

T
n�Rn

�ðxÞd��jðx; pÞ:

Let j!1 in the above inequality to deduce further that

lim inf
�!0

v�ðx0Þ ¼ lim
j!1

v�j ðx0Þ � �ðx0Þ �
ZZ

T
n�Rn

�ðxÞd�ðx; pÞ

¼ �ðx0Þ �
ZZ

T
n�Rn

�ðxÞd�ðx; qÞ � �ðx0Þ;

which implies the conclusion. �

Proposition 4.8. Assume that (A4) holds. Let f�jgj2N be any subsequence converging to 0 such that v�j uniformly
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converges to a solution v of ð4.3Þ as j!1. Then the limit v belongs to E. In particular,

lim sup
�!0

v�ðxÞ � v0ðxÞ;

where v0 is the function defined in Theorem 4.1.

Proof. In view of Proposition 4.7, it is clear that any uniform limit along subsequences belongs to E. By the definition
of the function v0, it is also obvious that limj!1 v�j ðxÞ � v0ðxÞ. �
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