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On Explicit Construction of Simplex t-designs
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A finite subset X of the n-dimensional simplex is called a simplex t-design if the integral of any polynomial of
degree at most t over the simplex is equal to the average value of the polynomial over the set X. Although these
designs on a simplex are tightly connected to several other topics in mathematics, such as spherical designs, an
explicit construction of such designs is not well-studied. In this paper, we will explicitly construct such designs
using a union of sets consisting of elements whose coordinates are a cyclic permutation of a particular point. By
choosing such a set, the conditions of a set to be a simplex t-design can be reduced to a system of t equations.
Solving these system of equations, we managed to explicitly construct simplex 2-designs on a simplex of an
arbitrary dimension.
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1. Introduction

In 1955, Claringbold [4] coined the term simplex design in his study of joint action by means of an appropriate
experimental design. This term is used for any N experimental points on the simplex. A related study on polynomials
on simplex is also studied in [8]. Inspired by these results, we define simplex design in a more formal term. For a
positive integer n, we define the simplex in Rn as follows:

�n�1 ¼ ðx1; . . . ; xnÞ 2 Rn j
Xn
i¼1

xi ¼ 1 and xi � 0 for all i

( )
:

A simplex t-design on �n�1 is defined as a finite set of points X � �n�1 for which

1

�ð�n�1Þ

Z
�n

f ðxÞd�ðxÞ ¼
1

jXj

X
x2X

f ðxÞ ð1:1Þ

holds for all polynomials f ðxÞ ¼ f ðx1; x2; . . . ; xnÞ of degree at most t, where � denotes the surface measure on �n�1.
This definition can also be seen as a cubature rule of degree t on the n-dimensional simplex as thoroughly studied in [7].
Designs on a simplex are also tightly connected to several other topics in mathematics, such as spherical designs and
isometric embeddings of the classical finite dimensional Banach spaces [5, 6].

Our interest in this topic originated from the fact that such a simplex t-design is closely related to the construction of
spherical t-designs [1]. An explicit construction of such designs will result in an explicit construction of spherical
designs with varied strength and dimensions. The most straightforward way of constructing a simplex t-design is to
solve the moment equations that match the integral and the cubature sum for all polynomials up to degree t. The
difficulty, however, lies in that the number of equations increase exponentially as t increase. To prevent this, we will
restrict the set of points such that the number of equations to be solved is equal to the strength of the design. These
equations then can be solved, even mostly only by numerical means and for cubature rules of moderate degrees in
lower dimensions (see, for example, [10] for one of the latest effort in this direction). In the later section, we will also
provide some explicit solutions for small t and n.

The organization of this paper is as follows. The next section is preliminary, where we sum up the background on
cubature rules, mainly using a generalization of the beta function. Our main result and its accompanying lemma are
given in Section 3. The explicit result then is given in in Section 4.

2. Preliminaries

Our construction of simplex designs is tightly related to some manipulation of the gamma and beta functions. In this
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section, we will provide some basic facts about those two functions and some related identities.
Let � be the gamma function. It is well-known that �ð1

2
Þ ¼

ffiffiffi
�
p

and for x > 1, �ðxÞ ¼ ðx� 1Þ�ðx� 1Þ. For �i > 1,
1 � i � n, we define the multivariate beta function as follows:

Bðð�iÞni¼1Þ :¼

Yn
i¼1

�ð�iÞ

�
Xn
i¼1

�i

 ! :

We can also check that

Bðð�lÞnl¼1Þ ¼
Xn
l¼1

Bð�1 þ �l1; �2 þ �l2; . . . ; �n þ �lnÞ ð2:1Þ

where �li is the Kronecker delta. An integral representation of this beta function can be given as follows.

Bðð�iÞni¼1Þ ¼
1

ðn� 1Þ!�ð�n�1Þ

Z
�n�1

Yn
i¼1

x�i�1
i

 !
d�ðxÞ: ð2:2Þ

The detail of this representation can be found in [9, p. 222]. One can notice that the right-hand side of this equation is
in the form of an integral over a simplex and we will use this to simplify our requirements for a set to be a simplex
design.

We note that due to the linearity of the summation and integral in (1.1), to show that a set X � �n�1 is a
simplex t-design, it is enough to verify (1.1) for all monomials of degree at most t. Now by (2.2), this is equivalent to

1

jXj

X
x2X

xk1

1 xk2

2 � � � x
kn
n ¼ ðn� 1Þ!Bððki þ 1Þni¼1Þ 0 �

Xn
i¼1

ki � t

 !
: ð2:3Þ

3. Method of Construction

In this section, we manipulate both sides of (1.1) using some properties of the beta function, then the number of
required equations is reduced to t. Throghout this section, let Cn denote a cyclic group of order n.

Lemma 3.1. Let n; k 2 Z>0, r1; r2 2 R. Define

V :¼ R½x1; x2; . . . ; xn�

, Xn
i¼1

xi � 1

 !
;

Fðk1; k2; . . . ; knÞ :¼ r1
X
�2Cn

xk1

�ð1Þx
k2

�ð2Þ � � � x
kn
�ðnÞ � r2Bððki þ 1Þni¼1Þ 2 V:

Let Vk be a subspace of V spanned by Fð j; 0; . . . ; 0Þ, 0 � j � k. Then, for non-negative integers k1; . . . ; kn such thatPn
i¼1 ki ¼ k, one has Fðk1; . . . ; knÞ 2 Vk.

Proof. As an element in V , X
�2Cn

xk1

�ð1Þx
k2

�ð2Þ � � � x
kn
�ðnÞ ¼

X
�2Cn

xk1

�ð1Þx
k2

�ð2Þ � � � x
kn
�ðnÞ

 ! Xn
j¼1

xj

 !

¼
Xn
l¼1

X
�2Cn

xk1þ�l1
�ð1Þ xk2þ�l2

�ð2Þ � � � x
knþ�ln
�ðnÞ :

Then, by (2.1),

Fðk1; k2; . . . ; knÞ ¼
Xn
l¼1

Fðk1 þ �l1; k2 þ �l2; . . . ; kn þ �lnÞ: ð3:1Þ

Let >l be the lexicographical ordering on Zn
�0. We will prove Fðk1; . . . ; knÞ 2 Vk by double induction on k and the

reverse lexicographical ordering of ðk1; . . . ; knÞ whose sum is k.
Note that for any ðk1; . . . ; knÞ 2 Zn

�0, with
Pn

i¼1 ki ¼ k,

ðk; 0; . . . ; 0Þ >l ðk1; . . . ; knÞ

unless k2 ¼ k3 ¼ � � � ¼ kn ¼ 0 and the statement is trivially true for ðk; 0; . . . ; 0Þ. Now, assume that Fðk01; . . . ; k0nÞ 2 Vk

for ðk01; . . . ; k0nÞ 2 Z
n
�0 such that

Pn
i¼1 k

0
i � k � 1 or

Pn
i¼1 k

0
i ¼ k and ðk01; . . . ; k0nÞ >l ðk1; . . . ; knÞ. Pick a 2 f2; . . . ; ng so

that ka 6¼ 0. Choose � 2 Cn in such a way that �ðnÞ ¼ a. Then,
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Fðk1; k2; . . . ; knÞ ¼ Fðk�ð1Þ; k�ð2Þ; . . . ; k�ðnÞÞ

¼ Fðk�ð1Þ; . . . ; k�ðn�1Þ; k�ðnÞ � 1Þ �
Xn�1

i¼1

Fðk�ð1Þ þ �i1; . . . ; k�ðn�1Þ þ �i;n�1; k�ðnÞ � 1Þ

by (3.1). Since
Pn

i¼1 k�ðiÞ � 1 ¼ k � 1, we have Fðk�ð1Þ; . . . ; k�ðn�1Þ; k�ðnÞ � 1Þ 2 Vk�1. Also, for i 2 f1; . . . ; n� 1g, we
have

ðk�ð1Þ þ �i1; . . . ; k�ðn�1Þ þ �i;n�1; k�ðnÞ � 1Þ >l ðk�ð1Þ; . . . ; k�ðn�1Þ; k�ðnÞÞ:

Then, by induction hypotheses, Fðk�ð1Þ þ �i1; . . . ; k�ðn�1Þ þ �i;n�1; k�ðnÞ � 1Þ 2 Vk. Thus,

Fðk�ð1Þ; . . . ; k�ðn�1Þ; k�ðnÞ � 1Þ �
Xn�1

i¼1

Fðk�ð1Þ þ �i1; . . . ; k�ðn�1Þ þ �i;n�1; k�ðnÞ � 1Þ 2 Vk:

This completes the induction. �

Theorem 3.2. Let n; s; t 2 Z>0, n � 2, ðxi; jÞ1�i�s;1� j�n 2 ð0; 1Þs	n where
Pn

j¼1 xi; j ¼ 1 for all i. Also, let

X ¼ fðxi;�ð1Þ; xi;�ð2Þ; . . . ; xi;�ðnÞÞ 2 Rn j 1 � i � s; � 2 Cng:
Then, the multiset X is a simplex t-design if and only if

1

sn

Xs
i¼1

Xn
j¼1

xki; j ¼
�ðnÞ�ðk þ 1Þ

�ðnþ kÞ
ð2 � k � tÞ: ð3:2Þ

Proof. Let 2 � k � t and ðk1; . . . ; knÞ 2 Zn
�0 such that

Pn
j¼1 kj ¼ k. Define

Fiðk1; . . . ; knÞ ¼
1

n

X
�2Cn

xk1

i;�ð1Þx
k2

i;�ð2Þ � � � x
kn
i;�ðnÞ � ðn� 1Þ!Bððkj þ 1Þnj¼1Þ ð1 � i � sÞ:

We can rewrite (3.2) as Xs
i¼1

Fiðk; 0; . . . ; 0Þ ¼ 0 ð1 � k � tÞ: ð3:3Þ

Note that by Lemma 3.1, with r1 ¼ 1
n
, r2 ¼ ðn� 1Þ!, there exists cj 2 R, 0 � j � t, such that

Fðk1; . . . ; knÞ ¼
Xk
j¼0

cjFð j; 0; . . . ; 0Þ:

Since X 
 �n�1, we may evaluate both sides at ðxi;1; . . . ; xi;nÞ to obtain

Fiðk1; . . . ; knÞ ¼
Xk
j¼0

cjFið j; 0; . . . ; 0Þ ð1 � i � sÞ: ð3:4Þ

We assume (3.3) holds. By taking summation over i on both sides of (3.4), we have (2.3). Conversely, assume (2.3)
holds. Then, (3.3) is just a special case ðk1; . . . ; knÞ ¼ ðk; 0; . . . ; 0Þ of (2.3). �

In this theorem, if we set all xis to be the same, except xn, we have a system of t equations with t variables. We expect
this system to have a solution, thus one can obtain a simplex t-design on �n with nðt � 1Þ points.

4. Explicit Construction of Simplex t-design

Even though we managed to reduce the number of required equations for a set to be a simplex design, it is still
difficult to solve moment equations that are nonlinear in the coordinate of points. Nevertheless, we will provide some
explicit results for some small t.

With t ¼ 2 and s ¼ 1 in Theorem 3.2, we take all xis to be the same, except xn. We obtain the following corollary.

Corollary 4.1. Let n 2 Z>0, n � 2, and � be a cyclic permutation of order n. The set

X ¼ f� jða; a; . . . ; a; 1� ðn� 1ÞaÞ j 0 � j � n� 1g with a 2 f1
n
� 1

n
ffiffiffiffiffiffi
nþ1
p g

is a simplex 2-design on �n�1.

The following result can be obtained by taking n ¼ 3 in Theorem 3.2:

Corollary 4.2. Let s; t 2 Z>0, ai; bi 2 ð0; 1� for 1 � i � s. Also, let

X ¼
[s
i¼1

fðai; bi; 1� ai � biÞ; ð1� ai � bi; ai; biÞ; ðbi; 1� ai � bi; aiÞg:
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Then, the multiset X is a simplex t-design on �2 if and only if

1

3s

Xs
i¼1

ðaki þ bki þ ð1� ai � biÞkÞ ¼
2

ðk þ 2Þðk þ 1Þ
ð2 � k � tÞ: ð4:1Þ

Taking s ¼ 1 and t ¼ 3, the system of equations (4.1) can be reduced to the polynomial 60x3 � 60x2 þ 15x� 1

whose roots are a1; b1; 1� a1 � b1. These roots all lie in interval ð0; 1�, hence we obtain a simplex 3-design on �2 with
3 points.

Further, if we take ai ¼ bi and s ¼ t � 1 in Corollary 4.2, we will have a system of t � 1 equations with t � 1

variables. It turns out that these systems of equations do have a solution for small t. The following table shows the value
of some t and its corresponding numerical solution ais for a set X as in Corollary 4.2 to be a simplex t-design:

t a1 a2 a3 a4 a5

2 1
2

or 1
6

3 0.446334 0.126485
4 0.476589 0.257088 0.094591
4 0.456393 0.433938 0.092359
5 0.489178 0.385410 0.184975 0.084132
5 0.490566 0.270260 0.192580 0.083133
6 0.499627 0.393244 0.211612 0.173352 0.074035

Although a better computational power is needed to find ai for larger t, this experimental result shows that for small t,
we only need 3ðt � 1Þ points to construct a simplex t-design on �2. The fact that the number of points is linear in t

allows us to construct a spherical t-design on S5 of size 3ðt þ 1Þ3ðt � 1Þ (see [2]). If this is true for arbitrarily large t, it
will give a better asymptotic bound than that of [3] which states that for each N � ct5, there exists a spherical t-design
in the sphere S5 consisting of N points, where c is a constant.
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