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Probability Distributions and Weak Limit Theorems
of Quaternionic Quantum Walks in One Dimension
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The discrete-time quantum walk (QW) is determined by a unitary matrix whose components are complex
numbers. Konno (2015) extended the QW to the quaternionic quantum walk (QQW) whose components are
quaternions and presented some properties of the QQW. Furthermore, Konno (2015) presented the question of
whether or not the dynamics of a QQW is exactly the same as that of the corresponding QW. We give an answer to
the problem by calculating the probability distribution and the weak limit density function of some classes of the
QQW.
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1. Introduction

The discrete-time quantum walk (QW) is a quantum dynamics defined as a quantization of the classical random
walk. The study of QWs has recently begun to attract the concern of various research fields such as information science
and quantum physics. Moreover, QW is powerful method for developing new quantum algorithms and protocols [6].
The discrete-time 2-state QW on Z has been largely investigated [2–4], where Z is the set of integers. As a natural
quaternionic extension of this model, the quaternionic quantum walk (QQW) on Z is introduced by Konno [1].

In this paper, we treat the QQWs in five cases, Cases 1 to 5. We will give the definitions of Cases 1 to 4 and Case 5 in
Sections 3.1 and 3.2, respectively. Our results present an equivalence of the probability distribution of QQWs to that of
the 2-state QW in Case 1–4, and the weak limit theorem of QQWs in Case 5 which produces a different form of the
weak limit density function from that of the QW with some appropriate parameters. The QQWs in Cases 1 to 4 include
a QQW introduced as an example in [1]. In addition, we clarify that the probability distributions of the QQWs in these
cases have exactly the same expression as that of the 2-state QW. However, in general, the expression does not always
correspond to that of the QW. For instance, a numerical simulation suggests that the probability distribution of a QQW
is different from that of the 2-state QW (see Fig. 1). As one of the main results, we clarify a concrete expression of the
limit density function of the QQW in Case 5, which is different from that of the QW. The range of limit density
function of the QW is determined only by the modulus of a component of unitary matrix called coin operator which
gives the dynamics of the QW. However, that of the QQW in Case 5 is not determined only by the modulus of the
component (see Fig. 2). Moreover, this weak limit density function for a special model in Case 5 becomes that of the
QW.

Fig. 1. The distribution of a QQW. Fig. 2. The distributions of a QW (dotted line) and a QQW in
Case 5 (solid line).
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2. Preliminaries

2.1 Quaternion

Let R, C and H be the sets of the real numbers, the complex numbers and the quaternions, respectively. Then x 2 H
is expressed as x ¼ x0 þ x1iþ x2 jþ x3k, where i2 ¼ j2 ¼ k2 ¼ �1, ij ¼ �ji ¼ k, jk ¼ �kj ¼ i, ki ¼ �ik ¼ j, and
x0; x1; x2; x3 2 R. Throughout this paper, for any quaternion q 2 H, the coefficients of basis 1; i; j; k are denoted by
q0; q1; q2; q3 2 R, respectively, that is, q ¼ q0 þ q1iþ q2 jþ q3k. Here, x is decomposed by the real part as <ðxÞ ¼ x0,
and the imaginary part as =ðxÞ ¼ x1iþ x2 jþ x3k. Moreover, for the above x, let x be the conjugate of x whose form is
given by x ¼ x0 � x1i� x2 j� x3k. Then the modulus of x is given by jxj ¼

ffiffiffiffiffi
xx
p
¼

ffiffiffiffiffi
xx
p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
0 þ x2

1 þ x2
2 þ x2

3

p
.

Let Mðn;CÞ and Mðn;HÞ be the sets of all n� n matrices with complex number and quaternion components,
respectively. For A ¼ ðastÞ 2 Mðn;HÞ, we put A ¼ ðastÞ and A� ¼ TðAÞ. Here, T denotes the transpose operator. As with
the complex components, A is a unitary matrix, if AA� ¼ A�A ¼ I, where I is the identity matrix. Let Uðn;CÞ and
Uðn;HÞ be the sets of all n� n unitary matrices with complex number and quaternionic components, respectively.

Moreover, x is uniquely expressed as a direct sum of complex numbers: x ¼ x0 þ x00 j 2 H (x0 ¼ x0 þ x1i,
x00 ¼ x2 þ x3i 2 C). Here, x0 and x00 are called simplex and perplex parts, respectively. By using this, we can express the
quaternion as the isomorphic complex matrix with a homomorphism � : Mðn;HÞ ! Mð2n;CÞ. Such a homomorphism
is not uniquely determined. In this paper, we define �ðAÞ ¼ ð�ðastÞÞ 2 Mð2n;CÞ for A ¼ ðastÞ 2 Mðn;HÞ, with

�ðxÞ ¼
x0 �x00

x00 x0

" #
2 Mð2;CÞ:

2.2 QQW

The QQW on Z is determined by the unitary matrix U 2 Uð2;HÞ which is called coin operator. The walker of QQW
has two chiralities, left and right, corresponding to the direction of the motion. Then we adapt each chirality to the
vector jLi ¼ T 1 0

� �
and jRi ¼ T 0 1

� �
, where L and R refer to the left and right chirality states, respectively. Let

the coin operator U 2 Uð2;HÞ be

U ¼
a b

c d

� �
2 Uð2;HÞ:

Then the evolution of the quaternion version amplitude on position x at time n, �nðxÞ ¼ T �L
nðxÞ �R

n ðxÞ
� �

2 H2, is
defined by �nþ1ðxÞ ¼ P�nðxþ 1Þ þ Q�nðx� 1Þ, where two matrices which represent the direction of the walker P and
Q are defined by jLihLjU and jRihRjU, respectively. Here, the probability that the walker Xn exists on position x at time
n is defined by PðXn ¼ xÞ ¼ k�nðxÞk2. In this paper, we treat the model starting from only the origin. That is, we put the
initial state �0ðxÞ ¼ �0ðxÞT � �

� �
, with �; � 2 H and j�j2 þ j�j2 ¼ 1. Here, Kronecker’s delta �0ðxÞ equals to 1 if

x ¼ 0, equals to 0 otherwise.

2.3 Fourier transform for the QQW

We should remark that since �nðxÞ 2 H2 is isomorphic to �ð�nðxÞÞ T 1 0
� �

2 C4, from now on we use the
expression of C4. Let �nðxÞ be the C4 expression of �nðxÞ, and its Fourier transform is given by

�̂nð�Þ ¼
X
x2Z

e�i�x�nðxÞ; �nðxÞ ¼
Z �

��
ei�x�̂nð�Þ

d�

2�
:

Noting that �nðxÞ is isomorphic to �nðxÞ, the following lemma holds.

Lemma 2.1.

ð1Þ PðXn ¼ xÞ ¼ k�nðxÞk2: ð2Þ �nþ1ðxÞ ¼ �ðPÞ�nðxþ 1Þ þ �ðQÞ�nðx� 1Þ:

We remark that this lemma implies the QQW is essentially equivalent to the corresponding 4-state QW on Z [5]. Here,
Lemma 2.1 suggests that the time evolution of �̂nð�Þ is described by Uð�Þ 2 Uð4;CÞ:

Uð�Þ ¼
ei��ðaÞ ei��ðbÞ
e�i��ðcÞ e�i��ðdÞ

" #
¼

ei� 0 0 0

0 ei� 0 0

0 0 e�i� 0

0 0 0 e�i�

2
66664

3
77775

�ðaÞ �ðbÞ
�ðcÞ �ðdÞ

� �
:

We can formulate the evolution by �̂nð�Þ ¼ Uð�Þn�̂0ð�Þ. Then the probability distribution is expressed as
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PðXn ¼ xÞ ¼ k�nðxÞk2 ¼
Z �

��

Z �

��
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�ð�ÞnÞðUð�0Þn�̂0ð�0ÞÞ
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:

2.4 Weak limit theorem

The weak limit theorem for the 2-state QW on Z was given in [2, 3] by a path counting method.

Theorem 2.2 (Konno [2, 3]). For QW, Xn, whose coin operator is U ¼ a b

c d

� �
2 Uð2;CÞ with abcd 6¼ 0, �0ðxÞ ¼

�0ðxÞT � �
� �

2 C2, we see that Xn=n converges weakly to the random variable Y as n!1 whose density function
f ðyÞ is given by

f ðyÞ ¼ f ðy; T ½�; ��Þ ¼ f1� Cða; b;�; �Þyg fKðy; jajÞ;

where Cða; b;�; �Þ ¼ j�j2 � j�j2 �
2<ð� ab�Þ
jaj2

; fKðy; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

�ð1� y2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � y2

p Ið�r;rÞðyÞ ð0 < r < 1Þ:

Here, Ið�r;rÞðyÞ ¼ 1, if y 2 ð�r; rÞ, ¼ 0, otherwise.

We should note that the parameter r means the range of support of the limit density function. This weak limit theorem
was also obtained by Grimmett, Janson, and Scudo [4] via the Fourier transform, which is called the GJS method in this
paper. The GJS method showed that the limit density function of the QW can be expressed by eigenvalues ei� ,

eigenvectors jvð�Þi of Uð�Þ, and the change of variable y ¼
d

d�
� . As in the case of QW, we apply the GJS method to our

QQWs. Here, the characteristic polynomial of Uð�Þ is

jIx� Uð�Þj ¼ x4 � 2ða0e
i� þ d0e

�i�Þx3 þ 2ð2a0d0 �<ðbcÞ þ jaj2 cosð2�ÞÞx2 � 2ðd0e
i� þ a0e

�i�Þxþ 1

and the eigenvector associated with ei� is

jvð�Þi ¼

jbj2ð1þ C1Þ

�jbj2ðC2iþ C3Þ

�lððbaÞ0;�b0Þð1þ C1Þ � lððbaÞ00; b00ÞðC2iþ C3Þ

�lððbaÞ00; b00Þð1þ C1Þ þ lððbaÞ0;�b0ÞðC2iþ C3Þ

2
666664

3
777775; ð2:1Þ

where

C ¼
1

jBj2
=ð2ajbj2 sinð� � �Þ þ ðbdbþ cdcÞ sinð� þ �Þ þ bc sinð2�Þ � bd2c sinð2�ÞÞ; lðx; yÞ ¼ xþ yeið���Þ:

Here, jBj2 is normalized coefficient for C and given by

jBj2 ¼ jaj2jbj2ðsin2ð� � �Þ þ sin2ð� þ �ÞÞ � 2jbj2ða0 sinð� þ �Þ þ d0 sinð� � �ÞÞ sinð2�Þ

� 2<ða2bcÞ sinð� � �Þ sinð� þ �Þ þ jbj2 sin2ð2�Þ:

3. Results

Our main results give the probability distribution or the weak limit theorem for the QQWs in five cases. Firstly,
we show that the probability distribution of the QQW in Cases 1 to 4 are formulated as exact same as that of the 2-state
QW (concrete expression is presented in Konno [2]). Secondly, in contrast to Cases 1 to 4, we prove that the dynamics
of the QQW in Case 5 is different from the 2-state QW by the weak limit theorem. Moreover, if <ðbcÞ ¼ bc, then
its limit density function is the same as that of the QW, fKðy; jajÞ. On the other hand, if <ðbcÞ ¼ 0, then the limit
density function becomes fKðy; jaj2Þ. We should remark that this range jaj2 is different from that of the traditional
QW. Therefore, these results give an answer to the problem of clarifying the difference between the 2-state QW and
QQW.

3.1 Probability distributions (Cases 1 to 4)

Theorem 3.1. For QQW in Cases 1 to 4 whose coin operator is U ¼ a b

c d

� �
2 Uð2;HÞ defined as follows,

probability distribution of the QQW is described by the exact same expression as the corresponding QW [2].

Case 1 : b ¼ c ¼ 0 Case 2 : a ¼ d ¼ 0

Case 3 : a; d 2 R; b; c 2 H Case 4 : a; d 2 C; b; c 2 Cj
Here, we assume abcd 6¼ 0 in Case 3 and Case 4.

The proof is based on a path counting method as with [2]. Especially, the walker in Case 1 (resp. Case 2) can not hop to
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the different (resp, same) direction of the previous step, since PQ ¼ QP ¼ O (resp. P2 ¼ Q2 ¼ O). Therefore, the
probability distributions of these cases of QQW are given straightforwardly.

3.2 Weak limit theorem (Case 5)

This section presents the weak limit theorem of the QQW in which components of U satisfy <ðaÞ ¼ <ðdÞ ¼ 0 and
abcd 6¼ 0. Then eigenvalues of Uð�Þ are �ei� ;�e�i� , where

cos � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�<ðbcÞ þ jaj2 cos 2�

2

s
; sin � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ<ðbcÞ � jaj2 cos 2�

2

s
:

Here, the parameter C of the eigenvector associated with ei� in (2.1) is

C ¼
1

jBj2
=ð2jbj2a sinð� � �Þ þ ðbdbþ cdcÞ sinð� þ �Þ þ bcðsinð2�Þ þ jaj2 sinð2�ÞÞ;

where jBj2 ¼ 2jaj2<ðbcÞ cosð2�Þ þ G� 2jaj4 and G ¼ 1þ jaj4 �<ðbcÞ2.

Then we have kvð�Þk2 ¼
4jbj4

jBj2
ð1þ C1Þðsinð2�Þ þ jaj2 sinð2�Þ sinð2�ÞÞ. For y ¼

d

d�
� , we get

cosð2�Þ ¼

�<ðbcÞy2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y4 � Gy2 þ jaj4

p
jaj2ð1� y2Þ
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�<ðbcÞy2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y4 � Gy2 þ jaj4

p
jaj2ð1� y2Þ
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>>>>:

;

where r ¼
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. By using the GJS method, we

obtain the following weak limit theorem in Case 5.

Theorem 3.2. For QQW, Xn, in Case 5 whose coin operator is U ¼ a b

c d

� �
2 Uð2;HÞ, we see that Xn=n converges

weakly to the random variable Y as n!1 whose density function f ðyÞ is given by

f ðyÞ ¼ f ðy; T ½�; ��Þ ¼ f1� Cða; b;�; �Þyg fQQW ðy; rÞ;

where

fQQW ðy; rÞ ¼
ffiffiffi
2
p
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r2 � y2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG� 2Þy2 þ G� 2jaj4 þ ð1� y2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 � 4jaj4

pq
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ jaj2Þ2 �<ðbcÞ2

p
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ð1� jaj2Þ2 �<ðbcÞ2

p
2

and G ¼ 1þ jaj4 �<ðbcÞ2:

Here, Cða; b;�; �Þ is the same as that in Theorem 2.2. Furthermore, it is easily checked that if <ðbcÞ ¼ 0 (resp. <ðbcÞ ¼
bc), then fQQW ðy; rÞ ¼ fKðy; jaj2Þ (resp. fQQW ðy; rÞ ¼ fKðy; jajÞ), where fKðy; rÞ with y 2 Z and 0 < r < 1 is a weak
limit density function of the QW. In other words, an essential difference between the QQW in Case 5 and the
traditional QW is given by the parameter <ðbcÞ which is directly related to the range of the limit density function.
Remark that when <ðbcÞ ¼ bc, the limit density function of the QQW in Case 5 reproduces that of the QW for U ¼
a b

c d

� �
2 Uð2;CÞ.
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