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In this paper we study the asymptotic behavior of second-order uniformly elliptic operators on weighted
Riemannian manifolds. They naturally emerge when studying spectral properties of the Laplace–Beltrami operator
on families of manifolds with rapidly oscillating metrics. We appeal to the notion of H-convergence introduced by
Murat and Tartar. In our main result we establish an H-compactness result that applies to elliptic operators with
measurable, uniformly elliptic coefficients on weighted Riemannian manifolds. We further discuss the special case
of ‘‘locally periodic’’ coefficients and study the asymptotic spectral behavior of compact submanifolds of Rn with
rapidly oscillating geometry.
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1. Introduction

We study the asymptotic behavior of elliptic operators on families of weighted Riemannian manifolds that might
feature fast oscillations. In this introduction we survey the results and the structure of this paper without going into
detail. The precise definitions and statements can then be found in Sect. 2.

Convergence of metric measure spaces, in particular, Riemannian manifolds, has attracted an enormous amount of
attention. Especially, substantial effort has been devoted to establishing geometric criteria for the convergence of
spectral structures, e.g., see [3, 6, 8, 13–15, 17–20, 22, 24].

Our point of view is different. We establish a compactness result that shows that any family of (uniformly elliptic)
PDEs of the form �divg";�" ðL"rg" Þu ¼ f defined on a uniformly bi-Lipschitz diffeomorphic family of weighted
Riemannian manifolds ðM"; g"; �"Þ admits an H-convergent subsequence. The latter notion has been introduced in the
context of homogenization of elliptic PDEs on Rn (in divergence form and of second-order), see [25]. In particular, in
our setting it yields the existence of a limiting manifold and a limiting elliptic PDE such that solutions to the elliptic
PDE on M" converge as " # 0 to the solution of the limiting PDE. Our approach in particular allows us to treat
Riemannian manifolds which oscillate rapidly on a small length scale 0 < "� 1.

This should be compared with the seminal work by Kuwae and Shioya [17], where spectral convergence is
established for families of manifolds which are locally bi-Lipschitz diffeomorphic to a reference manifold with a bi-
Lipschitz constant converging to 1. In situations where the manifold features rapid oscillations, the family of
diffeomorphisms between the manifolds is only uniformly bi-Lipschitz but not locally close to an isometry — and thus
the approach in [17] is not applicable. In contrast, as we shall show, it is still possible to establish H-convergence,
which in the symmetric case (e.g., when considering the Laplace–Beltrami operator on M") implies Mosco-
convergence of the associated energy forms, and the convergence of the associated spectrum. Moreover, our approach
also applies to non-symmetric PDEs.

For general uniformly bi-Lipschitz diffeomorphic families of manifolds the limiting manifold and PDE depends on
the extracted subsequence. However, under geometric conditions for ðM"Þ, we can uniquely identify the limit by
appealing to suitable homogenization formulas (see Sect. 2.2). In the flat case, a natural geometric condition is
periodicity of the coefficient field. In the case of PDEs on Riemannian manifolds with a symmetry structure, or for
general manifolds that feature periodicity in local coordinates, we obtain similar identification results and
homogenization formulas.

The latter might be of interest for applications to diffusion models in biomechanics, which is another motivation of
our work. In this context, diffusion and reaction-diffusion processes in biological membranes and through interfaces are
studied, e.g., see [1, 10, 28, 30]. One observation made is that ‘‘diffusion in biological membranes can appear
anisotropic even though it is molecularly isotropic in all observed instances,’’ see [30]. We present examples (see
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below) where anisotropic diffusion on surfaces emerges on large scales from isotropic diffusion on surfaces with
rapidly oscillating geometry.

Examples. Before stating our results in a general form, we illustrate our findings on the level of examples. In the
following we present five examples. Four of them consider families of 2-dimensional submanifolds ðM"Þ in R3 given by
an explicit formula and depending on a small parameter " > 0, which is related to the length scale of spatial oscillations
of M". In the limit " # 0, M" Hausdorff-converges (as a subset of R3) to a reference submanifold M0 � R3; however,
along the limit, the manifold oscillates more and more rapid and the curvature diverges. As a consequence, the
spectrum of the associated Laplace–Beltrami operator on M" does not converge to the spectrum of the one on M0

(where M0 is considered with the metric induced by the ambient Euclidean space). In Lemma 20 below, we show that
M0 can be equipped with an effective metric ĝ0 (and an effective weight �̂0) such that the resulting weighted
Riemannian manifold ðM0; ĝ0; �̂0Þ captures the asymptotic spectral behavior of ðM"Þ in the limit " # 0, in the sense that
the spectrum of the Laplace–Beltrami operator on M" converges to the spectrum of the Laplace–Beltrami operator on
ðM0; ĝ0; �̂0Þ. In examples (b)–(d) below, it turns out that the limiting manifold ðM0; ĝ0; �̂0Þ can be realized as a 2-
dimensional submanifold N0 � R3, and thus, the spectral properties of N0 capture the asymptotic spectral properties of
M" in the limit " # 0. Proofs and further details are presented in Sect. 3.

(a) A one-dimensional example. We start with an elementary, one-dimensional example to clarify the results
conceptually. For " ¼ 1

k
with k 2 N we consider the 1-dimensional submanifold M" � R2,

M" :¼
x

f"ðxÞ

� �
; x 2 ½0;L�

� �
; ð1Þ

where L 2 N, f"ðxÞ :¼ " f ðx"Þ and f denotes a smooth, 1-periodic function with f ð0Þ ¼ f ð1Þ ¼ 0 that is not identically 0.
By periodicity we note that the density of the Riemannian volume form �" associated with M" weakly-� converges in
L1ðð0;LÞÞ:

�" ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jf 0"j

2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jf 0ð�"Þj

2
q

*
�
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jf 0ðyÞj2

q
dy ¼: �0;

and �0 > 1, since f 6� 0. By periodicity (and the conditions on " and L), the volume of M" (which here is just the one-
dimensional Hausdorff-measure of M") is independent of "; more precisely, vol1ðM"Þ ¼

R L
0
�" dy ¼

R L
0
�0 dy ¼ L�0. On

the other hand M" converges w.r.t. the Hausdorff-distance in R2 to the submanifold M0 :¼ fð s
0
Þ; s 2 ½0; L�g with volume

vol1ðM0Þ ¼ L. The latter is strictly smaller than the volume of M" and the loss of volume is due to the emergence of
rapid oscillations in the limit " # 0. On the other hand, our results (see Lemma 21 and Remark 22) show that the
spectrum of the Laplace–Beltrami operator on M" converges to the spectrum of the Laplace–Beltrami operator on a
weighted Riemannian manifold M0 whose Riemannian volume form has �0 as the density against the Lebesgue
measure. The weighted Riemannian manifold is isometrically isomorphic to a submanifold in R2, for example, to

N0 :¼
xffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
0 � 1

p
x

 !
; x 2 ½0; L�

( )
; ð2Þ

which is a straight line with the same volume as M", i.e., vol1ðN0Þ ¼ �0L. Note that N0 is just one (of many) illustrative
isometric embeddings of the limit manifold in R2. The sequence M" (for f ðyÞ ¼ 1

2� sinð2�yÞ and L ¼ 2) and the
Hausdorff-limit M0 are illustrated in Fig. 1.

(b) A graphical surface with star-shaped corrugations. For " ¼ 1
k

with k 2 N, R > 0 and a smooth, 2�-periodic
function f : ½0;1Þ ! R we introduce the 2-dimensional submanifold of R3

ε↓0−−−−−→
Hausdorff

ε = 1 ε = 1
4

ε = 1
8

Fig. 1. A one-dimensional example. The three pictures on the left show M" defined by ð1Þ with f ðyÞ ¼ 1
2� sinð2�yÞ and L ¼ 2 for

decreasing values of ". As "! 0 these manifolds Hausdorff-converge to the manifold M0 ¼ ½0; 2� 	 f0g, shown on the right.
However, the spectrum of the Laplace–Beltrami operator on M" converges to the spectrum of the Laplace–Beltrami operator
on a submanifold N0 � R2, see ð2Þ. Note that N0 is (as M0) a straight line, but its length is 2�0 ¼ 1

�

R 2�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2ðyÞ

p
dy— the

length of the oscillating curves M" which is strictly larger than 2 — the length of M0.
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M" :¼
r sin �

r cos �

"f
�
�
"

�
0B@

1CA; r 2 ð0;RÞ; � 2 ½0; 2�Þ

8><>:
9>=>;: ð3Þ

In Fig. 2 we present M" for some values of " in the case f ¼ sin2. As an application of our results we show that the
spectrum of the Laplace–Beltrami operator on M" converges to the spectrum of the Laplace–Beltrami operator on the
submanifold

N0 :¼

�0ðrÞ sin �
�0ðrÞ cos �R r

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �00ðtÞ

2
q

dt

0BB@
1CCA; r 2 ð0;RÞ; � 2 ½0; 2�Þ

8>><>>:
9>>=>>;; ð4Þ

where �0ðrÞ ¼ 1
2�

R 2�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0ðyÞ2 þ r2

p
dy, see Fig. 2. For generals values of " > 0 the manifold M" is no longer smooth, but

our results can be extended to this case.

(c) A carambola-shaped sphere in R3. We can transfer the example above from a graph over R2 to a sphere with
oscillatory perturbation of its radius as depicted in Fig. 3. More precisely, for " ¼ 1

k
with k 2 N and a smooth

2�-periodic function f : ½0;1Þ ! R we consider the 2-dimensional submanifold of R3

M" :¼
�
1þ "f

�
�
"

�� sin ’ sin �

sin ’ cos �

cos ’

0B@
1CA;’ 2 ð0; �Þ; � 2 ½0; 2�Þ

8><>:
9>=>;: ð5Þ

In that case a limiting submanifold is given by

N0 :¼

�0ð’Þ sin �
�0ð’Þ cos �R ’

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �00ðtÞ

2
q

dt

0BB@
1CCA;’ 2 ð0; �Þ; � 2 ½0; 2�Þ

8>><>>:
9>>=>>;; ð6Þ

where �0ð’Þ ¼ 1
2�

R 2�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0ðyÞ2 þ sin2 ’

p
dy. See Fig. 3 for a visualization in the case f ¼ sin2.

ε↓0−−→

ε = 1
2

ε = 1
4

ε = 1
8

Fig. 2. A family of graphical surfaces with star-shaped corrugations. The three pictures on the left show M" defined by ð3Þ with
f ¼ sin2 and decreasing values of ". The picture on the right shows the limiting surface N0 defined via ð4Þ. As "! 0 the
spectrum of the Laplace–Beltrami operator on M" converges to the spectrum of the Laplace–Beltrami operator on N0. The color
indicates the height component.

ε↓0−−→

ε = 1
2

ε = 1
4

ε = 1
8

Fig. 3. A family of spheres with radial perturbations oscillating with the longitude. The three pictures on the left show M" defined
by ð5Þ with f ¼ sin2 and decreasing values of ". The picture on the right shows the limiting surface N0 defined via ð6Þ.
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(d) A corrugated, rotationally symmetric submanifold in R3. In contrast to the previous example we assume a
sphere with radial perturbations with the latitude, i.e., for " > 0 and a smooth �-periodic function f : ½0;1Þ ! R we
consider the 2-dimensional submanifold of R3

M" :¼ ð1þ "f ð’"Þ
sin ’ sin �

sin ’ cos �

cos ’

0B@
1CA;’ 2 ð0; �Þ; � 2 ½0; 2�Þ

8><>:
9>=>;: ð7Þ

In that case a limiting submanifold is given by

N0 :¼

sin ’ sin �

sin ’ cos �R ’
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ðtÞ2
sin2 t
� cos2 t

q
dt

0BB@
1CCA;’ 2 ð0; �Þ; � 2 ½0; 2�Þ

8>><>>:
9>>=>>;; ð8Þ

where �0ð’Þ ¼ sin’
�

R �
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0ðyÞ2 þ 1

p
dy. See Fig. 4 for the case f ¼ sin2.

(e) A locally corrugated graphical surface. Consider a relatively-compact open set Y � R2 and a set Z � Y of
isolated points. For every point z 2 Z we use a smooth function  z: ½0;1Þ ! ½0; 1� to define a rotationally symmetric
cut-off function  zðj � �zjÞ such that

 zð0Þ ¼ 1;

supp zðj � �zjÞ \ supp z0 ðj � �z0jÞ ¼ ; for all z0 2 Z n fzg:

�
Now we consider a smooth T-periodic function f : ½0;1Þ ! R and the set M" which is the graph of the function

Y n Z 3 x 7!
X
z2Z

" f
�jx�zj

"

�
 zðjx� zjÞ 2 R3; ð9Þ

which we regard as a two-dimensional submanifold of R3. In that case a limiting submanifold is given by

Y n Z 3 x 7!
X
z2Z

Z jx�zj
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0;zðtÞ2

t2
� 1

q
dt 2 R3; ð10Þ

where �0;zðrÞ ¼ r
T

R T
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0ðyÞ2 zðrÞ2 þ 1

p
dy. See Fig. 5 for the case f ¼ sin2.

General setting and the structure of the paper. Throughout this paper we consider weighted Riemannian manifolds
M ¼ ðM; g; �Þ with metric g and measure �. We always assume that M is n-dimensional (with n 
 2), smooth,

ε↓0−−→

ε = 1
2

ε = 1
4

ε = 1
8

Fig. 4. A family of spheres with radial perturbations oscillating with the latitude. The three pictures on the left show M" defined by
ð7Þ with f ¼ sin2 and decreasing values of ". The picture on the right shows the limiting surface N0 defined via ð8Þ.

ε↓0−−→

ε = 1
2

ε = 1
4

ε = 1
8

Fig. 5. A family of locally corrugated graphical surfaces. The three pictures on the left show M" defined via ð9Þ with f ¼ sin2 and
decreasing values of ". The picture on the right shows the limiting surface N0 defined via ð10Þ.
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connected, without boundary, and that � has a smooth positive density against the Riemannian volume associated with
g. We refer to the end of the introduction for a summary of standard notation that we use in this paper. The examples
discussed above belong to the following general setting:

Definition 1 (Uniformly bi-Lipschitz diffeomorphic families of manifolds). A family of weighted Riemannian
manifolds ðM"; g"; �"Þ indexed by 0 < " < 1 is called uniformly bi-Lipschitz diffeomorphic, if there exits a weighted
Riemannian manifold ðM0; g0; �0Þ and a constant C such that for all " there exist diffeomorphisms h":M0! M" with

1
C
j�jg0
� jdh"ðxÞ�jg" � Cj�jg0

for all x 2 M0 and � 2 TxM0: ð11Þ
We call ðM0; g0; �0Þ reference manifold.

In the setting of ð11Þ the Laplace–Beltrami operator on M" gives rise to a second-order elliptic operator divðL"rÞ on
M0 with a uniformly elliptic coefficient field L", i.e.,

g0ð�;L"�Þ 
 1
Cnþ2j�j2g0

; g0ð�;L�1
" �Þ 
 Cnþ2j�j2g0

for every � 2 TM0;

see Sect. 2.3 for further details. It is therefore natural to consider homogenization of elliptic operators on the reference
manifold with oscillating coefficients and measure. This is done in Sect. 2, where our results are presented.

Our main result, cf. Theorem 5, is a compactness result for H-convergence. In the symmetric case (e.g., for the
Laplace–Beltrami operator) H-convergence implies Mosco-convergence of the associated energy forms, cf. Lemma 9,
and the convergence of the spectrum of the associated second-order elliptic operators �divðL"rÞ, cf. Lemma 11. In
Sect. 2.2 we address the problem of identifying the limiting PDE and manifold. In particular, we provide a
homogenization formula for manifolds that feature periodicity in local coordinates. In Sect. 2.3 we discuss the
application to families of parametrized manifolds that are bi-Lipschitz diffeomorphic. In particular, for such families,
we establish spectral convergence (along subsequences) in Lemma 20 and discuss the special case of families of
submanifolds of Rd, see Lemma 21. In Sect. 3 we discuss concrete examples as the ones presented above. All proofs of
the results in this paper are presented in Sect. 4.

Notation. For the background of the analysis on manifolds, we refer the readers to [7, 12].

. Let � � M open. We write ! b � if ! is an open set such that the closure ! is compact and ! � �.

. We use h for a diffeomorphism between manifolds and denote its differential by dh. We use L for a measurable
ð1; 1Þ-tensor field on a manifold. We call L also a coefficient field on the manifold.

. We use the notation ð�; �ÞðxÞ ¼ gð�; �ÞðxÞ and j�jðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð�; �ÞðxÞ
p

to denote the inner product and induced norm in
TxM at x 2 M. We tacitly simply write ð�; �Þ and j�j instead of ð�; �ÞðxÞ and j�jðxÞ if the meaning is clear from the
context.

. For a (sufficiently regular) function u and vector field � on �, the gradient of u is denoted by rgu and the
divergence of � is denoted by divg;� �, i.e., we have gðrgu; �Þ ¼ �u ¼ duð�Þ and �

R
�
gðdivg;� �; uÞ d� ¼

�
R
�
gð�;rguÞ d� provided either u or � are compactly supported. In particular, we write 4g;� :¼ divg;� rg to

denote the (weighted) Laplace–Beltrami operator. If the meaning is clear from the context, we shall simply write
r, div, and �. In some situations the Riemannian manifold will be parametrized by the parameter "; in that case,
we may us the notation r", div" and 4". If there is no danger of confusion, we may drop the index " in the
notation.

. For � � M open we denote by L2ð�; g; �Þ the Hilbert space of square integrable functions and denote by

kuk2L2ð�;g;�Þ :¼
Z

�

juj2 d�

the associated norm. We denote by L2ðT�Þ the space of measurable sections � of T� such that j�j 2 L2ð�; g; �Þ.
. We denote by C1c ð�Þ the space of smooth compactly supported functions, and by H1ð�; g; �Þ the usual Sobolev

space on ð�; g; �Þ, i.e., the space of functions u 2 L2ð�; g; �Þ with distributional first derivatives in L2ð�; g; �Þ.
Equipped with the norm

kuk2H1ð�;g;�Þ :¼
Z
M

juj2 þ jruj2 d�

(and the usual inner product), H1ð�; g; �Þ is a Hilbert space.
. We denote by H1

0ð�; g; �Þ the closure of C1c ð�Þ in H1ð�; g; �Þ. We denote by H�1ð�; g; �Þ the dual space to
H1

0ð�; g; �Þ and use the notation hF; uið�;g;�Þ to denote the dual pairing of F 2 H�1ð�; g; �Þ and u 2 H1
0ðM; g; �Þ.

We tacitly simply write � (instead of ð�; g; �Þ), L2ð�Þ, H1ð�Þ, k � kL2ð�Þ, k � kH1ð�Þ, h�; �i, if the meaning is clear from
the context.
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2. Statement of the Main Results

2.1 H-, Mosco-, and spectral convergence

We are interested in second-order elliptic operators of the form

�divðLrÞ:H1
0ð�Þ ! H�1ð�Þ; � � M open;

where �div ¼ �divg;�:L
2ðT�Þ ! H�1ð�Þ is the adjoint of r ¼ rg:H1

0ð�Þ ! L2ðT�Þ, and L denotes a uniformly
elliptic coefficient field defined on �. More precisely, for 0 < � � � and � � M open, we denote by Mð�; �;�Þ the
set of all measurable coefficient fields L: �! LinðT�Þ that are uniformly elliptic, not necessarily symmetric, and
bounded in the sense that for �-a.e. x 2 � and all � 2 Tx�

gð�;LðxÞ�Þ 
 �j�j2; ð12Þ
gð�; ðLðxÞÞ�1�Þ 
 1

�
j�j2: ð13Þ

Moreover, we define

m0ð�Þ :¼ �inf

R
�
gðru;ruÞ d�R

�
u2 d�

; u 2 H1
0 ð�Þ

( )
:

(See Remark 2 below for a discussion of m0ð�Þ). Given a family ðL"Þ">0 �Mð�; �;�Þ and f 2 H�1ð�Þ we study
the asymptotic behavior as " # 0 of the weak solution u" 2 H1

0ð�Þ to the equation

mu" � divðL"ru"Þ ¼ f in H�1ð�Þ; ð14Þ

where m denotes a fixed scalar satisfying m > m0ð�Þ
� .

Remark 2. . We briefly comment on the constant m0ð�Þ. First, the quotient

R
�
gðru;ruÞ d�R

�
u2 d�

appearing in the definition

of m0ð�Þ is the Rayleigh Quotient. Hence, m0ð�Þ is just the negative of the infimum of the spectrum of the
Dirichlet Laplace–Beltrami operator on the weighted Riemannian manifold. In particular, if the spectrum is a
pure point spectrum, then �m0ð�Þ is given by the lowest Dirichlet eigenvalue.

. In the special case that � b M is relatively-compact and connected, Poincaré’s inequality (for functions with zero
mean) holds:

8u 2 H1ð�Þ :
Z

�

u� 1
�ð�Þ

Z
�

u d�

				 				2 d� � C�

Z
�

jruj2 d�:

In this case we have m0ð�Þ � 0, and in ð14Þ any m > 0 is admissible. Also note that, the condition m0ð�Þ < 0 is
equivalent to the validity of Poincare’s inequality (for functions with vanishing boundary conditions):

8u 2 H1
0 ð�Þ :

Z
�

juj2 d� � C0�

Z
�

jruj2 d�; ð15Þ

where C0� > 0 denotes a generic constant (only depending on n).
. It is easy to check that m > m0ð�Þ if and only if

inf

Z
�

mjuj2 þ gðru;ruÞ d�; u 2 H1
0ð�Þ with kukH1

0
ð�Þ ¼ 1

� �
> 0:

Similarly, one can check that m > m0ð�Þ
� implies that the bounded, bilinear form

a : H1
0ð�Þ 	 H1

0ð�Þ ! R; aðu; vÞ :¼ m

Z
�

uv d�þ
Z

�

gðLru;rvÞ d�

is coercive. Therefore, by the Lax-Milgram lemma, ð14Þ admits a unique weak solution u" 2 H1
0 ð�Þ satisfying

ku"kH1ð�Þ � Cð�; �;mÞk fkH�1ð�Þ: ð16Þ

Remark 3. The condition ð13Þ is a boundedness condition for L and equivalent to

gð�;LðxÞ�Þ � b�j�jj�j for all �; � 2 Tx�; ð17Þ

for �-a.e. x 2 � and a suitable constant b� > 0 that is independent of x 2 �. Note that the constant � in ð13Þ is stable
under H-convergence (in the sense that Mð�; �;�Þ is closed under H-convergence, see Proposition 6). In contrast, the
constant in the alternative condition ð17Þ is not stable.

H-compactness. Our first main result is a compactness result concerning the homogenization limit " # 0. It relies on
the notion of H-convergence which goes back to the seminal work by Murat and Tartar ([25]) where the notion is
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introduced in the flat case M ¼ Rn. It is a generalization of the notion of G-convergence by Spagnolo and De Giorgi.
The definition of H-convergence can be phrased in our setting as follows:

Definition 4 (H-convergence). Let � � M be open. We say a sequence ðL"Þ �Mð�; �;�Þ H-converges in ð�; g; �Þ
to L0 2Mð�; �;�Þ as "! 0, if for any relatively-compact open subset ! b � with m0ð!Þ < 0, and any f 2 H�1ð!Þ,
the unique solutions u"; u0 2 H1

0ð!Þ to

�divðL"ru"Þ ¼ �divðL0ru0Þ ¼ f in H�1ð!Þ

satisfy

u" * u0 weakly in H1ð!Þ,
L"ru" * L0ru0 weakly in L2ðT!Þ.

�
In that case we write L"!

H
L0 in ð�; �; gÞ as "! 0.

Our main result is the following H-compactness statement:

Theorem 5. Let �;� > 0 and let ðL"Þ denote a sequence in MðM; �;�Þ. Then there exist a subsequence (not
relabeled) and L0 2MðM; �;�Þ such that the following holds:

(a) L"!
H
L0 in ðM; g; �Þ.

(b) For every � � M open, every m > m0ð�Þ
� , and sequences ð f"Þ � L2ð�Þ and ðF"Þ � L2ðT�Þ with

f" * f0 weakly in L2ð�Þ,
F"! F0 in L2ðT�Þ,

�
the solutions u"; u0 2 H1

0 ð�Þ to

mu" � divðL"ru"Þ ¼ f" þ divF" in H�1ð�Þ;
mu0 � divðL0ru0Þ ¼ f0 þ divF0 in H�1ð�Þ;

ð18Þ

satisfy

u" * u0 weakly in H1
0ð�Þ,

L"ru" * L0ru0 weakly in L2ðT�Þ.

�
Additionally we have u"! u0 strongly in L2ð�Þ, if either H1

0ð�Þ is compactly embedded in L2ð�Þ, or m 6¼ 0 and
f"! f0 strongly in L2ð�Þ.

For the proof see Sect. 4.2. The theorem is an extension of a classical result in [25] where (scalar) elliptic operators
of the form �divðA"rÞ on Rn are considered. It has been extended to a large class of elliptic equations on Rn including
e.g., linear elasticity [4] and monotone operators for vector valued fields ([5]). See also [31] for a variant that applies to
non-local operators.

In the following we briefly comment on the proof of Theorem 5, which is based on Murat and Tartar’s method of
oscillating test-functions. In contrast to the classical flat case M ¼ Rn, we require a localization argument, since the
tangent spaces TxM change when x varies in M. We therefore first establish H-compactness restricted to sufficiently
small balls B (see Proposition 6 below) and then argue by covering M with countably many of such balls.

Proposition 6 (H-compactness on small balls). Let ðL"Þ �MðM; �;�Þ and let B b M denote an open ball with
radius smaller than the injectivity radius at its center. Then there exits L0 2Mð1

2
B; �;�Þ and a (not relabeled)

subsequence of ðL"Þ such that L"!
H
L0 in 1

2
B, which is the open ball with the same center point and half the radius

of B.

To lift Proposition 6 from small balls to the whole manifold we cover M by a countable collection of sufficiently
small balls and pass to a diagonal sequence that features H-convergence on each of these balls. In order to guarantee
that the H-limits associated with these balls are identical on the intersections of the balls, we appeal to the following
lemma, which in particular establishes the uniqueness and locality property of H-convergence:

Lemma 7 (Uniqueness, locality, invariance w.r.t. transposition). Let � � M be open and consider a sequences
ðL"Þ �Mð�; �;�Þ that H-converges to some L0 in �.

(a) Let ðeL"Þ �Mð�; �;�Þ denote another sequence that H-converges to some eL0 in �. Suppose that for some open
! b � we have L" ¼ eL" in ! for all ". Then L0 ¼ eL0 �-a.e. in !.

(b) Consider the coefficient field L�" defined by the identity

gðL�"�; �Þ ¼ gð�;L"�Þ for all �; � 2 T�;

i.e., the adjoint of L". Then ðL�" Þ H-converges in � to L�0 (the adjoint of L0).
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Finally, to prove that H-convergence on the individual balls yields H-convergence on the entire manifold, and in
order to treat the varying right-hand sides in part (b) of Theorem 5, we apply the following lemma.

Lemma 8. Let � � M be open and L"!
H
L0 in �. Let ! b � with m0ð!Þ < 0. Then for every f"; f0 2 L2ð!Þ and

G";F";G0;F0 2 L2ðT!Þ with

f" * f0 weakly in L2ð!Þ,
G"! G0 in L2ðT!Þ,
F"! F0 in L2ðT!Þ,

8><>:
the unique solutions u"; u0 2 H1

0ð!Þ to

�divðL"ru"Þ ¼ f" � divðL"G"Þ � divF" in H�1ð!Þ;
�divðL0ru0Þ ¼ f0 � divðL0G0Þ � divF" in H�1ð!Þ

satisfy

u" * u0 weakly in H1
0ð!Þ,

L"ru" * L0ru0 weakly in L2ðT!Þ.

�

Mosco-convergence and convergence of the spectrum. If we restrict to the symmetric case, i.e., L" satisfies

gðL"�; �Þ ¼ gð�;L"�Þ for all �; � 2 TM;

the solutions to ð18Þ can be characterized as the unique minimizers in H1
0ð�Þ to the strictly convex and coercive

functional

H1
0ð�Þ 3 u 7! Em;"ðuÞ �

Z
M

f"uþ gðF";ruÞ d�;

where

Em;"ðuÞ :¼ 1
2

Z
�

mjuj2 þ gðL"ru;ruÞ d�:

In this symmetric situation we can appeal to variational notions of convergence, in particular �-convergence and
Mosco-convergence. The latter is extensively used to study the convergence properties of the associated evolution (i.e.,
the semigroup generated by �divðL"rÞ), e.g., see [16, 17, 19, 21, 22]. See a work by Hino ([9]) for a non-symmetric
generalization of Mosco-convergence. A simple argument (that we outline for the reader’s convenience — together
with the definition of Mosco-convergence — in the appendix) shows that H-convergence implies Mosco-convergence
(resp. Resolvent convergence):

Lemma 9 (H-convergence implies Mosco-convergence). Let L" 2MðM; �;�Þ be symmetric. Suppose L"!
H
L0,

then the functional E": L
2ðMÞ ! R [ fþ1g,

E"ðuÞ ¼

Z
M

ðL"ru;ruÞ d� u 2 H1
0ðMÞ,

1 otherwise

8<:
Mosco-converges to E0: L

2ðMÞ ! R [ fþ1g,

E0ðuÞ ¼

Z
M

ðL0ru;ruÞ d� u 2 H1
0ðMÞ,

1 otherwise.

8<:
Remark 10. The notion of Mosco-convergence only directly yields strong convergence of ðu"Þ in L2ðMÞ (and weak
convergence in H1ðMÞ). The notion of H-convergence is a bit stronger, since it also yields convergence of the fluxes
L"ru". In contrast, Mosco-convergence in conjunction with the Div-Curl Lemma, see Lemma 25 below, only yields
convergence of the L2-projection of L"ru" onto the orthogonal complement of fr	 : 	 2 H1

0ðMÞg � L2ðT�Þ.

Another consequence of H-convergence is convergence of the spectrum. In the following we briefly recall some
well-known facts regarding the spectral theory for the operator L" :¼ �divðL"rÞ : H1

0ð�Þ ! H�1ð�Þ. We consider an
open, relatively-compact subset � b M and suppose that m0ð�Þ < 0, so that Poincaré’s inequality ð15Þ is available and
the embedding H1

0 ð�Þ � L2ð�Þ is compact. Moreover, we consider a symmetric, uniformly elliptic coefficient field
L" 2MðM; �;�Þ. We call ð�; uÞ with � 2 R and u 2 H1

0ð�Þ and eigenpair of L", if L"u ¼ �u in H�1ð�Þ. To study the
spectrum of L" we consider the associate resolvent operator R" : L2ð�Þ ! L2ð�Þ, R" :¼ L�1

" . It is a compact, self-
adjoint operator on L2ð�Þ and thus the spectral theorem implies that the spectrum of R" consists only of the real point
spectrum with strictly positive eigenvalues. Moreover, the associated (normalized) eigenfunctions form an orthonormal
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basis of L2ð�Þ. The spectrum of R" is in one-to-one relation with the spectrum of L" in the sense that ð�; uÞ is an
eigenpair of L" if and only if ð1� ; uÞ is an eigenpair of R". We thus conclude that: The spectrum of L" only consists of
the real point spectrum, all eigenvalues are strictly positive, and that we can find an orthonormal basis of L2ð�Þ
consisting of eigenfunctions. The following statement shows that if L" is H-convergent, then the eigenspaces and
eigenvalues converge. The statement is a direct consequence of [11, Lemma 11.3 and Theorem 11.5, see also
Theorem 11.6] combined with Theorem 5:

Lemma 11 (H-convergence implies spectral convergence). Let ðL"Þ be a sequence of symmetric coefficient fields in

MðM; �;�Þ and suppose that L"!
H
L0. Consider an open, relatively-compact set � � M with m0ð�Þ < 0. For " 
 0

we consider the operator

�divðL"rÞ : H1
0ð�Þ ! H�1ð�Þ;

and let

0 < �";1 � �";2 � �";3 � � � �

denote the list of increasingly ordered eigenvalues, where eigenvalues are repeated according to their multiplicity. Let
u";1; u";2; u";3; . . . denote a list of associated eigenfunctions (forming an orthonormal basis of L2ð�Þ). Then for all k 2 N,

�";k ! �0;k;

and if s 2 N denotes the multiplicity of �0;k, i.e.,

�0;k�1 < �0;k ¼ � � � ¼ �0;kþs�1 < �0;kþs ðwith the convention �0;0 ¼ 0Þ;

then there exists a sequence �u";k of linear combinations of u";k; . . . ; u";kþs�1 such that

�u";k ! u0;k strongly in L2ð�Þ:

2.2 Identification of the limit via local coordinate charts

For a general sequence of coefficient fields ðL"Þ the H-limit L0 obtained by Theorem 5 depends on the choice of the
subsequence. In contrast, if the coefficient field features a special structure, then the H-limit is unique, the convergence
holds for the entire sequence and one might even have a homogenization formula for L0. In the flat case M ¼ Rn such
results are classical. The simplest (non-trivial) example is periodic homogenization when L"ðxÞ ¼ Lðx"Þ where L is
periodic, i.e., Lð� þ kÞ ¼ Lð�Þ a.e. in Rn for all k 2 Zn; another example is stochastic homogenization, when L"ðxÞ ¼
Lðx"Þ and L is sampled from a stationary and ergodic ensemble, see the seminal papers [29] or [26] for a self-contained
introduction to periodic and stochastic homogenization. In the flat case these results rely on the fact that we can define
an ergodic group action on the manifold M. For general manifolds this is not possible. In this section we first make the
simple observation that a coefficient field locally H-converges if and only if the coefficient field expressed in local
coordinates H-converges, and secondly, obtain H-convergence and a homogenization formula for locally periodic
coefficient fields on general manifolds.

For this purpose we fix ð�;�; x1; x2; . . . ; xnÞ a local coordinate chart of M, a relatively-compact set U b �ð�Þ � Rn,
and set ! :¼ ��1ðUÞ � �. We will suppress � when the meaning is clear from the context. In particular, for the
representation of a function u on � in local coordinates we shall simply write u instead of u ���1. We associate to
L 2Mð!; �;�Þ a density � and a coefficient field A:U! R

n	n with components

Aij :¼ � gðLrgxi;rgx jÞ for all i; j ¼ 1; . . . ; n; � ¼ 

ffiffiffiffiffiffiffiffiffiffi
det g

p
; ð19Þ

where 
 is the density of � against the Riemannian volume measure.

Lemma 12. Let L 2Mð!; �;�Þ and let A : U ! R
n	n be defined by ð19Þ. Then there exist 0 < � 0 � �0 <1 (only

depending on �, U, � , and �) such that we have

8� 2 Rn : A� � � 
 � 0j�j2 and A�1� � � 
 1
�0
j�j2 a.e. in U;

where ‘‘�’’ denotes the scalar product in Rn.

Next we express the elliptic equation in local coordinates. For f 2 L2ð!Þ and � 2 L2ðT!Þ let u 2 H1
0ð!Þ be the unique

solution to

�divg;�ðLrguÞ ¼ f � divg;�� in H�1ð!Þ;

that is Z
!

gðLrgu;rg’Þ d� ¼
Z
!

f’ d�þ
Z
!

gð�;rg’Þ d� for all ’ 2 H1
0 ð!Þ:

Let F 2 L2ðTUÞ ¼ L2ðU;RnÞ be the vector field on U with the components Fi ¼ dxið�Þ. Then
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�divðAruÞ ¼ � f � divð�FÞ in H�1ðUÞ; ð20Þ

that is, for any  2 C1c ðUÞ Z
U

Aru � r dx ¼
Z
U

� f dxþ
Z
U

�F � r dx;

where ‘‘�’’ stands for the scalar product in Rn.
With help of this transformation we can make the following observation:

Lemma 13. Let L";L0 2Mð!; �;�Þ and denote by A";A0 be defined by ð19Þ. Then the following assertions are
equivalent.

(1) ðL"Þ H-converges to L0 on ð!; g; �Þ.
(2) ðA"Þ H-converges to A0 on U equipped with the standard Euclidean metric and measure.

On the level of A" (which is defined on the ‘‘flat’’ open subset U � Rn), we can naturally consider periodic
homogenization. In the following we denote by Y :¼ ½0; 1Þn the reference cell of periodicity and by H1

#ðYÞ the Hilbert-
space of Y-periodic functions 	 2 H1ðYÞ with zero average, i.e.,

R
Y
	 ¼ 0. We denote by Mperð�;�Þ the class of

Y-periodic coefficient fields A:Rn 	 Rn! R
n	n with ellipticity constants 0 < � � � <1, that is

Að�; yÞ is continuous for a.e. y 2 Rn; ð21Þ
Aðx; �Þ is measurable and Y-periodic for each x 2 Rn; ð22Þ

Aðx; yÞ� � � 
 �j�j2 and Aðx; yÞ�1� � � 
 1
�
j�j2 for each x 2 Rn, a.e. y 2 Rn

and all � 2 Rn: ð23Þ

It is a classical result (see e.g., [2, Theorem 2.2]) that for A 2Mperð�;�Þ the sequence A"ðxÞ :¼ Aðx; x"Þ H-converges
to a homogenized coefficient field Ahom which is characterized as follows:

AhomðxÞej ¼
Z
Y

Aðx; yÞðry	jðx; yÞ þ ejÞ dy; ð24Þ

where ðejÞ is the standard basis in Rn, and 	jðx; �Þ 2 H1
#ðYÞ denotes the unique weak solution toZ

Y

Aðx; yÞðry	jðx; yÞ þ ejÞ � ry ðyÞ dy ¼ 0 for all  2 H1
#ðYÞ: ð25Þ

For our purpose we require a small variant of this classical result which includes an additional shift in the definition
of A":

Lemma 14. Let A 2Mperð�;�Þ and r 2 R. The sequence A"ðxÞ :¼ Aðx; xþr" Þ H-converges on Rn to Ahom as defined in
ð24Þ.

Since we could not find a suitable reference in the literature we give the argument in the appendix. By appealing to
periodic homogenization, we can make the following observation:

Lemma 15 (Homogenization formula). Let L";L0 2MðM; �;�Þ and suppose that ðL"Þ H-converges to L0 on M. Fix
a local coordinate chart ð�;�; x1; x2; . . . ; xnÞ and let A";A0 be the coefficient fields on U b �ð�Þ associated with L"
and L0 defined by ð19Þ. Suppose local periodicity in the sense that there exists a Y :¼ ½0; 1Þn-periodic coefficient field
L:Rn ! R

n	n such that

gðL"ðxÞ @@xi;
@
@x jÞ ¼ Lijðx; x"Þ for a.e. x 2 �:

Then L0 on ! ¼ ��1ðUÞ � � in local coordinates takes the form

ðAhomÞij ¼ �gðL0rgxi;rgx jÞ a.e. in U;

where Ahom:U! R
d	d is defined by ð24Þ with Aðx; yÞ :¼ �ðxÞLðyÞ.

2.3 Asymptotic behavior of the Laplace–Beltrami on parametrized manifolds

In this section we consider weighted Riemannian manifolds ðM"; g"; �"Þ that are bi-Lipschitz diffeomorphic to a
reference manifold ðM0; g0; �0Þ in the sense of Definition 1. In particular, below we shall consider the special case of
submanifolds of Rd and study the asymptotic behavior of the associated Laplace–Beltrami operator. In our approach
we pull the Laplace–Beltrami operator on M", �g";�" , back to the reference manifold M0 by appealing to the
diffeomorphism h" from Definition 1. In this way we obtain a family of elliptic operators on M0 with coefficients L".
By appealing to our result on H-compactness, cf. Theorem 5, we may extract a subsequence along which the elliptic
operators H-converge to a limiting operator of the form divðL0rÞ. In the symmetric case, we may combine this with our
results with Lemma 9 and 11 to deduce Mosco-convergence and convergence of the spectrum.

We start with a transformation rule. It invokes the following notation: If ðM; g; �Þ and ðM0; g0; �0Þ are Riemannian
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manifolds, and h : M0! M a diffeomorphism, then for every function f on M we denote by f :¼ f � h the pullback of
f along h. Moreover, we denote by ðdh�1Þ� : TM0! TM the adjoint of the differential dh�1 : TM! TM0 of h�1 given
by

gððdh�1Þ��; �ÞðhðxÞÞ ¼ g0ð�; dh�1�ÞðxÞ for all � 2 TxM0, � 2 ThðxÞM:

Lemma 16 (Transformation lemma). Let ðM; g; �Þ and ðM0; g0; �0Þ be weighted Riemannian manifolds and assume
that there exists a bi-Lipschitz diffeomorphism h : M0 ! M satisfying ð11Þ. Let 
 and 
0 denote the densities of � and
�0 w.r.t. the Riemannian volume measures associated with g and g0, respectively. We use the notation f :¼ f � h and
u :¼ u � h for the pullback along h. We define a density function � and a coefficient field L on M0 by the identities

� :¼ 


0

ffiffiffiffiffiffiffiffi
det g
det g0

q
and g0ðL�; �Þ ¼ � gððdh�1Þ��; ðdh�1Þ��Þ;

where 
 :¼ 
 � h and g :¼ g � h denote the pulled back quantities. Moreover we consider the metric ĝ0 and the
measure �̂0 on M0 given by

d�̂0 :¼ �d�0 and ĝ0ðL�; �Þ :¼ � g0ð�; �Þ;
Then the following are equivalent:

(a) u 2 H1ðMÞ is a solution to

ðm��g;�Þu ¼ f in H�1ðM; g; �Þ;

(b) u 2 H1ðM0Þ is a solution to

ðm�� divg0;�0
ðLrg0

ÞÞu ¼ � f in H�1ðM0; g0; �0Þ;

(c) u 2 H1ðM0Þ is a solution to

ðm��ĝ0;�̂0
Þu ¼ f in H�1ðM0; ĝ0; �̂0Þ:

In the rest of this section, we consider the following setting:

Assumption 17 (Family of uniformly bi-Lipschitz diffeomorphic manifolds). We denote by ðM"; g"; �"Þ a family of
weighted Riemannian manifolds that are bi-Lipschitz diffeomorphic to a reference manifold ðM0; g0; �0Þ in the sense of
Definition 1. We assume that H1ðM0; g0; �0Þ is compactly embedded in L2ðM0; g0; �0Þ. We denote by 
" and 
0 the
densities of �" and �0 w.r.t. the Riemannian volume measures associated with g" and g0, respectively. Moreover, we
define �" and L" by the identities

�" :¼ 
"

0

ffiffiffiffiffiffiffiffi
det g"
det g0

q
and g0ðL"�; �Þ ¼ �" g"ððdh�1

" Þ
��; ðdh�1

" Þ
��Þ ð26Þ

with 
" :¼ 
" � h" and g" :¼ g" � h".

We introduce the following notion of strong L2-convergence for functions defined on the variable spaces
L2ðM"; g"; �"Þ:

Definition 18. In the setting of Assumption 17. Let f" 2 L2ðM"; g"; �"Þ and f0 2 L2ðM0; ĝ0; �̂0Þ. We say ð f"Þ strongly
converges to f0 in L2, if Z

M"

f"ð � h�1
" Þ d�"!

Z
M0

f0 d�̂0 for all  2 C1c ðM0Þ; andZ
M"

jf"j2 d�"!
Z
M0

jf0j2 d�̂0:

ð27Þ

Lemma 19 (H-Compactness of bi-Lipschitz diffeomorphic manifolds). Consider the setting of Assumption 17. Then
there exists a subsequence for "! 0 (not relabeled) such that the following holds:

(a) There exist a density �0 and a uniformly elliptic coefficient field L0 on M0 such that ð�"Þ converges to �0 weak-�
in L1ðM0Þ, and ðL"Þ H-converges to L0 in ðM0; g0; �0Þ.

(b) Define a measure �̂0 and a metric ĝ0 on M0 via the identities

d�̂0 :¼ �0 d�0 and ĝ0ðL0�; �Þ ¼ �0 g0ð�; �Þ:

Let m > m0ðM0; g0; �0Þ and let u" 2 H1ðM"Þ and u0 2 H1ðM0Þ denote the unique solutions to

ðm��g";�" Þu" ¼ f" in H�1ðM"; g"; �"Þ; ð28aÞ
ðm��ĝ0;�̂0

Þu0 ¼ f0 in H�1ðM0; ĝ0; �̂0Þ; ð28bÞ
and suppose that

f"! f0 strongly in L2 in the sense of (27):
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Then

u"! u0 strongly in L2 in the sense of (27):

The coefficient field L" in Lemma 19 is symmetric and uniformly elliptic (with respect to g0) by construction.
Therefore, similarly to Lemma 11 we may deduce convergence of the spectrum of the Laplace–Beltrami operators. To
that end, we additionally suppose that M0 is compact and m0ðM0Þ < 0. Thanks to ð11Þ, the weighted Riemannian
manifolds M" satisfy the same properties, and thus the spectrum of ��g";�" consists only of the real point spectrum with
strictly positive eigenvalues.

Lemma 20 (Spectral convergence of bi-Lipschitz diffeomorphic manifolds). Suppose that M0 is compact and
m0ðM0Þ < 0. Consider the setting of Assumption 17, and let g0, �0 be defined as Lemma 19 (b). For " 
 0 consider the
operator

��g";�" : H1
0ðM"; g"; �"Þ ! H�1ðM"; g"; �"Þ for " > 0,

��ĝ0;�̂0
: H1

0ðM0; ĝ0; �̂0Þ ! H�1ðM0; ĝ0; �̂0Þ for " ¼ 0,

(
and let

0 < �";1 � �";2 � �";3 � � � � ;

denote the list of increasingly ordered eigenvalues with eigenvalues being repeated according to their multiplicity. Let
u";1; u";2; u";3; . . . denote the associated eigenfunctions. Then for all k 2 N,

�";k ! �0;k;

and if s 2 N is the multiplicity of �0;k, i.e.,

�0;k�1 < �0;k ¼ � � � ¼ �0;kþs�1 < �0;kþs ðwith the convention �0;0 ¼ 0Þ;
then there exists a sequence ð �u";kÞ" of linear combinations of u";k; . . . ; u";kþs�1 such that

�u";k ! u0;k strongly in L2 in the sense of (27): ð29Þ

We finally discuss the special case of submanifolds of Rd. In the following lemma we collect (without proof) some
consequences that directly follow from Lemma 16, 19, and 20 applied to the special case.

Lemma 21. Consider the setting of Assumption 17, and assume that
. M" are n-dimensional submanifolds of the Euclidean space Rd with g" and �" induced by the standard metric and

measure of Rd;
. the reference manifold M0 is a subset of the Euclidean space Rn, i.e., M0 � Rn, g0ð�; �Þ :¼ � � �, and d�0 ¼ dx.
Then:

(a) The formulas in ð26Þ turn into

�" ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðdhT

"dh"Þ
q

and L" ¼ �"ðdhT
"dh"Þ

�1;

where dh" denotes the Jacobian of h".
(b) An application of Lemma 19 yields the existence of a density �0 and a coefficient field L0 2MðM0;

1
C0
;C0Þ (with

C0 > 0 only depending on n, � , � and the constant C in ð11Þ) such that

�" ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðdhT

"dh"Þ
q

*
�
�0 weakly-� in L1ðM0Þ;

L" ¼ �"ðdhT
"dh"Þ

�1 !
H
L0 on M0;

for a subsequence (not relabeled), and the limiting Riemannian manifold ðM0; ĝ0; �̂0Þ is then given by

d�̂0 ¼ �0 dx and ĝ0ð�; �Þ ¼ �0L
�1
0 � � �:

(c) If additionally M0 is open and bounded and has a Lipschitz boundary, then the conclusion of Lemma 20 on
spectral convergence holds.

Remark 22 (Realizability of ðM0; ĝ0; �̂0Þ). If the limiting metric ĝ0 is smooth, then it is realizable in Rm with m large
enough, i.e., there exists an isometry h0 : ðM0; ĝ0; �̂0Þ ! R

m such that N0 :¼ h0ðM0Þ is a n-dimensional submanifold of
R

m (with induced metric and measure from R
m). Such an embedding is characterized by the identity

dhT
0dh0 ¼ �0L

�1
0 : ð30Þ

Indeed, this follows by the Nash embedding theorem provided the dimension of the ambient space m is large enough.
However, in the general case, we cannot necessarily give an explicit definition of the immersion h0. In the examples
that we discuss in Sect. 3 below, we study parametrized, n ¼ 2-dimensional submanifolds of R3 that converge to a
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limiting manifold that is realizable as a 2-dimensional submanifold of R3 and given by an explicit formula.
Note that if one introduces a different reference manifold fM0 with a diffeomorphism  :fM0! M0, the same

calculations can be done with ~h" :¼ h" �  :fM0 ! M" instead of h", which does not necessarily satisfy the uniform
ellipticity conditions, and one ends up with the isometric embedding ~h0 ¼ h0 �  :fM0! R

m. Thus, in practice, the
calculations to identify the limiting manidfold can be done with diffeomorphisms which are not uniformly elliptic, as
long as there exist uniformly elliptic diffeomorphisms.

3. Examples

In the following we consider two examples of laminate-like coefficient fields. We study each of them by appealing to
homogenization in the flat case via local charts. Note that the coefficient fields in the following examples are intrinsic
objects that could be considered without using charts, and so the respective H-limit, even though it is studied and
expressed in local coordinates, is not bound to charts.

3.1 Laminate-like coefficient fields on spherically symmetric manifolds

Let 0 < R � 1 and s 2 C1ð½0;RÞÞ such that sðrÞ > 0 if r > 0, sð0Þ ¼ 0, and s0ð0Þ ¼ 1. We consider the 2-
dimensional spherically symmetric manifold M ¼ fðx1; x2Þ ¼ ðr; �Þ 2 ½0;RÞ 	 S1g equipped with the Riemannian
metric

g ¼ dr2 þ s2ðrÞ d�2

in the polar coordinates ðr; �Þ (see e.g., [7]). For example,
. R2 is a model with R ¼ 1 and sðrÞ ¼ r;
. S2 without pole is a model with R ¼ � and sðrÞ ¼ sin r;
. H2 is a model with R ¼ 1 and sðrÞ ¼ sinh r.
For the sake of simplicity we normalize S1 to have circumference 1. Consider L" 2MðM; �;�Þ of the form

L"ðr; �Þ ¼ L#

�
r; �; �

"

�
a.e. in M

and assume that M 3 ðr; �Þ 7!L#ðr; �; yÞ is continuous for a.e. y 2 R and y 7!L#ðr; �; yÞ is measurable and 1-periodic
for all ðr; �Þ 2 M. Denoting by f	ðtÞg the one-parameter group

	ðtÞ : x 7! expx t
@

@�

� �
; x 2 M n pole(s); t 2 R;

the coefficient field L" oscillates (on scale ") along 	, while it is slowly varying in the radius direction. We therefore
call L" a laminate-like coefficient field on M, see Fig. 6.

We make the following observations:

(a) By Theorem 5 we have L"!
H
L0 for a subsequence and some coefficient field L0. As we shall see below, the

limit L0 can be expressed by a ‘‘homogenization formula’’ that uniquely determines L0 in terms of L#. Hence,

L0 is independent of the chosen subsequence and we conclude that L"!
H
L0 for all sequences " # 0.

(b) Consider the special case

L#ðr; �; yÞ :¼
a#ðyÞ 0

0 b#ðyÞ

� �
ð31Þ

with a#; b# : R! ð�;�Þ measurable and 1-periodic. Above, we tacitly expressed L# w.r.t. polar coordinates, i.e.,
ðL#Þij :¼ ð @@xi;L#

@
@x jÞ where x ¼ ðx1; x2Þ ¼ ðr; �Þ. In this case we may represent L0 with help of the arithmetic and

harmonic mean of a# and b# to express the diffusivity orthogonal to the flow 	 and aligned to the flow 	,
respectively:

Fig. 6. Illustrations of the laminate-like structure of the coefficient field on R2, S2, and H2.
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L0 ¼
R 1

0
a# 0

0 ð
R 1

0
b�1

# Þ
�1

 !
: ð32Þ

In order to prove these claims it suffices to identify L0 locally. Consider an open, bounded set ! b M. We may
assume without loss of generality that ! does not intersect the curve fðr; �Þ : � ¼ 0g. Denote the chart of polar
coordinates by � and define U � R2 by U :¼ �ð!Þ. According to ð19Þ we associate to L" a coefficient field A" on U. It
can be written in the form A"ðr; �Þ ¼ A#ðr; �; �"Þ with

A#ðr; �; yÞ ¼
sðrÞ 0

0 s�1ðrÞ

 !
L#ðr; �; yÞ;

where we identified L#ðr; �; yÞ with the corresponding coefficient matrix in polar coordinates. Since L"!
H
L0 on !, we

have A"!
H

A0 on U by Lemma 13. On the other hand, since A" is a coefficient field of the form A#ðr; �; �"Þ with A# being
continuous in the first two components and periodic in the third component, the periodic homogenization formula ð24Þ
applies and we deduce that A0 only depends on L# and the metric g (but not on the extracted subsequence). Hence, L0 is
uniquely determined by L# and the metric, and thus H-convergence holds for the entire sequence. This proves (a).

Next, we discuss the special case ð31Þ for which we obtain

A#ðr; �; yÞ ¼
sðrÞa#

�
�
"

�
0

0 s�1ðrÞb#

�
�
"

� !
and

A0ðr; �Þ ¼
sðrÞ

Z 1

0

a# 0

0 s�1ðrÞð
R 1

0
b�1

# Þ
�1

0B@
1CA:

The above identities can be seen by evaluating ð24Þ, which in the case of laminates can be done by hand. This proves
(b).

Example 1: A graphical surface with star-shaped corrugations. In the spirit of Definition 1 we start with the
reference manifold

M0 ¼ fðr; �Þ; r 2 ð0;RÞ; � 2 ½0; 2�Þg

for some R > 0. Note that M0 does not include the origin. Now we define a family M" ¼ h"ðM0Þ of 2-dimensional
submanifolds of R3 (with standard metric and measure induced from R

3) using uniform bi-Lipschitz immersions
h":M0 ! R

3,

h"ðr; �Þ ¼
r sin �

r cos �

" f
�
r; �
"

�
0B@

1CA;
where f : ð0;1Þ 	 ½0;1Þ ! R is smooth and 2�-periodic in the second argument. In Fig. 2 in the Introduction we
choose f ðr; yÞ ¼ sin2ðyÞ to present M" for some values of ".

We follow the path described in Lemma 21 and calculate first

dhT
"dh" ¼

1þ
�
"@1 f

�
r; �"
��2

"@1 f
�
r; �"
�
@2 f

�
r; �"
�

"@1 f
�
r; �
"

�
@2 f

�
r; �
"

�
r2 þ

�
@2 f

�
r; �
"

��2
 !

;

to get the density

�" ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðdhT

"dh"Þ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2

�
"@1 f

�
r; �"
��2 þ �@2 f �r; �"��2q

;

and the coefficient field

L" ¼ �"ðdhT
"dh"Þ

�1

¼ 1=�"
r2 þ

�
@2 f

�
r; �"
��2 �"@1 f

�
r; �"
�
@2 f

�
r; �"
�

�"@1 f
�
r; �
"

�
@2 f

�
r; �
"

�
1þ

�
"@1 f

�
r; �
"

��2
 !

:

It turns out that �" *
�
�0 weakly-� in L1ðM0Þ with

�0ðrÞ ¼ 1
2�

Z 2�

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@2 f ðr; yÞÞ2 þ r2

q
dy;
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and using ð32Þ we see L"!
H
L0 with

L0 ¼
1
2�

R 2�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@2 f ðr; yÞÞ2 þ r2

p
dy 0

0
�

1
2�

R 2�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@2 f ðr; yÞÞ2 þ r2

p
dy
��1

 !

¼
�0ðrÞ 0

0 1
�0ðrÞ

 !
:

Thus the limiting metric on M0 is given by

ĝ0ð�; �Þ ¼ �0L
�1
0 � � � ¼

1 0

0 �2
0

 !
� � �:

In this situation we finally can find a bi-Lipschitz immersion h0:M0! R
3 such that dhT

0dh0 ¼ �0L
�1
0 , namely

h0ðr; �Þ ¼

�0ðrÞ sin �
�0ðrÞ cos �R r

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �00ðtÞ

2
q

dt

0BB@
1CCA:

That means, by Remark 22, the (rotationally symmetric) submanifold N0 :¼ h0ðM0Þ of R3 (with the standard
measure and metric induced from R

3), which for the case f ðr; yÞ ¼ sin2ðyÞ is pictured in Fig. 2, is the spectral limit of
ðM"Þ. Note that the excluded origin in the reference manifold coincides now with a circle of radius limr#0 �0ðrÞ, which
for f ðr; yÞ ¼ sin2ðyÞ is �

2
.

Example 2: Sphere with radial perturbations oscillating with the longitude. Instead of a graph over R2 as in the
example above we can treat a radially perturbed sphere in the same way. We take an analogous underlying reference
manifold

M0 ¼ fð’; �Þ;’ 2 ð0; �Þ; � 2 ½0; 2�Þg

and define the family M" :¼ h"ðM0Þ of 2-dimensional submanifolds of R3 via bi-Lipschitz immersions h":M0! M",

h"ð’; �Þ ¼
�
1þ " f

�
’; �
"

�� sin ’ sin �

sin’ cos �

cos ’

0B@
1CA;

where f : ð0; �Þ 	 ½0;1Þ ! R is differentiable and 2�-periodic in the second argument. In Fig. 3 in the Introduction we
choose f ðr; yÞ ¼ sin2ðyÞ to picture M" for some values of ". As in the previous example we obtain the following
formulas for the limiting density

�0ð’Þ ¼ 1
2�

Z 2�

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@2 f ð’; yÞÞ2 þ sin2 ’

q
dy;

and the limiting metric

ĝ0ð�; �Þ ¼ 1
�0
L0 ¼

1 0

0 �2
0

 !
� � �:

Again we can find a bi-Lipschitz immersion h0:M0! R
3 such that dhT

0dh0 ¼ �0L
�1
0 , namely

h0ð’; �Þ ¼

�0ð’Þ sin �
�0ð’Þ cos �R ’

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �00ðtÞ

2
q

dt

0BB@
1CCA:

Thus the (rotationally symmetric) submanifold N0 :¼ h0ðM0Þ of R3, which for the case f ðr; yÞ ¼ sin2ðyÞ is pictured in
Fig. 3, is the spectral limit of the sequence ðM"Þ.

3.2 Concentric laminate-like coefficient fields on Voronoi tesselated manifolds

Let ðM; g; �Þ be a n-dimensional manifold and Z � M a countable closed subset. For z 2 Z we denote by Mz the
associated Voronoi cell, that is

Mz :¼ fx 2 M; dðx; zÞ < dðx;Z n fzgÞg;
where dð�; �Þ is the geodesic distance on M. We assume the Voronoi tessellation to be fine enough to ensure that for
�-a.e. point x0 2 M there are z 2 Z and % > 0 such that
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for all x 2 B%ðx0Þ � Mz exists exactly one shortest path �x from x to z: ð33Þ
We consider a sequence ðL"Þ in MðM; �;�Þ of rapidly oscillating coefficient fields of the form L"ðxÞ ¼ Lðdðx;ZÞ" Þ,

where LðrÞ is 1-periodic in r 2 R, see Fig. 7.
By Theorem 5 ðL"Þ H-converges (up to a subsequence) to some L0 2MðM; �;�Þ. We are going to show that L0

coincides �-a.e. on M with some constant coefficient field which is uniquely determined by L. In particular the whole
sequence ðL"Þ H-converges to L0.

In order to prove this, it suffices to identify L0 locally, i.e., for �-a.e. x0 2 M. As a first step we construct curvilinear
coordinates such that in these coordinates the coefficients locally turn into a laminate up to a small perturbation that
vanishes at x0. In particular we claim that local coordinates ðB%ðx0Þ;�; x1; . . . ; xnÞ exist such that

�ðx0Þ ¼ 0; ð34aÞ
x1 ¼ dð�; zÞ � dðx0; zÞ; ð34bÞ
g
�
@
@x1;

@
@x j

�
¼ 0 for j ¼ 2; . . . ; n; ð34cÞ

lim
x!x0

�ðxÞg
�
@
@xi;

@
@x j

�
ðxÞ ¼ �ij: ð34dÞ

Indeed, note that by ð34bÞ geodesics through z are mapped to straight lines parallel to the x1-axis.
Therefore, we fix x0 2 M, z 2 Z and % > 0 satisfying ð33Þ. As in ð34bÞ we set for x 2 B%ðx0Þ

x1ðxÞ :¼ dðx; zÞ � dðx0; zÞ:

Thanks to ð33Þ x1 is differentiable and the level set Ux0
:¼ fx 2 B�ðx0Þ; x1ðxÞ ¼ 0g is a n� 1-dimensional

submanifold of Mz including x0 and for any point x 2 Ux0
the tangent space TxUx0

is orthogonal to d�xð0Þ, which gives
ð34cÞ. Assume % > 0 to be small enough such that we can choose local normal coordinates x2; . . . ; xn of Ux0

with
x jðx0Þ ¼ 0 ( j ¼ 2; . . . ; n). By the differentiability of geodesics we can extend these coordinate functions to curvilinear
coordinates x1; . . . ; xn on B%ðx0Þ (with a probably smaller %) in the way that x2; . . . ; xn are constant on �x for every
x 2 B%ðx0Þ. Then we have

lim
x!x0

g
�
@
@xi;

@
@x j

�
ðxÞ ¼

1; i ¼ j,

0; i 6¼ j,

�
ð35Þ

which yields ð34dÞ.
In these coordinates the associated coefficient field at y 2 U :¼ �ðB%ðx0ÞÞ can be written as

A"ðyÞ ¼ A
�
y; y1þdðx0;zÞ

"

�

Fig. 7. Illustration of coefficient fields with laminate-like structure.

z
x0

B (x0)

γx0

x
γx

Ux0

x1

xi

Fig. 8. Construction of the local coordinates.
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for some A:U 	 R continuous in the first, and measurable and 1-periodic in the second argument. This can be seen by
considering ð19Þ: The coefficient field A" on U associated to L" takes the form

ðA"Þij ¼ � gðL"rgxi;rgx jÞ;

where � :¼ � ���1 and g :¼ g ���1 denote the representation of the quantities in local coordinates. By the definitions
of L" and x1 we see that

g
�
L"ðxÞ @@xi;

@
@x j

�
¼ g

�
L
�
dðx;ZÞ
"

�
@
@xi
; @
@x j

�
¼ g

�
L
�
x1ðxÞþdðx0;ZÞ

"

�
@
@xi
; @
@x j

�
is only depending on x1ðxÞ ¼ y1, and A" has the desired form with

Aijðy; rÞ :¼ � gðLðrÞrgxi;rgx jÞðyÞ; ð36Þ

which is continuous in y 2 U, and measurable and 1-periodic in r 2 R.
For "! 0 the homogenized matrix Ahom associated with A" is given by the homogenization formula ð24Þ for A

defined in ð36Þ. Therefore Ahom continuously depends on y 2 U. Moreover the matrix Ahomð0Þ is independent on the
initial choice of x0 and is given by the following weak-� limits in L1ðUÞ:

1

A11

�
0; �
"

� * 1

ðAhomÞ11ð0Þ
;

Ai1

�
0; �"
�

A11

�
0; �
"

� * ðAhomÞi1ð0Þ
ðAhomÞ11ð0Þ

; i ¼ 2; . . . ; n;

A1j

�
0; �"
�

A11

�
0; �
"

� * ðAhomÞ1jð0Þ
ðAhomÞ11ð0Þ

; j ¼ 2; . . . ; n;

Aij

�
0; �"
�
�

Ai1

�
0; �"
�
A1j

�
0; �"
�

A11

�
0; �
"

� * ðAhomÞijð0Þ �
ðAhomÞi1ð0ÞðAhomÞ1jð0Þ
ðAhomÞ11ð0Þ

; i; j ¼ 2; . . . ; n:

By Lemma 15, we have

ðAhomÞij ¼ � gðL0rgxi;rgx jÞ: a.e. in U:

We conclude that L0 is continuous (�-a.e.) on B%ðx0Þ and thus (using ð35Þ) gðL0ðx0Þ @@xi;
@
@x jÞðx0Þ ¼ ðAhomÞijð0Þ for

�-a.e. x0 2 M.
As in the previous example we could consider the special case of a diagonal matrix

LðrÞ @
@xi
¼ aiðrÞ @@xi for i ¼ 1; . . . ; n:

Then L0ðx0Þ is a diagonal matrix, too, and we have

g
�
L0ðx0Þ @@x1;

@
@x1

�
ðx0Þ ¼

Z 1

0

a�1
1

� ��1

and

g
�
L0ðx0Þ @@xi;

@
@xi

�
ðx0Þ ¼

Z 1

0

ai for i ¼ 2; . . . ; n:

ð37Þ

Example 3: A radially symmetric corrugated graphical surface. We consider the reference manifold

M0 ¼ fðr; �Þ; r 2 ð0;RÞ; � 2 ½0; 2�Þg
for some R > 0, and define a family M" ¼ h"ðM0Þ of 2-dimensional submanifolds of R3 using uniform bi-Lipschitz
immersions h":M0 ! R

3,

h"ðr; �Þ ¼
r sin �

r cos �

" f
�
r; r"
�

0B@
1CA; ð38Þ

where f ð0;1Þ 	 ½0;1Þ ! R is differentiable and T-periodic in the second argument. In Fig. 9 we took f ðr; yÞ ¼
sin2ðyÞ to illustrate M" for some values of ".

Following Lemma 21 we compute the density

�" ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðdhT

"dh"Þ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2

�
"@1 f

�
r; r"
�
þ @2 f

�
r; r"
��2q
;

and the coefficient field
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L" ¼ �"ðdhT
"dh"Þ

�1

¼ 1=�"
r2 0

0 1þ ð"@1 f
�
r; r"
�
þ @2 f

�
r; r"
�
Þ2

 !
:

We find �" *
�
�0 weakly-� in L1ðM0Þ with

�0ðrÞ ¼ r
T

Z T

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@2 f ðr; yÞÞ2 þ 1

q
dy;

and using ð37Þ we see L"!
H
L0 with

L0 ¼
�

1
rT

R T
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@2 f ðr; yÞÞ2 þ 1

p
dy
��1

0

0 1
rT

R T
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@2 f ðr; yÞÞ2 þ 1

p
dy

 !

¼
r2

�0ðrÞ 0

0 �0ðrÞ
r2

 !
;

and get the limiting metric on M0:

ĝ0ð�; �Þ ¼ �0L
�1
0 � � � ¼

�0ðrÞ2
r2

0

0 r2

 !
� � �:

We finally find a bi-Lipschitz immersion h0:M0 ! R
3 such that dhT

0dh0 ¼ �0L
�1
0 , namely

h0ðr; �Þ ¼

r sin �

r cos �R r
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ðtÞ2
t2
� 1

q
dt

0BB@
1CCA: ð39Þ

By Remark 22, the submanifold N0 :¼ h0ðM0Þ of R3, which for the case f ðr; yÞ ¼ sin2ðyÞ is shown in Fig. 9, is the
spectral limit of ðM"Þ.

Example 4: Sphere with radial perturbations oscillating with the latitude. In the same way as in the previous
example we can handle the case of a radially perturbed sphere. Again we start with the reference manifold

M0 ¼ fð’; �Þ;’ 2 ð0; �Þ; � 2 ½0; 2�Þg

and define the family M" :¼ h"ðM0Þ of 2-dimensional submanifolds of R3 via bi-Lipschitz immersions h":M! M",

h"ð’; �Þ ¼
�
1þ " f

�
’; ’

"

�� sin ’ sin �

sin ’ cos �

cos ’

0B@
1CA;

where f : ð0; �Þ 	 ½0;1Þ ! R is differentiable and 2�-periodic in the second argument. In Fig. 4 in the Introduction we
choose f ðr; yÞ ¼ sin2ðyÞ to picture M" for some values of ".

Doing the same calculations as in the example above we end up with the density

�0ð’Þ ¼ sin ’
�

Z �

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@2 f ð’; yÞÞ2 þ 1

q
dy;

and the metric

ε↓0−−→
ε = 1

2
ε = 1

4
ε = 1

8

Fig. 9. A family of rotationally symmetric corrugated graphical surfaces. The three pictures on the left show M" defined via ð38Þ
with f ¼ sin2 and decreasing values of ". The picture on the right shows the limiting surface N0 defined via ð39Þ. As "! 0 the
spectrum of the Laplace–Beltrami operator on M" converges to the spectrum of the Laplace–Beltrami operator on N0.
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1
�0
L0 ¼

sin2 ’
�0ð’Þ2

0

0 1
sin2 ’

0@ 1A;
and again we find a bi-Lipschitz immersion h0:M0! R

3 such that dhT
0dh0 ¼ �0L

�1
0 , namely

h0ð’; �Þ ¼

sin ’ sin �

sin’ cos �R ’
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ðtÞ2
sin2 t
� cos2 t

q
dt

0BB@
1CCA:

Thus the submanifold N0 :¼ h0ðM0Þ of R3, which for the case f ðr; yÞ ¼ sin2ðyÞ is pictured in Fig. 4, is the spectral
limit of the sequence ðM"Þ.

Example 5: A locally corrugated graphical surface. We finally want to discuss an example with oscillations in
several Voronoi cells which can be treated locally.

Let Y � R2 be relatively-compact and open. Consider a set Z 2 Y of isolated points. For every point z 2 Z we use a
smooth function  z: ½0;1Þ ! ½0; 1� to define a rotationally symmetric cut-off function  zðj � �zjÞ such that

 zð0Þ ¼ 1;

supp zðj � �zjÞ \ supp z0 ðj � �z0jÞ ¼ ; for all z0 2 Z n fzg:

�
Now we consider a smooth T-periodic function f : ½0;1Þ ! R and define M" as the graph of the function

h":M0 :¼ Y n Z ! R,

h"ðxÞ :¼
X
z2Z

" f
�jx�zj

"

�
 zðjx� zjÞ 2 R3;

which we regard as a two-dimensional submanifold of R3. In Fig. 5 in the Introduction we took f ðyÞ ¼ sin2ðyÞ to show
M" for some values of ".

Doing the same calculations as in the previous examples locally in each Voronoi cell we get a function h0:M0! R,

h0ðxÞ :¼ x 7!
X
z2Z

Z jx�zj
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0;zðtÞ2

t2
� 1

q
dt 2 R3;

where �0;zðrÞ ¼ r
T

R T
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0ðyÞ2 zðrÞ2 þ 1

p
dy, such that the graph of h0, which is shown in Fig. 5 for f ðyÞ ¼ sin2ðyÞ, is the

spectral limit of ðM"Þ.

4. Proofs

4.1 Proof of Proposition 6, Lemma 7, and Lemma 8

The argument consists of two parts. In the first part we identify the limiting tensor field L0. For this purpose, we
consider the operators

L�" :H
1
0 ðBÞ ! H�1ðBÞ; L�"u :¼ �divðL�"rÞ; ð40Þ

where L�" denotes the adjoint of L" and is defined by the identity ðL�"�; �Þ ¼ ð�;L"�Þ for all vector fields �; �. Since the
operator is uniformly elliptic (with constants independent of ") we can deduce the existence of a linear isomorphism
L�0, whose inverse is the limit of ðL�" Þ

�1 in the weak operator topology. Indeed, this follows from the following
standard compactness result:

Lemma 23. Let V be a reflexive separable Banach space and ðT"Þ be a sequence of linear operators T":V ! V 0 that
is uniformly bounded and coercive, i.e., there exists C > 0 (independent of ") such that the operator norm of T" is
bounded by C and

hT"v; viV 0 ;V 
 1
C
kvk2V for all v 2 V : ð41Þ

Then there exists a linear bounded operator T0:V ! V 0 satisfying ð41Þ and for a subsequence (not relabeled) we
have T�1

" * T�1
0 in the weak operator topology, that is for all f 2 V 0 we have

T�1
" f * T�1

0 f weakly in V :

(For a proof, e.g., see [25, Proposition 4]). We then show that L�0 can in fact be written in divergence form:
L�0 ¼ �divðL�0rÞ with an appropriate ð1; 1Þ-tensor field L�0. In order to define L�0 with help of L�0, we introduce
auxiliary functions whose gradients span the tangent space. More precisely, we recall the following fact:

Remark 24. Let B b M denote an open ball with radius smaller than the injectivity radius at its center. Then there
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exist v1; . . . ; vn 2 C1c ðBÞ such that Tð1
2
BÞ is spanned by the vector fields rv1; . . . ;rvn, i.e.,

8y 2 1
2
B : Ty

�
1
2
B
�
¼ spanfrv1ðyÞ; . . . ;rvnðyÞg: ð42Þ

Following ideas of Tartar and Murat, we associate with v1; . . . ; vn oscillating test-functions v1;"; . . . ; vn;" that allow to
pass to the limit in products of weakly convergent sequences of the form ðL"ru";rvi;"Þ. The argument invokes the
following variant of the Div-Curl Lemma for manifolds:

Lemma 25 (Div-Curl Lemma). Let � � M be open and let ð�"Þ � L2ðT�Þ, ðv"Þ � H1ð�Þ denote sequences such that

�" * � weakly in L2ðT�Þ,
div �"! div � in H�1ð�Þ,

�
and v" * v weakly in H1ð�Þ:

Then Z
�

ð�";rv"Þ’ d�!
Z

�

ð�;rvÞ’ d� for all ’ 2 C1c ð�Þ:

Moreover, if v"; v 2 H1
0ð�Þ, then Z

�

ð�";rv"Þ d�!
Z

�

ð�;rvÞ d�:

We present the short proof for the reader’s convenience:

Proof of Lemma 25. In the case v" 2 H1
0 ð�Þ the statement follows by an integration by parts. In the general case, for

’ 2 C1c ð�Þ we haveZ
�

ð�";rv"Þ’ ¼
Z

�

ð�";rðv"’ÞÞ �
Z

�

ð�"; v"r’Þ ¼ �hdiv �"; v"’i �
Z

�

ð�"; v"r’Þ: ð43Þ

Regarding the first term of the right-hand side of ð43Þ,

�hdiv �"; v"’i ! �hdiv �; v’i ¼
Z

�

ð�; vr’Þ þ
Z

�

ð�; ’rvÞ:

For the second term of the right-hand side of ð43Þ, since v" * v in H1ð�Þ, for any relatively compact open set
�0 � M, there exists a subsequence of ðv"Þ converging to v in L2ð�0Þ by Rellich’s theorem; in particular, v"r’! vr’
in L2ðTMÞ and thus

R
�
ð�"; v"r’Þ !

R
�
ð�; vr’Þ. Hence, the right-hand side of ð43Þ converges to

R
�
ð�;rvÞ’. �

In a second step, we then show that L0 (the adjoint of L�0) is an H-limit of ðL"Þ. To that end we need to consider for
(arbitrary but fixed) subdomains ! b � the localized operators

L":H
1
0ð!Þ ! H�1ð!Þ; L"u :¼ �divðL"ruÞ; ð44Þ

and show that L�1
" ! L�1

0 in the weak operator topology.

Proof of Proposition 6. In the proof we pass to various subsequences and it turns out to be necessary to keep track of
them. For a lean notation we denote by E � ð0;1Þ the set of "’s of the given sequence ðL"Þ ¼ ðL"Þ"2E. We represent
subsequences by means of subsets E0;E00; . . . � E that have a cluster point at 0. We follow the convention to write

c"! c0 ð" 2 E0Þ;

if and only if for any sequence ð"jÞj2N � E0 with "j! 0 we have c"j ! c0.
Step 1. Choice of the subsequence and definition of L0.
Let L�" be defined by ð40Þ and fix v1; . . . ; vn 2 C1c ðBÞ according to Remark 24. We claim that there exits a measurable
ð1; 1Þ-tensor field L0:

1
2
B! LinðTð1

2
BÞÞ, a subsequence E0 � E, and functions ðv1;"Þ; . . . ; ðvk;"Þ � H1

0ðBÞ (the so called
oscillating test functions) such that for k ¼ 1; . . . ; n and " 2 E0 we have

vk;" * vk weakly in H1
0ðBÞ,

vk;" ! vk in L2ðBÞ,
ðL�"vk;"Þ strongly converges in H�1ðBÞ,
L
�
"rvk;" * L

�
0rvk weakly in L2

�
T
�

1
2
B
��

.

8>>><>>>: ð45Þ

For the argument note that by uniform ellipticity of L�" and the boundedness of B, there exists C ¼ CðB; �Þ > 0 such
that

hL�"u; ui ¼
Z
B

ðL�"ru;ruÞ 
 Ckuk2H1ðBÞ;

and thus by Lemma 23 there is L�0:H
1
0 ðBÞ ! H�1ðBÞ and a subsequence E00 � E such that for all f 2 H�1ðBÞ and
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" 2 E00

ðL�" Þ
�1 f * ðL�0Þ

�1 f weakly in H1
0ðBÞ:

For k ¼ 1; . . . ; n define

vk;" :¼ ðL�" Þ
�1L�0vk;

which by uniform ellipticity of L�" and Poincaré’s inequality in H1
0 ðBÞ are bounded uniformly in ". Hence there exits

vector fields ‘1; . . . ; ‘n 2 L2ðTBÞ and another subsequence E0 � E00 such that we have for " 2 E0

vk;" * vk weakly in H1
0 ðBÞ,

vk;" ! vk in L2ðBÞ,
L
�
"rvk;" * ‘k weakly in L2ðTBÞ.

8><>:
Next, we define the tensor field L�0 by the identity

8k 2 f1; . . . ; ng : L
�
0rvk ¼ ‘k �-a.e. in 1

2
B:

Indeed, since rv1; . . . ;rvn span Tð1
2
BÞ the above identity defines L�0 uniquely and the last identity in ð45Þ is satisfied

by construction. It remains to check the strong convergence of ðL�"vk;"Þ. In fact the stronger statement L�"vk;" ¼ L�0vk is
valid, which is a direct consequence of the definition of vk;".
Step 2. H-convergence of L" to L0 in 1

2
B.

Let the subsequence E0, the tensor field L0, and ðvk;"Þ be defined as in Step 1. We claim that ðL"Þ H-converges to L0 in
1
2
B for " 2 E0. To that end let ! b 1

2
B and let L" be defined by ð44Þ. Arguing as in the previous step, we can find another

subsequence E00 � E0 and a bounded linear, coercive operator L0:H
1
0ð!Þ ! H�1ð!Þ such that

L�1
" * L�1

0 in the weak operator topology for " 2 E00: ð46Þ

We only need to show that

L0u0 ¼ �divðL0ru0Þ; ð47Þ

for arbitrary u0 2 H1
0ð!Þ. For the argument set u" :¼ L�1

" L0u0 so that by ð46Þ,

u" * u0 weakly in H1
0ð!Þ and strongly in L2ð!Þ for " 2 E00: ð48Þ

Consider J" :¼ L"ru". By uniform ellipticity of L" the sequences ðJ"Þ is bounded in L2ðT!Þ. Hence, there exits
J0 2 L2ðT!Þ and another subsequence E000 � E00 such that

J" ¼ L"ru" * J0 weakly in L2ðT!Þ for " 2 E000: ð49Þ

Combined with the identity �div J" ¼ L0u0 (which follows from the definition of u") we find that

�div J0 ¼ L0u0: ð50Þ

Hence, for any test function ’ 2 C1c ð!Þ, the convergence properties of ðvk;"Þ yieldZ
!

ðJ"; ’rvk;"Þ ¼
Z
!

ðJ";rð’vk;"ÞÞ �
Z
!

ðJ"; vk;"r’Þ

¼ hL0u0; ’vk;"i �
Z
!

ðJ"; vk;"r’Þ

! hL0u0; ’vki �
Z
!

ðJ0; vkr’Þ

¼
Z
!

ðJ0; ’rvkÞ:

On the other hand, since L�"rvk;" * L
�
0rvk weakly in L2ðT1

2
BÞ and ð�divðL�"rvk;"ÞÞ strongly converges in H�1ð1

2
BÞ

by ð45Þ, the Div-Curl Lemma (Lemma 25) yieldsZ
!

ðJ"; ’rvk;"Þ ¼
Z
!

ð’ru";L�"rvk;"Þ !
Z
!

ð’ru0;L
�
0rvkÞ ¼

Z
!

ðL0ru0; ’rvkÞ:

Hence, by combining the previous two identities we conclude thatZ
!

ðL0ru0; ’rvkÞ ¼
Z
!

ðJ0; ’rvkÞ:

Since ’ 2 C1c ð!Þ is arbitrary and since rv1; . . . ;rvn spans T!, we get J0 ¼ L0ru0 �-a.e. in !. Thus ð47Þ follows
from ð50Þ. Moreover, since J0 and L0 are uniquely determined by L0, the convergence in ð46Þ, ð48Þ, and ð49Þ holds for
the entire sequence E0 (which in particular is independent of !).
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Next we argue that L0 2Mð!; �;�Þ. Indeed, from ð48Þ and ð49Þ and the Div-Curl Lemma (Lemma 25) we learn that
for any non-negative ’ 2 C1c ð!Þ we haveZ

!

ðL"ru";ru"Þ’!
Z
!

ðL0ru0;ru0Þ’:

By uniform ellipticity of L" in form of ð12Þ, we have
R
!ðL"ru";ru"Þ� 
 �

R
! jru"j

2�, and thusZ
!

ðL0ru0;ru0Þ’ 
 �
Z
!

jru0j2’:

Since this is true for all u0 and ’, we conclude that L0 satisfies the lower ellipticity condition, cf. ð12Þ �-a.e. in !. On
the other hand ð13Þ impliesZ

!

ðL"ru";ru"Þ’ ¼
Z
!

ðL"ru";L�1
" L"ru"Þ’ 
 �

Z
!

jL"ru0j2’;

and thus by the same reasoning as before, we get for �-a.e. x 2 ! and all � 2 Tx!

�jL0ðxÞ�j2 � ðL0ðxÞ�; �Þ:
Substituting � ¼ L�1

0 ðxÞ�0 yields the boundedness condition, cf. ð13Þ.
Since the above arguments hold for arbitrary ! b 1

2
B we deduce that L0 2Mð1

2
B; �;�Þ and that ðL"Þ H-converges to

L0 in 1
2
B for " 2 E0. �

Next we present the proof of the auxiliary statements Lemma 7 and 8.

Proof of Lemma 7. Step 1: Proof of part (a).
Let x 2 ! and denote by B b ! an open ball centered at x and with a radius that is smaller than the injectivity radius of
� at x. Fix v1; . . . ; vn 2 C1c ðBÞ according to Remark 24. For k 2 f1; . . . ; ng set f 2 H�1ðBÞ by f :¼ �divðL0rvkÞ and
define v" 2 H1

0ðBÞ as the unique solutions to �divðL"rv"Þ ¼ f in H�1ðBÞ. By H-convergence of ðL"Þ and the definition
of f we have v" * vk weakly in H1

0 ðBÞ and L"rv" * L0rvk weakly in L2ðBÞ. Likewise, by H-convergence of ðeL"Þ toeL0 and since eL" ¼ L" on B, we find that L"rv" * eL0rvk weakly in L2ðBÞ, and thus ðeL0 � L0Þrvk ¼ 0 �-a.e. in B.
Since k was arbitrary, the last identity holds for all k ¼ 1; . . . ; n. Hence ð42Þ yields L0 ¼ eL0 �-a.e. in 1

2
B. Since x is

arbitrary, the last identity holds �-a.e. in !.
Step 2: Proof of (b).
Let ! b �. We define L" and L0 according to ð44Þ and denote the adjoint operators by L�" , L

�
0, i.e.,

L�" :H
1
0 ð!Þ ! H�1ð!Þ; L�" :¼ �divðL�"rÞ;

L�0:H
1
0 ð!Þ ! H�1ð!Þ; L�0 :¼ �divðL�0rÞ:

Fix f 2 H�1ð!Þ and let u"; u0 2 H1
0 ð!Þ be the unique solutions to L�"u" ¼ f and L�0u0 ¼ f . It suffice to show that

u" * u0 weakly in H1
0ð!Þ and L�"ru" * L

�
0ru0 weakly in L2ðT!Þ. Since the limiting equation uniquely determines u0,

it suffices to prove the statements up to a subsequence. By a standard energy estimate and the uniform boundedness of
ðL�" Þ the sequences ðu"Þ and ðL�"ru"Þ are bounded in H1

0ð!Þ and L2ðT!Þ, respectively. Hence, there exits ~u0 2 H1
0ð!Þ and

J0 2 L2ðT!Þ such that for a subsequence (not relabeled),

u" * ~u0 weakly in H1
0ð!Þ,

L
�
"ru" * J0 weakly in L2ðT!Þ.

(
In the next two substeps we complete the argument by showing ~u0 ¼ u0 and J0 ¼ L�0ru0.

Substep 2.1. Argument for ~u0 ¼ u0: Let v0 2 H1
0 ð!Þ and consider v" :¼ ðL"Þ�1L0v0. Thanks to L"!

H
L0 we have

v" * v0 weakly in H1
0 ð!Þ and strongly in L2ð!Þ,

L"rv" * L0rv0 weakly in L2ðT!Þ.

�
The Div-Curl Lemma (Lemma 25) thus yieldsZ

!

ðL�"ru";rv"Þ ¼
Z
!

ðru";L"rv"Þ !
Z
!

ðr ~u0;L0rv0Þ ¼
Z
!

ðL�0r ~u0;rv0Þ

¼ hL�0 ~u0; v0i:

Since, on the other hand we have
R
!ðL
�
"ru";rv"Þ ¼ h f ; v"i ! h f ; v0i, and since v0 2 H1

0ð!Þ is arbitrary, we
conclude L�0 ~u0 ¼ f in H�1

0 ð!Þ. Since the kernel of L�0 is trivial, we deduce that ~u0 ¼ u0.

Substep 2.2: Argument for J0 ¼ L�0ru0. Let B b ! be an open ball with radius less than the injectivity radius at its
center and fix v1; . . . ; vn 2 C1c ðBÞ � C1c ð!Þ according to Remark 24. Consider v" :¼ ðL"Þ�1L0vj and note that L"!

H

L0 yields
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v" * vj weakly in H1
0 ð!Þ and strongly in L2ð!Þ,

L"rv" * L0rvj weakly in L2ðT!Þ.

(
Thus for any ’ 2 C1c ð!Þ the Div-Curl Lemma (Lemma 25) yieldsZ

!

ðL�"ru";rv"Þ’!
Z
!

ðJ0;rvjÞ’;

and thus Z
!

ðL�"ru";rv"Þ’ ¼
Z
!

ðru";L"rv"Þ’!
Z
!

ðru0;L0rvjÞ’ ¼
Z
!

ðL�0ru0;rvjÞ’:

Since ’ 2 C1c ð!Þ is arbitrary because of ð42Þ, we get J0 ¼ L�0ru0. �

Proof of Lemma 8. Let L" and L0 be defined by ð44Þ and denote by L�" and L�0 the adjoint operators. Note that u0 is
uniquely determined by

L0u0 ¼ f0 � divðL0G0Þ � divF0 in H�1ð!Þ: ð51Þ
We first note that (up to a subsequence) ðu"Þ converges weakly in H1

0ð!Þ to some ~u0 2 H1
0 ð!Þ, and ðL"ru"Þ converges

weakly in L2ðT!Þ to some J0 2 L2ðT!Þ. We first claim that ~u0 solves ð51Þ (which by uniqueness of the solution implies
that ~u0 ¼ u0). For the argument let v0 2 H1

0ð!Þ and consider the oscillating test-function v" :¼ ðL�" Þ
�1L�0v0 2 H1

0ð!Þ.
Since L�" !

H
L
�
0 by Lemma 7, and L�"v" ¼ L�0v0, we deduce that

v" * v0 weakly in H1
0ð!Þ and strongly in L2ð!Þ,

L
�
"rv" * L

�
0rv0 weakly in L2ðT!Þ.

(
Thanks to u" * ~u0 weakly in H1

0ð!Þ and the Div-Curl Lemma (Lemma 25) we get on the one hand

hL"u"; v"i ¼
Z
!

ðL"ru";rv"Þ ¼ h f"; v"i þ
Z
!

ðG";L�"rv"Þ þ ðF";rv"Þ

!
Z
!

f0v0 þ
Z
!

ðG0;L
�
0rv0Þ þ ðF0;rv0Þ

¼
Z
!

f0v0 þ
Z
!

ðL0G0 þ F0;rv0Þ;

and on the other hand

hL"u"; v"i ¼ hL�"v"; u"i ¼
Z
!

ðru";L�"rv"Þ !
Z
!

ðr ~u0;L
�
0rv0Þ ¼

Z
!

ðL0r ~u0;rv0Þ

¼ hL0r ~u0;rv0i:

Since v0 2 H1
0ð!Þ is arbitrary, we conclude that ~u0 solves ð51Þ and thus ~u0 ¼ u0. Moreover, by the argument of

Substep 2.1 in the proof of Lemma 7 (b), we deduce that J0 ¼ L0ru0, which completes the argument. �

4.2 Proof of Theorem 5

The proof is structured as follows: In Step 1 we pass to a subsequence and define the H-limit L0 by appealing to a
covering of M by balls, Proposition 6, and Lemma 7; (at this point we only have H-convergence on balls). In Step 2 we
show part (b) of the theorem and recover (a) as a special case.

Step 1. Choice of the subsequence and definition of L0.
Let ðBjÞ denote a countable covering of M by open balls with 4Bj b M such that the radius of Bj is smaller than a
quarter of the injectivity radius of M at the center of Bj. For every j 2 N Proposition 6 provides a subsequence of ðL"Þ
H-converging to some Lj;0 2Mð2Bj; �;�Þ in 2Bj. Thus (by a diagonal subsequence argument) we can choose a
subsequence E0 � E such that ðL"Þ H-converges to Lj;0 in 2Bj for all j 2 N. By Lemma 7 (a) we have Lj;0 ¼ Lk;0 �-a.e.
in Bj \ Bk, and thus we can choose a coefficient field L0 2MðM; �;�Þ with L0ðxÞ ¼ Lj;0ðxÞ for �-a.e. x 2 Bj, j 2 N.

Step 2. Proof of (b).
Fix � � M open, m > m0ð�Þ

� , and take sequences ð f"Þ � L2ð�Þ and ðF"Þ � L2ðT�Þ with f" * f0 weakly in L2ð�Þ and
F"! F0 in L2ðT�Þ. Let u" 2 H1

0ð�Þ be the solution to

mu" � divðL"ru"Þ ¼ f" � divF" in H�1ð�Þ:

We extract a subsequence E00 � E0 such that
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u" * u0 in H1
0ð�Þ,

L"ru" * J0 in L2ðT�Þ

�
ð52Þ

for some u0 2 H1ð�Þ and J0 2 L2ðT�Þ. We now claim that u0 is the (unique) solution in H1
0 ð�Þ to

mu0 � divðL0ru0Þ ¼ f0 � divF0 in H�1ð�Þ ð53Þ

and that J0 ¼ L0ru0. For the argument we use the covering ðBjÞ of M described in Step 1. Let ’j 2 C1c ðMÞ denote a
partition of unity subordinate to ðBjÞ, in the sense that supp ’j b Bj and

P1
j¼1 ’j ¼ 1. Then for every ’ 2 H1

0ð�Þ and
every j 2 N Z

�

ðL"rð’ju"Þ;r’Þ ¼
Z

�

ðu"L"r’j;r’Þ þ
Z

�

ð’jL"ru";r’Þ

¼
Z

�

ðu"L"r’j;r’Þ þ
Z

�

ðL"ru";rð’j’ÞÞ �
Z

�

ðL"ru"; ’r’jÞ

¼
Z

�

ðu"L"r’j;r’Þ þ
Z

�

ð f" � mu"Þ’j’þ ðF";rð’j’ÞÞ

�
Z

�

ðL"ru"; ’r’jÞ

¼
Z

�

ðL"ðu"r’jÞ;r’Þ þ
Z

�

ð’jF";r’Þ

þ
Z

�

ðð f" � mu"Þ’j þ ððF" � L"ru"Þ;r’jÞÞ’

¼
Z

�

ðL"Gj;";r’Þ þ
Z

�

ðFj;";r’Þ þ
Z

�

gj;"’; ð54Þ

where

gj;" :¼ ð f" � mu"Þ’j þ ððF" � L"ru"Þ;r’jÞ; Gj;" :¼ u"r’j; Fj;" :¼ ’jF":

Moreover set vj;" :¼ ’ju" and note that vj;" 2 H1
0 ðBjÞ. Since ð54Þ holds in particular for all ’ 2 H1

0ðBjÞ, we infer that
vj;" is the unique solution in H1

0ðBjÞ to

�divðL"rvj;"Þ ¼ gj;" � divðL"Gj;"Þ � divFj;" in H�1ðBjÞ:

By Step 1 we have L"!
H
L0 on 2Bj. Furthermore, from ð52Þ, the compact embedding of H1

0ðBjÞ � L2ðBjÞ (which
yields u"! u0 strongly in L2ðBjÞ), and the convergence properties of ð f"Þ and ðF"Þ, we deduce that

vj;" * vj;0 :¼ ’ju0 weakly in H1ðBjÞ,
gj;" * gj;0 :¼ ð f0 � mu0Þ’j þ ððF0 � J0Þ;r’jÞ weakly in L2ðBjÞ,
Gj;" ! Gj;0 :¼ u0r’j strongly in L2ðTBjÞ,
Fj;" ! Fj;0 :¼ ’jF0 strongly in L2ðTBjÞ.

8>>><>>>: ð55Þ

Hence, Lemma 8 implies that vj;0 2 H1
0ðBjÞ is the weak solution to

�divðL0rvj;0Þ ¼ gj;0 � divðL0Gj;0Þ � divFj;0 in H�1ðBjÞ;

and

L"rvj;" * L0rvj;0 weakly in L2ðTBjÞ: ð56Þ

Since
P1

j¼1 ’j ¼ 1 we deduce that
P1

j¼1 r’j ¼ 0, and thusX1
j¼1

vj;0 ¼ u0;
X1
j¼1

Fj;0 ¼ F0;
X1
j¼1

Gj;0 ¼ 0;
X1
j¼1

gj;0 ¼ ð f0 � mu0Þ:

In particular, summation of ð56Þ yields L"ru" * J0 ¼ L0ru0 weakly in L2ðT�Þ. Moreover, for any test function
’ 2 C1c ð�Þ we have on the one handZ

�

ðL"ru";r’Þ ¼
X1
j¼1

Z
�

ðL"rvj;";r’Þ !
X1
j¼1

Z
�

ðL0rvj;0;r’Þ ¼
Z

�

ðL0ru0;r’Þ;

and on the other hand, by summation of ð54Þ, and by ð55Þ,
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Z
�

ðL"ru";r’Þ ¼
X1
j¼1

Z
�

ðL"dvj;";r’Þ

¼
X1
j¼1

Z
Bj

ðL"Gj;";r’Þ þ ðFj;";r’Þ þ gj;"’

!
Xd
j¼1

Z
Bj

ðL0Gj;0 þ Fj;0;r’Þ þ g0; j’

¼
Z

�

ðF0;r’Þ þ ð f0 � mu0Þ’:

The combination of the previous two identities yields ð53Þ. Since the latter admits a unique solution, we deduce that
the convergence holds for the entire subsequence E0. Finally we note that if H1

0ð�Þ is compactly contained in L2ð�Þ,
then we even have u"! u0 strongly in L2ð�Þ. The same conclusion is true if m 6¼ 0 and f"! f0 strongly in L2ð�Þ. To
see this, first note that by L"ru" * L0ru0 and Lemma 25 we haveZ

�

ðL"ru";ru"Þ !
Z

�

ðL0ru0;ru0Þ:

Thus, since we may pass to the limit in products of weakly and strongly convergent sequences,

m

Z
�

u2
" ¼ m

Z
�

u2
" þ

Z
�

ðL"ru";ru"Þ �
Z

�

ðL"ru";ru"Þ

¼
Z

�

f"u" þ
Z

�

ðF";ru"Þ �
Z

�

ðL"ru";ru"Þ

!
Z

�

f0u0 þ
Z

�

ðF0;ru0Þ �
Z

�

ðL0ru0;ru0Þ ¼ m

Z
�

u2
0:

Since m 6¼ 0, this implies ku"kL2ð�Þ ! ku0kL2ð�Þ, which combined with the weak convergence u" * u0 in L2ð�Þ
yields the claimed strong convergence u"! u0 in L2ð�Þ. This completes the argument for part (b).

Step 3. Proof of part (a).
Since m0ð!Þ < 0, we can take m ¼ 0 in part (b) and H-convergence immediately follows. �

4.3 Proofs of Lemma 12, 13, and 15

Proof of Lemma 12. Let � ¼ ð�1; . . . ; �nÞ; � ¼ ð�1; . . . ; �nÞ 2 Rn and �; � 2 TxM such that

�
i ¼ gð�; @

@xi
Þ

�i ¼ gð�; @@xiÞ

(
for i ¼ 1; . . . ; n:

We identify x 2 ��1ðUÞ and the corresponding point in U. Since the metric gð�; �ÞðxÞ continuously depends on x,
since � is a diffeomorphism, and because U b �ð�Þ, there exists a constant C > 0 such that

1
C
j�j2 �

Xn
i; j¼1

gi jðxÞ�i� j ¼ gð�; �ÞðxÞ � Cj�j2 and 1
C
� �ðxÞ � C;

for all x 2 ��1ðUÞ, where ðgi jÞ denotes the inverse of the matrix representation ðgijÞ of g in local coordinates, i.e.,
gij ¼ gð @@xi;

@
@x jÞ. Then the uniform ellipticity of L yields

AðxÞ� � � ¼ �ðxÞgðL�; �ÞðxÞ 
 ��ðxÞgð�; �ÞðxÞ 
 1
C0
j�j2

and

AðxÞ� � � ¼ �ðxÞgðL�; �ÞðxÞ � ��ðxÞj�ðxÞjgj�ðxÞjg � C0j�jj�j

for some C0 > 0. Thus the statement follows. �

Proof of Lemma 13. We prove only ð2Þ ) ð1Þ as the opposite implication can be proved in the same way. Let
f 2 L2ð!Þ and � 2 L2ðT!Þ. Let u" 2 H1

0ð!Þ with " > 0 be the solution of

�divg;�ðL"rgu"Þ ¼ f � divg;� � in H�1ð!Þ:

By ð20Þ, u" is the solution to

�divðA"ru"Þ ¼ � f � divð�FÞ in H�1ðUÞ:

Since ðA"Þ H-converges to A0,
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u" * u0 weakly in H1
0ðUÞ,

A"ru" * A0ru0 weakly in L2ðU;RnÞ,

�
ð57Þ

where

�divðA0ru0Þ ¼ � f � divð�FÞ in H�1ðUÞ: ð58Þ

By ð57Þ

u" * u0 weakly in H1
0ð!; gÞ: ð59Þ

For any � 2 L2ðT!Þ and � ¼ ð�1; . . . ; �nÞ 2 L2ðU;RnÞ with �i :¼ gð�; @@xiÞ for i ¼ 1; . . . ; n we haveZ
!

gðL"rgu"; �Þ d� ¼
Z
U

A"ðxÞru" � � dx!
Z
U

A0ðxÞru0 � � dx ðas "! 0Þ

¼
Z
!

gðL0rgu0; �Þ d�:

Hence,

L"rgu" * L0rgu0 weakly in L2ðT!Þ: ð60Þ

Since ð58Þ is equivalent to

�divg;�ðL0rgu0Þ ¼ f � divg;� � in H�1ð!Þ;

together with ð59Þ and ð60Þ we arrive at the conclusion. �

Proof of Lemma 15. The proof is a direct consequence of Lemma 13 and the well-known fact from periodic
homogenization that A"ðxÞ ¼ Aðx; x"Þ H-converges to Ahom, e.g., see [2, Theorem 2.2]. �

4.4 Proofs of Lemma 16, 19, and 20

Proof of Lemma 16. Step 1. Argument for (a), (b).
Since h:M0 ! M is a diffeomorphism, the integral transformation formula yields for any function f 2 L1ðM; g; �ÞZ

M

f d� ¼
Z
M0

ð f � hÞ� d�0:

To show the equivalence of statement (a) and (b) it only remains to show

gðrgu;rg’Þ � ¼ g0ðLrg0
u;rg0

’Þ

for any test function ’ 2 C1c ðMÞ. To that end we first claim rgu ¼ ðdh�1Þ�rg0
u (and that the same holds for ’). Indeed,

using the definition of the gradient and the adjoint, we have

gðrgu; �Þ ¼ duð�Þ ¼ dðu � hÞðdh�1�Þ ¼ g0ðrg0
u; dh�1�Þ ¼ gððdh�1Þ�rg0

u; �Þ:

Together with the definition of L we conclude

gðrgu;rg’Þ � ¼ gððdh�1Þ�rg0
u; ðdh�1Þ�rg0

’Þ � ¼ g0ðLrg0
u;rg0

’Þ:

Step 2. Argument for (b), (c).
By the definition of �̂0 it suffices to show

g0ðLrg0
u;rg0

’Þ ¼ ĝ0ðrĝ0
u;rĝ0

’Þ �:

We first observe Lrg0
u ¼ �rĝ0

u, which can be seen by the following direct computation, using the definition of ĝ0

and of the gradient:

ĝ0ðLrg0
u; �Þ ¼ � g0ðrg0

u; �Þ ¼ � duð�Þ ¼ � ĝ0ðrĝ0
u; �Þ:

Again with the definition of the gradient we finally get

g0ðLrg0
u;rg0

’Þ ¼ � g0ðrĝ0
u;rg0

’Þ ¼ � d’ðrĝ0
uÞ ¼ � ĝ0ðrĝ0

u;rĝ0
’Þ:

�

Proof of Lemma 19. By construction, there exists a constant C0 > 0 (only depending on the constant C of Definition 1
and the dimension n) such that L" 2MðM0;

1
C0
;C0Þ and 1

C0
� �" � C0 a.e. in M0. Therefore, by weak-� compactness in

L1ðM0Þ and by Theorem 5 there exist a subsequence, a density �0 2 L1ðM0Þ satisfying 1
C0
� �0 � C0, and a coefficient

field L0 2MðM0;
1
C0
;C0Þ such that �" *

�
�0 weak-� in L1ðM0Þ and L"!

H
L0 in ðM0; g0; �0Þ along a subsequence that

we do not relabel. This proves statement (a).
Next, we prove statement (b). Set u" :¼ u" � h" and f " :¼ f � h". By Lemma 16 (b), ð28aÞ is equivalent to

186 HOPPE et al.



ðm� divg0;�0
ðL"rg0

ÞÞu" ¼ �" f " � ð�"m� mÞu" in H�1ðM0; g0; �0Þ; ð61Þ

where m denotes a (sufficiently large) dummy constant that we introduce in order to be able to apply Theorem 5. By a
standard energy estimate, ðu"Þ is bounded in H1ðM0; g0; �0Þ and thanks to the compact embedding of H1ðM0; g0; �0Þ in
L2ðM0; g0; �0Þ in Assumption 17. Thus there exists u0 2 H1

0ðM0; g0; �0Þ such that u"! u0 strongly in L2ðM0; g0; �0Þ
(for a further subsequence). Moreover, since f"! f0 strongly in L2 in the sense of ð27Þ, �" *

�
�0 weak-� in L1ðM0Þ,

and since 1
C0
� �" � C0, we deduce that �" f" * �0 f0 weakly in L2ðM0; g0; �0Þ, and thus we get for the right-hand side

in ð61Þ,
Since L"!

H
L0 we conclude with Theorem 5 that u0 is a solution to

ðm� divg0;�0
ðL0rg0

ÞÞu0 ¼ �0 f0 � ð�0m� mÞu0 in H�1ðM0; g0; �0Þ: ð62Þ

Since this PDE admits a unique solution, we conclude that u" * u0 weakly in H1ðM0; g0; �0Þ, and thus strongly in
L2ðM0; g0; �0Þ, for the entire sequence. By appealing to the equivalence of (b) and (c) in Lemma 16, we deduce from
ð62Þ that u0 :¼ u0 satisfies ð28bÞ. It remains to argue that u"! u0 in the sense of ð27Þ. To that end let  2 C1c ðM0Þ.
Then, since u"! u0 strongly and �" * �0 weakly in L2ðM0; g0; �0Þ,Z

M"

u"ð � h�1
" Þ d�" ¼

Z
M0

u" �" d�0!
Z
M0

u0 �0 d�0 ¼
Z
M0

u0 d�̂0:

Moreover, since �" *
�
�0 in L1ðM0Þ we have u"�" * u0�0 weakly in L2ðM0; g0; �0Þ, and thusZ
M"

ju"j2 d�" ¼
Z
M0

u" u"�" d�0 !
Z
M0

u0 u0�0 d�0 ¼
Z
M0

ju0j2 d�̂0:

�

Proof of Lemma 20. The argument is similar to the proof of Lemma 11, which itself is based on [11, Lemma 11.3 and
Theorem 11.5]. We only need to treat small changes that come from rewriting the eigenvalue problem on M" as a PDE
on the reference manifold M0. For the sake of brevity we only prove that eigenpairs of the Laplace–Beltrami operator
on M" converge (up to a subsequence) to an eigenpair of the Laplace–Beltrami operator on ðM0; ĝ0; �̂0Þ. The conclusion
of the statements of the theorem then follow by appealing to [11, Lemma 11.3 and Theorem 11.5].

We first note that for all k 2 N the sequence ð�";kÞ is bounded from above: For the first eigenvalue, ð11Þ implies

�";1 ¼ inf

Z
M"

g"ðrg"u;rg"uÞ d�"; u 2 H1
0ðM"Þ; kukL2ðM"Þ ¼ 1

� �
¼ inf

Z
M0

g0ðL"rg0
ðu � h"Þ;rg0

ðu � h"ÞÞ d�0; u 2 H1
0ðM"Þ; kukL2ðM"Þ ¼ 1

� �
� C0 inf

Z
M0

g0ðrg0
v;rg0

vÞ d�0; v 2 H1
0ðM0Þ; kvkL2ðM0Þ ¼ 1

� �
<1

for some constant C0 > 0 only depending on the constant C in Definition 1 and the dimension n. The analogue
statement for the other eigenvalues can be obtained by the Rayleigh-Ritz method with a similar argument. Likewise the
sequence of the first eigenvalues ð�1;"Þ is bounded from below by a positive constant. Indeed, for every eigenpair
ð�"; u"Þ we deduce with Lemma 16, ð11Þ, and assumption m0ðM0Þ < 0 that there exists constants C0;C0 > 0 (only
depending on the constant C in Definition 1 and the dimension n) such that

�";1 ¼ �"ku";1k2L2ðM"Þ ¼
Z
M"

g"ðr"u";r"u"Þ d�"

¼
Z
M0

g0ðL"rg0
ðu" � h"Þ;rg0

ðu" � h"ÞÞ d�0 

1

C0

Z
M0

g0ðrg0
ðu" � h"Þ;rg0

ðu" � h"ÞÞ d�0



1

C0

ku"k2L2ðM0Þ inf

Z
M0

g0ðrg0
v;rg0

vÞ d�0; v 2 H1
0ðM0Þ; kvk2L2ðM0Þ ¼ 1

� �



1

C0

ku"k2L2ðM0Þ inf

Z
M0

g0ðrg0
v;rg0

vÞ d�0; v 2 H1
0ðM0Þ; kvk2L2ðM0Þ ¼ 1

� �

 C0 > 0;

where in the last step we in particular used that m0ðM0Þ < 0. Now, we fix k 2 N and let ð�";k; u";kÞ be an eigenpair, i.e.,

��g";�"u";k ¼ �";ku";k in H�1ðM"; g"; �"Þ: ð63Þ

By passing to a subsequence we may assume that �";k ! � as "! 0 for some � . Moreover, w.l.o.g. we may assume
that u";k is normalized in the sense that

R
M"
ju";kj2 d�" ¼ 1. Testing ð63Þ with u";k then shows that ku";kkH1ðM"Þ is bounded

by a constant independent of ". We conclude that u";k :¼ u";k � h" is bounded in H1ðM0; g0; �0Þ and we thus may pass to
a further subsequence with u";k * u weakly in H1ðM0; g0; �0Þ and strongly in L2ðM0; g0; �0Þ, thanks to the compact
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embedding of H1ðM0; g0; �0Þ in L2ðM0; g0; �0Þ in Assumption 17. Note that this implies also that u";k ! u strongly in
L2 in the sense of ð27Þ. We conclude that the right-hand side of ð63Þ is strongly convergent to �u. Thus, by appealing to
Lemma 19 (b) we conclude that

��ĝ0;�̂0
u ¼ �u in H�1ðM0; ĝ0; �̂0Þ:

Since kukL2ðM0;ĝ0;�̂0Þ ¼ 1 by construction, we conclude that ð�; uÞ is an eigenpair of the Laplace–Beltrami operator on
ðM0; ĝ0; �̂0Þ. �

Appendix: Proofs of Auxiliary Results

A.1 Proof of Lemma 14

We refer to [27] for a similar result in a nonlinear, variational setting.
Step 1. Continuity of r	i in the first argument.
Consider a sequence ðxjÞ in Rn converging to some x0 2 Rn. For simplicity we set

	 j
i :¼ 	iðxj; �Þ and Aj :¼ Aðxj; �Þ

as well as

	0
i :¼ 	iðx0; �Þ and A0 :¼ Aðx0; �Þ:

First we note that the continuity of A in the first argument gives A j! A0 a.e. on Y and by uniform ellipticity we have
jA jj � � a.e. on Y . Thus we can conclude Z

Y

jA j � A0jp! 0 ðA:1Þ

for 1 < p <1.
Now we claim the convergence of r	 j

i . By ð25Þ we have

�r � Ajðr	 j
i � r	

0
i Þ ¼ r � ððA

j � A0Þðr	0
i þ eiÞÞ:

The uniform ellipticity of Aj allows to estimateZ
Y

jr	 j
i � r	

0
i j

2 � 1
�

Z
Y

jðA j � A0Þðr	0
i þ eiÞj2:

By Meyer’s estimate there is 2 < q <1 and C > 0 such that
R
Y
jr	0

i j
q � C

R
Y
jA0eijq and thus, for p ¼ q

q�2
we have

kr	 j
i � r	

0
i kL2ðYÞ � 1ffiffiffi

�
p kAj � A0kLpðYÞðkr	0

i kLqðYÞ þ 1Þ

and ðA�1Þ implies kr	 j
i �r	0

i kL2ðYÞ ! 0.
Step 2. H-convergence to Ahom.
Fix r 2 R. By Theorem 5 there exists a subsequence (not relabeled) s.t. ðA"Þ H-converges to some uniformly elliptic
coefficient field A0 on Rn. Let B � Rn denote an arbitrary ball and let u" 2 H1ðBÞ denote the unique weak solution to

�r � A"ru" ¼ 0 in B;

u" ¼ xi on @B:

�
Then A"!

H
A0 implies that u" * u0 weakly in H1ðBÞ, where u0 is the unique weak solution to

�r � A0ru0 ¼ 0 in B;

u0 ¼ xi on @B:

�
For k 2 N let �k 2 C1c ðBÞ be a cut-off function with �k ¼ 1 in Bk :¼ fx 2 B : distðx; @BÞ > 1

k
g and consider

v";k :¼ xi þ "	i
�
x; xþr

"

�
�kðxÞ:

Then ðv";kÞ converges as "! 0 to v0ðxÞ :¼ xi weakly in H1ðBÞ and strongly in L2ðBÞ, and a direct computation shows
that

rv";kðxÞ ¼
�
ei þ r	i

�
x; xþr

"

��
þ ð�k � 1Þr	i

�
x; xþr

"

�
þ "	i

�
x; xþr

"

�
r�kðxÞ;

and thus for w";k :¼ u" � v";k 2 H1
0ðBÞ we have (by appealing to the equation for u" and for 	i)Z

B

A"rw";k � rw";k ¼ �
Z
B

A"rv";k � rw";k

¼ �
Z
B

A
�
x; xþr"

��
ei þ r	i

�
x; xþr"

��
� rw";k dx
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�
Z
B

A"
�
ð�k � 1Þr	i

�
x; xþr"

�
þ "	i

�
x; xþr"

�
r�kðxÞ

�
� rw";k dx

� Cð�Þ
Z
Sk

�
jr	i

�
x; xþr

"

�
j þ "j	i

�
x; xþr

"

�
jkr�kkL1ðSkÞ

�
jrw";kj dx

for some constant Cð�Þ > 0, where Sk :¼ B n Bk. The left-hand side is bounded from below by �
R
B
jrw";kj2, and thus

(by appealing to the Cauchy-Schwarz inequality), we deduce thatZ
B

jrw";kj2 � Cð�;�Þ
Z
Sk

jr	i
�
x; xþr"

�
j2 þ ð"j	i

�
x; xþr"

�
jkr�kkL1ðSkÞÞ

2 dx:

Since ðjr	ið�; �þr" Þj
2Þ is equi-integrable and jSkj ! 0 for k!1, we conclude that

lim sup
k!1

lim sup
"!0

Z
B

jrw";kj2 ¼ 0;

and thus there exists a diagonal sequence ðk"Þ (with k"!1 as "! 0) such that w" :¼ wk";" satisfies rw"! 0

strongly in L2ðBÞ. Hence, with v" :¼ v";k" , we conclude that ru" �rv"! 0 in L2ðBÞ. On the other hand, since v"! v0

strongly in L2ðBÞ, we conclude that ru0 ¼ rv0 ¼ ei. Moreover, the H-convergence of ðA"Þ to A0 implies A"ru" *
A0ru0 ¼ A0ei weakly in L2ðBÞ, and thus (using ru" �rv"! 0) we have A"rv" * A0ei weakly in L2ðBÞ.

On the other hand for any ’ 2 C1c ðBÞ and " > 0 small enough, we have ’ðxÞrv"ðxÞ ¼ ’ðxÞðei þ r	iðx; xþr" ÞÞ, and thus
by periodicity Z

’A"rv" ¼
Z
’ðxÞA

�
x; xþr"

��
ei þ r	i

�
x; xþr"

��
dx

¼
Z
’ðxÞA

�
x; x"þ r"

��
ei þ r	i

�
x; x"þ r"

��
dx;

where r" 2 Y is defined by the identity r
" ¼ k þ r" for some k 2 Zd . We write that expression in the following way:Z

’ðxÞA
�
x; x
"
þ r"

��
ei þr	i

�
x; x
"
þ r"

��
dx

¼
Z
’ðx� r"ÞA

�
x� r";

x
"

��
ei þr	i

�
x� r";

x
"

��
dx

¼
X
z2Zn

"n
Z
Y

’ð"zþ "y� r"ÞAð"zþ "y� r"; yÞðei þr	ið"zþ "y� r"; yÞÞ dy:

Since ðr"Þ is a bounded sequence in Y � Rn we may pass to a subsequence (not relabeled) such that r"! r0 in Y for
some r0 2 Y . This implies that ’ð� þ "y� r"Þ ! ’ð� � r0Þ strongly in L2ðUÞ for any U � Rn open and bounded and
every y 2 Y . On the other hand by Step 1 we we have Ajr	 j

i ! A0	0
i in L1ðYÞ and thus we getX

z2Zn

"n
Z
Y

’ð"zþ "y� r"ÞAð"zþ "y� r"; yÞðei þr	ið"zþ "y� r"; yÞÞ dy

!
Z
R

n

’ðx� r0Þ
Z
Y

Aðx� r0; yÞðei þ r	iðx� r0; yÞÞ dy dx

¼
Z
R

n

’ðx� r0ÞAhomðx� r0Þei dx

¼
Z
R

n

’ðxÞAhomðxÞei dx;

and we conclude that
R
’ðA0 � AhomÞei ¼ 0 for all ’ 2 C1c ðBÞ, which gives A0 ¼ Ahom a.e. in B. Since B is an arbitrary

ball, we conclude that A0 ¼ Ahom a.e. in Rn. By uniqueness, we conclude that ðA"Þ H-convergence to Ahom for the entire
sequence.

A.2 Proof of Lemma 9

We first recall the definition of Mosco-convergence:

Definition 26 (Mosco-convergence). We say that ðE"Þ Mosco-converges to E0 as "! 0 if the following two
conditions are satisfied.

(i) If u" * u weakly in L2ðMÞ, then

lim inf
"!0

E"ðu"Þ 
 E0ðuÞ:

(ii) For any v 2 L2ðMÞ there exists ðv"Þ � L2ðMÞ with v" * v weakly in L2ðMÞ such that
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lim sup
"!0

E"ðv"Þ � E0ðvÞ:

For the proof of Lemma 9 we recall that Mosco-convergence is equivalent to resolvent convergence of the operator
associated with the Dirichlet form E". More precisely, for " 
 0 consider L":H

1
0ðMÞ ! H�1ðMÞ, L"u :¼

�divg;�ðL"rguÞ and denote for � > 0 by G�" :¼ ð� þL"Þ�1:L2ðMÞ ! H1
0 ðMÞ the associated resolvent.

Lemma 27 (Theorem 2.4.1 [23]). The following two conditions are equivalent.
(i) ðE"Þ Mosco-converges to E0.
(ii) For any � > 0, ðG�" Þ converges to G�0 in the strong operator topology of L2ðMÞ.

Proof of Lemma 9. We apply Lemma 27. Let � > 0, f"! f0 in L2ðMÞ, and u" :¼ G�" f". Since ðL"Þ H-converges to L0

in M, Theorem 5 implies that u"! u0 :¼ G�0 f0 strongly in L2ðMÞ. �
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