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Abstract

Nuclear fusion is a process in which two nuclei collide to form a larger nucleus.
Nuclear fusion can be divided into three stages. First, the two nuclei contact
each other across the potential barrier (the Coulomb barrier) created by the
nuclear force and the Coulomb interaction between the two nuclei. Next, the
energy of the relative motion of the two nuclei at the time of the collision
is converted into energy for the internal excitations, and then the relative
motion is trapped inside the Coulomb barrier. Finally, if the compound
nucleus is de-excited by particle emissions to a nucleus in the ground state,
it is called fusion-evaporation or if the compound nucleus fission back to two
nuclei, it is called fusion-fission. Fusion reactions play an important role in
many ways, including nucleosynthesis in stellar interiors and productions of
superheavy nuclei.

The time-dependent Hartree-Fock (TDHF) method has been widely used
as a theory to describe nuclear reactions, including nuclear fusion. This
method is based on the mean-field approximation to the solution of the many-
body Schrödinger equation, which is usually too complicated to solve. The
TDHF enables one to describe nuclear reactions in terms of nucleon degrees
of freedom. By describing reactions using nucleon degrees of freedom, we
can automatically take into account a variety of internal excitations during
a reaction process. TDHF has been successfully applied to a wide range
of phenomena, including heavy-ion reactions, such as nucleon transfer [1–4],
quasifission [5–8], induced fission [9–11], and fusion [12–17].

On the other hand, the TDHF is known to have some drawbacks. In
TDHF, quantum fluctuations are drastically underestimated [101], and thus
quantum tunneling, a fundamental phenomenon in quantum mechanics, can-
not be fully described. Therefore, this method is applicable only to reactions
at energies above the Coulomb barrier. In reality, there are sub-barrier fu-
sions that occur at energies lower than the Coulomb barrier, which is caused
only by the quantum tunneling effect. This cannot be described in the TDHF
framework. Note that almost all fusion reactions in stellar interiors are sub-
barrier fusion.
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Although several extensions of TDHF have been considered to overcome
these drawbacks, no method has yet been developed that can include both the
various internal excitations and the tunneling effect, two necessary aspects
of sub-barrier fusion.

In order to overcome the lack of a suitable method for describing sub-
barrier fusions, in this thesis, we have developed a theory that includes
both internal excitations and tunneling effect based on the idea of the Time-
Dependent Generator Coordinate Method (TDGCM). In TDGCM, the time-
dependent Slater determinants are superposed with time-dependent weights.
The TDGCM describes the tunneling effect by using the Slater determinant
which in a sense behaves classically. We have first applied the TDGCM to a
collision of two 4He particles in one-dimension, and qualitatively confirmed
that the TDGCM can describe the tunneling effect. We have also argued
that the TDGCM describes the tunneling effect by exchanging energy be-
tween superposed Slater determinants. Next, we have applied the TDGCM
to a collision of a 4He particle on an external barrier in one-dimension and
calculated the collision-energy dependence of the transmission probability.
As a result, we have obtained finite tunneling probabilities at sub-barrier
energies which cannot be described [37] in TDHF. We have also confirmed
that the collision energy dependence of the transmission probability calcu-
lated by TDGCM is not 0 or 1 as obtained by TDHF but becomes a smooth
function of energy. As the last calculation, TDGCM has been applied to
the collision of two 4He particles in three-dimensions. The result showed
that TDGCM can describe the tunneling effect in three-dimension as well
as in one-dimension. This is important because it is necessary to work in
three-dimension when TDGCM is applied to realistic calculations.

In our research, TDGCM was applied only to simple systems, but TDGCM
is expected to have a similar or even a larger application range than TDHF.
In addition, TDGCM can describe nuclear reactions with sub-barrier en-
ergies, which cannot be described by existing methods such as TDHF. In
particular, nuclear reactions with sub-barrier energies in difficult experimen-
tal regions, such as superheavy-element synthesis and neutron-rich nuclei,
can be described only by TDGCM, which is a microscopic theory with little
dependence on experiments and can also describe tunneling effect. In our
research, we have only developed the basis of TDGCM. However the con-
struction of this theory would be a big step to solve the problem of tunneling
effect, which has been unsolved for decades since the invention of TDHF, and
to expand the range of application of microscopic theory.
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Chapter 1

Introduction

1.1 Overview of Nuclear Reactions

1.1.1 Nuclear systems
An atomic nucleus is a quantum many-body system consisting of protons
and neutrons. The number of nucleons that make up a nucleus can range
from a few to about 250. There are the nuclear force, which is a short-
range attractive force between nucleons, and the Coulomb force, which is a
long-range repulsive force between protons.

The variety of phenomena caused by nuclei is not limited to the field
of atomic nuclei, but is also important for other fields such as astrophysics.
For example, elemental synthesis [27], which is the search for the origin of
matter, requires knowledge of many nuclear phenomena, such as nuclear
fusion [12–17,26], fission [5–11,18–20,23,47,50,52,71,72], neutron-rich nuclei
[28, 29], and nucleon transfer reactions [1–4, 101].

However, dealing with atomic nuclei is also challenging. One of the dif-
ficulties in dealing with nuclei is that the number of nucleons is halfway. In
other words, the number of nucleons in most nuclei is neither small enough
to be treated rigorously, nor large enough to be treated statistically. The
fact that the nuclear force is not completely understood [32] is another dif-
ficulty in dealing with nuclei. There are still many attempts to consider
three-body [30,31] or more interactions and to derive the nuclear force from
QCD [33].

How to overcome these difficulties and describe nuclear phenomena quan-
titatively is the goal of this field.
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Figure 1.1: Schematic picture of internuclear potential as the function of
distance between the two nuclei. Potential pocket and Coulomb barrier exist
due to the nuclear force, which is a short-range force, and the Coulomb force,
which is a long-range force.

1.1.2 Nuclear reactions
Recent hot topics in nuclear physics include superheavy nuclei and stellar nu-
cleosynthesis. Heavy ion fusion reactions are important in these phenomena,
where heavy ions are nuclei heavier than 4He. Fusion reaction is a reaction
in which two nuclei collide to form a single nucleus. The potential between
two nuclei exists as a function of the distance between the nuclei due to the
nuclear force (short-range attraction) and the Coulomb force (long-range re-
pulsion), as shown in the Fig. 1.1. The potential barrier shown in this figure
is called the Coulomb barrier. In the first stage of nuclear fusion, the relative
motions between nuclei must approach beyond this Coulomb barrier. In the
next stage, the energy of the relative motion of the nuclei is converted into
the motion of the nucleons inside the nucleus, i.e., internal excitation, and
the relative motion is trapped inside the Coulomb barrier to form an excited
compound nucleus. As the last stage of fusion, the excited compound nucleus
is de-excited mainly by neutron emission especially in light nuclei, and fusion
is completed when it reaches the ground state. It should be noted that the
actual process of fusion is not a straightforward one; sometimes the nucleus
is reflected by the Coulomb barrier, and sometimes it fissions after the for-
mation of the compound nucleus but before the de-excitation especially in
heavy nuclei (this phenomenon is called fusion-fission).
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Figure 1.2: Schematic picture of a nucleus in a droplet model with several
parameters. The ZL

cm and ZR
cm denote the positions of the mass centers of

left and right fragments respectively. The ZN and RN are the coordinate of
the minimum of neck thickness and its radius. D is the distance between ZL

cm
and ZR

cm. Sometimes, we also take the mass asymmetry of the left and right
fragment as another parameter. This figure was taken from [18].

1.1.3 Theories for nuclear reactions
Theories for such nuclear reactions, including heavy-ion fusion, are classified
into macroscopic and microscopic approaches. The macroscopic approach is
an approach considering only effective collective motions that describe the
phenomena of interest. Here, collective motions are coherent motions of many
nucleons, such as the center-of-mass motion of a nucleus or the vibration
of a nucleus as a whole. The advantages of the macroscopic approach are
a reduced computational cost by limiting the degrees of freedom and the
ease of intuitive understanding through modeling. On the other hand, the
disadvantages of the macroscopic approach are the arbitrariness in the choice
of degrees of freedom, and a need to adjust model parameters by fitting to
experimental data and adding degrees of freedom to match the experimental
results for the system or phenomenon of interest.

An example of modeling a phenomenon in a macroscopic approach is a
droplet model [34]. In the droplet model, a nucleus is viewed as a classi-
cal droplet, and the collective degrees of freedom are selected from among
its shapes (Fig. 1.2). The equations of motion for the selected degrees of
freedom are often solved by taking into account the unselected degrees of
freedom using the Langevin method. In the Langevin method, the unchosen
degrees of freedom are considered as heat bath, and the energy exchange
with them is incorporated as dissipation to the heat bath and a random
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force from the heat bath. Another example of a macroscopic approach is the
coupled-channels method [35, 36] using collective degrees of freedom. This
method solves the two-body problem of two nuclei while incorporating col-
lective excitations in those nuclei. For example, one can choose the distance
between nuclei, the deformation of one nucleus, and the angle relative to the
other nucleus as dynamical degrees of freedom. Then the ”coupled channels
equation” is obtained, which is an equation of motion for the relative motion
of two nuclei combining various angular momentum and vibrational excited
states.

Despite these advantages, the macroscopic approach, which has an empir-
ical aspect, is not suitable to describe reactions in unknown regions such as
superheavy nuclei and neutron-rich nuclei, where experiments are difficult.
The microscopic approach with only nucleon-nucleon interaction as input
is advantageous for such a region. In the microscopic approach, once the
nucleon-nucleus interaction is determined from the static properties of nuclei
and experimental results of scattering, nuclear reactions can be described
without free parameters. In other words, there is no need to adjust the
parameters depending on the phenomenon of interest. In particular, some
reactions in heavier than medium-heavy nuclei can be described by methods
based on the mean-field approximation, such as the time-dependent Hartree-
Fock method (TDHF) , although there are still problems shown below. The
TDHF approximates the motion of an interacting fermion to that of an in-
dependent fermion with a self-consistent one-body potential, which allows us
to approximate the solution of the many-body Schrodinger equation, which
is usually impractical to solve. The TDHF has been used successfully in nu-
cleon transfer reactions and nuclear fusion to describe their average features
(See Chap. 2).

1.2 Difficulties in microscopic approach for
reactions

Although TDHF has the advantages for the microscopic approach as de-
scribed above, it also has some principle drawbacks. The quantum fluctua-
tions of the collective motion calculated by TDHF are considerably under-
estimated, and quantum tunneling, which is a characteristic phenomenon in
quantum mechanics, cannot be described properly. This is because the wave
function of the TDHF is always localized in a self-consistent one-body po-
tential, and the wave packet transmitted through the barrier and the wave
packet reflected by the barrier cannot be represented simultaneously. This
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drawback can be fatal in describing nuclear reactions, especially nuclear fu-
sions at energies below the Coulomb barrier, which occur only with quantum
tunneling. Such reactions cannot be described at present.

Various methods have already been considered to solve this problem in
microscopic approaches. An example is the Stochastic Mean-Field (SMF)
[56, 58, 59, 92–94], which considers the wave functions calculated by TDHF
with different initial values as a statistical population and calculates the
quantum fluctuation as a statistical fluctuation. Another example includes
the simplified Time-Dependent Generator Coordinate Method (simplified
TDGCM) [21], proposed by Reinhard in 1983, which recovers quantum fluc-
tuations by superposing the TDHF wave functions and changing the weights
of each wave function with time. These methods have been applied to nucleon
transfer reactions and nuclear oscillations, and the results show larger quan-
tum fluctuations than TDHF. Since these methods are based on the time-
dependent TDHF wave function, they inherit the advantage of TDHF in that
internal excitations are automatically taken into account, but on the other
hand, they still have the disadvantage that they cannot describe quantum
tunneling phenomena. An extension that can describe quantum tunneling
phenomena is being considered, such as the Time-Dependent Hill-Wheeler
(TDHW) [19,20,70–72] method, which has been applied to fission and other
applications in the last decade. The TDHW describes the quantum tunnel-
ing effect by superposing states prepared by the time-independent Hartree-
Fock method and varying their weights with time. By initially preparing
the Hartree-Fock states before, during, and after the barrier penetration, the
penetration through the barrier can be expressed by the transition of the
weights on the states, and as a result, the quantum tunneling phenomenon
can be described. However, this method is based on the time-independent
Hartree-Fock method, and cannot automatically incorporate the internal ex-
citations of nuclei, so it cannot be called a complete microscopic method,
but rather a macroscopic method that uses the microscopic method as in-
put. These extensions, especially TDHW and simplified TDGCM, will be
discussed in detail in Chap. 2.

1.3 Aims of this work
To summarize the problems with the microscopic approach described above,
it has not yet been established that the microscopic approach can automati-
cally incorporate the internal excitations of nuclei and describe the quantum
tunneling phenomenon. This problem is particularly critical for low-energy
fusion, because fusion involves a variety of internal excitations, and fusion at
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sub-barrier energies is always accompanied by quantum tunneling. There-
fore, we have developed a method to simultaneously describe internal excita-
tions and quantum tunneling by extending Reinhard’s TDGCM to describe
low-energy fusion reactions.

In the simplified TDGCM, the internal excitations are automatically in-
corporated by using a time-dependent Slater determinant, and the quantum
fluctuations lost in the TDHF are recovered by superposing Slater deter-
minants. However, it still fails to describe quantum tunneling because the
Slater determinants, which are the basis for the superposition, are evolved
in time with independent TDHF, and as a result, no basis could be prepared
to describe quantum tunneling. In our TDGCM, the idea of superposing the
time-dependent Slater determinant is retained, but the correlation between
the time-dependent Slater determinants are considered, which was not con-
sidered in the simplified TDGCM. With this improvement, bases across the
barrier can be prepared, and the quantum tunneling effect can be described
more efficiently.

In this thesis, we first construct the TDGCM and derive the equations of
motion for nucleons. Then we apply it to three simple systems, and demon-
strate that TDGCM can describe tunneling. We also discuss how well it
can describe tunneling probability, and whether it can be applied to realistic
calculations in a future.

The thesis is organized as follows. First, in Chap. 2, we will explain in
detail the TDHF, which is widely used as a microscopic theory of nuclear reac-
tions. It also provides the basis of our TDGCM. We will list and explain some
of the methods devised to overcome the shortcomings of the TDHF. We will
compare them with our TDGCM. In Chap. 3, we will explain how and why
TDGCM are able to describe internal excitations and quantum tunneling. In
Chap. 4, we will discuss the properties of TDGCM through the application
of TDGCM to three simple systems: the one-dimensional 4He+4He collision
system, the one-dimensional collision of 4He with an external barrier, and the
three-dimensional 4He+4He collision system. In the last chapter, Chap. 5,
we will summarize this work and discuss future perspectives.
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Chapter 2

Review of existing theories

TDHF is one of the most widely used microscopic methods for nuclear reac-
tions. Since TDHF is a microscopic method that treats the nucleon degrees
of freedom as they are, it can automatically incorporate the internal exci-
tations of nuclei. On the other hand, TDHF has a disadvantage that the
TDHF considerably underestimates the quantum fluctuation of the collec-
tive motion (e.g., the center-of-mass motion and oscillation of nuclei) and
cannot describe the quantum tunneling phenomenon. In this chapter, the
characteristics of TDHF are discussed by deriving the equation of motion
of the wave function in TDHF, and actual successful and unsuccessful cases
of TDHF are shown. After the introduction of TDHF, we will introduce
methods beyond TDHF, such as the Time-Dependent Hill-Wheeler method
(TDHW) [19, 20, 70–72] and the simplified Time-Dependent Generator Co-
ordinate Method (simplified TDGCM) [21].

2.1 Time-Dependent Hartree-Fock

2.1.1 Derivation of the time-dependent Hartree-Fock
equation

The concept of the TDHF is to approximate interacting fermions as inde-
pendently moving fermions in a self-consistent one-body potential. In the
following, we derive the TDHF equation, i.e., the equation of motion in the
TDHF, based on this concept.

First, we define the one-body density matrix as follows
ρkl(t) = 〈Ψ(t)|c†l ck|Ψ(t)〉 , (2.1)

where c†, c are the nucleon creation and annihilation operators, respectively,
and the subscripts k and l are the labels of the single-particle state of the
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nucleon. By differentiating this density matrix with respect to time, the
time-evolution equation of the density matrix is obtained as follows

ih̄ρ̇kl(t) = 〈Ψ(t)|[c†l ck, H]|Ψ(t)〉 , (2.2)

where H is the Hamiltonian, and we have used the fact that the time evolu-
tion of a state can in general be written in terms of H as follows

|Ψ(t)〉 = e−
iHt
h̄ |Ψ(0)〉 . (2.3)

Here, the Hamiltonian is assumed to be in the following form considering up
to a two-body interaction

H =
∑
l1l2

tl1l2c
†
l1
cl2 +

1

4

∑
l1l2l3l4

v̄l1l2,l3l4c
†
l1
c†l2cl4cl3 , (2.4)

v̄l1l2,l3l4 = vl1l2l3l4 − vl1l2l4l3 , (2.5)

where v̄ in Eq. (2.5) is an antisymmetrized matrix element of the inter-
action v. By substituting this Hamiltonian into Eq. (2.2) and using the
anti-commutation relation {c†i , cj} = δij, the following equation is obtained:

ih̄ρ̇kl −
∑
p

(tkpρpl − ρkptpl) =
1

2

∑
prs

(v̄kprsρ
(2)
rslp − v̄rslpρ

(2)
kprs). (2.6)

Here, the two-body density matrix ρ(2) is defined as follows

ρ
(2)
klpq(t) = 〈Ψ(t)|c†pc†qclck|Ψ(t)〉 . (2.7)

The left-hand side of Eq. (2.6) describes the motion of a free particle. On the
other hand, the right-hand side describes the dynamics of the interaction.
The two-body density matrix on the right-hand side of Eq. (2.6) can be
divided into two components from the Wick’s theorem as follows

ρ
(2)
klpq = ρkpρlq − ρkqρlp + g

(2)
klpq. (2.8)

The first and second terms on the right-hand side of Eq. (2.8) are the terms
of the two-body density that can be expressed in terms of the one-body
density, and the third term, defined by this decomposition is the two-body
correlation. Eq. (2.6) can then be transformed as

ih̄ρ̇kl − [t+ Γ, ρ]kl =
1

2

∑
prs

(v̄kprsg
(2)
rslp − v̄rslpg

(2)
kprs), (2.9)
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where the mean-field potential Γ is defined as

Γkl =
∑
pq

v̄kqlpρpq. (2.10)

In the mean-field approximation, we ignore the right-hand side of Eq. (2.9).
In other words, by ignoring g(2), the time evolution equation of the density
in the mean-field approximation is obtained as

ih̄ρ̇ = [h, ρ], (2.11)

where we have set t+ Γ = h.
Using the coordinate representation and ignoring the spin degrees of

freedom, the one-body density matrix within Hartree-Fock approximation
is given by the following equation using the single-particle wave function φi

ρ(~r, ~r′, t) =
A∑
i=1

φ∗
i (~r, t)φi(~r

′, t). (2.12)

Using the density matrix Eq. (2.12) and considering the spin-independent
two-body potential v(~r, ~r′), Eq. (2.11) can be expressed for the single-particle
wave function as follows

ih̄
∂

∂t
φi(~r, t) =

(
− h̄2

2m
∆+ ΓH(~r, t)

)
φi(~r, t) +

∫
d3r′Γex(~r, ~r

′, t)φi(~r
′, t).

(2.13)

Here, the Hartree potential ΓH and the exchange potential Γex are defined
as follows

ΓH(~r) =

∫
d3r′v(~r, ~r′)

A∑
j=1

|φj(~r
′)|2 =

∫
dr′v(~r, ~r′)ρ(~r′), (2.14)

Γex(~r, ~r
′) = −v(~r, ~r′)

A∑
j=1

φj(~r
′)∗φj(~r) = −v(~r, ~r′)ρ(~r, ~r′). (2.15)

Eqs. (2.13)-(2.15) give the time evolutions of the single-particle wave func-
tions in the TDHF.

TDHF from a viewpoint of time-dependent variational principle

Note that this Eq. (2.13) can also be obtained by the time-dependent varia-
tional method (See Sec. 3.1). The time-dependent variational method is sim-
ply a method of finding an approximate solution to the Schrödinger equation
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in a restricted Hilbert space, that uses the Lagrangian defined as follows

L = 〈Φ(t)|ih̄ ∂
∂t

−H|Φ(t)〉 . (2.16)

Here, we will use the Slater determinant composed of the single-particle wave
function for the trial function |Φ(t)〉, and define the following action

A =

∫ t2

t1

L[φ, φ∗]dt (2.17)

where the variation at the end points are fixed δφ(t1,2) = δφ∗(t1,2) = 0. Then
the condition that the variation of this action with respect to φ and φ∗ is
zero

δA = 0 (2.18)

gives the equation of motion (2.13). This fact means that TDHF is equivalent
to a time-dependent variational method with a restriction of the trial function
to a Slater determinant.

TDHF features and application examples

To summarize the features of TDHF, the first thing to note is that TDHF
uses an approximation that ignores the interactions that cannot be expressed
in terms of one-body densities, such as those appearing in the right-hand side
of Eq. (2.9). It also ignores effects such as direct nucleon collisions. However,
a part of the two-body density that can be expressed as the product of the
one-body density is incorporated. This can be seen as a partial incorporation
of the effect of nucleon collisions due to those with the one-body potential
and the correlation between nucleons through the one-body potential. In
addition, Eq. (2.13) shows that the two potentials in the equation of motion
of the nucleon in the TDHF are both functionals of the one-body density
of the nucleus, which means that the nucleus is trapped in the one-body
potential created by itself in the TDHF. This feature of TDHF, in which the
wave function evolves in time while being trapped in this self-consistent one-
body potential, causes the wave function to be always localized, leading to
underestimation of quantum fluctuations and a failure to describe quantum
tunneling phenomena because the wave function never splits into two wave
packets.

We will now discuss some of the successes and failures of TDHF. First,
a successful example is shown in Fig. 2.1. Fig. 2.1 shows the results of the
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TDHF calculation for the 64Ni+238U reaction. The energy of the collision in
the center-of-mass system is 307 MeV.

Panel (A) shows the production cross sections for various proton transfer
channels (the number of transferred protons is shown in ±xp). Plus (minus)
represents the transfer from 238U to 64Ni (and vice versa)) as a function of the
mass number of the reaction product. The red dots are experimental data,
histogram is the cross section of the primary product by TDHF and the blue
histogram is the cross section of the secondary product by TDHF+GEMINI
where GEMINI is a program that calculates particle evaporation by means
of a statistical model. Also cross sections by the semiclassical model GRAZ-
ING6 are also shown for comparison. Neutron evaporation effects are also
shown in green shaded histograms. It can be seen from this panel (A) that
in many cases, THDF gives results closer to experimental results than the
semi-classical method; the TDHF calculation combined with the GEMINI
method for calculating nuclear de-excitation also gives results closer to ex-
perimental results. Panel (B) shows the time evolution of the density in the
reaction plane. In peripheral collisions (impact parameter b = 5.5 fm), the
multi-nucleon transfer process shown in (A) takes place. The elapsed time
of the simulation is zeptoseconds (1zs = 10-21 s). TDHF calculates the time
evolution of the nucleus and allows us to see the state of the nucleus at each
time, as shown in this panel (B). Panel (C) shows the relationship between
the total kinetic energy (TKE) and the outgoing fragment mass number A.
The left panel (a) shows the TDHF calculation and the right panel (b) shows
the experimental results. This comparison shows that the TDHF calculation
is able to describe the average behavior of the experimental results, but at
the same time it is not able to describe the quantum fluctuations. Panel (D)
shows the same as panel (B), but with a smaller impact parameter (b = 2
fm), where the quasi-fission process shown in (C) occurs, where two nuclei
are united by a collision and then split again. In the panel, x-, y-, and z-
indicate the orientation of the deformed 238U.
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Figure 2.1: Results of TDHF calculations for the 64Ni+238U reaction at
Ec.m. ' 307 MeV (A) Production cross sections for various proton trans-
fer channels [indicated by (±xp), where plus (minus) sign corresponds to
transfer from 238U to 64Ni (vise versa)] as a function of the mass number
of the reaction products. Red points are the experimental data [102], red-
filled histograms are cross sections for primary products by TDHF [23], and
blue histograms are cross sections for secondary products by TDHF+GEM-
INI [24]. For comparison, cross sections by a semi-classical model, GRAZ-
ING6 , including neutron evaporation effects, are also shown by green shaded
histograms. (B) This picture exhibits the time evolution of the density in the
reaction plane in a peripheral collision (b = 5.5 fm), where MNT processes
shown in (A) take place. Elapsed time in the simulation is indicated in zep-
toseconds (1 zs = 10−21 s). (C) Correlation between the total kinetic energy
(TKE) and the mass number A of the outgoing fragments. The left figure (a)
shows results of TDHF calculations [23], while the right figure (b) shows the
experimental data [25]. (D) Same as (B), but for a smaller impact parameter
(b = 2 fm), where quasi-fission processes shown in (C) take place. In the
figure, x-, y-, and z-direction indicate the orientation of deformed 238U [23].
In this way, TDHF can describe both peripheral and damped collisions in a
unified way. This figure was taken from [101].

Next, we present a comparison between the experimentally observed and
TDHF calculated fusion cross sections. Fig. 2.2 shows the fusion cross sec-
tions for 16O+208Pb as a function of collision energy in the center-of-mass
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Figure 2.2: Collision energy dependence of fusion cross sections in 16O+208Pb
collisions. The blue dots represent experimental results referenced from [26],
and the red curve represents the results of TDHF calculations. The two
red curves represent the lower and upper limits of the theoretical results,
respectively. This figure was taken from [37]

system, where the blue points show the experimental results and the red
curve shows the TDHF results. The blue points show the experimental re-
sults, and the red curve shows the TDHF results. The comparison of the blue
points to the red curves shows that the trend of the experimental results is
reproduced, although not exactly, at high energies, while at low energies,
the fusion cross section calculated by TDHF is drops to zero below a certain
energy. In fact, the energy at which the fusion cross section becomes zero
in TDHF coincides with the height of the Coulomb barrier. Since fusion
at energies below the Coulomb barrier is always accompanied by quantum
tunneling, TDHF yields zero fusion cross section in that region as quantum
tunneling cannot be described in TDHF. For this reason, TDHF is mainly
used only for reactions above the barrier, and the microscopic description of
nuclear reactions in the low energy region has remained a theoretical chal-
lenge.

18



2.2 Beyond Mean-Field theories
Several methods have been developed to go beyond TDHF and resolve the
drawbacks of TDHF: underestimation of quantum fluctuations and a failure
to describe quantum tunneling phenomena. Here we discuss two examples.
In the course of presenting those examples, we will explain how previous
methods have solved the drawbacks of TDHF and what has still been un-
solved.

2.2.1 Time-Dependent Hill-Wheeler theory
We first discuss the Time-Dependent Hill-Wheeler (TDHW) theory. This
theory can describe collective tunneling and is applied to spontaneous fission
[19, 20, 70]. One of the concepts of this method is to recover the quantum
fluctuations lost in the Hartree-Fock method by superposing static Slater
determinants, as shown in the following equation.

|Ψ(t)〉 =
∫
dqf(q, t) |Φ(q)〉 (2.19)

Here |Φ(q)〉 means a Slater determinant state, and q is called the generator
coordinate, which is often chosen to be a collective degree of freedom such as
the deformation or the center-of-mass motion of the nucleus. This method
also describes the dynamics of the wave function by making the weight func-
tion of the superposition dependent on time.

For example, if q is the deformation of a nucleus, then Eq. (2.19) is a
superposition of Slater determinants that represent the nucleus deformed in
different ways. A schematic picture of how TDHW describes the dynamics
of a nucleus is shown in Fig. 2.3. As shown in Fig. 2.3, in TDHW, the Slater
determinant Φ with different q serves as a basis in q-coordinates, and the
weights on a Slater determinant can be viewed as wave functions moving in
the q-coordinate space. Strictly speaking, rather than the weight f itself the
collective wave function g,

g = N
1
2f, (2.20)

has to be viewed as a wave function moving in q-coordinate space. Here,
N = 〈Φ(q)|Φ(q′)〉 is called norm kernel.

Advantages of TDHW

The reason why this method can recover quantum fluctuations in q-coordinate
lost in TDHF and describe quantum tunneling phenomena is as follows. The
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Slater determinants on the q-coordinate axis of Fig. 2.3 are each calculated
with a static HF, and they are trapped and localized to a self-consistent one-
body potential as mentioned in the previous section. However, there is no
reason for the weights g on multiple Slater determinants to be localized as in
HF, and they are transferred between Slater determinants according to the
time-dependent variational principle. In this way, g, which can be regarded
as a wave function, is spread wider than the one-body potential of HF, and
the quantum fluctuation in q-coordinate is recovered. It is also possible to
describe quantum tunneling phenomena in q-coordinate in the same way.
Because the TDHF was trapped in a one-body potential, the wave function
could not be split and the probabilistic tunneling probability could not be
described. In TDHW, on the other hand, the weight g is partially transferred
to the Slater determinant prepared behind the barrier (Case (c) in Fig. 2.3),
which allows us to describe the probabilistic tunneling probability and thus
the quantum tunneling phenomenon.

Drawbacks of TDHW

As described above, TDHW can describe quantum fluctuation and quantum
tunneling in q-coordinate space, which is the collective coordinate selected
as the generator coordinate. On the other hand, similar to macroscopic
approaches, it has a drawback to arbitrarily choose the collective coordi-
nate. In other words, in TDHW, one has to choose a collective coordinate
to recover quantum fluctuations according to the system of interest, and the
choice is not always obvious. In addition, since Slater determinants pre-
pared in TDHW are usually the ground state prepared in static HF, the
effect of internal excitations in the degrees of freedom other than the chosen
q-coordinate is ignored in that case. Although it is possible in principle to in-
clude Slater determinants with particle-hole excitations as the basis states in
TDHW method [71], it is still difficult to determine a priori the appropriate
bases for a collision process where non-trivial and complicated excitations
may take place. because it is not obvious what kind of excited states should
be prepared and also the computational cost increases with the number of
prepared states.

2.2.2 Simplified Time-Dependent Generator Coordinate
Method

Next, we discuss the simplified Time-Dependent Generator Coordinate Method
(simplified TDGCM) introduced by P.-G. Reinhard, R. Y. Cusson, and K.
Goeke in 1983 [21]. In this method, time-dependent Slater determinants,
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Figure 2.3: Schematic picture of the wave function in TDHW. Time is pro-
gressing in the order of (a), (b), and (c). From left to right, the wave function
collides with the barrier and probabilistically penetrates the barrier. The
short vertical lines placed at the q-coordinates refer to the initially prepared
Slater determinant with different q. What we call the wave function here
is the weight g defined in Eq. (2.20), which can be understood as the wave
function in the space (q-coordinate space) created by the prepared Slater
determinant.

evolved independently in time with several initial conditions, are superposed
as a trial function of the time-dependent variational method. Since such
Slater determinants are nothing more than TDHF states, the wave function
is given by

|Ψ(t)〉 =
∑
q

fq(t) |Φq
TDHF(t)〉 , (2.21)

A schematic representation of this method is shown in Fig. 2.4. Basically,
the dynamics of a nucleus is expressed by moving the time-varying weight f
between the prepared Slater determinants as in TDHW. In this way, quantum
fluctuations can be recovered for the same reason as in TDHW. The difference
from TDHW is that the Slater determinants evolve in time.
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Figure 2.4: Schematic picture of the wave function in simplified TDGCM.
Each of the initially prepared Slater determinants evolve in time with TDHF,
and the weights on each also evolve in time. If all the Slater determinants
have energies less than the barrier, as in the setup of this figure, the Slater
determinants will not transmit through the barrier and there will be no com-
ponent of the wave function to tunnel through.

Advantages of simplified TDGCM

An advantage of using the time-evolving Slater determinants is that the effect
of internal excitations of nuclei, which is ignored in TDHW, can be incor-
porated in simplified TDGCM. In other words, this method can recover the
quantum fluctuation while incorporating the effect of internal excitations. It
is true that the simplified TDGCM also has an arbitrariness in how the initial
state of the Slater determinant is chosen, but those Slater determinants are
time-evolved by TDHF and have a distribution of q(t) different from that of q
in the initial state. Furthermore, the collective coordinate that is not chosen
as the generator coordinate also changes according to TDHF. As a result,
it is not necessary to prepare all the collective coordinates of interest as in
TDHW, but the degrees of freedom necessary to describe the phenomenon
are automatically incorporated by the TDHF Slater determinants.
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Drawbacks of simplified TDGCM

On the other hand, quantum tunneling cannot be easily described by this
method. The reason for this is that Slater determinants for the energies
below the barrier cannot be placed beyond the barrier using the usual sim-
plified TDGCM calculation method. In TDHW, static Slater determinants
are placed before, after, and inside the barriers to enable the weight trans-
fer between them and to describe the tunneling effect. On the other hand,
the basic policy of the simplified TDGCM is to prepare Slater determinants
only in front of the barrier as shown in Fig. 2.4, and to move each Slater
determinant along with the progress of the nucleus. However, since each
Slater determinant is evolving in time by TDHF, those with energies lower
than the barrier will never cross the barrier, and as a result, there can be no
Slater determinant with energies lower than the barrier on the other side of
the barrier. As an extreme example, if one prepare only Slater determinants
with energies lower than the barrier as the initial state, no small component
of the wave function will ever cross the barrier.

Another drawback to mention is that the time-evolved Slater determinant
in TDHF is not necessarily the best way to represent the system. When con-
sidering the superposition of Slater determinants, there should be an optimal
cooperative behavior of the individual Slater determinants. However, in the
simplified TDGCM, each Slater determinant evolves in time by TDHF inde-
pendently, so such cooperation is not possible.

2.2.3 Remaining problems
In this section, we have introduced two methods that partially solve the
drawbacks of TDHF. TDHW enables a description of quantum fluctuations
and quantum tunneling, but this method has the disadvantage of arbitrar-
ily restricting the collective degrees of freedom and consequently neglects
the various internal excitations of nuclei. On the other hand, the simplified
TDGCM can recover the quantum fluctuation while incorporating the effect
of internal excitations of nuclei, but it is hard to describe the quantum tun-
neling phenomenon with this method. Other methods beyond TDHF have
been devised, but no theory has yet been developed that can describe the
tunneling effect while automatically incorporating the effect of internal exci-
tations through microscopic calculations. Such a theory is essential for fusion
reactions at energies below the Coulomb barrier, because various internal ex-
citations play an important role in the fusion reaction, and fusion below
the Coulomb barrier occurs only with quantum tunneling. In the following
chapters, we will present a method that can resolve this problem.

23



Chapter 3

Time-Dependent Generator
Coordinate Method

As explained in the previous chapter, the mean-field approximation consider-
ably underestimates the quantum fluctuation and fails to describe quantum
tunneling. In order to overcome such drawbacks, several beyond-mean-field
method have been considered, for example the time-dependent Hill-Wheeler
equation for fission dynamics with tunneling and the stochastic mean-field
theory for restoring the quantum fluctuation as mentioned in Sec. 2.2. How-
ever, there is still no microscopic theory for low-energy fusion reactions
which is required to include the nonadiabatic internal excitation and de-
scribe the quantum tunneling effect. That is why we aim to develop the
Time-Dependent Generator Coordinate Method (TDGCM) [22], which have
such ability to describe low-energy fusion reactions. Since TDGCM is based
on the time-dependent variational principle, we start with its explanation.

3.1 Time-Dependent Variational Principle (TDVP)
The time-dependent variational principle is one of the approximate ways to
solve the Schrödinger equation. Here, we introduce the general concept of the
time-dependent variational principle [83]. In quantum mechanics, the time
evolution of a state is given by the time-dependent Schrödinger equation

ih̄
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 , (3.1)
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where Ĥ is the Hamiltonian and |Ψ(t)〉 is the state. This equation can be
derived from the variation of the action [84–89]

A′ =

∫ t2

t1

dtL′(Ψ(t)∗,Ψ(t), Ψ̇(t)), (3.2)

where the Lagrangian L′ is written as

L′(Ψ(t)∗,Ψ(t), Ψ̇(t)) =

〈
Ψ(t)

∣∣∣∣ ih̄ ∂∂t − Ĥ

∣∣∣∣Ψ(t)

〉
. (3.3)

The Ψ and Ψ∗ may be regarded as independent variables. By using Eq. (3.3),
under the condition that the action takes an local minimum, the variation of
the action with respect to Ψ∗ is written as

δA′ =

∫ t2

t1

dt

〈
δΨ(t)

∣∣∣∣ ih̄ ∂∂t − Ĥ

∣∣∣∣Ψ(t)

〉
. (3.4)

where the variation at the end points are fixed δΨ(t1) = δΨ(t1)
∗ = δΨ(t2) =

δΨ(t2)
∗ = 0. If |Ψ〉 is not restricted in Hilbert space, the variation 〈δΨ(t)|

can be taken arbitrarily. Therefore, we obtain(
ih̄
∂

∂t
− Ĥ

)
|Ψ(t)〉 = 0, (3.5)

which is nothing but the Schrödinger equation Eq. (3.1). For this property,
it is expected that a reasonable restriction in Ψ will lead to a good approxi-
mation of the full problem.

3.1.1 For restricted state
Let us consider a state |Q′(t)〉 which is parametrized by a set of complex
variables Q′(t) = {q0(t), q1(t), q2(t), ...}. We assume that the q0 is overall
factor in the sense

|Q′(t)〉 = q0(t) |Q(t)〉 = q0(t) |q1(t), q2(t), ...〉 , (3.6)

and |Q(t)〉 depends on time implicit only through the variables q(t). It is
also assumed that |Q〉 is given as a function of q only and does not explicitly
depend on q∗.

Variation of the action (3.2) with the Lagrangian (3.3) with respect to
Q′∗(t) leads to

δA′ =

∫ t2

t1

dt
∑
ν

δq∗ν(t)

(
∂

∂q∗ν
〈Q′(t)|

)(
ih̄
∂

∂t
− Ĥ

)
|Q′(t)〉 = 0. (3.7)
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Since δq∗ν(t) can be chosen arbitrarily, the following equation are fulfilled for
extremal action: (

∂

∂q∗ν
〈Q′(t)|

)(
ih̄
∂

∂t
− Ĥ

)
|Q′(t)〉 = 0. (3.8)

Eq. (3.8) can be rewritten as

ih̄
∑
ν

C ′
µν q̇ν =

∂

∂q∗µ
〈Q′(t)|Ĥ|Q′(t)〉 , (3.9)

where

C ′
µν =

∂2

∂q∗µ∂qν
〈Q′(t)|Q′(t)〉 . (3.10)

In the case of the restricted variation, the equations of motion for the vari-
ational parameters are derived from variation. Eqs. (3.9) and (3.10) define
the time evolution of the state |Q′(t)〉.

For the sake of simplicity, we express the overall factor q0 in terms of the
other variables. To this end, we rewrite the Euler-Lagrange equations

d

dt

∂L′

∂q̇∗ν
− ∂L′

∂q∗ν
= 0

=

(
d

dt

∂L
∂q̇∗ν

− ∂L
∂q∗ν

)
q0q

∗
0 〈Q|Q〉

+
d

dt
(|q0|2 〈Q|Q〉)

∂L
∂q̇∗ν

+ |q0|2(iq̇ + L)∂ 〈Q|Q〉
∂q∗ν

, (3.11)

where a new Lagrangian L is defined by

L(Q∗, Q, Q̇∗, Q̇) =
i

2

(
〈Q|Q̇〉 − 〈Q̇|Q〉

〈Q|Q〉

)
− 〈Q|H|Q〉

〈Q|Q〉
(3.12)

≡ L0(Q
∗, Q, Q̇∗, Q̇)−H(Q∗, Q). (3.13)

By using two conditions from normalization of state |Q′〉 and Eq. (3.8){
|q0|2 = 1

〈Q|Q〉

q̇0 = iL,
(3.14)

the last two terms in Eq. (3.11) vanish. Then we obtain the Euler-Lagrange
equation for a new Lagrangian L

d

dt

∂L
∂q̇∗ν

− ∂L
∂q∗ν

= 0, (3.15)
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where the overall term q0 no longer exists. The Euler-Lagrange equation can
be transformed to obtain the Hamilton’s equation:

ih̄
∑
ν

Cµν q̇ν =
∂H
∂q∗µ

, (3.16)

where the Hermitian matrix C is given by

Cµν =

∂
∂q∗µ

∂
∂qν

〈Q|Q〉
〈Q|Q〉

−
∂

∂q∗µ
〈Q|Q〉

〈Q|Q〉

∂
∂qν

〈Q|Q〉
〈Q|Q〉

(3.17)

=
∂

∂q∗µ

∂

∂qν
ln 〈Q|Q〉 . (3.18)

We will next explain TDGCM using TDVP.

3.2 Overview of Time-Dependent Generator
Coordinate Method (TDGCM)

The TDGCM is based on the time-dependent variational method with the
trial wave function

|Ψ(t)〉 =
∫
dafa(t) |Φa(t)〉 , (3.19)

where |Φa(t)〉 is a Slater determinant and fa(t) is a weight function. Note
that the Slater determinants are non-orthogonal to each other. The index
a is called a generator coordinate, and usually the collective coordinates
are used for this. The feature of this method is a superposition of time-
dependent Slater determinants |Φa(t)〉. The superposed Slater determinant
mimic the time-evolution of the quantum mechanical wave function in the
selected collective coordinate. In the demonstration of TDGCM in Chap. 4,
We have chosen the center-of-mass position and center-of-mass momentum
as the generator coordinates, and then the TDGCM wave functions mimic
the quantum mechanical wave function of the center-of-mass position and
momentum plane.

3.2.1 Comparison with existing theories
In this section, we will compare TDGCM with the two methods listed in
Sec. 2.2. The difference between TDHW and TDGCM is whether or not
internal excitations are taken into account. In TDHW, the Slater determi-
nants used for superposition are static, as shown in the equation, and they
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are usually in the ground state. Because of this superposition of static Slater
determinants, TDHW usually ignores internal excitations and is not suitable
for fusion where internal excitations play an important role. There is also
an attempt to incorporate the effects of excited states in TDHW [71], but
this method also requires pre-selection of the excited states to be included,
and is difficult to use in a fusion where it is not obvious what excitations will
be important. On the other hand, the trial function used in TDGCM is a
superposition of time-dependent Slater determinants, and hence can consider
internal excitations as well as TDHF.

Next, we compare our TDGCM with simplified TDGCM. The difference
between TDGCM and simplified TDGCM is the ability to describe the tun-
neling effect. Simplified TDGCM was introduced to recover quantum fluc-
tuations in the dynamics of nuclei, and has never been applied to describe
the tunneling effect. However, the trial function used in simplified TDGCM
uses time-dependent Slater determinants calculated with independent TD-
HFs, which do not overcome the barrier if they originally have an energy
smaller than the barrier. Considering an extreme case, if the initially pre-
pared wave packet does not contain any component with energy exceeding
the barrier, i.e., no Slater determinant with energy greater than the bar-
rier, the barrier transmission probability will be zero in simplified TDGCM.
However, in quantum mechanics, even if the initial wave function does not
contain a component with energy larger than the barrier, the tunneling effect
can still result in a finite barrier transmission probability. In contrast, in our
TDGCM, the superimposed Slater determinants evolve in time in relation to
each other, and a finite barrier transmission probability is obtained even in
the extreme case described above. Specifically, the superimposed Slater de-
terminants exchange energy with each other through overlap between them,
and some Slater determinants are able to cross the barrier even if initial
energy is lower than the barrier.

3.3 TDGCM with Gaussian single-particle wave
functions

TDGCM has not only the advantages but also a disadvantage, that is a huge
calculation cost. Naively there are many degrees of freedom, multi Slater
determinants and their weights. Note that only a single Slater determinant
is used in TDHF. In order to reduce the calculation cost, we introduce in
this thesis the Gaussian form of single-particle wave functions based on the
idea of Antisymmetrized Molecular Dynamics (AMD) [74, 75]. First of all,
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we will give a brief explanation of AMD.

3.3.1 Antisymmetrized Molecular Dynamics
AMD is an approximation method that restricts the single-particle wave
function of the Slater determinant used in TDHF to the form of a Gaussian
function. In other words, it is an additional approximation to TDHF. In
many papers, the collision term, which represents direct nucleon collisions,
is introduced in AMD, but we will not use it in this thesis. In AMD, we use
a single-particle wave function of the following form

φi(~x) = e
−ν
(
~x− zi√

ν

)2
χσi

χτi , (3.20)

where the subscript i is the index of the single-particle state, and χσi
and χτi

are the spin and isospin wave function respectively. Here, ν is the Gaussian
width and zi is the Gaussian center. While ν is usually real, zi is complex,
and the real and imaginary parts of z are related to the expectation value of
potision x̄ and momentum k̄ of the single-particle wave function as follows,

x̄ =
Re(z)√

ν
(3.21)

k̄ = 2
√
νIm(z). (3.22)

Another way to describe it is as follows

z(t) =
√
νx̄− i

k̄

2
√
ν
. (3.23)

In other words, the dynamics of the single-particle wave function is deter-
mined by z. Using this single-particle wave function, the Slater determinant
becomes

Φ(~x1, ~x2, ..., t) = A(φi(~x1, t)φj(~x2, t) · · ·φn(~xA, t)χσi
χτiχσj

χτj · · ·χσnχτn)

(3.24)

= A

(
e
−ν
(
~x1−

zi(t)√
ν

)2
e
−ν

(
~x2−

zj(t)√
ν

)2

· · · e−ν
(
~xA− zn(t)√

ν

)2
χσi

χτiχσj
χτj · · ·χσnχτn

)
,

(3.25)

where A is antisymmetrizer. By using this wave function as a trial func-
tion and applying the time-dependent variational principle, the equation of
motion for the single-particle wave function in AMD can be obtained.
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One thing that is characteristic of the AMD wave function is that the
wave function can be analytically divided into a center-of-mass part and an
intrinsic part,

Φ = A
(
e
−ν(r1−

zi√
ν
)2 · · ·χσi

χτi

)
= e−Aν(RG−zG/

√
ν)2A

(
e
−ν(r1−RG− zi−zG√

ν
)2 · · ·χσi

χτi

)
(3.26)

= ΦG × Φint, (3.27)

where RG =
∑

i xi

A
and zG =

∑
i zi
A

. Here, ΦG and Φint are the conter-of-mass
and intrinsic part of the wave function, respectively. Note that, as can be
seen from the Eq. (3.26), the center-of-mass wave function in AMD has the
form of a Gaussian function, and the width is determined by the Gaussian
width of the single-particle wave function, ν.

3.3.2 TDGCM with AMD single-particle wave func-
tions

Bringing the Gaussian single-particle wave functions introduced in the previ-
ous subsection into TDGCM, we obtain the following TDGCM wave function
Ψ the spatial part of the trial wave function Ψ(~x, t) is

Ψ(~x1, ~x2, ..., t) =
∑
a

fa(t)Φa(~x1, ~x2, ..., t) (3.28)

=
∑
a

fa(t)A(φia(~x1, t)φja(~x2, t) · · ·φna(~xA, t)) (3.29)

=
∑
a

fa(t)A

(
e
−ν
(
~x1−

zia(t)√
ν

)2
e
−ν

(
~x2−

zja(t)
√
ν

)2

· · · e−ν
(
~xA− zna(t)√

ν

)2)
.

(3.30)

where A is the antisymmetrizer, and φia is single-particle wave function.
In addition, in this thesis, we assume that the Gaussian width of each

single-particle wave function is common and fixed. Under this assumption,
by using Gaussian single-particle wave function, the number of degrees of
freedom of the trial function becomes

Na +Na × A×D, (3.31)

where Na is the number of superposed Slater determinants: the Na in the first
term means the number of weight functions, and the Na in the second term
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means the number of Slater determinants. A is the number of nucleons and
D is the number of dimensions we are considering. If we use an unrestricted
single-particle wave function and solve in a grid-delimited space, the number
of degrees of freedom in the trial function is

Na +Na × A×ND
grid, (3.32)

where Ngrid is the number of grid points on a single coordinate axis. In fusion
calculations, Ngrid is usually in the order of a hundred to a thousand, and
the Gaussian single-particle wave function can reduce the number of degrees
of freedom remarkably, especially in 3D calculations.

3.3.3 Interpretation of TDGCM wave function
Since TDGCM is a method based on the time-dependent variational prin-
ciple, its solution is expected to mimic the solution of the time-dependent
Schrodinger equation. Therefore, in order to understand how the wave func-
tion of TDGCM evolves in time, we compare it with the time evolution of
the wave function in quantum mechanics and AMD. To simplify the discus-
sion, we will consider only the center-of-mass wave function and ignore the
internal excitations. It should be noted that the wave function treated in
TDGCM and TDHF is a wave packet, and unlike a plane wave, it contains
several different momentum components. In the following, we consider a
wave packet centered at a positive x as the initial state in one-dimensional
space, and consider the time evolution when the entire wavepacket is boosted
in the −x direction, that is, eikx is multiplied by the wavepacket with a neg-
ative momentum k. In this case, there is no external barrier and the wave
packet is in free motion. Starting from the above initial conditions, the time
evolution is illustrated in phase space in Fig. 3.1, Fig. 3.2, and Fig. 3.3, for
quantum mechanics, AMD, and TDGCM, respectively. The left side of each
figure shows the initial state, and the right side shows the state after a cer-
tain time. The solid circle represents the contour line of the Wigner function
defined as

P (x, k) =
1

πh̄

∫ ∞

−∞
ψ∗(x+ y)ψ(x− y)e2ipy/h̄dy. (3.33)

The Wigner function is like a probability density distribution on phase space.
The center-of-mass position of the Slater determinant in phase space is indi-
cated by a cross mark in TDGCM and AMD. Multiple cross marks exist in
TDGCM because multiple Slater determinants are used.

First, let us look at the time evolution of quantum mechanics shown
in Fig. 3.1. A characteristic feature of the free motion of wave packets in
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quantum mechanics is that they expand spatially with time. This is due to
the fact that the wave packet contains components with different momenta,
and it can be understood that the component of the wave packet with higher
momenta precedes further than the component with lower momenta. Note
here that the wave packet does not spread in momentum space. On the
other hand, in the time evolution of the wave packet in AMD, the wave
packet spreads in neither coordinate space nor momentum space, due to the
condition we applied to fix the Gaussian width of the single-particle wave
function. In contrast, in TDGCM, the trial function is a superposition of
Slater determinants. By using such trial functions, the spread of the wave
packet is restored. Although each superimposed Slater determinant is a
wavepacket with no broadening, as in the AMD case, the broadening of
the TDGCM wavefunction as a whole is expressed by changing the distance
between the Slater determinants.

Next, let us look at how the wave packet transmits over the barrier. In
Fig. 3.1, Fig. 3.2, and Fig. 3.3, there is a dotted line at the momentum corre-
sponding to the height of the barrier. This means that the component of the
wave packet below the dotted line already has a larger energy than the barrier
in the initial state. First of all, in the case of quantum mechanics shown in
Fig. 3.1, the component of wave packet that already has energy above the bar-
rier in its initial state will classically pass through the barrier. In addition,
even components with energy lower than the barrier will probabilistically
pass through the barrier, which is called the quantum tunneling effect. In
this way, when a wave packet in quantum mechanics collides with a barrier,
it can be divided into two components: one that is transmitted through the
barrier and the other that is reflected by the barrier. It is important to note
that, since we are now considering the center-of-mass part of the many-body
wave function, the division of the wave packet does not mean that only some
particles will penetrate the barrier, but that all particles will probabilistically
be transmitted or reflected at the same time. In contrast, the wave packet
in AMD is classical in a sense. In other words, AMD allows only a discrete
transmission probability of 0 or 1, meaning that if the expected momentum
of the wave packet exceeds the barrier, the entire wave packet will be trans-
mitted through the barrier,and if not, the entire wave packet will be reflected
by the barrier. Because of this feature, AMD cannot express the quantum
tunneling effect, nor the continuous barrier transmission probability as a
function of energy. On the other hand, TDGCM can describe quantum tun-
neling phenomena and continuous tunneling probabilities by superposition
of time-dependent Slater determinants with time-dependent weights. First
of all, since the wave packet in the TDGCM is made of a superposition of
Slater determinants, it is possible for a component with an energy already
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Figure 3.1: The time evolution of the wave packet in quantum mechanics.
In the quantum mechanics, the initial wave packet change its shape because
the wave packet is superposition of several momentum eigenstates which
have different eigenvalue. The component which have larger absolute value
of momentum go ahead before the component which have smaller absolute
value of momentum. Consequently the spatial width of wave packet become
wider. In contrast, the width in momentum space does not change. In the
case that the potnetial barrier exists, the component in the region that the
energy E is larger than the barrier height Vb overcome the barrier and is
split from the rest wave packet which is reflected by the potential barrier.
Even if the energy of component is less than the barrier height, some part
of component penetrate the potential barrier due to the qunatum tunneling
effect.

greater than the barrier to partially penetrate in the initial condition, just
like the wave packet in quantum mechanics. In addition, the quantum tun-
neling effect is expressed when some of Slater determinants cross the barrier
by exchanging energy among the Slater determinants, even though the ini-
tial condition has less energy than the barrier. Furthermore, since the weight
function of the TDGCM is also determined by the time-dependent variational
principle, weights are assigned to the Slater determinant transmitted through
the barrier and the Slater determinant reflected by the barrier, mimicking
quantum mechanics, resulting in a continuous barrier transmission probabil-
ity as a function of energy, similar to that obtained in quantum mechanics.
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Figure 3.2: The time evolution of the wave packet in AMD. In the case that
the Gaussian width is fixed as in our calculation, the wave packet does not
change its shape. In contrast to the quantum mechanics, AMD wave packet
does not split to the component which overcome the barrier and the rest
which reflected by the barrier. The whole wave packet overcome the barreir
if the energy expectation of the AMD wave packet is larger than the barreir
and reflected by the barrier if not, that is, the transmission probability is
always 0 or 1 in AMD framework.

Figure 3.3: The time evolution of the wave packet in TDGCM. The wave
packet in TDGCM framework is represented by the multi Gaussian wave
packets and the weights for each Gaussian under the restrictions as in our
calculation. The time evolution of each Gaussian wave packet and their
weights are determined by the time-dependent variational principle in order
to mimic the time evolution of the wave packet in the quantum mechanics.
The split of the wave packet as in the quantum mechanics can be represented
by the multi Gaussian wave packets, that is, the multi Gaussian wave packets
split into ones which transmit the barrier and the rest which reflected by the
barrier.

34



Chapter 4

Application of time-dependent
generator coordinate method

In this chapter, we apply TDGCM to three simple systems with 4He particles.
First, we apply the TDGCM to a one-dimensional 4He+4He collision system
and qualitatively demonstrate that the TDGCM is a framework that can
describe quantum tunneling phenomena. At the same time, we discuss the
mechanism by which TDGCM can describe quantum tunneling phenomena.
However, there is a problem in examining in detail the barrier transimission
probability that can be calculated by TDGCM in this 4He+4He system, so we
next applied TDGCM to a system where 4He collides with an external barrier
in one dimension. The application to this system shows that the TDGCM
can calculate the smooth transmission probability as a function of collision
energy. Finally, we perform the TDGCM calculations in three dimensions,
which is necessary to apply the TDGCM to realistic calculations. We show
that the TDGCM can describe quantum tunneling in 4He+4He collisions in
three dimensions as well as in one dimension.

In the following calculations, we make an assumption that the Gaussian
center for all the nucleons in each 4He particles is identical for simplicity of
the calculations. This means that we take zp↑ = zp↓ = zn↑ = zn↓ ≡ z for
nucleons in each 4He, where the subscript p means proton, n means neutron,
and the up and down arrows mean spin up and down, respectively. This
means that there is no transfer of nucleons between nuclei.

35



4.1 Equations of motion for TDGCM with
Gaussian single-particle wave function

We will first explain the equation of motion of the wave function of the
TDGCM under the above assumption. Since the variational parameters
in the wave function Eq. (3.30) are fa and za, the variational equations
Eq. (3.16) are written as

ih̄
∑
ν

Cµν żν =
∂H
∂z∗µ

, (4.1)

ih̄
∑
ν

Cµν ḟν =
∂H
∂f ∗

µ

, (4.2)

which give the time evolution of the Gaussian center za and the weight fa.
Using the explicit form of the wave function Eq. (3.30), Cµν is written by za
and fa as following three combinations

Cµν →


Cfµfν =

∂f∗µ∂fν 〈Ψ|Ψ〉
〈Ψ|Ψ〉 −

∂f∗µ 〈Ψ|Ψ〉
〈Ψ|Ψ〉

∂fν 〈Ψ|Ψ〉
〈Ψ|Ψ〉

Cfµzνk
=

∂f∗µ∂zνk
〈Ψ|Ψ〉

〈Ψ|Ψ〉 −
∂f∗µ 〈Ψ|Ψ〉
〈Ψ|Ψ〉

∂zν
k
〈Ψ|Ψ〉

〈Ψ|Ψ〉

Czµi z
ν
j
=

∂
z
µ∗
i

∂zν
j
〈Ψ|Ψ〉

〈Ψ|Ψ〉 −
∂
z
µ∗
i

〈Ψ|Ψ〉

〈Ψ|Ψ〉

∂zν
j
〈Ψ|Ψ〉

〈Ψ|Ψ〉

, (4.3)

where the first derivatives are given by

∂fν 〈Ψ|Ψ〉 =
∑
a

f ∗
a 〈Φa|Φν〉 , (4.4)

∂zνk 〈Ψ|Ψ〉 =
∑
a

f ∗
afν 〈Φa|Φν〉

∑
j

(za∗j − zνk)B
aν
jk (B

aν)−1
kj , (4.5)

and the second derivatives are given by

∂f∗
µ
∂fν 〈Ψ|Ψ〉 = 〈Φµ|Φν〉 , (4.6)

∂f∗
µ
∂zνk 〈Ψ|Ψ〉 = f ∗

µfν 〈Φµ|Φν〉
∑
j

(zµ∗j − zνk)B
µν
jk (B

µν)−1
kj (4.7)

∂zµ∗i
∂zνj 〈Ψ|Ψ〉 = f ∗

µfν 〈Φµ|Φν〉×
((1− (zµ∗i − zνj )

2)Bµν
ij (B

µν)−1
ji

−
∑
kl

(zµ∗i − zνk)(z
µ∗
l − zνj )B

µν
ik (B

µν)−1
ki B

µν
lj (B

µν)−1
jl

+
∑
kl

(zµ∗k − zνj )(z
µ∗
i − zνl )B

µν
kj (B

µν)−1
ji B

µν
il (B

µν)−1
lk ). (4.8)
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Bab in the above equations are the overlap matrix between single-particle
wave functions in Φa and Φb,

Bab
ij =

(
Bab
)
ij
= 〈φa

i |φb
j〉

=

∫
dxe

−ν

(
x− za∗i√

ν

)2

e
−ν

(
x−

zbj√
ν

)2

= e−
(za∗i −zbj )

2

2 . (4.9)

The overlap between Slater determinants are written by B as

〈Φa|Φb〉 = detBab, (4.10)

and then the norm of the whole wave function |Ψ〉 is written as

〈Ψ|Ψ〉 =
∑
ab

f ∗
afb 〈Φa|Φb〉 =

∑
ab

f ∗
afb detB

ab. (4.11)

The explicit form of the derivative of the Hamiltonian ∂H
∂q∗µ

will be given in
the following sections.

4.2 Application to collision of 4He+4He
In this section, we will discuss whether the TDGCM can penetrate the
Coulomb barrier in the collision of two 4He particles.

4.2.1 Setup
For this purpose, we apply TDGCM to the 4He+4He collision in one dimen-
sion. In this calculation, we assume that the two 4He move symmetrically
with respect to x = 0. This assumption means that when one 4He particle
has a Gaussian center of z(t), the other 4He particle has a Gaussian cen-
ter of −z(t). With these approximations, each Slater determinant Φa(t) is
parametrized by the only one single variational parameter, za(t).

Initially, we construct each Slater determinant Φz(t = 0) which represent
the two 4He particles at x = ±xa0 , with the momentum of p = ∓pa0,
respectively. According to the Eq. (3.23), the initial value of the Gaussian
center za becomes

za(t = 0) = xa0
√
ν − i

pa0
2
√
νh̄
. (4.12)
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We employ the same one dimensional Hamiltonian as the one in [21] with
a soft-core Coulomb interaction [76–80] between two protons which is written
as

vC(x, x
′) =

e2√
α2 + (x− x′)2

. (4.13)

With this Hamiltonian, the matrix element of Hamiltonian is obtained as [81]

〈Φa|H|Φb〉 = 〈Φa|Φa〉
∫
dx

{
h̄

2m
τab(x) +

t3
3
ρ3ab(x)

+
t0
2
ρab(x)

∫
dx′ρab(x

′)
b√
π
e−

(x−x′)2

b2

+
e2

2
ρab(p)(x)

∫
dx′ρab(p)(x

′)
1√

a2 + (x− x′)2

}
, (4.14)

with transition kinetic energy density τ and transition density ρ,

τab(x) =
∑
i,j

(∂xφ
∗
ai) (∂xφbj)

(
B−1

ab

)
ji

(4.15)

ρab(x) =
∑
i,j

φ∗
aiφbj

(
B−1

ab

)
ji
, (4.16)

where the single-particle wave function, the matrix Bab and the overlap ma-
trix 〈Φa|Φb〉 are defined in Eq. (3.20),Eq. (4.9) and Eq. (4.10) respectively.
In the Eq. (4.14), the first term in the integral is the kinetic energy term,
the second term is the zero-range three-body repulsion term, the third term
is the folded gaussian attraction term, and the fourth term is the Coulomb
repulsion term.

We follow Refs. [21,82] and use the parameters of t0 = −12.5 MeV fm−1,
t3 = 8.8 MeV fm2, and interaction width b = 2.0 fm. For the Coulomb inter-
action, we set α = 1.0 fm arbitrarily. With the Gaussian type single-particle
wave function, each term of Hamiltonian can be written by Gaussian center
zai as

h̄2

2m

∫
dxτab(x) =

h̄

2m

∑
i,j

δσiσj
δτiτje

(z∗ai−zbj)
2

2

× ν(1− (z∗ai − zbj)
2)(B−1

ab )ji

=
h̄2

2m

∑
i,j

ν(1− (z∗ai − zbj)
2)(Bab)ij(B

−1
ab )ji, (4.17)
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t3
3

∫
dxρ3ab(x) =

t3

3
√
3

2ν

π

∑
ij

∑
kl

∑
mn

e−
1
3
(z2

(ij)
+z2

(kl)
+z2

(mn)
−z(ij)z(kl)−z(kl)z(mn)−z(mn)z(ij))

× (Bab)ij(B
−1
ab )ji(Bab)kl(B

−1
ab )lk(Bab)mn(B

−1
ab )nm,

(4.18)

t0
2

∫
dxρ(x)

∫
dx′ρ(x′)

b√
π
e−

(x−x′)2

b2 =

t0b

2
√
π

√
νb2

1 + νb2

∑
i,j

∑
i′,j′

Bij(B
−1)jiBi′j′(B

−1)j′i′e
−

(z(ij)−z(i′j′))
2

4(1+νb2) , (4.19)

where z(ij) ≡ zai − zbj. Only the Coulomb term cannot be integrated analyt-
ically, thus it is integrated numerically in this calculation. In order to derive
the time-dependent equation Eq. (4.1) for za(t) and Eq. (4.2) for fa(t), eval-
uation of the derivative of 〈Ψ|H|Ψ〉 / 〈Ψ|Ψ〉 with respect to z∗a(t) and f ∗

a (t)
are required. We carry them out numerically by finite differentiation

∂z∗a
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

(z∗a) '
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 (z∗a + δz∗a)−

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 (z∗a − δz∗a)

2δz∗a
, (4.20)

∂f∗
a

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

(f ∗
a ) '

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 (f ∗

a + δf ∗
a )−

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 (f ∗

a − δf ∗
a )

2δf ∗
a

. (4.21)

Note that the derivatives are independent from the directions of δz∗a and
δf ∗

a in the complex plane when the absolute values of δz∗a and δf ∗
a are small

enough.
In the calculations shown below, we set the Gaussian width of ν = 0.5

fm−2. This value is determined in order that the internucleus potential at
x = 0 evaluated in the frozen density approximation with a single Slater
determinant [48] should becomes higher than the height of the Coulomb
barrier. With the employed parameter, the barrier in the frozen density
approximation is located at a relative distance R=7.68 fm with the height of
0.13 MeV as shown in Fig. 4.1.

The frozen density approximation is a method of approximating the po-
tential surface by calculating the energy of two ground-state nuclei at differ-
ent relative distances R. In this approximation, the two nuclei are assumed
to be stationary and internal excitations are not taken into account. In this
case, the energy of the nuclei placed at a distance R between the nuclei is
E(R), which is calculated by the following equation.

E(R) = 2V0 − VC(R0) (4.22)
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Figure 4.1: Internulear potential obtained by frozen density approximation.
The Coulomb barrier with a height of 0.13 MeV is located at a relative
distance R =7.68 fm.

where V0 is the energy of a single isolated nucleus. Vc(R0) is the Coulomb
potential at the distance R0 between nuclei in the initial configuration used
in the following calculation, and by subtracting this, the actual height of the
Coulomb barrier felt by the nucleus can be estimated.

If the Coulomb barrier is larger than the internuclear potential, the wave
packet crossing the Coulomb barrier is likely to fly to the other side, also
crossing the internuclear potential. The reason for this is that the collision
energy is not sufficiently converted to the energy of internal excitation un-
der the assumption of identical Gaussian centers of 4He single-particle wave
function given here, and as a result, the relative motion between nuclei is
not trapped. If there is a Slater determinant in which the relative motion
between the nuclei is not trapped and the nuclei exit to the other side, there
will be an overlap between a Slater determinant and a Slater determinant
reflected by the Coulomb barrier, which will cause a problem when defining
the transmission probability of the Coulomb barrier.

4.2.2 Trajectories
We first discuss the result of a superposition of two Slater determinants. One
set of the Slater determinants has the initial positions of the α particles x0 =
±15.0 fm with the initial relative momentum of p0 = ∓

√
2µE with E = 0.113

MeV, where µ is the reduced mass evaluated with the static calculation for a
single α particle, while the other set of Slater determinant have x0 = ±15.1 fm
and p0 = ∓

√
2µE with E = 0.100 MeV. Fig. 4.2 shows the position of each

Gaussian wave packet, x(t) = Re[z(t)]/ν, where Re[z] means the real part of z
only the components with x > 0 are shown. In the case of Fig. 4.2, the Slater
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Figure 4.2: The trajectories of the right α particle in α+α scattering in one
dimensional space. The trajectories are obtrained with the antisymmetrized
molecular dynamics with two different initial conditions. Since the two α
particle are assumed to move symmetrically wth respect to x = 0, only
the trajectories of the right α are shown. The solid line is obtained wiht
the initial condition of initial potitions x0 = 30.0/2 fm and initial energy
of relative motion E = 0.113 MeV, while the dashed line is obtained with
x0 = 30.1/2 fm and E = 0.100 MeV. The interaction include a Gaussian
+ density-dependent zero-range nuclear interaction and a soft-core Coulomb
interaction. The Coulomb barrier between the two α particles is located at
x = 3.84 fm with the height of 0.13 MeV

determinants are evolved independently to each other with the AMD. Both
of the trajectories are reflected at the barrier located at 3.84 fm because the
initial energy is below the barrier for both the Slater determinants. Fig. 4.3
shows the result of the TDGCM with two Slater determinants, for which the
initial conditions are taken to be the same as those in the independent TDHF
calculations in Fig. 4.2. In this calculation, we initially take equal weights
for the two Slater determinants, that is, f1 = f2. The average initial relative
energy, Erel ≡ 〈Ψ|H|Ψ〉 / 〈Ψ|Ψ〉 − 2Eg.s. , where Eg.s. is the ground state
energy of the � particle. In this calculation Erel = 0.099 MeV, which is still
below the Coulomb barrier. Nevertheless, it is clearly seen that one of the
trajectories overcomes the barrier and trapped in internuclear potential, while
the other trajectory is reflected at the barrier. This is in marked contrast
to the TDHF case shown in Fig.4.2, in which both of the trajectories are
reflected at the barrier. This result means that a finite tunneling probability
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Figure 4.3: Same as Fig. 4.2, but the trajectories in this figure are obtained
with the time-dependent generator coordinate method with the same initial
conditions as Fig. 4.2.

of the Coulomb barrier is realized in the TDGCM even though that is zero
in TDHF.

4.2.3 Tunneling probability
Figure 4.4 shows the time-evolution of the probabilities of each trajectory in
the wave function. Here, the probabilities are defined as,

Pi(t) =
|fi|2 〈Φi(t)|Φi(t)〉

〈Ψ|Ψ〉
. (4.23)

Notice that we plot only the long-time behavior, for which the overlap be-
tween the two Slater determinants is small, that is, 〈Φ1(t)|Φ2(t)〉 ∼ 0. The
fraction for the transmitted trajectory becomes from 0.5 at t = 0 to 0.489 at
t = ∞. This value might be identified with the tunneling probability.

How to describe quantum tunneling

The trajectories of the Slater determinants in the TDGCM shown in the
previous subsection showed that one of the Slater determinants transmitted
through the barrier, even though the initial energies of the two superposed
Slater determinants were both lower than the barrier. However, in fact, the
superposed Slater determinant, when viewed alone, still cannot proceed into
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Figure 4.4: The time-evolution of the fractions of each Slater determinant
shown in Fig. 4.2. The dashed and the doted lines show the reflected and
the transmitted Slater determinant respectively. The solid line show the
conservation of the total norm.

the classically forbidden region, i.e., the single Slater determinant does not
tunnel in the same way as in quantum mechanics. The reason why TDGCM
can describe the quantum tunneling effect is that the superposed Slater de-
terminants exchange energy with each other, and the Slater determinants
that cross the barrier borrow energy from the other Slater determinants, in
a sense crossing the barrier classically.

In practice, it is difficult to define strictly the energy of a given Slater
determinant in the superposition because of the overlap between Slater de-
terminants, but as a measure, the energy defined by

Ea(t) =
〈Φa(t)|H|Φa(t)〉
〈Φa(t)|Φa(t)〉

. (4.24)

is illustrated in Fig. 4.5, This is the energy of a single Slater determinant
when the overlap between Slater determinants is almost zero.

As compared to the energies for the independent Slater determinants
(see the thin dashed and dotted lines), the energy of one of the trajectories
(the trajectory 1; the thick dashed line) increases while that of the other
trajectory (the trajectory 2; the thick dotted line) decreases, even though
the total energy of the system,

Etot =

∑
ab f

∗
a (t)fb(t) 〈Φa(t)|H|Φb(t)〉∑

ab f
∗
a (t)fb(t) 〈Φa(t)|Φb(t)〉

, (4.25)
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Figure 4.5: The time-evolution of the energy of each Slater determinant in
the time-dependent generator coordinate method. The bold dashed and the
dotted lines show that in the time-dependent generate coordinate method,
and the thin dashed line(-30.95MeV) and the dotted line(-30.96MeV) show
that in the AMD. While the total energy is conserved as shown by the solid
line, the energy of each trajectory changes as a function of time in time-
dependent generator coordinate method.

remains a constant at any time (see the solid line). Notice that the trajectory
1 corresponds to the reflected fraction in Fig. 4.4, while the trajectory 2
corresponds to the transmitted fraction in Fig. 4.4. At the time when the
relative motion of the nucleus hits the Coulomb barrier (ct ≈ 3500 [fm]), the
diagonal enegies of the trajectories 1 and 2 appear to be increased, resulting
in trajectory 2 crossing the barrier.

4.3 Application to collision of 4He and the
Gaussian external barrier

In the system treated in Sec. 4.2, it was shown qualitatively that TDGCM
can describe the tunneling effect. However, in the collision of the two 4He
particles system, there were some problems to understand the TDGCM mech-
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Figure 4.6: The potential barrier obtained by the frozen density approxima-
tion.

anism in more details. In high-energy collisions, for example, the nuclei that
cross the Coulomb barrier slip through each other and fly to the other side.
In this case, the trajectories reflected by the Coulomb barrier and the tra-
jectories slipped through by the nuclei have an overlap, and this causes a
practical problem that the penetration probability of the Coulomb barrier
cannot be well defined. In addition, in the collision system, there are trajec-
tories trapped by the internuclear potential and the nuclei keep vibrating, so
the kinetic energy continues to change even in the final state, making it dif-
ficult to analyze the energy distribution in the final state. For these reasons,
in this section, the above problem is avoided by using a system in which a
4He particle collide with an external Gaussian barrier.

4.3.1 Setup
The interaction used in this section is as follows

V (x) =
∑
i

vi =
∑
i

v0e
−avx2

i , (4.26)

where barrier height v0 = 80 MeV and barrier width av = 1 [1/fm−2], that
is, each nucleon feels the same Gaussian potential. The potential barrier
obtained by the frozen density approximation is shown in Fig. 4.6. As can
be seen from this Fig. 4.6, the effective height of the potential barrier felt by
the wave packet is not the original v0, but a lower value of 37 MeV.

45



Here, the values of v0 and av are chosen so that the tunneling probabilities
with different collision energies can be calculated from 0 to 1 , which will be
shown later. However, the qualitative behavior of the calculated results does
not depend on the particular values of v0 and av.

The matrix elements of the interaction in Eq. (4.26) can be written using
the Gaussian center za as follows

〈Φa|V |Φb〉 = 〈Φa|Φb〉
∑
ij

〈viφa
i |φb

j〉 (B−1)ji

= 〈Φa|Φb〉
∑
ij

v0

√
2ν

av + 2ν
e

ν(z∗ai+zbj)
2

av+2ν
−(z∗2ai+z2bj)(B−1

ab )ji. (4.27)

This section also uses the approximation that the nucleon Gaussian centers
in 4He are identical, and we use the Gaussian width of ν = 0.142 fm−2 which
minimizes the energy of ground state of 4He with the Hamiltonian which
is used in Eq. (4.14). The derivatives of H with respect to za and fa in
the equations of motion Eqs. (4.1) and (4.2) are performed by numerical
differentiation as in the case of Sec. 4.2.

In the calculations that follow, the initial conditions are prepared accord-
ing to the following procedures.

• Construct TDGCM wave function around the origin,

|Ψ(x1, x2, ...; t = 0)′〉 =
∑
a

fa(t = 0) |Φa(x1, x2, ...; t = 0)〉 , (4.28)

where the generator coordinate a are the initial center-of-mass position
xa and initial center-of-mass momentum ka of the Slater determinant.
Given such xa and ka, the Gaussian center z′a of each Slater determinant
follows from the relation in Eq. (4.12)

z′a =
√
νxa +

ka
2
√
ν
. (4.29)

• Then translate the TDGCM wave function to the potision x = xCM0
and accelerate it towards the barrier with the momentum k = kCM0,

|Ψ(x1, x2, ...; t = 0)〉 = e−kCM0x |Ψ(x1 − xCM0, x2 − xCM0, ...; t = 0)′〉 ,
(4.30)

that is, this corresponds to a transformation of za as follows

za = z′a +
√
νxa +

ka
2A

√
ν
, (4.31)

for all a.
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Figure 4.7: The initial center-of-mass position and momentum of nine Slater
determinants. Each blue dots represent the each Slater determinants re-
spectively, and the number besides the blue dots show the initial weight
function for each Slater determinant. The Slater determinants are placed
symmetrically with respect to x = k = 0 in phase space, and initial weight is
distributed by Gaussian function f(0) = e(−k2/2σ2

k)e(−x2/2σ2
x) where σk = 0.1

fm−1 and σx = 0.1 fm

4.3.2 Trajectories
First, we discuss the trajectories obtained with nine Slater determinants. The
generation coordinates used in the calculation are shown by the blue dots in
Fig. 4.7. The initial values of the corresponding weights f are indicated by
the numbers beside the blue dots in Fig. 4.7. The initial values of center-of-
mass momentum and center-of-mass position given to the Slater determinant
were chosen arbitrarily under the condition that the Slater determinants
have sufficient overlap with each other in phase space. The weights f are

chosen according to a Gaussian distribution, represented by f = e
− x2

2σ2
x e

k2

2σ2
k .

It can be interpreted that the wave function of the many-body Gaussian
distribution is represented by sampling the Slater determinant at nine points.
The schematic picture is shown in Fig. 4.8. If the distribution of the
weights f does not change, the calculation result will not change no matter
what Slater determinant is prepared. After constructing the TDGCM wave
function |Ψ′〉 in Eq. 4.28 with the above initial paramters, the entire wave
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Figure 4.8: Schematic picture of choosing several Slater determinants. The
initial wave packet is determined by the distribution of the weight function
f , and the Slater determinants weighted by f represents the wave packet.

function is translated to the position x0 = 15 fm and boosted with the several
momenta to create the initial state of the calculation. The initial potision
x0 = 15 fm is chosen so that the wave function and the barrier loceted at
x = 0 have an overlap small enough to ignore in the initial state. The results
with k0 = 1.67fm−1 are representative of the results calculated with several
different initial momenta.

The resulting trajectories are shown in Fig. 4.9 and Fig. 4.10. Fig. 4.9
shows the time evolution of each of the prepared SDs independently in AMD.
x is the center of the Gaussian function representing the Slater determinant,
which is also the center of the 4He particle. All the trajectories are reflected
by the Gaussian barrier at x = 0 for the given initial momentum.

On the other hand, Fig. 4.10 shows the results of TDGCM calculation
using the prepared Slater determinants and the weights f as the initial con-
ditions. As in the case shown in Chap. 4.2, the results of the TDGCM
calculation differ from the independent AMD calculation (see Fig. 4.10) in
that three trasmitted Slater determinants can be seen. Here, we define the
trajectories that cross the barrier and go to the x<0 region as the transmitted
trajectories. This difference, as in Chap. 4.2, is an evidence for that TDGCM
describes a tunneling effect that was not possible with TDHF or AMD.

The energy E written at the top of Fig. 4.10 is defined as the center-of-
mass kinetic energy after boosting the entire wave function minus that before
boosting.

〈Ψ|TCM|Ψ〉
〈Ψ|Ψ〉

− 〈Ψ′|TCM|Ψ′〉
〈Ψ′|Ψ′〉

, (4.32)

where |Ψ〉 and |Ψ′〉 are defined in Eqs. (4.28) and (4.30) respectively.
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Figure 4.9: The trajectories of α particle in α scattering by external barrier in
one dimension obtained with the AMD with nine different initial conditions
shown in Fig. 4.7. The all Slater determinants are boosted with k = 1.67
fm−1. There is no interaction between nucleons, and nucleons only feel the
same external barrier. The external barrier located at x = 0 with effective
height of 37.6 MeV.

The center-of-mass kinetic energy operator TCM is defined as

TCM =
−h̄2

2AmN

∂2R, (4.33)

where mN is the nucleon mass and ∂2RG
is the differential operator with

respect to the center of mass position R =
∑

i xi/A. The matrix elements of
TCM can be written in terms of the Gaussian centers z as follows

〈Φa|T̂CM |Φb〉 = 〈ΦCMaΦint|T̂CM |ΦCMbΦint〉
= 〈ΦCMa|T̂CM |ΦCMb〉 〈Φint|Φint〉

= − h̄2

2AmN

〈ΦCMa|∂2R|ΦCMb〉 〈Φint|Φint〉

= − h̄
2Aν

2mN

(
(z∗a − zb)

2 − D

A

)
〈Φa|Φb〉 , (4.34)
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Figure 4.10: Same as Fig. 4.9, but obtained with the time-dependent gener-
ator coordinate method with the same initial conditions.

where D is the number of dimensions, which is 1 in the present calcula-
tion. The center-of-mass part ΦCM and the interior part Φint of the Slater
determinant can be written as follows

ΦCMa = e
−Aν

(
R− zCMa√

ν

)2
, (4.35)

Φint =
∑
σ

(−)σ
{
e
−ν
(
x1−R− zσ1−zCMa√

ν

)2
e
−ν
(
x2−R− zσ2−zCMa√

ν

)2
· · ·
}
, (4.36)

where zCMa =
∑

i zai/A, and
∑

σ(−)σ means antisymmetrization for particle
exchange. Here we used the fact that the Slater determinant can be divided
into a center-of-mass part |ΦCM〉 and an intrinsic part |Φint〉. Note that since
the center-of-mass position and the center-of-mass momentum are taken as
the generating coordinates, the intrinsic state of each Slater determinant |Φa〉
is the same regardless of the generating coordinates. The energy written in
Fig. 4.10 is E = 18.424 MeV , which is lower than the barrier height of 37.6
MeV obtained by the frozen density approximation.

Next, we discuss the time evolution of the center-of-mass wave function
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defined as

ΨCM(R) =
∑
a

faΦCMa(R) (4.37)

=
∑
a

e
−Aν

(
R− zCMa√

ν

)2
. (4.38)

First, the time evolution of the density distribution ρCM(R) = |ΨCM(R)|2 for
the center-of-mass wave function is shown in Fig. 4.11 At time ct = 50 fm, no
collision has occurred yet, so the wave packet has the same Gaussian shape
as in the initial state. At time ct = 100 fm, when the collision occurs, the
wave packet is scattered and its shape is disordered. After the collision, the
wave function is divided into the wave packets that crosse the barrier and
the wave packets that are reflected by the barrier, and the spatial overlap
between the two becomes zero at ct→ ∞.
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Figure 4.11: Snapshots of the density function ρCM(z) = |ΨCM(z)|2 at several
times. The vertical axis is the density function and the horizontal axis is the
center-of-mass coordinate R. In the TDGCM calculation, a collision between
4He and the barrier occur at around time ct = 70 fm
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4.3.3 Energy dependence of the tunneling probability
In this section, we discuss the collision energy dependence of the transimission
probability. The definition of transmission probability is an extension of
Eq. (4.23) and is defined as follows

Ptrans =

∑
a,b:transmitted f

∗
afb 〈Φa|Φb〉

〈Ψ|Ψ〉
, (4.39)

that is, Ptrans is defined as the norm of the transmitted wave packets relative
to the norm of the overall wave function. The calculated transmission prob-
abilities for various boost energies to the overall wave function are shown
in Fig. 4.12. The blue line represents the result of the TDGCM calcu-
lation, and the orange line is the independent AMD result for comparison.
The blue line show the transmission probability where the Slater determi-
nants and their weights evolve in time by TDGCM. The orange line show
also the transmission probability, but each Slater determinant independently
evolve in time by AMD and their weights are fixed in time. The transmission
probability calculated by each method is expressed in the following equation

PTDGCM =

∑
a,b:transmitted f

∗
a (tend)fb(tend) 〈Φa(tend)|Φb(tend)〉
〈Ψ(tend)|Ψ(tend)〉

(for blue line),

(4.40)

Pindependent AMD =

∑
a,b:transmitted f

∗
a (t = 0)fb(t = 0) 〈Φa,AMD(tend)|Φb,AMD(tend)〉
〈ΨAMD(tend)|ΨAMD(tend)〉

(for orange line),

(4.41)

where tend is a large time enough for the overlap between wave packets sep-
arated by the barrier to become negligible. The first thing to notice is that
the transmission probability is increased in the blue line compared to the
orange line at energies below the barrier. In particular, the TDGCM results
shows finite transmission probabilities even for energies at which all the AMD
trajectories are reflected by a barrier, as shown by the orange line.

Also, at energies above the barrier, the transmission probability is de-
creased, unlike the AMD results. This decrease in the transmission probabil-
ity at high energies is also seen in quantum mechanics, and from this point
of view, the TDGCM can be said to mimic quantum mechanics.

4.3.4 Time variation of the transmission probability
In this subsection, we investigate how the TDGCM wave function penetrates
the barrier from the time variation of the transmission probability shown in
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Figure 4.12: Dependence of transmission probability on collision energy. The
vertical axis is the barrier transmission probability and the horizontal axis
is the energy defined in Eq. (4.39). The blue curve shows the result of the
TDGCM calculation, while the orange curve shows the result obtained by
an independent AMD calculations. Although the same initial Slater deter-
minant and initial weights are used at each point of the two resultant curves,
TDGCM calculates the time evolution by superposing the weighted initial
Slater determinants, whereas the independent AMD calculation evolves each
given Slater determinant independently in AMD, and calculates the trans-
mission probability of Eq. (4.39).

Fig. 4.13. This calculation is performed under the same conditions as those
used to obtain the results in Fig. 4.10. The transmission probability shown
in Fig. 4.13 is defined by Eq. 4.39, and is calculated at each time using the
Slater determinants, which are known to be transmitted in the final state.
What is characteristic about this time dependence in the transmission prob-
ability is that it only changes significantly upon impact with the barrier.
In the trajectories shown in Fig. 4.10, the collision with the barrier occurs
at ct = 70 − 150 fm, and it is during this period that most of the changes
in the weights between the Slater determinants take place. When the over-
lap between the transmitted Slater determinant and the Slater determinant
reflected by the barrier disappears, the weight transition also disappears.
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Figure 4.13: Time evolution of transmission probability. The kinetic energy
of initial state E = 18.424 MeV, which is same as one in Fig. 4.10. The
transmission probability is defined as Eq. (4.39). The weight transfer to the
transmitted component starts when the TDGCM wave packet touches the
barrier (ct ≈ 80 [fm]), and the weight transfer is completed when the wave
packet is completely split (ct ≈ 120 [fm]).

This transition of the weights between the Slater determinants at the time
of collision means that the TDGCM wave packet imitates the splitting of
the quantum mechanical wave packet upon hitting the barrier, and the time
variation of the weights is thought to create the smooth energy dependence
of the transmission probability shown by the blue curve in Fig. 4.12.

4.3.5 Calculation using other sample points
We explained that the way to take the Slater determinants shown in the
Fig. 4.7 is to sample a few points of the wave packet given by the weight
f . Here we show that the resulting energy dependence of the transmission
probability is independent of the sample points, although the sample points
can be taken arbitrarily as long as there is enough overlap between the Slater
determinants. The sample points used are shown in the Figs. 4.14, 4.15 and
4.16.
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Figure 4.14: First sample of the initial center-of-mass position and mo-
mentum given to each Slater determinant, and the weights on those Slater
determinants.

Figure 4.15: Second sample.

Figure 4.16: Third sample.
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Figure 4.17: Energy dependence of the barrier transmission probability
calculated using three samples with different initial Slater determinants. The
definitions of the vertical and horizontal axes are the same as in Fig. 4.12 In
the energy region below the height of the barrier, there is almost no difference
in the results. In the energy region above the height of the barrier, there is
no significant difference, although there is some fluctuation.

As in the Fig. 4.7, the blue points in the phase space represent the initial
values of the center-of-mass position and momentum of each Slater determi-
nant, and the numbers above the points are the weights f for each Slater
determinant. The results of calculating the energy dependence of the trans-
mission probability for each of the above three choices of Slater determinants
are shown in the Fig. 4.17. As shown in this figure, we can see that using
samples with different Slater determinants as the initial conditions does not
change the results much, especially at energies below the barrier.

4.4 Application to collision of 4He+4He in three-
dimension

In the Secs. 4.2 and 4.3, it is shown that the tunneling effect can be described
in the TDGCM framework, and we have been defined the transimtting proba-
bility as the function of collision energy in the case of collision of 4He particle
and an external barrier. However, TDGCM still has many points to improve
in order to describe the real nuclear reaction. In this section, we will extend
the TDGCM to three-dimensional one, and show the result of collision of two
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4He particles in three-dimensional space. This extension is essential to the
application of TDGCM to realistic cases.

In the follwing calculation, we use the Volkov No.1 interaction [103] be-
tween all nucleons,

VV (r) = (W +MPσPτ )(Vae
−~r2/r2a + Vre

−~r2/r2r ), (4.42)

where ~r is the relative position vector of two interacting nuclei, and Vae−~r2/r2a

and Vre−~r2/r2r are attractive and repulsive potential respectively. The Pσ and
Pτ are the spin and isospin exchange operators, respectively. The values of
parameters are set as M = 0.56,W = 0.44,ra = 1.6 fm,rr = 0.82 fm,Va =
−83.34 MeV and Vr = 144.86 MeV. In addition, the Coulomb interaction
between each protons,

VC(r) =
e2

|~r|
, (4.43)

is included. The matrix elements of these interactions can be written as a
function of the Gaussian center ~z as follows

〈Φa|VV |Φb〉 =
∑
ijkl

(Bab)−1
ik (B

ab)−1
jl[

(Wwijkl −Mwijlk)B
ab
ikB

ab
jl

×
{
Va

(
ν

aa + ν

) 3
2

exp

(
− aa
4(aa + ν)

(~za∗i − ~za∗j + ~zbk − ~zbl )
2

)
+Vrx

(
ν

arx+ ν

) 3
2

exp

(
− arx

4(arx+ ν)
(~za∗i − ~za∗j + ~zbk − ~zbl )

2

)}
−(Wwijlk −Mwijkl)B

ab
il B

ab
jk

×
{
Va

(
ν

aa + ν

) 3
2

exp

(
− aa
4(aa + ν)

(~za∗i − ~za∗j + ~zbl − ~zbk)
2

)
+Vrx

(
ν

arx+ ν

) 3
2

exp

(
− arx

4(arx+ ν)
(~za∗i − ~za∗j + ~zbl − ~zbk)

2

)}]
,

(4.44)

〈Φa|VC |Φb〉 =
2√
π

∑
ijkl

Bab
ikB

ab
jl (B

ab)−1
ik (B

ab)−1
jl

∫ ∞

0

dγ

(
ν

γ2 + ν

) 2
3

exp

(
− γ2

γ2 + ν

(~za∗i − ~za∗j + ~zbk − ~zbl )
2

4

)
,

(4.45)
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where aa = 1/rA, ar = 1/rr and wijkl is defined as

wijkl = δsiskδsjslδτiτkδτjτl, (4.46)

where s and τ indicate the direction of the spin and isospin.
For simplicity, we have assumed the head-on collision, that is, the relative

motion of the two 4He particles is restricted to the z-axis which is the collision
axis. we have also assumed that the two 4He particles move symmetricaly
with respect to x = 0. Other assumptions, the fixed spin, isospin wave
fuctions, the fixed Gaussian width ν, and using the common Gaussian center
z for four nucleons in 4He are the same as in Secs. 4.2 and 4.3. The value
of fixed Gaussian width ν = 0.58 fm−2 is used so that the energy of 4He is
minimized with the interactions in Eqs. (4.42) and (4.43) using the AMD
calculation.

4.4.1 Trajectories
Firstly, the trajectories of Slater determinants which represent the two 4He
movement are shown in Fig. 4.18 and Fig. 4.19. The trajectories of the Slater
determinants are shown in Fig. 4.18 and Fig. 4.19 are time evolved with AMD
independently and with TDGCM, respectively. The initial wave packet for
the sysytem with the two 4He particles are prepared by the following two
steps:

• Construct a wave function around the origin

|Ψ(x, t = 0)′〉 =
∑
a

fa(t = 0) |Φa(x, t = 0)〉 . (4.47)

• Translate it to the position x = x0 and boost with the momentum
k = −k0

|Ψ(x0, t = 0)〉 = e−ik0x |Ψ(x− x0, t = 0)′〉 . (4.48)

Now, from the symmetry of the 4He particles motion assumed above,
x = −x0 and k = −k0 are given for the other 4He particle on the other
side.

The translate and the boost are written in terms of Gaussian center z as

z′ = z +
√

(ν)x0 − i
k0

2A
√
ν
. (4.49)
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In the following calculation, we use the initial positions x0 = −0.5, 0.5
fm and initial momenta k0 = −0.01, 0.01 fm−1 for the Slater determinants
|Φa(x, t = 0)〉, and the whole wave packet |Ψ′〉 is translated to x0 = 15 fm,
and boosted with the momentum k0 = 0.36 fm−1.

Even though the initial conditions for the calculations shown in Fig. 4.18
and Fig. 4.19 are the same, the trajectories in the two figures are markedly
different. Because of the assumption of head-on collision, the dynamics of
the system is restrected on the z-axis, so now we focus only z-component zz
of the three-dimensional position ~z = (zx, zy, zz). The zz,rel. in the figures
corresponds to the distance between 4He particles which is equals to two
times potision of the right 4He particle.

Fig. 4.18 shows the result of independent AMD calculation with two dif-
ferent initial Slater determinants where both the trajectories are reflected by
the barrier. On the other hand, one of the trajectories of the Slater determi-
nant with TDGCM shown in Fig. 4.19 overcomes the internuclear Coulomb
barrier and is trapped by the nuclear attractive potential (the vibrating curve
around the zz = 0). This result is similar to the result of one-dimensional col-
lision of two 4He particles presented in Sec. 4.2. The similarity of the result
of the one-dimensional and the three-dimensional calculations indicates that
the TDGCM framework works in the three-dimensional space with the ef-
fective interactions for three-dimension, the Volkov No.1 interaction and the
Coulomb interaction, which are widly used in exsisting AMD calculation.

4.4.2 Problems in TDGCM
In this section, we summarize and discuss the currently known issues in
TDGCM. The first major problem is the large computational cost. We have
introduced the following approximations.

• Use of a Gaussian single-particle wave function

• Matching the Gaussian centers of the nucleons in He

• Fixing the spin and isospin wave functions

• Fixing the Gaussian width of the single-particle wave function

• Assumption of head-on collision (three-dimensional calculation)

Under these approximations, the calculation of 4He+4He collisions in three
dimensions takes about 30 minutes using a workstation (Intel Xeon E5-26909
v4). Note that in the TDGCM calculation, the process of calculating the
matrix elements of the Hamiltonian like Eqs. (4.14),(4.28),(4.44) and (4.45)
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Figure 4.18: Trajectories of the center-of-mass position of the Slater deter-
minants. The Slater determinants are independently time-evolved by AMD.
Both of Slater determinants are reflected by the Coulomb barrier which is
located at zz,rel. = 6.6 [fm].

is currently the most computationally expensive, and this computational
cost increases with N2 for N degrees of freedom. For example, if we exclude
the head-on collision assumption in the three-dimensional calculation, the
number of degrees of freedom to consider increases by a factor of three, but
the cost of calculating the matrix element of the Hamiltonian increases by
a factor of nine. Also, if we allow the Gaussian centers inside 4He to move
separately, the degrees of freedom will increase by a factor of four, and the
computational cost of the Hamiltonian will increase by a factor of sixteen.

A different problem is the computational instability caused by the non-
orthogonal nature of the Slater determinants. In TDGCM, several Slater
determinants are superposed, but they are evolved in time and may become
linearly dependent after some times. If the superposed Slater determinants
become linearly dependent, the time evolution of the Slater determinants is
not uniquely determined, and instability occurs in the calculation. In the case
of a strictly linear dependence, the instability is certain to occur, but even
in the case of a numerically close linear dependence, the calculation becomes
unstable and the energy conservation is somewhat violated in our calculation.
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Figure 4.19: Same as Fig. 4.18, but the Slater determinants are time-evolved
by TDGCM.

Because of this problem, the TDGCM does not always give good results as
the number of superimposed Slater determinants is increased. For example,
in the calculation for a collision of 4He with and external barrier, we showed
the results when nine Slater determinants were used, and confirmed that the
results with eleven Slater determinants were similar, but when more Slater
determinants were used, the calculation became unstable. Since superposing
too many Slater determinants can cause the above problem, and using too
few can result in insufficient convergence, it is necessary to determine the
appropriate number of Slater determinants for the system of interest before
applying TDGCM.

Further extensions

To close this Section, we will mention the extension of TDGCM. The first
possible extension from the present calculation is to reduce the number of
approximations. We used five approximations as described above, but by
reducing the number of approximations, we can describe more phenomena
more accurately. For example, if we exclude the head-on collision assump-
tion, we can describe collisions with different impact parameters and define
fusion cross sections in collisions. In another example, if the Gaussian cen-
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ter z of the nucleons inside 4He can be moved independently, it would be
possible to effectively incorporate the effect of internal excitations. It should
also be possible to describe nucleon transfer reactions. In principle, it is also
possible to develop spin and isospin wave functions and Gaussian widths in
time, or to use single-particle wave functions, which are not limited to Gaus-
sian functions, and these may also contribute to the description of internal
excitations. On the other hand, if the number of approximations is reduced
and the number of degrees of freedom of the trial function is increased, the
above-mentioned problem of computational cost arises, so how much approx-
imations can be reduced in a realistic computational time will be a major
issue in the future.

Another direction of extension is to apply it to heavy nuclei. Although
only 4He was used in this study, the TDGCM can in principle handle medium
to very heavy nuclei. However, the problem here is also the computational
cost, since, unlike the case of 4He, one cannot use the approximation to keep
the same z for all the nucleons, and the computational cost increases as the
number of nucleons increases.pre Also, the number of Slater determinants to
be superposed is unknown when the number of nucleons increases.
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Chapter 5

Conclusion

In this thesis, we have aimed to develop a microscopic theory that can de-
scribe nuclear fusions, especially at low energies. For this purpose, we have
investigated the Time-Dependent Generator Coordinate Method (TDGCM),
which describes the dynamics of nuclei by a trial function consisting of a time-
dependent Slater determinant superposed with time-dependent weights. In
this study, we develop a new version of TDGCM based on the Reinhard’s
simplified TDGCM by incorporating the correlation between Slater determi-
nants. Our TDGCM is a framework that can describe the tunneling effect
as well as the internal excitation, which is considered to be impossible to
describe in simplified TDGCM. Although TDGCM is expected to be a good
method, the computational cost is still expected to be high for realistic calcu-
lations. Therefore, we used the approximation that the single-particle wave
functions of the Slater determinant are Gaussian with a common fixed width
to reduce the computational cost.

After constructing our TDGCM in this way, we tested the method by
applying it to three simple systems with 4He. To this end, we assumed that
the spin and isospin wave functions are fixed, and the Gaussian centers of
the four single-particle wave functions in 4He are assumed to coincide. With
this assumption, the Slater determinant representing 4He is characterized
by a single Gaussian center z. In order to test whether the TDGCM can
describe the quantum tunneling of the Coulomb barrier, which is necessary to
describe fusion in the sub-barrier region, we first applied the TDGCM with
two Slater determinants to a system of one-dimensional He+He collisions.
The interactions used were the zero-range three-body repulsion, the folding
Gauss attraction, and the Coulomb interaction for 1D. In this case, the two
4He were assumed to move symmetrically about x = 0, for which one 4He
has a Gaussian center z and the other has a Gaussian center −z. As a
result, it was confirmed that the 4He wave function partially penetrates the
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barrier in the TDGCM even at collision energies below the barrier. The
quantum tunneling phenomenon can thus be qualitatively described. We
also found that the TDGCM expresses the barrier penetration, which cannot
be expressed by the TDHF, by exchanging the energy between superposed
Slater determinants.

Next, in order to calculate the tunneling probability in more details, we
applied the TDGCM to a system in which 4He collides with an external
barrier in one dimension. In this calculation, the interaction between nucle-
ons is not considered, and only a Gaussian external barrier exists. In this
application, nine Slater determinants were superposed to study the energy
dependence of the tunneling probability. The same calculations were per-
formed for five, nine, and eleven Slater determinants, and it is confirmed
that the calculations converge at nine Slater determinants. Here, the initial
Slater determinant was changed to vary the collision energy, and the same
Slater determinant was time-evolved with TDGCM or independent AMD.
As a result, we obtained discrete barrier penetration probabilities in the in-
dependent AMD calculation and smooth barrier penetration probabilities in
the TDGCM. This smoothness can be attributed to the time variation of the
weights f . In addition, compared with the transmission probability obtained
by the AMD calculation, the transmission probability in TDGCM is larger at
energies below the barrier, and this increase can be regarded as a description
of quantum tunneling. Although the choice of the Slater determinant to rep-
resent the same initial wave function is arbitrary in TDGCM, the results are
almost the same depending on the choice of the determinant, as confirmed
by three samples of Slater determinants.

Finally, as a first step toward more realistic calculations, we applied the
TDGCM to colliding of two 4He particles in three dimensions. Although
this calculation assumes head-on collision and the degrees of freedom for
4He motion are effectively one-dimensional, this calculation works as an ex-
ample of three-dimensional calculation. The resulting trajectories show the
same behavior as in one-dimensional 4He+4He collisions, indicating that the
TDGCM can work in three dimensions.

We here summarizes the significance of our TDGCM in the field of nu-
clear reactions. Methods based on the mean-field approximation, such as
TDHF, which have been widely used for microscopic calculations of nuclear
reactions, have the advantage of automatically incorporating the effects of
internal excitations, but they underestimate the quantum fluctuations that
should be present, and in principle cannot describe the quantum tunneling
effect. Several methods beyond TDHF have been developed, such as the
simplified TDGCM introduced in Chap. 2, which can recover quantum fluc-
tuations, and TDHW, which ignores the internal excitations but describes

65



a tunneling phenomenon. On the other hand, a method that automatically
included the effect of internal excitations during the nuclear reaction while
also describing the tunneling effect has not yet been established, and such a
method is necessary for describing low-energy nuclear fusion. Therefore, we
have developed a TDGCM that can describe both internal excitations and
tunneling effects simultaneously. This method is effective for fusion reac-
tions at low energies, especially below the barrier, and possible applications
include nucleosynthesis in stellar interiors and supernovae. In addition, since
TDGCM is a microscopic method and no empirical input is necessary, it may
provide a useful method in unknown regions where it is difficult to perform
experiments, such as reactions in neutron-rich or superheavy nuclei.

In this study, we have constructed the basis of the theory and investigated
the ability of the method by applying it to simple systems There will be many
important applications in future where this theory can be applied. This study
provides an important first step towards such goal.

As future works, we should first see how well the TDGCM takes into
account internal excitations. In the present calculations, we have focused only
on the description of the tunneling effect and made some approximations, so
that internal excitations cannot occur in the calculations. In particular, we
should first remove the approximation that makes the position of nucleons
in 4He the same, and then include the internal excitations of nuclei. The
application of the TDGCM to heavier nuclei also remains to be done. The
next target is 4He+12C [104], for which calculations can be compared with
experiments.
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