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Abstract

The nature of dark matter is still mostly unknown to us, which poses problems not only
to astrophysics, and cosmology but also to the particle physics. To address the issues of dark
matter, such as the wide range of viable dark matter particle masses and the small scale
problem in the observable local Universe, this thesis focuses on a particular dark matter
model, the Fuzzy Dark Matter (FDM), which assumes a particle mass mc2 ≥ 10−22 eV.

For such low mass, we expect the model to behave as a wave, instead of particle like
the traditional Cold Dark Matter model, which introduces rich wave phenomenology on
an astrophysical scale. The non-linear evolution of the FDM model follows the coupled
Schrödinger-Poisson equation and one of the consequences is the formation of a core within
each halo which is closely related to the core-cusp problem and diversity problem. However,
previous simulations by different groups have already shown disagreements in the core mass-
halo mass relation. Since the relation is always adopted for observational tests against dwarf
galaxies, the uncertainty in the relation automatically translates to the uncertainty of all
those constraints made on the FDM particle mass by dwarf galaxies, especially for Jeans
analysis.

To further our understanding of the relation between core mass and halo mass, we devel-
oped a cosmological FDM simulation code by solving the Schrödinger-Poisson system with
the pseudo-spectral method and performed simulations with various setups. We obtained a
large population of haloes, where each of them is indeed a core-halo structure. We found
that there exists a sizable scatter in the core-halo mass relation, which can explain the dis-
agreement between different simulation groups. A one-to-one relation between the core and
halo mass is always assumed, but in fact, the simulation data suggest that a certain halo
mass can coexist with a core of a different mass. We will in the end shortly discuss how the
diversity in the core-halo structure could solve the diversity problem and further suggestions
for improving the numerical simulation of the FDM model.
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Chapter 1

The big picture

The success of the Lambda Cold Dark Matter (ΛCDM) model in explaining the temper-
ature fluctuation of the Cosmic Microwave Background and the flat galactic rotation curve
is an indisputable fact. Meanwhile, the cosmological N-body simulation of the ΛCDM model
matured, and the community can now achieve higher mass resolution and larger box sizes
(Vogelsberger et al., 2020). The large volume of published data further allows us to test
the ΛCDM model against non-linear structure in the observable Universe. Nevertheless,
the ΛCDM model is a scientific theory, so it is a falsifiable theory. The Missing Satellite
problem and the core-cusp problem, which is now transitioned into the diversity problem of
the dwarf galaxies, are solid challenges attempting to falsify the ΛCDM model. Since these
small-scale problems of the ΛCDM model arise on the galactic scale, one of the proposed
solutions is to consider the effect of baryonic feedbacks (Bullock & Boylan-Kolchin, 2017),
which, at the same time, introduces complications due to the incomplete knowledge of the
galaxy formation theory. Moreover, the ΛCDM with the baryonic feedback model is also a
falsifiable theory. For instance, the Ultrafaint dwarf galaxies (UFDs), which are dark matter
dominated galaxies with negligible baryonic mass, are the best laboratory to test the ΛCDM
model. The above strategy, making use of the local Universe as a laboratory for dark matter
research, is often described as the near-field cosmology.

On the other side, the small-scale challenges could also be alleviated by alternative dark
matter models, such as Warm Dark Matter (WDM), Self-Interacting Dark Matter (SIDM),
Fuzzy Dark Matter, or Modified gravity theory. They are all as equally falsifiable as CDM
and can recover the large scale structure of the CDM model, but are overshadowed by the
partial success of the CDM model. In comparison to CDM, there are less research effort be-
ing invested in studying the structure formation of alternative models, due to the additional
numerical difficulties of their own. We will start with a review of the evidence and theory of
CDM, then present the big picture, a macroscopic view of the current issues and the status
of Dark Matter can be summarized into three main points:

• the disagreements between the ΛCDM model and observations in the local Universe
• the huge range of viable dark matter candidates in particle mass
• the numerical difficulties of simulating alternative dark matter model
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1.1 Evidence for Cold Dark Matter

The very first evidence for Dark Matter was proposed by Zwicky in 1933, who studied
the kinematics of Coma cluster and concluded that the total mass is ∼ 400 times larger than
the mass of the baryonic luminous component. One of the strongest pieces of evidence now
is the flat rotation curves of spiral galaxies (Persic et al., 1996). By assuming the stars in the
disk plane are on circular orbits, we can estimate the rotational velocity of the stars from
the center of the galaxy simply as

Vrot(R) =

√
GM(R)

R
(1.1)

As the luminous disks fade away gradually from center to edge of the galaxy, the stellar
density decreases, so the rotation curve is expected to decrease at the outskirt of the disk.
Observationally, it is however confirmed that the rotation curves do not decrease, but instead
stay constant, or flat, far beyond the visible disk. Since the rotational curve is a direct
measure of the total enclosed mass content within the radii, the flat rotation curves imply
there is much more mass in the galaxy than the visible component. As a result, an invisible
component was proposed to be responsible for the flat curve, which is now referred to as
Dark Matter.

The standard cosmological model today is the Λ-Cold Dark Matter (ΛCDM), which
assumes dark matter with the following properties.

1.1.1 Coldness

The Large-Scale Structure (LSS) of the observable Universe is a direct consequence of
the coldness of the dark matter. The LSS is a tracer of the underlying density distribution of
dark matter in the Universe, which depends on the initial condition and the time evolution
of the density perturbation. If the initial density of a region is slightly higher than the mean,
it will attract the surrounding matter more strongly than the average. In the end, these
regions become overdense and grow exponentially to be even more overdense. These regions
are referred to as the sheet, filament, or cluster. In contrast, the underdense regions will
become more underdense, because the matter moves away from it. This region is referred to
as the void. Fig.1.1 shows a snapshot from a cosmological N-body simulation to demonstrate
the structure formation of cold dark matter.

These gravitational process, which is called gravitational instability, amplifies the den-
sity perturbation and acts as a fundamental role in the theory of structure formation. In
theory, the gravitational structure are separated into two regimes: the linear (δ < 1) and
non-linear regime (δ > 1), where δ = (ρ − ρ̄)/ρ̄ is called the density contrast. The early
Universe has density perturbation that is still in the linear regime. The evolution of the
dark matter density distribution in this regime can be predicted by the linear perturbation
theory. In practice, the dark matter component is coupled with the other matter component
gravitationally, so we need to solve a system of Einstein-Boltzmann equations, in order to
predict the evolution of the dark matter perturbation in the linear regime. Based on an
initial condition determined by inflation theory, we often quantified the perturbation statis-
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tically through the power spectrum P (k), so the theory predicts the time evolution of the
linear dark matter power spectrum.

Now the coldness plays an important role in shaping the linear power spectrum. In
the early Universe, every particle species are in thermal equilibrium, or a hot and dense
bath in the Universe. Dark matter, same as other particles, is expected to decouple at a
certain redshift, and are produced. If the Dark Matter particle mass is large enough, they
are expected to be non-relativistic after being produced. For example, the WIMP particle
has a particle mass of ∼ GeV are thermally produced to be non-relativistic. We called
these particles thermal relics, in particular, cold relics for WIMP. However, if relativistic
particles are produced, those hot, or warm relics can erase density perturbation by the
free streaming effect, leading to the suppression in the power spectrum, and producing less
structure in the Universe. Therefore, the coldness of the dark matter can be tested against
the structure formation, or the LSS, in the observable Universe. For example, Tegmark et al.
(2004) collected ∼ 200, 000 galaxies redshifts from the Sloan Digital Sky Survey (SDSS), and
measured the observed three-dimensional power spectrum. They found that the linear matter
power spectrum predicted by CDM matches well the observed. By combining it with other
measurements on other scales made by CMB, weak lensing and Lyman-α forrest, we can
probe the power spectrum up to k ∼ 1 h/kpc. As we will see later, observables on a scale
below k ∼ 1 h/kpc are considered linear observables. The match between linear theory and
observable is then considered as the large-scale success of the ΛCDM model.

1.1.2 Collisionlessness

The additional matter inferred by the flat rotation curve emphasizes that the matter is
not detected by telescopes at any wavelength. The invisibility, or in other words, its very
weak interaction with the electromagnetic force, is the reason for calling it the Dark Matter.
Although it may not interact with photons, there are questions regarding if it interacts with
other baryons through elastic or inelastic collisions. To answer such a question, we must look
into dense regions where the collision rate between the particles is expected to be high, but
at the same time, those dense regions are in the non-linear regime. Galaxy clusters are very
massive gravitationally bound objects with mass ∼ 1014 − 1015 M⊙, which contain hot gas
emitting a significant amount of X-ray that can be detected by X-ray telescopes. In fact, the
collision of two galaxy clusters, although it is rare, provides us with an important probe of
the collision rate between dark matter particles and baryons. Clowe et al. (2006) presented
an X-ray image of a colliding galaxy cluster, 1E 0657-558, or namely the Bullet Cluster, and
measured the weak-lensing signals by it. The X-ray emission represented the distribution
of hot baryonic plasma, whereas the weak lensing observation could infer the gravitational
potential of the Bullet Cluster. Their results showed an offset between the center of a plasma
cloud and the potential. The segregation again suggested that galaxies are not only composed
of the luminous component but the dark component. More importantly, in contrast to the
plasma which can be slowed by collisional effects such as ram pressure, the offset suggested
that dark matter are passing by each other as if collisionless particles.

More colliding galaxy clusters are now observed, such as Abell 2744, DLSCL J0916.2+2951,
and MACS J0025.4-1222, where all confirm the ”collisionless” property of dark matter. If we
relax the collisionless condition, these systems nowadays have been used to test the upper
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Fig. 1.1. Structure formation of CDM model in cosmological N-body simulation. The
boxsize of the snapshot is 8 h−1Mpc. Although LSS are on the scales of > 10 h−1Mpc, the
overdense region, the haloes and filaments, and the underdense regions, the voids, are also
formed in the simulation. The figure is taken from (Jowett Chan et al., 2019).

bound on the cross section σ/m of dark matter. For instance, the Bullet Cluster gives an
upper bound σ/m < 5 cm2g−1. The constraints are important bounds for the self-interacting
type of dark matter.

1.1.3 Mass fraction

The mass fraction of dark matter within galaxies is expected to be ∼ 80%, so it dominates
the matter content of galaxies. The dark matter fraction in comparison to other energy
content in the Universe, however, could be predicted through the temperature fluctuation of
the cosmic microwave background (CMB). The CMB has a spectrum that is consistent with a
blackbody spectrum with a temperature of T ∼ 2.728 K. The fluctuation of the temperature
map provides rich information on the structure and evolution of the Universe. For instance,
we statistically quantify the temperature fluctuation with angular power spectrum. The
peaks in the power spectrum increase or decrease depending on the total matter density of
the Universe. Therefore, modeling the CMB fluctuation can provide constraints, not only on
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the fraction of dark matter but also on other cosmological parameters in the ΛCDM model.
As such, CMB observation is considered a cosmological probe.

Planck Collaboration et al. (2020), as the most recent probe of the cosmological param-
eters using a combination of CMB temperature, polarization maps, and anisotropies, gave a
dark matter density Ωdm = 0.264, a baryonic density Ωb = 0.049 and the remaining belong
to the dark energy density. We can see that dark matter constitutes ∼ 80% of the total
matter content in the Universe. Such a result from the cosmological probe is surprisingly
very close to the dark matter fraction in galaxies with flat rotation curves.

1.2 Dark Matter Halo

The cold dark matter model supported by the above observations assumes dark matter
to be cold, collisionless, and the dominant matter content in the Universe, at least on scales
larger than a galaxy. Here we discuss a gravitationally bound system in the non-linear regime
based on solely the cold dark matter model, namely the halo. Although different dark matter
models will have different consequences on the structure of the halo, they all must eventually
form a halo due to gravity, so the discussion here is applicable to the later section of the
thesis.

A halo is a virialized system that has relaxed into an equilibrium state. The definition of
the halo is often obtained from the spherical collapse theory, which states that any gravita-
tional system with a density of ∆ρm will collapse to form a structure in a steady state. From
the definition, we can calculate the corresponding halo mass and radius Mh = ∆ρm4πr

3
h/3.

Depending on the cosmology and assumption of the symmetry, different ∆ could be obtained.
Spherical symmetry without the consideration of the expansion gives ∆ = 200, whereas the
latter, which is the adopted definition in this work, gives ∆ = 350(180) for z = 0(> 1)
(Bryan & Norman, 1998). Both of them are common choices to define halo mass, so we must
take care of the consistency with the definition throughout the analysis.

The physics behind the steady state of the halo requires understanding on the relax-
ation mechanism of the collisionlesss gravitational system. Intuitively, the steady state is
reached due to the balance between the velocity dispersion and gravity of the dark matter.
Mathematically, we must study the collisionless Bolzmann equation,

df

dt
=
∂f

∂t
+
∑
i

∂f

∂xi
+
∑
i

∂Φ

∂xi

∂f

∂vi
= 0. (1.2)

Since df/dt = 0, the equation describes the equilibrium state of the distribution in phase
space. In general, there is no analytical solution to the six dimensions partial differential
equation, but with some assumptions, we can derive useful equations with physical results.
For instance, we can derive the virial theorem for a static system

W = −2K, (1.3)

where K is the kinetic energy, W is the potential energy, and the total energy is E =
K+W The theorem confirms the idea that the velocity of the particles balances the gravity,
but additionally it quantitatively provides the required kinetic energy to counteract the
gravitational potential.
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The mechanism of reaching such a steady state is called the relaxation mechanism. Such
theory is not studied in the spherical collapsed model, because the analysis often assumes
spherical symmetry, so a system following a spherical collapse forms an oscillating system as
an end state. However, we can estimate the time scale when a collisionless system is relaxed.
By assuming a collisionless gravitational system with N bodies of radius r, we define the
crossing time tcross = r/v as the average time for a particle to go across the system. For
typical stars in galaxy, they have v ∼ 200 kms−1 and r ∼ 10 kpc, so tcross ∼ 1010 yrs, which
is smaller than Hubble time tH. The bodies in such a system only interact through gravity,
and the two-body relaxation time, as the typical time scale to approximate the relaxation of
a compact stellar system like a globular cluster, is

trelax =
N

10 lnN
tcross (1.4)

Unfortunately, for systems such as galaxies and dark matter halo with large N , the two-body
relaxation time is much larger than Hubble time. Although the two-body relaxation is an
intuitive relaxation mechanism, which simply averages the interaction between two bodies, it
does not explain how a dark matter halo can relax within the age of the Universe. However,
through studying the Boltzmann equation and N-body simulations, we found that several
other mechanisms help relax collisionless systems more rapidly to the steady state, such as
phase mixing and violent relaxation.

1.3 Density profile

The end state of the relaxation is the halo and its inner structure is an important predic-
tion to be tested against observations. Such non-linear objects are only accurately predicted
through high resolution N-body simulation of structure formation based on the CDM cos-
mology. Navarro et al. (1996) has shown that the inner structure, or more quantitatively
the density profile, are self-similar. In other words, all density profiles, regardless of the
size of the halo, have a steep rising logarithmic slope scaling with r−3 in the outer part and
transition to a shallower slope scaling with r−1 in the inner part. Navarro et al. (1996) found
an empirical equation to describe such a profile

ρnfw(r) =
ρ0

(r/rs)(1 + r/rs)2
, (1.5)

where rs is the scale radius, and ρ0 is a characteristic overdensity. It is easy to see that the
profile has a −2 logarithmic slope at r = rs. The profile is now broadly referred to as the
Navarro, Frenk, and White (NFW) profile. There are two free parameters rs and ρ0. The
latter is related to the enclosed mass of the NFW profile

M(r) = 4πΩmρ0r
3
s

[
ln(1 + cx)− cx

1− cx

]
, (1.6)

where x = r/rh and c ≡ rh/rs is the concentration parameter. In principle, the NFW profile
can be characterized fully by the halo massMh and the concentration parameter. The former
is often chosen, and the latter, however, is a more difficult parameter to obtain. Many high
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resolution has provided an empirical relation between halo mass and the concentration, and
found that the relation c(Mh, z) depends on redshift as well. We again emphasize that the
NFW profile is an Universal profile defining the self-similar halos in CDM cosmology, but
we remind that there exists an intrinsic scatter in the concentration-Mass relation.

For demonstration, Fig.1.2 shows the density profiles of several halo masses. All profiles
show a transition from r−1 to r−3, and for smaller halo mass, the transition occurs earlier.
It implies that smaller NFW haloes are more concentrated than more massive haloes. We
also show the circular velocity of those NFW haloes in Fig.1.3 based on Eq.1.1. Although
halo can be defined by the virial radius Rh, as shown in Fig.1.3, it can also be defined by the
radius of maximum velocity Rmax. Since Rmax is smaller than Rh, it is more observationally
possible to detect Rmax than Rh, for example in the rotational curve of galaxies.

10−2 10−1 100 101 102 103

r [kpc]

101

103

105

107
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ρ
[M
�
/k

p
c3

]

Fig. 1.2. The NFW density profile of halos with mass of 108,109,1010,1011 and 1012. The
halo is defined with ∆ = 350 at z = 0. We have adopted the concentration-mass relation
provided by Ishiyama et al. (2021). We can clearly see how the profiles transition from a
logarithmic slope of −1 to −3.

1.4 Challenges to the ΛCDM

The large scale success of the cosmological paradigm based on the CDM model is un-
deniably true, due to the confirmation by multiple observations mentioned in the previous
section. However, the model is far from perfect. As the resolution of the cosmological N-
body simulations become higher, we begin to robustly resolve the smaller structure and,
more importantly, the substructure within each host haloes. We soon recognize that the
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Fig. 1.3. The circular velocity of NFW profiles with halo mass of 108,109,1010,1011 and
1012. The thin dash line shows the virial radius and the corresponding circular velocity of
the haloes. The thick dash line shows the relation between maximum velocity and their
corresponding radius Rmax. It is evident that Rmax is smaller than the virial radius Rh.

inner structure and the statistics of these substructures pose devastating problems to the
ΛCDM model.

1.4.1 CDM-only simulation

Many high-resolution N-body simulations of the internal structure of MW-sized haloes
have shown a large number of sub-haloes within it. These sub-haloes are virialzed objects
within another larger virialized object. Moore et al. (1999) and Klypin et al. (1999) have
pointed out one of the major issues of the CDM model: we expect ∼ 1000 subhaloes in a
MW-sized halo in the CDM only simulations, but we only observed ∼ 50−60 dwarf galaxies
within the MW. This is the so-called Missing Satellite Problem.

One of the reasons behind the problem is related to the observational limitation: the
catalogs of dwarf satellites are still incomplete. There are limits in the survey depth and
area which prevent us from detecting all the satellites. These limitations will result in the
underestimation of the number of satellites. However, the situation has improved and more
massive imaging surveys are now available. The Pan-StARRS 1 (PS1) survey (Chambers
et al., 2016), the Dark Energy Survey (DES) (Dark Energy Survey Collaboration et al., 2016)
and the Sloan Digital Sky Survey (SDSS) (York et al., 2000) have all discovered new ultra-
faint dwarf galaxies with V-band absolute magnitude fainter than ∼ −8 mag. For instance,
Homma et al. (2019) has recently discovered a new ultra-faint dwarf, the Boötes IV based
on the Hyper Suprime-Cam Subaru Strategic Problem (HSC-SSP). Unfortunately, even with
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the newly discovered satellites, the number of dwarf galaxies is still far from reaching ∼ 1000.
Another possibility is the non-centrally concentrated radially distribution of satellites, which
will be discussed later.

As mentioned previously, the inner structure of haloes, and also sub-haloes, follow the
NFW density profile. The inner slope of a NFW profile scales as r−1, which we called a cuspy
profile. The next problem here is the disagreement between the inner slope of the observed
satellite profiles and the cuspy NFW profile. Such a problem is demonstrated in the rotation
curve of the dwarf galaxies. As shown in Fig.1.4, the inferred inner dark matter profile slopes
from rotation curves of 26 dwarf galaxies prefer a cored profile, which has a logarithmic slope
of 0, over the NFW profile. The problem is often referred to as the core-cusp problem.

Fig. 1.4. The core-cusp problem demonstrated by the dwarf galaxies in the LITTLE
THINGS and THINGS survey. α is the inner dark matter density slope at the innermost
point Rinner, where 0 and −1 correspond to a cored and cuspy profile respectively. A CDM
dark matter halo follows the NFW profile, and it is evident that most data points deviate
from the prediction by the NFW profile. The figure is borrowed from Oh et al. (2015).

Observationally, we can always improve the samples of stars within each satellite, but
the core-cusp problem could also be related to the modeling method. For instance, Jeans
analysis is one of those modeling techniques to estimate the dark matter density profile from
the line-of-sight velocity of dwarf galaxies. However, it always assumes spherical symmetry
and suffers from the mass-anisotropy degeneracy. Breaking degeneracy requires extra data
on the proper motion of the stellar samples. There exist literature, that attempted to
employ the non-spherical Jeans model Hayashi et al. (2020), and other modeling techniques
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(see review Boldrini (2021)). Moreover, stars are very likely to be on non-circular orbits,
especially for dwarf galaxies since they are not rotation-supported but dispersion-supported
systems, so the dark matter profile of dwarfs inferred from the rotation curve may be prone
to be inaccurate.

The previous two problems focus on the least massive subhaloes/satellites. The last well-
known challenge to the ΛCDM model is the Too-Big-To-Fail problem, which focused
on the most massive subhaloes in the simulations. Boylan-Kolchin et al. (2012) compared
the circular velocity of subhaloes in simulation with the observed circular velocity at the
half-light radii. They found that there exist some very massive subhaloes in the simulation
that do not have an observational counterpart, but since the subhaloes are massive, we
expect them to form stars and be detected easily. The Too-Big-To-Fail problem was initially
identified using the satellites in the MW, but other groups subsequentially identify the same
problem using dwarfs in Andromeda (Tollerud et al., 2008), and field dwarfs in the Local
group (Kirby et al., 2014).

1.5 Hydrodynamic simulations

Well-known problems that challenge the ΛCDMmodel include the Missing Satellite Prob-
lem, the core-cusp problem (see Fig.1.4), and the Too-Big-To-Fail problem. These problems
arose from comparing the CDM-only simulation with observation in the local Universe, and
such a comparative study is indeed unfair because simulations were disregarding the influ-
ence of the baryonic component. It accounts for only a few percent of the energy content of
the Universe, but we expect it to produce a feedback mechanism that can drastically change
the inner structure of halos. Therefore, the community has developed several cosmological
simulation codes that include hydrodynamics and baryonic feedback physics, allowing real-
istic simulation of galaxy formation. Due to the suppression of the small-scale structure by
the supernovae feedback, the Missing Satellite Problem seems to be resolved (Sawala et al.,
2016). The feedback mechanism also redistributes and reduces the inner density of the dark
matter halo, creating cored density profile; thus, solving the core-cusp problem. The re-
ionization reduces the circular velocity of the simulated dwarf galaxies, which end up being
less massive than their dark matter only counterparts, and so, solving the Too-Big-To-Fail
problem. The above evidence seem to suggest that ΛCDM is currently facing no serious
problem, or at least the tension with observations is now greatly relaxed.

However, new challenges to the ΛCDM emerged in the past few years, and we will briefly
summarize some of them here. Observations suggest that some dwarf galaxies have cuspy
density profiles, such as Segue I, while some have an obviously cored density profile, like
Fornax. The diverse structure of dwarf is not only presented in the density profile (see
Fig.1.5) (Hayashi et al., 2020), but also in the rotation curves using the SPARC data set
(Oman et al., 2015). Clearly, the core-cusp problem is now transitioned into the diversity
problem. Although the diverse rotation curves are claimed to be solved by considering the
non-circular motion of the gaseous disk, it remains an open issue.

Then, the Missing Satellite Problem is now transitioned to the opposite of it, the Too
Many Satellites Problem. As the name tells, the additional baryonic component, espe-
cially the disk of the Milky Way galaxy, disrupts too many dwarf galaxies in the simulations,
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Fig. 1.5. A comparison between simulated and observed inner profiles of dwarf galaxies.
The inner dark matter density slope at 1.5% of the virial radius of a dark halo as a function
of the ratio between stellar and dark-halo masses M∗/Mhalo, of the dwarf galaxies. The blue
and orange data are from hydrodynamical simulation NIHAO (Tollet et al., 2016) and FIRE-
2. Black dots are observed inner slope of classical dwarf galaxies using Jeans analysis.The
figure is obtained from Hayashi et al. (2020) with permission.

leading to much fewer satellites than observed. As shown in Kelley et al. (2019), in order to
match the observed abundance of dwarfs, we need to populate sub-haloes with Vpeak > 7 km/s
with galaxies, which is well below the hydrogen cooling limit Vpeak ∼ 16 km/s (see Fig/1.6).
Lastly, there is a feature of UFD galaxies that is not able to be explained by ΛCDM model.
For instance, the survival of star cluster within Eridanus II suggests a large central core.
The large core and the low velocity dispersion at the half-light radius of Crater I and Antlia
II also cannot be explained by the tidal stripping effect. Again, UFD galaxies are gas-poor
so baryonic feedback is very inefficient, and thus, cannot explain the core formation in these
galaxies (Errani et al., 2022; Borukhovetskaya et al., 2022).

Homma et al. (2019) with their newly discovered ultra-faint dwarf, Boötes IV, found
that the observed luminosity function shows an overprediction of the number of satellites.
As shown in Fig.1.7, we expected around 1− 2 satellites with absolute magnitude MV < 0,
but we observed 6 satellites instead. Homma et al. (2019) is, therefore, another independent
study that is suggesting the Too-Many-Satellite-Problem to the ΛCDM model.

1.6 Dark Matter particle mass

Above are astrophysical challenges that ΛCDM are facing. To resolve them, we either
improve our understanding of galaxy formation theory or/and dark matter physics. Much
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Fig. 1.6. Cumulative number of subhaloes in simulation compared with observed counts
of satellites within the Milky Way. The grey lines are the cumulative number of simulated
sub-haloes with peak velocity Vpeak larger than 7, 10, 15 and 20 km s−1. The simulations are
performed only with dark matter but included an additional disk potential because the disk
potential is the major baryonic component that disrupts sub-haloes. Peak velocity is the
maximum velocity of the sub-haloes over their history. The black and red thick lines are the
corrected and uncorrected counts of satellites respectively. To reproduce black line within
40 kpc, haloes with Vpeak ∼ 7 km s−1 must form galaxies, which is contradicting because it
is smaller than the hydrogen cooling limit(∼ 16 km s−1). The figure is obtained from Kelley
et al. (2019) with permission.

effort has been made to model realistic galaxy formation physics on top of the N-body sim-
ulations (see review Vogelsberger et al. (2020)), but dark matter physics is far from being a
complete theory. We can see this through the incredibly huge range of viable dark matter
particle mass, which does not only present a problem to the astrophysics community because
a different mass scale leads to different astrophysical consequences, but also a problem to
the field of particle physics. Below shows a list of particle mass of viable dark matter models.

• Ultralight Dark Matter (m > 10−22 eV)
• QCD axion (10−5 − 10−6 eV)
• Warm Dark Matter (105 − 109 eV)
• Weakly Interacting Massive Particle (109 − 1012 eV)
• Primordial Blackhole (∼M⊙)

As a brief review, Weakly-Interacting Massive Particle (WIMP) is the traditional pre-
ferred dark matter candidate of the CDM model, because its thermal relic abundance cor-
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Fig. 1.7. The black line shows the total MW satellite galaxy luminosity function within
300 kpc predicted by Newton et al. (2018). The blue(red) lines shows the correction by
sky coverage(associated with HSC-SSP survey). The green line is the observed luminosity
function that consists of Sextans, Leo IV, Pegasus III, Cetus III, Virgo I, and Bootes IV.

responds precisely to the observed dark matter abundance in our Universe. This is also
referred to as the WIMP miracle. While null detection was reported, detection of WIMP
is still an ongoing research (Roszkowski et al., 2018). A slightly lighter mass than WIMP
would be considered as the WDM model, where sterile neutrino is a promising candidate of
it. The WDM particles are expected to decouple while relativistic, resulting in a suppres-
sion of smaller mass haloes. It has a motivation in the field of astrophysics because it can
solve the Missing Satellite Problem without introducing baryonic feedback. For the lowest
mass scale, we refer to it as the Ultralight Dark Matter (ULDM) model. A more detailed
description will be postponed to a later chapter, but in short, the model is expected to solve
both Missing Satellite and core-cusp problem at the same time. We refer the reader to Di
Luzio et al. (2020) and Carr & Kühnel (2020); Villanueva-Domingo et al. (2021) for more
details on QCP Axion and primordial black holes as dark matter models.

These dark matter models are all capable of reproducing the success of CDM on large
scale, and therefore, we emphasize that instead of distinguishing between CDM and non-
CDM, we should focus on the following question: what is the mass of dark matter particle.
Direct detection with future experiments may give us some hints, but we can also make
use of the observation in the local Universe again, such as the low-mass dwarf galaxies, to
constraint the dark matter particle mass.

1.7 Numerical challenges

To compare with the observed substructure of the Milky Way, such as the dwarf galax-
ies and stellar streams, it requires an accurate understanding of the dark matter structure
formation from numerical simulation. In fact, the falsifiability and success of the CDM
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model are partly due to the well-developed technique for performing efficient N-body simu-
lations. When starting the N-body simulations with a realistic initial condition predicted by
CMB, we can predict the structure formation in the non-linear regime very well, such as the
Navarro–Frenk–White (NFW) profile, the halo mass function, non-linear power spectrum,
and the sub-haloes as the substructure of haloes. Mentioned above are verified by observa-
tions, and some of them are falsified, leading to the Missing Satellite and core-cusp problem.
The efficient N-body method is now always implemented in cosmological hydrodynamic sim-
ulations because dark matter distribution is the backbone of galaxy formation.

So a well-developed and efficient numerical technique for performing dark matter simu-
lation is essential, but the current studied technique in the field of dark matter physics only
focuses on the simulation of the CDM model, whereas other models are much less studied.
More importantly, they are known to face more numerical difficulties than the CDM model.

The WDM model assumes a type of dark matter particle that decouple while relativistic.
The initial power spectrum is suppressed on scales smaller than the free streaming scale,
leading to suppressed dark matter structure on those scales. Therefore, the simulation
of WDM develops the same N-body method but starts with a modified initial condition.
The resulting structure at lower redshift will be similar to CDM on large scale, whereas
small-scale structures are suppressed. Unfortunately, it is known that there are equally
spaced ”spurious” haloes formed along the filaments, and these numerical artifacts need
to be removed, in order to produce a realistic halo catalog. The method of eliminating
the spurious haloes is the main difficulty in simulating the WDM model. Although several
methods are proposed, such as glass simulation, and phase-space based halo finders, it still
remains questionable whether removing structure in the simulation is physical. Moreover,
hydrodynamics simulations could be influenced by these spurious haloes (Paduroiu, 2022).

Another example can be seen in the simulation of the ULDMmodel, as well as the focused
model of this thesis the FDM model. Due to the low particle mass, the model has wave-like
behavior on astrophysical scales. The equation of motion of this model is the Schrödinger-
Poisson equation, instead of Newton’s equation which is the equation for particle-like dark
matter. The numerical technique of simulating ULDM is different and still in its infancy,
but the difficulty in simulating it can be seen by the fact that no group can successfully
simulate a MW-sized halo self-consistently, whereas N-body simulation has already achieved
it as early as 30 years ago.

Again, these alternative models are still viable, because they could reproduce the large-
scale structure of CDM. To distinguish them, thus, require a detailed understanding of the
structure formation on galactic scales from simulation.

1.8 Main Motivation

In this thesis, we decide to focus on the Fuzzy Dark Matter model, which can address all of
the issues above. The FDM model has been receiving a lot of attention recently given that it
could naturally produce core in a halo and suppress structure formation on small scales while
recovering the success of CDM on large scale. Schive et al. (2014b) successfully confirmed the
above with realistic cosmological simulation, and, in addition, discover a relationship between
the core and halo structure, making observational tests against dwarf galaxies possible. Here,
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we again performed a simulation of the FDM model by numerically solving the Schrödinger-
Poisson equation. The result of this thesis improved our understanding of the core structure,
as one of the unique features of the FDM halo, by discovering diversity in the core-halo
structure. Such diversity can explain the inconsistency in the core mass-halo mass relation
among different groups. The observational connection of the discovered diversity with near-
field cosmology is also discussed in the thesis.
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Chapter 2

FDM cosmology and structure
formation

FDM is a subclass of the ULDM, which assumes dark matter as ultra-light bosonic
particles. A good starting point is to approximate the viable particle mass range of ULDM
using the definition of the de Broglie wavelength

λ =
h

mv
(2.1)

The upper bound on the mass comes from the fact that the largest de Broglie wavelength
is of the order of the size of MW halo, λ ∼ RMW . The lower bound refers to the allowed
smallest de Broglie wavelength, which is of order to the inter-particle distance between each
boson. Since we know the matter density in the solar neighborhood ∼ 0.4 GeVcm−3 (Bovy
& Tremaine, 2012), the approximated bounds are

10−25 eV ≤ mc2 ≤ 30 eV (2.2)

Roughly speaking, we can classify mc2 > 30 eV as particle-like dark matter, and mc2 ≤
30 eV as wave-like dark matter. For mc2 ≪ 30 eV , which is the case of FDM, the de
Broglie wavelength is much larger than the inter-particle distance. The wave function of
each boson overlaps leading to superposition, which, in the end, forms a macroscopic wave
function describing the entire system. The time evolution of the FDM distribution is there-
fore described by only a single macroscopic wave function. We remind that this phenomenon
is not new, but borrowed from condensed matter physics, where Bose-Einstein condensation
and superfluity can form with the same quantum mechanism.

Since the FDM model is the focus of this thesis, here we show the de Broglie wavelength
normalized with relevant units

λ = 0.2

(
10−22 eV

mc2

)(vMW

v

)
kpc (2.3)

By assuming the typical FDM mass, mc2 ≈ 10−22 eV, a MW-sized halo will correspond
to λ ∼ 0.2 kpc, whereas a dwarf galaxy with virial velocity ∼ 10 km/s will have a wavelength
of the order of their halo size. Therefore, the astrophysical size of the de Broglie wavelength
must lead to observable astrophysical consequences, which we will discuss further in the next
chapter.
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2.1 Particle physics motivation

The particle candidate of FDM is an axion-like particle (ALP). We remind that axion
has a particle mass ∼ 10−5 eV and an attractive interaction, whereas FDM assumes no
interaction. The ALP for FDM is described by an action based on scalar field theory

S =

∫
d4x

√−g
[
1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
, (2.4)

where the integrand is called the Lagrangian density for scalar field. By assuming a homo-
geneous Friedman-Robertson-Walker background, and potential V (ϕ) = 1

2
m2ϕ2, we obtain

the equation of motion for the homogeneous ALP. The details of the derivation is shown in
Appendix A.1.

ϕ̈+ 3Hϕ̇+m2ϕ = 0 (2.5)

This is the equation of harmonic oscillator, and the solution of it describes the cosmic
evolution of the homogeneous scalar field. We can predict the relic density of ALP today
using the equation, which is

ΩALP ∼ 0.1

(
f

1017 GeV

)2(
mc2

10−22 eV

)1/2

(2.6)

The constant f refers to as axion decay constant (Hui et al., 2017), or the spontaneous
breaking scale, that depends on the initial field value ϕi. Prediction from string theory leads
to f ∼ 1017 GeV, which, by coincident, gives ΩALP ∼ 0.1 if mc2 = 10−22 eV, similar to the
observed matter density today Ωm ∼ 0.27. We emphasize that WIMP particle is a strong
candidate of the CDM model because of the WIMP miracle: the computed relic density
of WIMP is of the same order of the observed matter density today. So the above relic
calculation for the case of ALP demonstrates that ALP is as equally competitive as WIMP,
because it can produce observed matter density today as well.

2.2 Perturbation Theory

So far, we are desribing scalar field as a homogeneous component. By applying pertur-
bation theory, we can study Jeans instability and the initial power spectrum of the FDM
model. The perturbed equation of motion for the density constrast δ = δρ/ρ is

δ̈ + 2Hδ̇ +

(
k2

a2
c2s − 4πGρ

)
δ = 0, (2.7)

which is again an equation for harmonic oscillator with time dependent friction term 2H,
and mass term (k2c2s/a

2 − 4πGρ). The latter describes the competition between gravity and
pressure. The effective sound speed depends on the perturbed fluid quantity c2s ≈ k2/(4m2a2)
(Hwang & Noh, 2009). On large scale, the gravity term dominates and leads to Jeans
instability. The perturbation evolves in either growth mode δ ∝ a or decaying mode
δ ∝ a−3/2, which is exactly same as the perturbed equation for CDM model. The difference
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appears on small scale, where the pressure term dominates, and the perturbation oscillates
without growth. We can compute the critical scale when the two competing term are equal
4πGρ = k2c2s/a

2, which is know as the axion Jeans scale

kJ = 66.5a1/4
(
Ωh2

0.12

)1/4(
mc2

10−22 eV

)1/2

Mpc−1. (2.8)

We remind that density depends of scale factor ρ ∝ a−3. For small k mode k < kJ, the
gravitational instability means structure can form. For large k mode k > kJ, oscillating
perturbation means suppresion of structure formatioon, which is one of the major difference
between CDM and FDM model. Alternatively, we could also compute the Jeans length
λJ =

2π
kJ

and Jeans Mass MJ =
4π
3
ρ
(
λJ
2

)
λJ = 94a−1/4

(
10−22 eV

m

)1/2(
0.265

Ωm

)1/4

kpc (2.9)

MJ = 1.47× 107a−3/4

(
0.265

Ωm

)3/4(
10−22 eV

mc2

)3/2

M⊙ (2.10)

Again, only structure with λ > λJ or M > MJ can experience gravitational instability,
leading to structure formation, so the Jeans mass approximates the minimum mass of halo
forms in the FDM cosmology. In comparison to the CDM, which allows formation of halo
down to ∼ 10−6 M⊙, FDM model with mc2 ∼ 10−22 eV cna suppress formation of structure
with mass ≤ 107 M⊙, which is directly addressing the well-known Missing Satellite Problem
without consideration of baryonic physics.

Based on linear theory (δ ∼ 1), the perturbation of FDM density on all scales is described
by the power spectrum. The full calculation of the matter power spectrum requires solving
the equation of motion of the perturbed dark matter Eq.(2.7) but also coupled with all the
other perturbed components in the Universe (photon, baryons, neutrinos...) through gravity.
Such numerical calculation, for the case of FDM model, are encoded in a publicly available
program AxionCAMB (Hlozek et al., 2015). In short, the lienar perturbation tells that the
powre spectrum of FDM model can be approxiamted by a modification relative to the ΛCDM
model

P (k, z) = T 2(k, z)PΛCDM(k, z) (2.11)

where PΛCDM is the linear power spectrum of the CDM model, and the transfer function has
the following form

T (k) =
cosx3J
1 + x8J

, (2.12)

where xj = 1.61(mc2/10−22)1/18(k/kk,eq) and kk,eq = 9(mc2/10−22eV)1/2 Mpc−1 is the Jeans
length at matter-radiation equality. Note that the redshift dependence on the Jeans length
kJ ∝ a1/4 is mild. Using AxionCAMB, we computed the linear power spectrum at z=0
depending on difference FDM mass shown in Fig.2.1. Note that Fig.2.1 is actually showing
the dimensionless power spectrum ∆2 ≡ k3P/(2π2) because we can divide between linear
and non-linear scale at ∆2 ∼ 1. Although Jeans scale provides us an approximated scale
when structure are suppressed, we see that from Fig.2.1, the suppression begins on scale
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Fig. 2.1. Figure is modified from the original Ferreira (2020). The figure shows the di-
mensionless power sepctrum which can be probed by many observables from linear to non-
linear scales. The solid black shows the prediction by ΛCDM model, whereas the colored
lines shows the prediction by FDM cosmology with particle mass mc2 = 10−24, 10−23, 10−22

(green, yellow, purple). The power spectrums are genereated by AxionCAMB Hlozek et al.
(2015).

23



smaller than Jeans scale k < kJ. We can precislty define a scale as the the half mode k1/2
where occurs at T (k1/2) = 0.5

k1/2 = 5.1

(
mc2

10−22 eV

)4/9

Mpc−1 (2.13)

It is evident that we can test the FDM model with mc2 ∼ 10−24 eV using linear ob-
servables such as CMB and LSS, whereas FDM with mc2 ≥ 10−22 eV is not distinguishable
from the CDM model on those scales, and can only be tested using non-linear observables.
Non-linear structure formation, however, requires numerical simulation of the Schrödinger-
Poisson system in order to predict physics accurately.

2.3 Non-linear theory

The non-relativistic and non-linear evolution of FDM is described by a different set of
equations of motion in the above chapter, which assumes either homogeneous background
or linear theory. The derivation is illustrated in more details in Appendix A.2 and , which
lead to the equation of motion of FDM - the Schrödinger-Poisson equation

iℏ
∂ψ

∂t
= − ℏ2

2ma2
∇2ψ +

mΦ

a
ψ (2.14)

∇2Φ = 4πGm(|ψ|2 − ⟨|ψ|2⟩), (2.15)

The effect of the cosmological expansion is included in the scale factor a = 1/(1 + z), and
all quantities are in comoving coordinate. In contrast to particle-like dark matter, which
follows the Newton equations, v̇ = ∇Φ and ẋ = v, it is evident that FDM model has wave-
like behaviour desribed by the Schrödinger wave equation. The fluid quantity, density ρ and
velocity v, are encoded in the wave function ψ which can be re-written in polar coordinate

ψ =

√
ρ

m
eiθ. (2.16)

The amplitude depends on density, and the phase depends on the velocity

ρ = m|ϕ|2 v =
ℏ
am

∇θ (2.17)

In Appendix A.6, we illustrate how to convert from velocity to phase which is an essential
numerical technique to obtain cosmological initial condition from initial particle distribu-
tion. We emphasize that the Schrödinger-Poisson system is invariant under certain scaling
symmetry

{x, t, ρ,m, ψ} → {αx, βt, β−2ρ, α−2βm, αβ−3/2ψ}. (2.18)

Numerically, simulated structure formation is essentially the same, but with different
physical quantities, when we apply the scaling relation above. This is helpful for us to
observe how the structure change in different FDM mass m, without performing another
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simulation. Beside the wave equation, we can convert Eq.2.14 into a fluid description - the
Madelung equations. The full derivation, also called the Madelung transformation, is
illustrated in Appendix A.4.

∂n

∂t
+

ℏ
m
∇ · (nv) = 0 (2.19)

∂v

∂t
+

1

a2
(v ·∇)v =

1

a

ℏ2

2m2
∇
(∇2

√
n√
n

)
− 1

a2
∇Φ. (2.20)

We can see that these equations resemble the continuity equation and Euler equation, but
the latter contains an extra repulsive quantum pressure term ∇2

√
n/

√
n that counteracts

with gravity.

2.4 Wave phenomenology

The wave-like behavior of FDM presents rich phenomenology on small scale, that dis-
tinguishes itself from the traditional CDM or any other particle-like dark matter. We here
review one of the most important features: the core formation in the FDM model.

From the modified Euler equation Eq.2.20, we can predict a structure in hydrostatic
equilibrium that is balanced by gravity and quantum pressure. We call it the core, which is
also referred to as the soliton. We assumed the left-hand side of the Euler equation to be
0. Then, we have

ℏ2

2m2
∇
(∇2√ρ

√
ρ

)
= ∇Φ. (2.21)

It will be useful to make some quick prediction. If we assume spherical symmetry, approxi-
mate ∇ ∼ R−1, and the gravitational force to be GM/R, we obtain

GM

R
∼ 1

m2R2
(2.22)

We can see that the size of the soliton is inversely proportional to its total mass, and also
the square of the FDM mass. After normalizing it to relevant units,

R ∼ 100
109M⊙

M

(
10−22eV

mc2

)2

pc, (2.23)

a FDM mass of mc2 ∼ 10−22 eV can form a sizable soliton within a dwarf-sized galaxy. A
lighter FDM mass, will form a larger soliton which could, thererfore, be easily test against
dwarf galaxies.

2.5 The Core

We remind that one of the important predictions by the CDM model is the mass distri-
bution within the halo following the NFW profile, and such prediction allows CDM to test
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against galaxies. CDM halo itself is balanced by velocity dispersion and gravity, whereas
soliton is balanced by quantum pressure and gravity, so we do not expect the soliton to
follow the NFW profile. We can gain more insight from the hydrostatic equilibrium Eq.2.21.

By applying divergence on both sides and the Poisson equation to the right hand side.

ℏ2

2m2
∇2

(∇2√ρ
√
ρ

)
= 4πGρ. (2.24)

The solution can only be solved numerically and is called the soliton or also the Boson
star. Note this is also the solution for Bose-Einstein condensate (BEC), a quantum bosonic
structure in the ground state. The numerical details are shown in Appendix B.1, and Fig.2.2
shows the numerical solition as black line where density is normalized by core density, and
radius is normalized by core radius defined as ρ(rs) = ρ0/2. Since it is more convenient to
have an empirical formula to predict the soliton profile, several groups provided an empirical
equation that attempts to approximate the numerical solution (Chavanis & Delfini, 2011).
Among them, the profile provided by Schive et al. (2014a), shown as a purple line in Fig.2.2,
is the most frequently adopted in the observational analysis.

ρcore(r) = 1.9× 109a−1

(
10−23eV

mc2

)2(
kpc

rc

)4
(
1 + 0.091

(
r

rc

)2
)−8

(2.25)

The empirical equation agrees well with the numerical solution up to ∼ 4rc, and also
agree with simulated core structure up to ∼ 3rc (Schive et al., 2014a). We remind that
the core profile of the soliton is the essential feature that can solve the core-cusp problem.
Another advantage of using Eq.2.25 is that it gives an analytical equation of the enclosed
mass within the soliton depending on the radius

Mc(r) =
4.2× 109M⊙

mc2/10−23eV(rc/pc)

1

(a2 + 1)7
(3465a13 + 23100a11 + 65373a9 (2.26)

+ 101376a7 + 92323a5 + 48580a3 − 3465a+ 3465(a2 + 1)7)arctan(a),

where a = (21/8 − 1)1/2(r/rc).
Besides the soliton profile, the soliton follows a tight core radius-core mass relation, such

as Eq.2.23. A more accurate, and relevant radius-mass relation can be obtained from the
hydrostatic assumption, but again we often adopt that came from simulation

a1/2Mc =
5.5× 109

(mc2/10−23 eV)2(a1/2rc/kpc)
M⊙. (2.27)

From Fig.2.3, we show the core density profile with varying core mass. It is evident that
a more massive core mass will lead to a smaller core radius following Eq.5.1. Since halo mass
is proportional to core mass, as we will see in the next section, it also means increasing halo
mass will result in a smaller core radius in FDM cosmology.
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Fig. 2.2. Numerical solution to the soliton problem compared with the empirical function
by Schive et al. (2014a). Density and radius are noramlized with core radius and density
respectively.

2.6 The Core-halo structure

The above section has assumed that gravitating system is in hydrostatic equilibrium, but
in general, a self-gravitating system of FDM is not always a soliton. The velocity term in
the Euler equation, the left-hand side of Eq.2.20 can still play a role, where the velocity
dispersion can counteract gravity. This mechanism is indeed the virialization mechanism of
the dark matter halo. In the language of condensed matter physics, the soliton corresponds
to the ground state of the bosonic system, so the non-vanishing velocity term is similar to the
excited state of the system. Schive et al. (2014a) has performed a cosmological simulation
of the FDM model and confirmed that all self-gravitating systems are indeed composed of
two layers: the inner core formed by the balance between quantum pressure and gravity, and
the outer envelope of the soliton, which is full of wave interference, formed by the balance
between velocity dispersion and gravity. We always refer to this system as the core-halo
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Fig. 2.3. Core density profile based on Eq.2.25 at a = 1. The corresponding core masses
of the profiles are 107.2(blue), 107.5(orange), 107.9(green), 108.2(red) and 108.5(purple) M⊙,
whereas the corresponding halo mass, according to Eq.2.31, are 108, 109, 1010, 1011 and
1012M⊙.

structure. The density profile can be described by the cored-NFW profile

ρ(r) =

ρc
[
1 + 0.091

(
r
rc

)2]−8

, for r < rt

ρs

[
r
rs

]−1 [
1 +

(
r
rs

)]−2

, for r ≥ rt

(2.28)

where the core profile is same as Eq.2.25. To ensure continuity between the cored and NFW
profile, we must impose the condition that depends on the scale density ρs

ρs
ρc

=

[
1 + 0.091

(
rt
rc

)2
]−8 [

rt
rs

] [
1 +

(
rt
rs

)]2
. (2.29)

The profile of core-halo structure has at least four free parameters (rc, rt, rs,m), which denote
as the core, transition, scale radius, and the FDM mass respectively. Previous simulations by
Schive et al. (2014b) showed that the core structure is well fitted by the core profile Eq.2.25
with maximum error 2 % up to the transition radius rt ∼ 3rc. For the outer region r > rt,
the profile follows the NFW profile.
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We remind that this model, Eq.2.28 with Eq.2.29, does not guarantee a smooth transition
because we only imposed continuity of the density. To do so, an extra continuity condition in
the first derivative of the density must be imposed in addition to Eq.2.29 for the model to be
both continuous and smooth. However, the resulting transition radius for a smooth transition
is rt < 3rc, as was shown analytically in (Bernal et al., 2018), which is in disagreement with
previous results from simulations (Schive et al., 2014b; Mocz et al., 2017). To be general,
we allow rt to vary.

Observational constraints on the FDM mass using the profile always require modeling of
the core-halo structure. In other words, since the profile depends on 4 parameters, what is
the allowed range for (rc, rt, rs)? Are the parameters dependent on each other? By answering
these questions will certainly help us to reduce the degree of freedom, and model a more
physical FDM halo. Fortunately, Schive et al. (2014b) has found at least two external
conditions to form a core-halo structure through numerical simulations:

rt ∼ 3rr Mc ∝M
1/3
h (2.30)

The first condition allows us to model the transition radius easily if the core radius is known
in advance. We remind again that the core profile Eq.2.25 predicted by Schive et al. (2014a)
also begin to deviate from the numerical soliton solution at 3rr.

The second condition is more interesting, and controversial. It is called the core-halo
mass relation. As the name tells, it means there is a relationship between the halo mass
and the core mass. We remind that there the mass quantity can be easily converted in
to radius using Eq.5.1 for rc, and halo definition1 for rh. In principle, to derive a relation
between them requires knowledge of how the wave interference, the outer envelope, interacts
with the core at the center of the halo. Unfortunately, the exact physics of the interaction
is not well known (but also see Chavanis (2019)). So an empirical relation between the core
and halo mass is very helpful in the context of modeling the profile.

Unfortunately, the core-halo mass relation proposed by Schive et al. (2014b)

Mc =
1

4
√
a

[(
ζ(z)

ζ(0)

)1/2
Mh

Mmin,0

]1/3
Mmin,0 , (2.31)

is under controversial debate, because no other simulation group has successfully confirmed
their relation. In short, Schive et al. (2014b) obtain a slope of 1/3 in the relation, but others
failed to do so. Here is a list of disagreements:

• Schwabe et al. (2016) performed idealised soliton merger simulations and were unable

to reproduce Mc ∝M
1/3
h

• Mocz et al. (2017) used a larger halo sample with simulations of a similar setup and

obtained a slope of α = 5/9, disagreeing with Mc ∝M
1/3
h .

• Mina et al. (2020) found the same slope of 5/9 using cosmological simulations with a
box size of 2.5Mpc/h.

• Nori & Baldi (2021) performed zoom-in simulations by including an external quantum
pressure term in an N -body code, and obtained a relation with yet another value of the

1Mh = (4πr3h/3)ζ(z)ρm0
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slope, α = 0.6.

Such disagreements between multiple different studies indicate that there is still a funda-
mental lack of understanding of the core–halo structure in the FDMmodel, and also generates
uncertainty in any constraints on the FDM mass which were obtained using Mc ∝ M

1/3
h or

similar relations. The problem will be addressed as the main motivation of this thesis.

2.7 Relaxation time

Haloes are virialized systems assumed to be at a steady state, and here we discuss the
mechanism and timescale for FDM halo to reach such a steady state. If we consider the case
of CDM halo, we know that the two-body relaxation time for a collisionless system is several
orders of magnitude larger than Hubble time, so the two-body relaxation must not be the
main relaxation mechanism for the CDM halo. In fact, CDM halo relaxes through multiple
physics, such as phase mixing, chaotic mixing and violent relaxation. The mechanism also
must follow the collisionless Boltzmann equation. In the case of the core of the FDM halo,
the time scale for the condensation of the core is studied by solving the Landau kinetic
equation (Levkov et al., 2018). The time scale is

trelax ∼ 106yr

(
mc2

10−22 eV

)3(
v

30 km/s

)6(
0.1M⊙

ρ

)2

(2.32)

The resulting estimation has a time scale much shorter than the Hubble time, which agrees
with a simulation where soliton condenses quickly with the halo. It also suggests that heavier
FDM mass will lead to inefficient condensation of the soliton. This however remains to be
confirmed with future simulations.

The relaxation mechanism of FDM haloe is called ”gravitational cooling” where density
waves are ejected to settle down the system into a steady state (Guzmán & Ureña-López,
2006). The waves can be easily seen in the formation of the FDM halo.

The end state is a virialized system that must follow the quantum virial theoremQ/|W | ≤
1/2. Derivation is shown in Appendix A.6. The total energy of the system can be derived
from E =

∫
⟨ψ|H|ψ⟩ dr,

E =

∫
ℏ2

2m2
(∇√

ρ)2dr+

∫
ρv2

2
dr+

∫
ρV

2
dr (2.33)

= Q+K +W (2.34)

where Q, K and W are quantum energy, kinetic energy and gravitational potential energy.
The quantum energy term signifies the difference between CDM and FDM gravitational
system. For comparison, the virial theorem for CDM halo is −2K = W .

2.8 Theory exploration

On the non-linear regime, the core formation is not the only feature of the FDM halo
that is different from the CDM halo. There also exists fluctuating granules surrounding the

30



core. Such substructures are inference patterns that were still not well studied. For instance,
literature often assumed Gaussian distribution but what is the distribution of the granules
in simulations? Does the size of the granules change with distance toward the center of
the host halo? The interference contains regions with complete deconstructive interference,
where density vanishes. Such regions are known as the quantum vortices which are ring-
like structures swimming within the outer part of FDM halo (Hui, 2021). Although FDM
simulations are expected to consist of quantum vortices, a robust characterization method
of them remains to be studied in the future.
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Chapter 3

Constraints on FDM mass

We have discussed the theories of the FDM model on the cosmological scale, linear and
non-linear scale. Using the observables on different scales, we can test the theory and put
constraints on the only free parameter of the FDM model, the FDM particle mass m. Fig.3.1
shows some of the most relevant constraints using various observations. Most of them are
excluded bounds, while some constraints are obtained from dwarfs galaxies. This chapter
will provide more details on each of these constraints, and also on those that are not included
in Fig.3.1.

3.1 CMB and Large-scale structure

Hlozek et al. (2015) modified an existing self-consistent Boltzmann code, including the
perturbed equation of motion for the scalar field in synchronous gauge (we remind that Eq.2.7
is in Newtonian gauge), to compute the CMB anisotropies and the matter power spectrum.
They compare the prediction with a combination of CMB data from the Atacama Cosmology
Telescope, the Wilkinson Microwave Anisotropy Probe (WMAP), the Planck satellite, and
the South Pole Telescope with the LSS data from the WiggleZ galaxy-redshift survey. Their
main results provide constraints on both the FDMmassm and the contribution to the cosmic
energy density. They found that for mc2 ≥ 10−24 eV, the model is indistinguishable from
the CDM model, suggesting that such a mass range can reproduce the success of CDM on
the cosmological scale. Intuitively, one can also see Fig.2.1 which agrees that mc2 ∼ 10−24eV
can be easily tested by CMB.

3.2 Lyman α forrest

At a high redshift in the range 2 ≤ z ≤ 6, the low density fluctuation in the intergalactic
medium (ISM) is still linear (δ ∼ 1). The neutral hydrogen gas, which is expected to trace the
underlying dark matter fluctuation, manifests as absorption lines in the high redshift quasar
spectra. Such absorption lines are called the Lyman-α forest. From that, we can measure
the flux power spectrum, and use it to test the linear matter power spectrum predicted
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Fig. 3.1. A summary of the FDM mass constraints that are relevant to the theme of this
thesis. The figure is inspired from Hayashi et al. (2021). Colored regions are excluded bounds,
where a few data points with error bars are constraints. Excluded bound by cosmological
observation of the CMB and LSS comes from Hlozek et al. (2015). The Lyman-α excluded
bound is based on multiple studies (Nori et al., 2019; Iršič et al., 2017; Rogers & Peiris, 2021).
Bounds and constraints made by Jeans analysis are based on a combination of studies (Schive
et al., 2014a; Chen et al., 2017; González-Morales et al., 2017; Hayashi et al., 2020; Safarzadeh
& Spergel, 2020). The strongest constraint is obtained by Hayashi et al. (2021) using data of
Segue 1. A recent study found that granule heating of the stellar orbits in the Segue 1 and
2 also give similarly strong excluded bounds (Dalal & Kravtsov, 2022). Nadler et al. (2021)
with his DES team used the abundance of MW satellites to test the predicted subhalo mass
function of the FDM model and put a lower bound to the FDM mass. The constraint made
by the survival of the star cluster in Eridanus II is directly related to soliton heating (Marsh
& Niemeyer, 2019), however, Chiang et al. (2021) claimed that the tidal stripping effect can
reduce the heating effect.

by any dark matter model. As we have discussed previously in Section 2.2, the quantum
pressure of the FDM model suppresses the linear power spectrum on the scale smaller than
k1/2 ∝ (mc2)4/9. Since the cutoff scale depends on FDM mass, the effectiveness of Lyman-
α forest depends on its resolution: the higher the resolution of the spectra can constrain
heavier FDM mass. In practice, Lyman-α forest indeed can probe scales in between CMB
and galactic scale, so they act as a powerful independent probe of the FDM mass.

The linear power spectrum only provides a crude estimation. We need to perform a full
set of hydrodynamic simulations to model the distribution of the hydrogen gas in the ISM.
This approach suffers from two disadvantages. Firstly, there is a degeneracy between IGM
modeling parameters and the FDM mass. Moreover, although hydrodynamic simulation of
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ΛCDM is possible, that of the FDM model is still difficult to perform. Studies therefore
mostly used the N-body solvers with a modified initial condition, instead of solving the
Schrödinger equation, which fails to capture the effect of quantum pressure in the non-linear
structure formation.

Regardless of the limitations, the Lyman-α forest has provided some of the strongest
bound to the FDMmass. Iršič et al. (2017) used a combination of the XQ-100 and HIRES/MIKE
quasar spectra data set put a lower bound on the FDM mass mc2 > 2 × 10−21eV. A more
recent study by Rogers & Peiris (2021) adopted an emulator modeling technique to further
push the lower bound to heavier mass mc2 ≥ 2 × 10−20 eV. We note that both studies
still did not consider the effect of quantum pressure in their studies, but Nori et al. (2019)
recently confirmed that the inclusion of the quantum pressure does not have a significant
impact on the resulting bounds. These bounds posed issues to the FDM model because it
seems to be in tension with bounds made by dwarf galaxies.

3.3 Halo mass function

We remind that the Missing Satellite problem stems from the observed abundance of
satellite galaxies, so we could see that the abundance can constrain the fundamental proper-
ties of dark matter in general. Since the FDM model suppresses the formation of low-mass
haloes, the observed abundance of the MW satellite galaxies can provide a constraint on the
FDM mass. Nadler et al. (2021) with his Dark Energy Survey (DES) collaboration collected
a set of MW satellite data from the DES and Pan-STARRS1. They modeled the suppression
of the sub-halo mass function of the FDM model with a modified transfer function. They
adopted an additional galaxy-halo connection modeling in their analysis to populate subhalos
with satellite galaxies. They also consider the inhomogeneities in the spatial distribution of
the MW satellites in the analysis. Their main result put a lower bound mc2 ≤ 3× 10−21 eV.

Similar work was done by Schive et al. (2016), but instead of using the abundance of MW
satellites, their observational data are from the population of high-z galaxies at 4 ≤ z ≤ 10,
which is manifested as a high-z luminosity function. Again, the FDM model suppresses the
formation of galaxies at high redshift as well. They performed a N-body simulation with
GADGET-2 with a modified initial condition, measured the high-z halo mass function, and
converted it to UV luminosity functions. By comparing the observed luminosity function
with the prediction, they obtained a lower bound on FDM mass mc2 ≥ 10−22 eV.

The first study predicted subhalo mass function from the modified power spectrum,
whereas the second study predicted halo mass function from N-body simulation. We stress
that the halo is a non-linear structure, so prediction from simulation, not from N-body
but Schrödinger solver, gives the most realistic halo mass function. May & Springel (2021)
performed a large volume cosmological FDM simulation and provided a FDM halo mass
function. Kulkarni & Ostriker (2022) although did not perform simulations, used Extended
Press-Schechter formalism with a sharp k filter to predict the halo mass function analytically.
They found that the m ∼ 2×10−22 eV has a peak mass around 1010M⊙, agreeing with Schive
et al. (2016).
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3.4 Circular velocity of field dwarfs

The circular velocity of dwarf galaxies is closely tied to the Too-Big-To-Fail problem,
meaning that FDM mass can be probed by the observed velocity data. However, it is
still difficult to measure the full velocity curves up to virial radius for faint galaxies with
M ∼ 109−1010 M⊙, so we often use instead the circular velocity at half-light radius for each
dwarf galaxies. At the same time, the structure of dwarf galaxies could be affected due to
the tidal stripping effect from the host galaxies. To have a fair comparison, we should only
consider data from field dwarf galaxies. Robles et al. (2019) collected half-light velocity of
field dwarf galaxies and compare them with their FDM velocity curve models. They found
that a particle mass mc2 ∼ 10−22 eV can explain the observed velocities, therefore, the FDM
model can address the Too-Big-To-Fail problem directly. However, they further found that
their FDM velocity models are difficult to reproduce the galaxy rotation curves from the
SPARC database. The reason is that the SPARC data contain data of ultra-diffuse galaxies,
which are known to pose problems to the FDM model. We will postpone the discussion of
the tension between ultra-diffuse galaxies and the FDM model to a later section. We stress
that data from both field dwarfs and SPARC show a wide diversity in the rotation curves,
which are closely related to the result of this work.

3.5 Jeans analysis

Besides the abundance of dwarf galaxies, their inner structure of them, or more specifically
their density profile, is a very useful probe of the properties of dark matter. For instance,
the core-cusp problem stems from the analysis of the inner structure of dwarf galaxies. Since
the FDM halo generates a soliton core at the center, unlike the CDM halo which has a cusp,
the size of the core in the dwarf galaxies must put strong constraints on the FDM mass.
Indeed, there is already a large amount of literature that applies Jeans analysis to study the
core size of dwarf galaxies. Here we describe shortly Jeans analysis.

Observed dwarf galaxies are composed on stars, which are tracers of the gravitational
potential dominated by the dark matter. The spherical Jeans equation describes the stellar
phase-space distribution depending on the provided dark matter halo mass distribution.

∂[ν(r)σ2
r(r)]

∂r
+

2ν(r)βani(r)σ
2
r(r)

r
= −ν(r)GM(r)

r2
, (3.1)

where ν(r), σr(r), and βani(r) are the stellar number density, radial velocity dispersion and
orbital anisotropy, respectively. M(r) is the enclosed mass of the dark matter. Assuming that
the stellar system is in dynamical equilibrium, which is not always true because dwarf can
experience tidal stripping effect, we can fit the Jeans equation with the observed kinematic
data to obtain information such as slope of the density profile, and the FDM mass. Depend-
ing on the model, the Jeans equation can have 3 − 10 free parameters, and in practice, we
need to apply Markov chain Monte Carlo algorithm (MCMC) to constrain the parameters.
Here we summarize studies that adopted the Jeans analysis:

• Chen et al. (2017) found a particle mass ofmc2 ∼ 10−22 eV by analysing 8 dwarf spheroidal
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galaxies

• González-Morales et al. (2017) made a different conclusion mc2 ≤ 4 × 10−21 eV using
dwarf spheroidal galaxies Fornax and Sculptor.

• Calabrese & Spergel (2016) performed Jeans analysis on two UFDs, Draca II and Tri-
angulum II, and found mc2 ∼ 4× 10−22 eV.

• Safarzadeh & Spergel (2020) gathered data from both dwarf spheroidals and UFDs con-
cluded that the data are incompatible within the theory of FDM model.

• Hayashi et al. (2020, 2021) have studied the both UFDs and spheroidals with much larger
data sets, but they obtained a strong constraint mc2 ∼ 10−19 eV using Segue 1.
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Fig. 3.2. The figure shows the estimated FDM particle masses, mψ, for 17 ultra-faint
dwarfs. The orange points show the median values. The orange and blue dotted errors are
1− and 2− σ credible intervals. The horizontal dashed line corresponds to mψ = 10−22 eV.
Figure is borrowed from Hayashi et al. (2021).

Most of the bounds made by dwarf galaxies favor mc2 ≥ 10−22 eV, except for Segue
I. In fact, it is known that Segue I has a rather small core, which favors a heavier FDM
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particle mass. Thus, it is evident that different dwarf galaxies predicted FDM mass between
10−22 eV ≤ mc2 ≤ 10−19 eV, so a certain FDM mass cannot seem to explain the profile of
all dwarf galaxies at once, which is the argument of Safarzadeh & Spergel (2020). A similar
argument could also be seen in Fig.3.2, which is borrowed from Hayashi et al. (2021). They
estimated the FDM mass using 17 ultra-faint dwarfs and found that most of them, again,
favors mc2 ≥ 10−22 eV, but also show a variation of FDM mass. We emphasize this is simply
another presentation of the diversity problem - dwarfs galaxies can have both core or cuspy
inner profiles. We will discuss later that the main result of this thesis, the diversity of the
core-halo structure of the FDM model, could address the diversity problem stated here.

3.6 Dynamical heating

The interference pattern, or in other words the granules, interacts with the soliton and
causes the soliton the oscillates around the center of the halo. As a result, the oscillation of
the soliton can heat the stars cluster and disrupt it in the end. Marsh & Niemeyer (2019)
studied the survival of the star cluster in the UFD, Eridanus II, and found a strong constraint
on the FDM mass ∼ 10−19 eV. However, the analysis ignores the fact the Eridanus II could
be tidally stripped, where the oscillation will be drastically reduced (Chiang et al., 2021).

Another form of heating is generated by the fluctuation of the granules.Dalal & Kravtsov
(2022) studied the size and the velocity dispersion of Segue I and II, and put a strong
constraintmc2 ≥ 3×10−19 eV on the FDM model. The constraint is similar to the constraint
made by Hayashi et al. (2021) using Segue 1. Again, Dalal & Kravtsov (2022) only applied
their analysis to UFDs that have a small core. It will be interesting to see if a small FDM
mass will be obtained using UFDs with large cores such as Crater I and Antlia II.

3.7 Future astrophysical probes

Above we summarized some of the linear and non-linear observables that were often
used to constrain the FDM model. To close this section, we will lastly discuss some of the
prospects of other observational probes.

Starting with something more familiar, improvements can still be made to modeling the
kinematics of dwarf galaxies. Spherical Jeans analysis was always the adopted methodology,
but it is known to suffer from a degeneracy between the mass and anisotropic parameter.
There already exists literature that improves the Jeans analysis. Hayashi et al. (2020) applied
non-spherical Jeans analysis to 8 spheroidal dwarf galaxies. Walker & Peñarrubia (2011) also
proposed another method that can measure the inner slope by combining Jeans analysis with
the chemo-dynamically distinct stellar sub-components of the dwarf galaxy. Although it is
not related to the Jean analysis, the Schwarzchild dynamical model Schwarzschild (1979)
is another promising method to realistically reproduce the full mass profile of a galaxy.
Observational improvement on the kinematic data will be discussed in the later section, which
is related to the upcoming spectroscopic survey by The Subaru Prime Focus Spectrograph.

Besides modeling the dwarf galaxy, we can also study the dynamical friction problem
originating from the globular clusters of Fornax. Clearly, the core formation in the FDM
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model could easily solve the problem, but further analysis or simulations are needed in order
to understand the effects of the granules.

As mentioned, one of the most distinctive features of a FDM halo, besides the core, is
the granular structure. These are interference substructures on the scales of the de Broglie
wavelength. Such features could be signatures in at least two observables: stellar streams
and gravitational lenses. For instance, Dalal et al. (2021) generated the effect of granules by
evolving a realistic wavefunction in a static gravitational potential. They showed that it is
possible to determine the FDM mass through the density perturbation in the streams. It is
also expected to have improved stellar stream data of, for instance, GD-1 and Palomar 5,
from further Gaia data releases in the future. Kawai et al. (2022) has attempted to constrain
the FDM mass by modeling the fluctuation in the strong lensing system SDSS J0252 + 0039
with an analytical model. We expect future higher resolution observation, for instance by
ALMA, can provide a stronger constraint on the FDM mass.
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Chapter 4

Numerical Simulation of FDM

To test the FDM model against dwarf galaxies, we need an accurate prediction of the
structure formation of it. To fully capture the non-linear structure formation of the FDM
model, we must solve the time-dependent Schrödinger-Poisson equation given in Eq.2.14.
There are numerous methods proposed to solve it, but in this work, we decided to adopt
the pseudo-spectral method. Before we dive into the introduction of the pseudo-spectral
method, we here state the factors to consider when choosing a numerical method:

• Order of accuracy in time and space
• The stability condition/Convergence condition
• Mass and energy conservation
• Computational cost

Lastly, based on the structure of the mesh or the spatial discretization method, a different
conclusion will be made. In this work, we will assume uniform spatial mesh and finite
difference methods since they are the easiest to implement from scratch. The best method
must therefore be high order of accuracy in time and space, stable with large time steps,
conserve mass and energy and have the least computational cost. For a more detailed
description of other numerical Schrödinger solvers, we refer the reader to Appendix B.2. In
Chapter.4.1, we discuss the tests we have performed to verify the convergence and stability
of our numerical algorithms.

The time-dependent Schrödinger–Poisson (SP) given in 2.14 and 2.15 are discretized on
a uniform spatial grid and evolved from timestep n to the next timestep using the Strang
splitting pseudo-spectral method. Please refer to Appendix B.2 for more numerical details,
but the main idea is to split the Schrödinger-Poisson equations into three steps:

iℏ
∂ψ

∂t
=
mΦ

a
ψ (half step) (4.1)

iℏ
∂ψ

∂t
= − ℏ2

2ma2
∇2ψ (full step) (4.2)

iℏ
∂ψ

∂t
=
mΦ

a
ψ (half step) (4.3)

(4.4)
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The problem is now simplified to solving the Schrödinger equation with only the diffusive
term, which is just a diffusion equation but wave function is complex, and the potential
term. The latter can be solved exactly by an exponential integrator ψn+1 = eK∆ψn.
The Schrödinger equation with only the diffusive term can be solved by spectral method.
We first Fourier transform the equation, so the Laplace operator ∇2 → −k2 where k2 =
k2x + k2y + k2z , then the resulting transformed equation F [ψn+1] = eD∆F [ψn] can be solve
exactly again using exponential integrator. In summary, we can express the Strang spitting
spectral method in one equation

ψn+1 ≈ eK∆tF−1
[
eD∆tF

[
eK∆tψn

]]
, (4.5)

whereK = −imΦ/(2ℏa), D = −iℏk2/(2ma2), and F denotes the Fourier transform operator.
This scheme is second-order accurate in time and exponentially accurate in space. Each full-
time integration is divided into three steps, which is similar to the symplectic leapfrog,
kick-drift-kick, integrator. Before applying the kick operator eK∆t, the potential Φ must be
updated by solving the Poisson equation shown in 2.15.

There are two limitations to this method. Since the numerical method is explicit, the
choice of time step must follow a Courant–Friedrichs–Lewy (CFL)-like condition. In this
case, the phases of the exponential operators must be smaller than 2π:

∆t < min

{
4

3π

m

ℏ
∆x2a2, 2πa

ℏ
m |Φmax|

}
, (4.6)

where |Φmax| is the maximum value of the potential. The scale factor for the next time
step is approximated by anext ≈ a + Ha∆t, which is later used to calculate the time steps
for the kick and drift operators. At early times, the CFL condition is determined by the
drift operator. As the gravitational potential becomes deeper at later times, the kick term
begins to control the choice of time step. For example, ∼ 90% of the computational time is
controlled by the drift term in our simulations. The scheme restricts this work to simulations
of less massive haloes, because the core radius–halo mass relation rs ∝ M−α

h implies that a
higher spatial resolution is required to resolve the small core radius of a massive halo, leading
to smaller time steps based on the CFL condition ∆t ∝ ∆x2.

The second disadvantage of this scheme is that it is only applicable to uniform mesh
because Fourier transform requires grids to be uniformly spaced. If one adopted the AMR
scheme, the spectral method cannot be adopted. We must give up the spectral accuracy and
return to the lower order method.

Previous core–halo relations are obtained from different types of simulations. The most
general way is to perform a cosmological simulation, but these simulations are often re-
stricted to end before redshift z = 0 and the number of well-resolved cores is limited due to
computational difficulties. A cheaper approach is to perform non-cosmological simulations
of soliton mergers. This approach allows more control of the resolution and the final halo
mass but is at risk of simulating unrealistic haloes due to the idealized, non-cosmological
initial conditions.
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4.1 Qualitative Tests

We have performed several tests for our Schrödinger-Poisson solver:

• Propagation of a gaussian wave packet
• 1D Gaussian wave mergers
• 3D Cosmological simulation
• Comparison with other cosmological FDM code

We stress that there is no analytical solution for the Schrödinger-Poisson system, but
there is an analytical solution for the Schrödinger equation without the potential term when
the initial condition is a Gaussian wave. It is known as the Gaussian wave packet (Brandt
et al., 1986). The evolution of a 1D wave packet follows ψGWP(x, t) =M(x, t)eiθ(x,t), where

M(x, t) =
1

(2π)1/4σ
1/2
x

e−(x−x0−vx0t)2/(4σ2
x)

θ(x, t) =
1

ℏ

[
mvx0 +

σ2
px

σ2
x

t

2m
(x− x0 − vx0t)

]
(x− x0 − vx0t) +

v2x0m

2ℏ
t− tan−1

(
2σ2

pxt

ℏm

)
1

2

and σ2
x =

ℏ
4σ2

px

(
1 +

4σ4
pxt

2

ℏ2m2

)
. The 3D solution is simply

ψGWP(x, y, z, t) =M(x, t)M(y, t)M(z, t)ei[θ(x,t)+θ(y,t)+θ(z,t)].

Since this is an analytical solution, we can rigorously test any Schrödinger solver with the
wave packet solution. This is very important for comparison with different numerical meth-
ods, and even with AMR scheme.

We remind again, that the wave packet test does not include the gravitational potential,
and there is no analytical solution to the coupled Schrödinger Poisson system. However, it
is essential to test if our scheme can capture the interference pattern during merger events,
because some solvers, such as the Madelung solver based on the hydrodynamic equations
Eq.2.24, fail to simulate the regions with 0 density. The second test is to simulate a Gaussian
wave merger in 1D. As shown in Fig.4.1, the pseudo-spectral code is stable while resolving
the constructive and destructive interference pattern.
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Fig. 4.1. Time evolution of two Gaussian wave merger in 1D by numerically solving the
Schrödinger-Poisson Equations using pseudo-spectral method. Purple lines are density and
green lines are gravitational potential in dimensionless unit. X-axis is dimensionless position.
As the waves merge, interference pattern is created. In the end, the two waves merged into
one, and the wave keeps oscillating.

After that, we fully extend our scheme into a 3D cosmological FDM solver. To include
the expansion of the Universe in our calculation, we need to integrate the scale factor to
obtain the size of the time step ∆t while following the CFL condition. The initial condition
is obtained through MUSIC where the initial redshift is at z = 50. We performed both
cosmological simulations of FDM and CDM, where the latter is simulated through GADGET-
2. Fig.4.2 shows a comparison between the evolution of structure formation of FDM with
mc2 = 5 × 10−24 eV and CDM. Although we expect different dark matter distributions
between the models, the idea is to confirm if the structure converges at least on large scale,
which is the case here. We can also clearly see how the FDM model indeed suppresses
structure formation on a smaller scale due to quantum pressure. In fact, the adopted particle
mass mc2 = 5× 10−24 eV in this test is already ruled out by CMB observation, so the result
of this section does not provide any in-depth analysis of the FDM model, but to verify our
implementation of the FDM solver, such as the cosmological units, the time integration of
the scale factor, the cloud-in-cloud interpolation of the initial snapshot, etc.

The convergence between CDM and FDM simulation on large scale demonstrates the
validity of our FDM solver, but the ultimate test is to compare our solver with existing
FDM solver in the community. While we were developing the code, there was still no FDM
solver available to the public, but we, fortunately, have a chance to perform a small code
comparison project with May & Springel (2021). Our codes are independently developed, but
adopted the same pseudo-spectral splitting method in a second order. Again, we adopted the
same initial condition, and perform the simulation until z = 0. To quantify the simulated
dark matter distribution in our snapshots, we measure and compare the power spectrum
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Fig. 4.2. Comparison of slices of cosmological simulations between FDM (top row) and
CDM (bottom row) model at redshift z = 50, 7.5 and 0 with boxsize L = 10 Mpc/h. FDM
simulation is performed with mc2 = 5× 10−24 eV.

P (k) =< δ2k > as shown in Fig.4.3. It is remarkable how our power spectrum agrees with
each other, and how the power spectrum approaches CDM on small k.

4.2 Convergence Tests

The pseudo-spectral solver guarantees the conservation of energy and mass of the wave
function. Here we quantitatively shows the convergence of the adopted numerical method,
and how energy and mass are conserved within several percent for N3 ≥ 643. We test
the solver by performing soliton merger simulations with 6 solitons following Eq.2.25 with
being distributed at (d, 0, 0), (−d, 0, 0), (0, d, 0), (0,−d, 0), (0, 0, d) and (0, 0,−d), where d =
100 kpc. The boxsize is 800 kpc, and the assumed particle mass is mc2 = 10−23 eV. For this
particular test, we performed simulations with N3 = 643, 1283, 2563 and 5123. The timestep
is always chosen to be the largest possible step following the CFL-like condition Eq.4.6.

Fig.4.4 and 4.5 show the percent error for energy and mass respectively. The error
becomes less with increasing spatial resolution, showing the convergence of the conservation
for both energy and mass. It is interesting to point out that the numerical method does
better in the conservation of energy than mass. The sudden rise of error for mass occurs
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Fig. 4.3. Comparison of the power spectrum at z = 0 between the code used in this work
and that of May & Springel (2021) for a cosmological test simulation.

during the merging event, but, nevertheless, the percent error for both stay below 3% for
simulations with N3 ≥ 643.

Fig.4.6 shows the density profile of the merged soliton in the simulations. When the
spatial resolution is low, it is clear that the core structure is not resolved, and shows a steep
rising profile at the center. For this particular core/halo mass, the core structure is perfectly
resolved only with N3 ≥ 2563. Fig.4.6 demonstrates the numerical convergence of the density
profile with more refined spatial resolution. We remind that if the core size is smaller for
heavier core or halo mass, then the core profile will become less resolved.
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Fig. 4.4. Conservation of energy. Pink, blue, green and black lines are the percent error of
the total energy of the snapshot simulated with spatial resolution N2 = 643, 1283 , 2563 and
5123 respectively.
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Fig. 4.5. Conservation of mass. Pink, blue, green and black lines are the percent error of
the total mass of the snapshots simulated with spatial resolution N2 = 643, 1283 , 2563 and
5123 respectively.
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4.3 Current/Upcoming numerical schemes

We remind that Appendix.B.2 has shown a few introductory solvers for the Schrödinger-
Poisson system. We will here close the section by reviewing some of the numerical schemes
that are still being used in the community.

Starting with Schive et al. (2014b,a) who have adopted the splitting method again but
solved the Schrödinger equation by expanding the exponential operator with Taylor expan-
sion until the 3rd order. Schwabe & Niemeyer (2022) developed Axionyx that can combine
the efficiency of N-body simulation with the finite-difference solver for the Schrödinger equa-
tion on adaptively refined meshes. On the mesh level, they solve the Schödinger equation
with a 4th order Runge-Kutta method, and the coupled SP system is solved with a 6th order
splitting scheme. Their recent work Schwabe & Niemeyer (2022) claimed to successfully
perform a zoom-in simulation to simulate a MW-size FDM halo. We remind, however, that
Axionyx does not include the quantum pressure term in the N-body simulation. Another
group, Hopkins (2019), made use of the GIZMO code and solved the FDM equations with
the finite volume method. He tested the scheme not only on the Schrödinger-Poisson system
but also on the Madelung equations and the combination of both. He found a stable way
to simulate FDM with the finite volume method, and also made use of the adaptive scheme
that was already implemented in GIZMO. Regardless of the method of spatial discretization,
since all solvers mentioned above adopted an explicit time stepping scheme, they all suffered
from the stringent time-step constraint that scales with the square of the spatial grid size
(see Eq.4.6). It is essential to experiment with implicit methods, such as the Crank-Nicolson
method, to explore if there is a net gain in the simulation speed. In short, the numerical
scheme of FDM simulation is still a developing field, which is essential for studying the
non-linear dynamics of the FDM model.

47



Chapter 5

Diversity of Core-halo structure

This section presents the result published in Chan et al. (2022), for which the author of
this thesis was mainly responsible for. The paper was co-authored by Elisa G. M. Ferreira,
who performed the statistical analysis and provided theoretical expertise, Simon May, who
provided numerical data and support, Masashi Chiba ad Hayashi Kohei, who provided their
expertise in a dwarf galaxy. We performed FDM simulations based on the numerical scheme
and set up in the previous chapter, collected a large halo catalog. We found a scatter in our
resulting core-halo mass relation, which manifests as a diversity in the core-halo structure
of the FDM model.

5.1 Setup

In this work, we analyse the properties of haloes from three different sets of simulations:

1) soliton merger simulations
2) cosmological simulations in a small box and
3) a high-resolution large-scale cosmological simulation.

The first two sets of simulations are performed in this work, and the last was performed
by May & Springel (2021). All of them used the same numerical scheme, but different initial
conditions. We refer the reader to Appendix B.3 for numerical conversion between particle
and wave quantity.

5.1.1 Soliton merger simulations

The soliton merger simulations are performed with a particle mass mc2 = 10−22eV, a box
size L = 300kpc and at z = 3 on a grid with N3 = 5123 cells. The simulations are started
with six randomly-placed solitons with mergers mostly occurring at t ∼ 0.1 tH, where tH is
the Hubble time. Since the simulations at z = 3 take 16 times longer than those at z = 0
due to the dependence of the time step on the scale factor as shown in 4.6, we stop the
simulations at 0.5 tH. We have checked that haloes at t ∼ 0.5 tH are relaxed, since they meet
the virialisation criterion |2(K +Q)/W | ≈ 1 (Hui et al., 2017; Mocz et al., 2017) (where K,
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Q and W , are the kinetic, quantum and potential energies, respectively). However, we also
included unrelaxed haloes in between 0.1 tH < t < 0.5 tH in our results. Alternative initial
settings were tested, such as increasing the number of solitons with a larger range of masses,
but the results do not change the main conclusion of this work.

5.1.2 Small-volume cosmological simulations

A series of cosmological simulations are performed using the same resolution, particle
mass, and box size. They all begin from z = 50 and stop at z = 0. The initial conditions
are generated using MUSIC (Hahn & Abel, 2011) with the CDM transfer function from
Eisenstein & Hu (1998); Eisenstein & Hu (1999), and the following cosmological parameters:
Ωm = 0.276, ΩΛ = 0.724, h = 0.677 and σ8 = 0.8. Due to the difficulty of simultaneously
resolving the large-scale structure and the inner non-linear evolution of haloes on a grid size
of 5123, we use initial conditions that correspond to zoom-in regions with L = 300kpc of a
larger 1 Mpc box generated by MUSIC with different random seeds.

5.1.3 Large-volume cosmological simulation

A large-volume high-resolution cosmological simulation was performed by May & Springel
(2021) with similar cosmological parameters, but larger box size L = 10 Mpc/h and grid
size N3 = 86403, and slightly lighter particle mass mc2 = 7× 10−23eV. With such a box size
and spatial resolution, this simulation contains a population of haloes with diverse formation
histories, including tidally stripped, isolated, and merged haloes. Therefore, it provided us
with a more realistic measurement of the core–halo mass relation in a fuzzy dark matter
(FDM) universe. Fig.5.1 visually shows the time evolution of the density distribution in
different simulations. It is clear that, whether a halo is formed through soliton mergers
or gravitational collapse of large-scale structure, there always exists a stable core structure
enveloped by interference fluctuations within its host halo, but we will see later that different
box sizes can lead to different types of core–halo structure.

5.1.4 Initial power spectrum

As noted above, in this work (as well as May & Springel, 2021), we did not use the initial
power spectrum of the FDM model, which presents a suppression of power on small scales,
because the inner structure of haloes is insensitive to the initial conditions. Simulated haloes
with comparable size of the soliton are rare if a more realistic power spectrum is applied,
but should still exist and therefore be included in the resulting core–halo mass relation.

5.1.5 Spatial resolution

Our soliton merger simulations have a smaller box size, but the same number of grid
cells (5123) as our cosmological simulations, so the resolution ∆x = 0.644 kpc is better
than previous studies (Schwabe et al., 2016; Mocz et al., 2017). This allows us to resolve
smaller cores, but the haloes may experience stripping effects from their own gravitational
pull. On the other hand, although the large simulation is performed in high resolution, the
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Fig. 5.1. Time evolution of core and halo. The top row shows an example of a soliton
merger simulation at z = 3 in a box of size 300kpc with particle mass mc2 = 10−22eV. The
bottom row shows a selected halo formation from the large-scale structure simulations by
May & Springel (2021). A stable core–halo structure can always be found at the end of all
simulations. For illustrative purposes, the first two columns are projected density, but the
last column is a slice of the snapshot.

(re-scaled) grid resolution ∆x = 1.547 kpc is still twice as large as that of the soliton merger
simulations. The importance of resolving the core with fine enough grids is reflected in the
core mass–radius relation. Fig.5.2 shows that simulated haloes have cores following a tight
relation:

a1/2Mc =
5.5× 109

(mc2/10−23eV)2(a1/2rc/ kpc)
. (5.1)

As the core becomes more massive, the core size decreases further. When the core size
is resolved by less than two grid cell lengths, the relation becomes more dispersed and
discretised.

5.2 Density profiles

The centres of the haloes from the simulations performed in this work are found by
the minimum gravitational potential, and those from the cosmological simulation in May &
Springel (2021) are determined by selecting the densest cells of haloes found by a grid-based
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Fig. 5.2. Core mass–radius relation scaled to mc2 = 8× 10−23 eV via Eq.2.18. The black
line is a fitting relation Eq.5.1 from Schive et al. (2014a). The dashed lines show 2∆x as a
reference of the resolution limit for the simulations of this work and May & Springel (2021).
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friends-of-friends-like halo finder. We measured the spherically averaged density profile and
performed fitting to Eq.2.28 to extract rc, rt and rs for all haloes. As shown in Fig.5.3, a
flat cored structure is identified towards the center in all profiles. They are well fitted by the
core density profile Eq.2.28 with a maximum error of 10% up to the core radius rc. After the
transition radius rt, the profiles follow the Navarro–Frenk–White (NFW) profile. We also
see that for some haloes, we have a direct transition from the core to the NFW profile, while
others show a longer transition with an intermediate behavior linking the two regimes.

One interesting feature we observe is oscillations in these profiles in their outer regions
that can only be modeled on average by the smooth NFW profile. A possible reason for the
fluctuations is that they are caused by the interference granules in the NFW region. If this is
true, it is possible that halo density profiles can be used to measure this unique interference
pattern present in models like FDM. More tests are needed to confirm this hypothesis.

In previous simulations (Schive et al., 2014b; Mocz et al., 2017), the transition radius
was found to be rt ≥ 3rc, where the residual error between the data and the core profile is
less than 2% for r < rt. However, our measured rt, purely from fitting to the cored NFW
profile Eq.2.28, disagrees with these previous results. The error at 3rc is greater than at least
10%, as shown in the bottom panel of Fig.5.3, meaning the actual rt should be located at a
radius smaller than 3rc. The range of values for the measured rt in Fig.5.4 shows that most
haloes do have rt ≤ 3rc. Other recent work, such as Yavetz et al. (2021), also shows smaller
transition radii, e. g. rt ≈ 2rc. As mentioned before, from theory, to guarantee a continuous
and smooth transition from the solitonic core to the NFW profile, continuity of both the
density and of its first derivative would be necessary, which translates to the requirement
rt ≤ 3rc, which, therefore, agrees with our result. This implies that all the haloes in the
simulations presented here have a continuous and smooth transition from the core to the
NFW profile, with or without a transition period, and thus do not suffer from the apparent
inconsistency present in previous simulations.

5.3 The core–halo mass relation

Fig.5.5 shows the core–halo mass relation obtained from the soliton merger and cosmo-
logical simulations. All data are scaled to mc2 = 8 × 10−23eV using Eq.2.18 in order to
enable a direct comparison with the data and fitting relation from Schive et al. (2014b). For
reference, we also show the core–halo mass relation of a soliton-only profile, i.e. a pure core
profile with rt → ∞ in Eq.2.28, represented by the solid black line. This curve indicates
the minimum halo mass for a certain core mass, and any haloes located to the right of the
soliton-only core–halo relation must have the usual cored NFW structure. For haloes in
the soliton merger simulations with mass ≳ 108M⊙, the relation has a steeper slope than
α = 1/3, confirming the results from Mocz et al. (2017). However, haloes from the large-
scale cosmological simulation predict a core–halo relation with a large enough dispersion
that can cover a range of data produced by both the soliton merger simulations and Schive
et al. (2014b). The range of the dispersion can span as large as one order of magnitude in
halo mass for Mc ∼ 5 × 107M⊙. This dispersion, which fills in the space in between the
soliton-only line and the relation from Schive et al. (2014b), indicates the diversity of the
cored NFW structure in the FDM simulations. For example, Fig.5.3 highlights two profiles of
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Fig. 5.3. Scaled density profile of haloes obtained from simulations of this work and May
& Springel (2021). The scaled core profile is shown as black line. We highlight two haloes
with pink and dark green and their best-fit cored NFW profile. They have similar core mass,
but an order of magnitude difference in the halo mass. The bottom sub-panel shows the
percentage error between data and core profile. The dashed line denotes an error of 2%.
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Fig. 5.4. Range of transition radius as a function of halo mass. The dashed line shows the
typical transition rt = 3rc obtained from Schive et al. (2014b).
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haloes simulated in this work with cores resolved by at least 3∆x. Purple and faint purple
dots are haloes from the large-box cosmological simulation (May & Springel, 2021) with
cores resolved by at least 2∆x and ∆x respectively. The pink shaded region is enclosed by
the empirical fits to the purple and green dots, with the maximum and minimum values of
the parameters in Eq.2.31. The solid dotted line corresponds to the soliton-only relation
obtained from a pure core profile. The black and orange dashed lines are fitting relations
corresponding to the black and orange dots obtained from Schive et al. (2014b) and Nori &
Baldi (2021)1respectively.
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haloes with similar core massMc ∼ 5×107M⊙, but different halo mass. The tight one-to-one
core–halo relations found by different groups, with different slopes, therefore only describe a
part, but not all populations of haloes in the FDM model.

We suggest an empirical equation that has the following form: Mc = β + (Mh/γ)
α. The

parameter β takes the limit of the relation for small halo masses into account, although low-
mass haloes are rare in a FDM universe due to the suppression in the initial power spectrum.
α is the slope that can be compared to previous works. After including the scaling symmetry
in Eq.2.18 and the redshift dependence according to Schive et al. (2014b), we have

a1/2Mc = β

(
mc2

8× 10−23eV

)−3/2

+

(√
ζ(z)

ζ(0)

Mh

γ

)α(
mc2

8× 10−23eV

)3(α−1)/2

M⊙ .

(5.2)

The best-fit parameters for the haloes from the large-box cosmological simulation give β =
8.00+0.52

−6.00 × 106M⊙, log10(γ/M⊙) = −5.73+2.38
−8.38 and α = 0.515+0.130

−0.189, which is shown as a pink
shaded region in Fig.5.5.

The effect of the large dispersion is encompassed in the uncertainty of the model parame-
ters. This uncertainty is not the statistical uncertainty of the fit, but an ”overestimation” of
the uncertainty in the parameters that can reflect the large dispersion of the data. Indeed,
the statistical uncertainty would be the incorrect quantity to consider in this case, since we
do not assume that there is an underlying true set of values for the parameters with sta-
tistical fluctuations, but rather propose that different halo populations could systematically
follow different relations depending on their histories and properties (see Chap.5.3.1). To
obtain a more appropriate description of the core–halo diversity, we employed kernel density
estimation (KDE), estimating the probability distribution function of the core masses with
respect to the central value of the corresponding binned halo mass. Each of these distribu-
tions reveals the dispersion of core masses for each halo mass.2 We then obtain the minimum
and maximum curves Mc(Mh) that fit all of these distributions, and extract the minimum
and maximum values for the parameters b, γ and α from these curves. The difference in the
global fit is our uncertainty in the parameters.

Nori & Baldi (2021); Mocz et al. (2017); Schive et al. (2014b) determined slopes α of
0.6, 0.556, and 0.333, respectively. Given the large dispersion seen in our data, all of these
slopes are compatible when taking into account the uncertainty we assigned to the fitting
parameters. So when considering the fitting function we propose, all of the other cases in
the literature are covered as well. We emphasize that our results show that a general halo
population is not well-described by any single one-to-one core–halo mass relation. Further
investigation is required to determine which halo populations follow which relations (if any),
and under what conditions – cf. Chap.5.3.1.

This large spread and uncertainty in the fitting function can affect the constraints on the
FDM mass obtained from these relations. Here, we provide a rough estimate of the error. For
the same halo massMh = 109M⊙ in Fig.5.5, we can have the least massive core mass asMc =

1We adopted parameters resulting from the varying exponents analysis without sub-sampling restrictions.
2We can provide the distribution of core masses for each halo mass bin by request for those interested.
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3× 107M⊙ and the most massive as Mc = 108M⊙. Applying these values to the core density
in Eq.2.28 gives a 50% difference in particle massm. Therefore, any observational constraints
made using the relation Eq.2.31 should include an additional uncertainty on the order of 50%
in the results, unless the halo mass is smaller than 109(8×10−23eV/(mc2))3/2M⊙. Therefore,
when obtaining the FDM mass using the core–halo relation, one needs to take into account
the dispersion of these values, shown in the uncertainty in the fitting parameters, which will
translate to higher uncertainty in the FDM mass.

We now scrutinize whether the scatter of the core–halo relation has an influence on the
FDM mass constraints through a dynamical analysis for dwarf galaxies, as has been per-
formed in the literature when fitting the presence of a core in such galaxies. To this end,
we apply the spherical Jeans analysis to the kinematic data of the Fornax dwarf spheroidal
galaxy, which has the largest data set among the Galactic dwarf satellites. We perform the
Jeans analysis3 using two different core–halo relations, which are suggested by Schive et al.
(2014b) and this work, and then we map the posterior probability distributions of the FDM
mass through the Markov Chain Monte Carlo (MCMC) technique based on Bayesian statis-
tics. Comparing the posteriors, there is no clear difference in the shape of those distributions,
including that of FDM mass, but this is due to the fact that there exists a degeneracy be-
tween halo mass and FDM mass. Therefore, this degeneracy makes it hard to see the impact
that the core–halo relation has in the Jeans analysis.

Due to limited spatial resolution, we could only observe the dispersion to increase with
halo mass untilMc ∼ 6×107M⊙. It would be important for potential future higher-resolution
simulations to examine if the dispersion keeps increasing along the soliton-only relation or
not. Again, the increasing dispersion is of importance to observational studies since it will
also lead to an increasing uncertainty in the core–halo relation.

5.3.1 The origin of the dispersion

Different core–halo structures have been found in different simulations:

• As mentioned before, Schive et al. (2014b) and Mocz et al. (2017) find different results
for the slope α (1/3 vs. 5/9), even for similar simulation setups (soliton mergers).

• Mina et al. (2020) claim to confirm a slope of α = 5/9, as found in the soliton merger
simulations of Mocz et al. (2017), but using a cosmological simulation, contradicting
the result of α = 1/3 from Schive et al. (2014b). However, the number of haloes in
their sample is very small.

• Schwabe et al. (2016) performed soliton merger simulations similar to Schive et al.
(2014b) (and later Mocz et al., 2017)4 and could not reproduce the previously-found
value of the slope α, or indeed any universal relation.

3For the dynamical analysis we adopt in this work, the interested reader may find further details in
Hayashi et al. (2021).

4Although Schwabe et al. (2016) made use of sponge boundary conditions instead of periodic boundary
conditions.
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• Nori & Baldi (2021) studied the dynamics of eight simulated haloes and concluded
with a similar comment: Schive et al. (2014b) and Mocz et al. (2017) only captured a
partial representation of the core–halo relation in a realistic cosmological sample.

• Yavetz et al. (2021) used the Schwarzschild method to construct self-consistent FDM
halos and found that a stable core–halo structure can exist even when the adopted
core–halo mass relation deviates from Schive et al. (2014b).

These examples illustrate that the diversity of the possible core–halo slopes found in different
works seems to originate from the type of simulations performed, which results in halos and
cores that have different properties. The diversity of core–halo structure found in these
simulations is exhibited in our work, where we can clearly see the difference between the
core–halo mass relation from halos formed in soliton merger simulations (green points in
Fig.5.5) and in cosmological simulations (pink points in Fig.5.5).

We can think of a few possible explanations for this diversity of halos: merger history
(Du et al., 2017; Yavetz et al., 2021), tidal effects, and the relaxation state of the halo (Nori
& Baldi, 2021). Formation and merger history is an explanation that seems very plausible
to be a relevant factor. Larger cosmological simulations, like the one from May & Springel
(2021), present halos that could have very different merger histories, and a large dispersion
is expected. This is different from the soliton merger simulations, where we do not expect a
complicated merger history. We leave for future work to try to identify the different merger
histories and try to clarify how this relates to the different incarnations of the core–halo mass
relation.

Another possible factor that can also contribute to the dispersion found is a tidal effect.
There are two different scales of tidal effects can come into play: the tidal stripping effect
on the subhaloes, and the environmental tidal effect by the LSS. Here, we will attempt to
provide an argument to support the former as one element responsible for the dispersion,
based on the setups of various simulations. By comparing the box sizes and the resulting
slopes α between the small-volume cosmological simulations of this work with Mocz et al.
(2017) and Schive et al. (2014b), which are 335, 1765,≥ 2000 kpc (box sizes) after re-scaling
via Eq.2.18, and ∼ 0.9; 0.556; 0.333 (slopes) respectively, we find that smaller simulation box
sizes are correlated with a steeper slope in the core–halo relation. This can be explained by
the stripping effect on the halo by its own gravity due to the periodic boundary conditions:
the self-stripping effect becomes more effective at removing mass from the NFW region
as the box size decreases. This skews the core–halo structure towards smaller halo masses,
steepening the core–halo relation. A more rigorous test to prove the above argument requires
simulations with increased spatial resolution and box sizes up to at least 2 Mpc, which current
numerical schemes are unable to feasibly achieve.

The self-stripping effect is a numerical artifact, but there is no doubt that a stable
core–halo structure can exist within such environments. In more realistic cosmological sim-
ulations, dwarf satellites also experience a similar effect from their host haloes in the form
of tidal stripping. Therefore, we suggest that stripping effects by tidal forces are one of the
contributing factors causing the dispersion obtained from the large-box simulation in May
& Springel (2021). One subtlety is that the tidal effect is an interaction between host haloes
and sub-haloes with at least two orders of magnitude difference in mass, but the halo finder
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used in May & Springel (2021) does not identify sub-haloes. However, it is known that sub-
haloes in cold dark matter (CDM) simulations can temporarily move outside of the virial
radius of the host halo after the first pericentric passage (van den Bosch, 2017). We assume
that ejected sub-haloes should also exist in a FDM cosmology, and therefore identified by
the halo finder.

Despite the tidal stripping effect could be weak in the isolated simulations, the environ-
mental effect from the LSS in principle can decrease the density of haloes in the cosmological
simulations. For instance, the cosmological haloes (see Fig.5.3) are denser in the NFW region
than the isolated haloes. Since the profiles are normalized by the core density, the difference
between them could be explained by the tidal force that pulls the inner mass to the outer
NFW region of the halo in the cosmological simulation.

An in-depth analysis of the tidal effect on the core–halo relation, or FDM sub-haloes
in general, would require building merger trees, which is still not yet studied in any FDM
cosmological simulations. We leave this investigation to future work.

5.4 Other relations: Core radius–halo mass relation

As suggested by Burkert (2020), the FDM model may fail to explain the observed trend
of the core radius–halo mass relation measured from dwarf galaxies. We follow Mina et al.
(2020) and present the core radius–halo mass relation measured from our FDM halo samples.
As shown in Fig.5.6, the scatter is still observed, but the decreasing trend, which is a fun-
damental property of quantum pressure-induced cores, is in disagreement with the positive
scaling predicted by low surface brightness (LSB) galaxies (Salucci et al., 2007; Di Paolo
et al., 2019).

The disagreement is expected because the negative scaling, where less massive galaxies
are cored, allows the FDM model to solve the core–cusp problem, but the relation from LSB
galaxies has the opposite behavior, where massive galaxies have larger cores. In addition,
LSB galaxies are predicted in CDM simulations to have experienced tidal heating and su-
pernova feedback (Martin et al., 2019). Therefore, the relation between core radius and halo
mass poses a challenge to the FDM model, but more importantly, it motivates future FDM
simulations to include baryonic physics to verify if LSB-like galaxies can be formed or not.
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Fig. 5.6. Core radius vs. halo mass. Green and purple points are properties of haloes
from simulations of this work and May & Springel (2021). The black line shows the relation
predicted by a soliton-only density profile. The dashed line is an empirical function predicted
by LSB galaxies (Salucci et al., 2007). Black crosses are from Di Paolo et al. (2019).
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Chapter 6

Future Prospect

In this thesis, we discovered the diversity of halo in the FDM model through numerical
simulations and it is now important to investigate the observational consequences of the
diversity. As discussed, there indeed exists a diversity problem with dwarf galaxies, meaning
the rotation curve and density profile are too diverse to be explained by the ΛCDM model,
even including the consideration of baryonic component Oman et al. (2015); Hayashi et al.
(2020). It will be interesting to test if the diversity in the core-halo structure helps solve
the diversity problem in the dwarfs. However, Hayashi et al. (2020) adopted Jeans analysis
and it is not well known how we include the scatter into the MCMC-based Jeans analysis.
Moreover, Oman et al. (2015) included low surface brightness galaxies in their samples, which
are known to be created through baryonic physics. Instead, we can look at the circular
velocity of field dwarf galaxies, which have been studied by Robles et al. (2019), because
field dwarfs are small enough to have inefficient baryonic feedback, but also far enough from
the host to be unaffected by tidal effect. In fact, there also exists a scatter in the circular
velocity that is not mentioned in the work of Robles et al. (2019). As one of our future
works (see Fig.6.1), we model the core-halo structure at z=0 by including the scatter in the
core-halo mass relation and directly compare it with the circular velocities of the observed
field dwarf galaxies.

Observationally, we expect The Subaru Prime Focus Spectrograph (PFS), as an upcoming
spectroscopic survey, to provide the sample sizes and velocity precisions required to determine
whether the dwarf density profiles are more consistent with ΛCDM or FDM model in the
future. The Galactic Archaeology Program of PFS has targeted six dwarf spheroidals: Boötes
I, Draco, Ursa Minor, Sextans, Sculptor, and Fornax. Two different analysis techniques are
proposed to independently determine the inner slope of the targeted dwarf galaxies, which
will allow us to distinguish between core formation by baryonic feedback or dark matter
physics, such as quantum pressure (PFS Collaboration, in prep.).

Our second future work is to improve the numerical solver for the Schrödinger-Poisson
system. Since the time step is mostly limited by the Schrödinger solver ∂tψ = ∇2ψ, the ques-
tion is how we could overcome the CFL-like condition ∆t ∝ ∆x2. Since most Schrödinger-
Poisson solvers, at least in the astrophysics community, adopted an explicit method, it is
essential to test if the implicit method can allow larger time steps. We propose solving the 3D
Schrödinger solver with the Crank-Nicolson method, which is implicit and norm preserving.
However, we remind that implicit methods are computationally more expensive to solve at
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Fig. 6.1. Circular velocity of haloes. Purple and cyan shade are FDM halo model with
mc2 = 10−21 eV based on Robles et al. (2019) but with an additional ±25% scatter in the
core-halo mass relation Eq.2.31. Data points are circular velocity of field dwarf galaxies at
the half-light radius. Grey shades are CDM haloes with an ±0.1 scatter in the concentration-
mass relation for NFW profile, which demonstrates the Too-Big-To-Fail problem.

each time step, so the main idea is to test if the implicit solver can outperform the explicit
solver with a larger time step even if it suffered from higher computational cost. We remind
that there exists a higher-order Crank-Nicolson method that can help improving the effi-
ciency (van Dijk et al., 2011). Fig.6.2 shows the error of the Schrödinger solver based on the
explicit method in the GAMER code (Schive et al., 2014a), the Crank-Niclson method, and
higher order Crank-Nicolson method. Although the code development is still in progress, at
this stage, we can already see the advantage of using Crank-Nicolson in Fig.6.2. The explicit
method becomes unstable quickly for large time steps, but for the high order method, the
time step could be an order of magnitude larger than the explicit method.
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Fig. 6.2. Comparison of numerical error between explicit and Crank-Niclson methods.
M = 1 corresponds to the standard, whereas M = 2 is the higher order version of Crank-
Nicolson method. Error is obtained by comparing with the analytical solution of the 3D
Gaussian wave packet in Chapter.4.1.
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Chapter 7

Conclusion

Solitonic cores are found to be formed in simulations of the FDM model as a consequence
of gravity and the uncertainty principle, but there is still no consensus on a single universal
scaling relation that describes the relationship between a halo’s mass and that of its core, or
that one even exists. In this work, we performed new soliton merger simulations and used
data from a large-scale cosmological FDM simulation. All simulations are evolved by solving
the Schrödinger–Poisson equations through the pseudo-spectral method, which can capture
wave phenomena completely. Here is a summary of our findings in this thesis.

We found an agreement between the measured density profiles and a cored NFW profile,
but the transition radii of most of the haloes are located at ≤ 3rc. This is in disagreement
with previous simulations (Schive et al., 2014b; Mocz et al., 2017), but more consistent with
the analytical requirement where the transition between the inner core and the outer NFW
profile must be continuous and smooth.

The resulting core–halo mass relation, obtained from both soliton merger and cosmolog-
ical simulations, shows an increasing dispersion with halo mass. The spread extends all the
way from the limit of a pure soliton profile to that of Schive et al. (2014b), signifying the di-
versity in core–halo structure. We suggest that, for small cosmological simulations, artificial
stripping effects due to periodic boundary conditions could partially be responsible for the
variety of slopes in the relation predicted by different simulations. However, ”natural” tidal
stripping effects of various severity also exist in larger simulations, which therefore exhibit
a greater spread in the relation. Further, the exact impact of variations between individual
haloes on the relation, such as merger history or relaxation state, remains to be uncovered.

We provided a new empirical equation that considers the non-linearity in the low-mass
end, but we emphasise that any core–halo relation must suffer from an uncertainty produced
by the diversity demonstrated in this work. Therefore, observational analyses that adopted a
core–halo relation must take into account this uncertainty in the fitting parameters, including
the particle mass of the FDM model.

Due to the limited spatial resolution imposed by the time step criteria, our samples
still do not represent the full population of core–halo structure. To obtain this, simula-
tions using a more flexible numerical scheme, such as adaptive mesh refinement (Schive
et al., 2014a; Mina et al., 2020), and sub-halo catalogs from merger trees would be needed.
Such future work would verify whether the dispersion keeps growing beyond halo masses of
109(8× 10−23 eV/(mc2))3/2M⊙, or whether the tidally stripped sub-haloes can explain the
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observed diversity in the inner slope–halo mass relation. We also plan future to understand
the merger history of the halos we have in the cosmological simulation, using the same tech-
niques as for CDM, in order to try to understand how halos with different merger histories
influence the core–halo mass relation.

Lastly, including baryonic physics will further complicate the core–halo structure because
the core can now not only be induced by quantum pressure, but also by stellar feedback
physics, not to mention the question of how these processes would interact. However, only
baryonic physics has a chance of matching the core radius–halo mass relation of LSB galaxies
with FDM.
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Appendix A

Equation of motions

A.1 Homogeneous scalar field

The calculation starts by assuming the Lagrangian density of a scalar field dark matter
to the following form

L =
√−g

[
1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
where gµν is the metric,

√−g is the determinant, and ϕ is the scalar field. V (ϕ) is a potential
that can be approximated by the Taylor expansion

V (ϕ) =
1

2
m2ϕ2 +

gint
4!
ϕ4 + · · · ,

where the first and second term are the mass term and interaction term respectively. For
the FDM model, we consider only the mass term, which means a free field that only has
one parameter, the particle mass m without interaction. We consider the homogeneous
Friedman-Robertson-Walker metric

gµν =


−1 0 0 0
0 a−2 0 0
0 0 a−2 0
0 0 0 a−2

 ,
so the Lagrangian density becomes

L = a3
[
−1

2
ϕ̇2 − 1

2
m2ϕ2

]
,

where terms with ∂iϕ vanish due the homogeneity of ϕ. To obtain the equation of motion
from the Lagrangian density, we apply the Euler-Lagrange equation in field theory

0 = ∂µ
∂L

∂(∂µψ∗)
− ∂L
∂ψ∗

Since ∂t(a
3ϕ̇) = a3(ϕ̈+3Hϕ̇), we obtain the equation of motion for a homogeneous axion

background
ϕ̈+ 3Hϕ̇+m2ϕ = 0
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A.2 Non-relativistic scalar field

We adopt the same ALP Lagrangian density and potential in section A, but this time we
will consider the perturbed Friedman-Robertson-Walker metric

gµν =


−(1 + 2Φ) 0 0 0

0 a−2(1− 2Φ) 0 0
0 0 a−2(1− 2Φ) 0
0 0 0 a−2(1− 2Φ)

 ,
where Φ is the Newtonian gravitational potential. Note that the above is the inverse of the
metric gµν in ds2 = gµνdx

µdxν . The Lagrangian density becomes

L = a3
[
−1

2
(1 + 2Φ)(∂tϕ)

2 +
1

2a2
(1− 2Φ)(∂iϕ)

2 − 1

2
m2ϕ2

]
In the non-relativistic regime, the scalar field varies slowly and we can factored out the fast
oscillation terms. The field can be rewritten in terms of the complex field ψ

ϕ =
1√
2m

(ψe−imt + ψ∗eimt).

So the squared terms in the Lagrangian density are

(∂tϕ)
2 = mψ∗ψ + i(ψ∗∂tψ − ψ∂tψ

∗)

(∂iϕ)
2 =

∂iψ∂iψ
∗

m

ϕ2 =
ψψ∗

m

Note that we work with the lowest order in ∂ψ and ignore the fast oscillation terms with
e2imt. The Lagrangian density becomes

L = a3
[
− 1

2
(1 + 2Φ)(mψ∗ψ + i(ψ∗∂tψ − ψ∂tψ

∗))

+
1

2a2
(1− 2Φ)

∂iψ∂iψ
∗

m

+
1

2
mψψ∗

]
We neglect terms with Φ∂ψ, and finally we obtain the Schrödinger Lagrangian.

L = a3
[
i

2
(ψ∗∂tψ − ψ∂tψ

∗)−mΦψ∗ψ − ∂iψ∂iψ
∗

2ma2

]

A.3 Non-linear regime

Again, we apply the Euler-Lagrange equation in section A to obtain the equation of
motion for the FDM model in the non-relativistic limit

i

a3/2
∂t(a

3/2ψ) = − 1

2ma2
∇2ψ +mΦψ
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where we know that a−3/2∂t(a
3/2ψ) = ∂tψ + 3

2
ȧ
a
ψ. The equation is rewritten in comoving

quantities
ψc = a3/2ψ ∇c = a∇ Φc = aΦ

and we obtain the Schrödinger equation

i∂tψc = − 1

2ma2
∇2

cψc +
m

a
Φcψc,

where the gravitational potential follows the Poisson equation

∇2
cΦc = 4πGm(|ψc| −<ψc>)

A.4 Madelung equations - the quantum hydrodynamic

equations

Instead of describing the dynamics of the FDM with the Schrödinger-Poisson equation, we
can apply the Madelung transformation to obtain a set of quantum hydrodynamic equations
which resemble the Euler equation and continuity equation. We start with defining the wave
fucntion with fluid quantities

ψ =
√
neiθ,

where n is number density and θ is the phase. We apply it to the Schrödinger equation while
we recover the constant ℏ and assume a = 1 in this derivation

iℏ∂t(
√
neiθ) = − ℏ

2m
∇2(

√
neiθ) +mΦ(

√
neiθ).

We remind that ∇2(fg) = f∇2g + 2∇f · ∇g + g∇2f and ∇2(eiθ) = eiθ(i∇2θ − (∇θ)2). We
expand the equation above and separate it into real and imaginary component

∂t
√
n =

ℏ
2m

(2∇√
n · ∇θ +√

n∇2θ)

∂tθ =
ℏ
2m

[∇2
√
n√
n

− (∇θ)2
]
− m

ℏ
Φ

Now the trick is to multiply
√
n to the first equation on both sides, and apply ∇ to the

second equation on both sides. After some calculation, we then obtain the the Madelung
equations

∂tn+
ℏ
m
∇ · (nv) = 0

∂tv + (v ·∇)v =
ℏ2

2m2
∇
(∇2

√
n√
n

)
−∇Φ.
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A.5 The scaling symmetry

Based on Mocz et al. (2018), they claim that Schrödinger-Poisson system has the following
scaling symmetry

{x, t, ρ,m} → {αx, βt, β−2ρ, α−2βm}
Since the wave function ψ ∝

√
ρ/m, it also has a symmetry

{ψ} → {αβ−3/2ψ}

From the Poisson equation ∇2Φ ∝ ρ, we can obtain a symmetry for the gravitational poten-
tial

{Φ} → {α2β−2Φ}
Now if we plug in all the scaling symmetry into the Schrödinger equation, we obtain

αβ5/2∂ψ

∂t
= αβ5/2∇2ψ

m
− αβ5/2mψΦ

where the constants cancel each other. We remind that there are typos regarding the scaling
symmetry in Mocz et al. (2017) and Chan et al. (2022).

A.6 The virial theorem

We start with defining the moment of inertia I = m
2

∫
drr2|ψ|2, where density is ρ = |ψ|2.

Alternatively, we can also define it with inner product ⟨A,B⟩ =
∫
A∗Bdr, where ∗ denotes

as complex conjugate

I =
m

2
dr
〈
ψ, r2ψ

〉
(A.1)

The idea is to perform a second-time derivative on the moment of inertia Ï, and set it to
zero due to equilibrium. We remind that the Schrödinger equation tells that iℏ∂tψ = Hψ,
and the conjugate version is iℏ∂tψ∗ = −Hψ∗, where H is the Hamiltonian H = ℏ2/2m∇2 −
mΦ So the first derivative of the moment of inertia is as follow:

İ =
m

2

(〈
∂ψ

∂t
, r2ψ

〉
+

〈
ψ, r2

∂ψ

∂t

〉)
= −im

2ℏ
(〈
ψ, r2Hψ

〉
−
〈
ψ,Hr2ψ

〉)
We applied the Schrödinger equation and the self-adjointness of the Hamiltonian, meaning
⟨HA,B⟩ = ⟨A,HB⟩. Now if we define commutator as [A,B] = AB −BA, we have

İ = −im
2ℏ
〈
ψ, [r2, H]ψ

〉
(A.2)

same as Hui et al. (2017). Similarly, if we apply time derivative again, we have

Ï = − m

2ℏ2
〈
ψ, [[r2, H], H]ψ

〉
(A.3)
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By calculating the commutator, and converting ψ into the fluid quantity ψ =
√
ρ/m eiθ and

v ≡ ℏ∇θ/m, we have

Ï = −
∫
ρr ·∇Φ dr+ 2

∫
ρv2

2
dr+ 2

∫
ℏ2

2m2
|∇√

ρ|2dr, (A.4)

where the first, second and third integral term are the gravitational energy W , kinectic
energy K and quantum energy Q respectively. At the state of equilibrium, we have Ï = 0 =
W + 2K + 2Q, but note that since K > 0 we have the following virial theorem

Q

|W | ≤
1

2

A virialized system in FDM model must satisfy the virial theorem.
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Appendix B

Additional numerical details

B.1 Shooting a soliton

Here we solve for a numerical solution to the soliton profile. Assuming spherical sym-
metry, we can simply expand the derivatives in Eq.2.24 to obtain a 4th order differential
equation. Then, we adopt dimensionless quantities

X = r
2GMm2n

1/4
o

ℏ2
f = ρ

πℏ6

2G3M4m6no

we will obtain the following 4th order differential equation

f ′′′′ = 2f 2 −
(

4

X
f ′′′ − 10f ′f ′′

fX
+

6f ′3

f 2X
− 3f ′′′f ′

f
− 2f ′′2

f
+

7f ′2f ′′

f 2
− 3f ′4

f 3

)
,

where ′ is ∂/∂X To numerically solve it, we apply the shooting method. We start with an
initial condition and advance until X is large enough to see f goes to 0. We need 4 initial
conditions to yield physical density profile, meaning density is finite at center, and 0 at
infinity.

f(0) = 1, f ′(0) = f ′′′(0) = 0, f ′′(0) = A

Based on Chavanis & Delfini (2011), we must adopt A = −0.612386937160. For simplicity,
we discretize the spatial step with Euler methods. Then, we separate the 4th order differential
equation into a set of 4 first order equation

f ′
i =

fi+1 − fi
∆X

f ′′
i =

f ′
i+1 − f ′

i

∆X

f ′′′
i =

f ′′
i+1 − f ′′

i

∆X
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f ′′
i+1 − f ′′

i

∆X
= 2f 2

i −
[
4

Xi

f ′′′
i − 10f ′

if
′′
i

fiXi

+
6f ′3

i

f 2
i Xi

− 3f ′′′
i f

′
i

fi
− 2f ′′2

i

fi
+

7f ′2
i f

′′
i

f 2
i

− 3f ′4
i

f 3
i

]
We start with i = 0 and advance to solve for (fi+1, f

′
i+1, f

′′
i+1, f

′′′
i+1) until the desired steps

N . We have tested a few numbers of N (Figure below). Most profiles are the same in the
inner part, but we observed that larger N will give a profile that extends to larger X before
blowing up to infinite density. As it clearly shows, soliton has a cored profile. We made the
above numerical algorithm publicly available, and in addition, we included a version with
4th order Runge-Kutta method 1.
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Fig. B.1. Numerical soliton solution in different spatial resolution N. f and X axis are
normalized density and radius defined in text. As the resolution increases, we can resolve to
larger radius.

B.2 Alternative Schrödinger solver

There exists a huge amount of literature discussing the numerical method for solving the
linear Schödinger equation. Here we describe three of them, and why there are not suitable

1https://github.com/jchan192/ShootingSoliton
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for our numerical simulation. Let’s define here the equation without constants

∂ψ

∂t
= ∇2ψ − Φψ

The simplest case is to apply the Euler method for the time derivative

ψn+1
i − ψni
∆t

= D2ψn − Φn
i ψ

n
i ,

where D2 is the any prefered spatial discretization. For example, a 2nd order center difference
would mean D2ψ = (ψni+1 − 2ψni + ψni−1)/∆x. Unfortunately, the method is only 1st order
accurate both in time, and more importantly, it does not conserve the norm |ψ|. We can
improve the temporal accuracy by using a higher order method. For example, Schwabe et al.
(2016) adopted the 4th order Runge-Kutta method to evolve the Schrödinger step. However,
we must remind that the method is explicit, so the timestep is heavily limited by the CFL
condition, and Runge-Kutta does not converse with the norm in principle.

A mass and energy conserving Schrödinger solver is the Crank-Nicolson method. It
is also an implicit method, thus, it is less constrained by the CFL method.

ψn+1
i − ψni
∆t

=
D2ψn+1 +D2ψn

2
− Φn+1

i ψn+1
i + Φn

i ψ
n
i

2

One well-known disadvantage of any implicit method is its expensive computational cost:
each time step requires more time to solve than explicit methods. For instance, if we adopt
the Crank-Nicolson method to solve the Schrödinger equation, we are solving a system of
linear equations expressed in matrix form Ax = b, where A is a matrix depending on the
spatial discretization, b is obtained from ψn and we solve the linear system for x, which is
ψn+1. In 1D, A is a tridiagonal matrix so the linear system can be solved by the Thomas
algorithm. However, the situation becomes complicated in 2D and 3D, so in general, we
will solve the linear system with the relaxation method.

The last method we discuss is the split-step method with exponential integrator, which is
the adopted method in this work. The Schrödinger equation can be expressed as ∂tψ = Hψ,
where H = −∇2 + Φ is the Hamiltonian operator. We can solve it exactly by exponential
integrator

ψn+1 = eH∆tψn+1.

Solving the above will give exact solution, which is not possible if we have both the laplace
operator and potential. Thus, the main question is what eH∆t means numerically. A naive
approach is to approximate it as

ψn+1 ≈ e−∇2∆teΦ∆tψn+1

This is called the Lie-Trotter splitting, which is only first order accurate. The second
order method is called Strang splitting

ψn+1 ≈ eΦ∆t/2e−∇2∆eΦ∆t/2ψn+1

Besides the advantage of the second order temporal accuracy, the method is also 1) symplec-
tic, similar to the leap-frog method adopted in N-body simulation, 2) unitary so it preserves
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norm, and 3) also can be combined with the spectral method for spatial discretization. This
method is explicit, so the timestep must be constrained by CFL-like condition ∆t ∝ ∆x2. If
the spatial discretization is uniform, the spectral method is superior to all other described
methods because of its spectral accuracy in spatial resolution. We remind that the Strang
splitting spectral method, or in short, the pseudo-spectral method, is the adopted numerical
scheme of this work.

B.3 Cosmological initial condition: from particle to

wave

From MUSIC, we obtain an initial phase space (x, y, z, vx, vy, vz) of the particles, and we
will need to convert them into an initial wave function ψ for the FDM solver. We remind that
the fluid quantity (ρ,v) is related to the amplitude and phase of the wave function through
Eq.2.16 and 2.17. The amplitude can be obtained cloud-in-cloud algorithm, which is the
standard practice to assign particles to grid density. The phase is slightly more different.
We need to first apply the divergence on the velocity relation in Eq.2.17 to obtain

am

ℏ
(∇ · v) = ∇2θ

Note that this is simply a Poisson equation. We apply the cloud-in-cloud algorithm as well
to the velocity (vx, vy, vz) at each grid. So the left hand side is known, and we can finally
obtain the phase at each grid by performing Fourier transform and its inverse, which is the
spectral solver for the Poisson equation. We now have an initial wave function ψ =

√
ρ/meiθ

We note that different code may have different units. For example, the velocity in Gadget
format .

Above describes the mathematical method of converting the information from particle to
wave. Numerically, we are discretizing the wave function into uniform grids, so we need to
apply the cloud-in-cell interpolation to assign each particle quantity to their corresponding
neighbouring cells. In 3D, each particle should have eight neighbouring cells. Assuming each
N-body particle has a mass of mp, the equations of the cloud-in-cell interpolation for all
eight cells are

ρi,j,k = ρi,j,k +mptxtytz ρi+1,j,k = ρi+1,j,k +mpdxtytz

ρi,j+1,k = ρi,j+1,k +mptxdytz ρi+1,j+1,k = ρi+1,j+1,k +mpdxdytz

ρi,j,k+1 = ρi,j,k+1 +mptxtydz ρi+1,j,k+1 = ρi+1,j,k+1 +mpdxtydz

ρi,j+1,k+1 = ρi,j+1,k+1 +mptxdydz ρi+1,j+1,k+1 = ρi+1,j+1,k+1 +mpdxdydz

where we define
da = xa − ca ta = 1− da.

a is a subscript for {x, y, z}, ca is the center of the box, and xa is the position of the particle.
Although this only shows the case for density, similar method is also applied for the velocity
in x, y and z directions.
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B.4 FFT based Poisson Solver

In this work, we faced the Laplace operator at least three times: the Schrödinger equation
∂tψ = ∇2ψ, the velocity-phase relation in Appendix B.3, and finally the Poisson equation
∇2Φ = 4πGρ. Here we demonstrate how we can use Fourier transform to handle the Laplace
operator, and, for example, solve the Poisson equation. We remind that, however, Fourier
transform requires the grid to be uniformly spaced, so the method does not apply to adaptive
meshes. After applying Fourier transform to the Poisson equation, we obtain

F [Φ] = −4πGF [ρ]

k2
,

where F refers to Fourier transform. In 3D, the wavenumber is k2 = k2x + k2y + k2z . The
gravitational potential Φ can be obtained by performing a backward Fourier transform on
both sides. In short, the solver can be expressed as

Φ = F−1

[
−4πGF [ρ]

k2

]
In practice, the Fourier transform can be easily performed by the publicly available Fast
Fourier Transform (FFT) library2. The wavevector in each dimension follows the Nyquist
frequency. We note that the algorithm will fail when k = 0, so we need to force the algorithm
to assign Φ = 0 when k = 0. In fact, this procedure means the gravitational potential has a
zero mean. To test the Poisson solver, we suggest the following test equation

ρ(x, y, z) = − sin(x) sin(y) sin(z)

In periodic boundary condition, we will expect Φ = ρ for dimensionless form.

2fftw.org
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Clowe D., Bradač M., Gonzalez A. H., Markevitch M., Randall S. W., Jones C., Zaritsky
D., 2006, ApJL, 648, L109

Dalal N., Kravtsov A., 2022, arXiv e-prints, p. arXiv:2203.05750

Dalal N., Bovy J., Hui L., Li X., 2021, , 2021, 076

76

http://dx.doi.org/10.1093/mnras/stx3208
http://dx.doi.org/10.3390/galaxies10010005
https://ui.adsabs.harvard.edu/abs/2021Galax..10....5B
http://dx.doi.org/10.1093/mnras/stac653
https://ui.adsabs.harvard.edu/abs/2022MNRAS.512.5247B
http://dx.doi.org/10.1088/0004-637X/756/1/89
https://ui.adsabs.harvard.edu/abs/2012ApJ...756...89B
http://dx.doi.org/10.1111/j.1365-2966.2012.20695.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.422.1203B
http://dx.doi.org/10.1119/1.14717
https://ui.adsabs.harvard.edu/abs/1986AmJPh..54.1153B
http://dx.doi.org/10.1086/305262
https://ui.adsabs.harvard.edu/abs/1998ApJ...495...80B
http://dx.doi.org/10.1146/annurev-astro-091916-055313
http://dx.doi.org/10.3847/1538-4357/abb242
http://dx.doi.org/10.1093/mnras/stw1256
http://dx.doi.org/10.1146/annurev-nucl-050520-125911
https://ui.adsabs.harvard.edu/abs/2020ARNPS..70..355C
https://ui.adsabs.harvard.edu/abs/2016arXiv161205560C
http://dx.doi.org/10.1093/mnras/stac063
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511..943C
http://dx.doi.org/10.1103/PhysRevD.100.083022
https://ui.adsabs.harvard.edu/abs/2019PhRvD.100h3022C
http://dx.doi.org/10.1103/PhysRevD.84.043532
https://ui.adsabs.harvard.edu/abs/2011PhRvD..84d3532C
http://dx.doi.org/10.1093/mnras/stx449
http://dx.doi.org/10.1103/PhysRevD.103.103019
https://ui.adsabs.harvard.edu/abs/2021PhRvD.103j3019C
http://dx.doi.org/10.1086/508162
https://ui.adsabs.harvard.edu/abs/2006ApJ...648L.109C
https://ui.adsabs.harvard.edu/abs/2022arXiv220305750D
http://dx.doi.org/10.1088/1475-7516/2021/03/076
https://ui.adsabs.harvard.edu/abs/2021JCAP...03..076D


Dark Energy Survey Collaboration et al., 2016, MNRAS, 460, 1270

Di Luzio L., Giannotti M., Nardi E., Visinelli L., 2020, , 870, 1

Di Paolo C., Salucci P., Erkurt A., 2019, MNRAS, 490, 5451

Du X., Behrens C., Niemeyer J. C., Schwabe B., 2017, Phys. Rev. D, 95, 043519

Eisenstein D. J., Hu W., 1998, ApJ, 496, 605

Eisenstein D. J., Hu W., 1999, ApJ, 511, 5

Errani R., Navarro J. F., Ibata R., Peñarrubia J., 2022, MNRAS, 511, 6001
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