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Abstract

In this paper, we propose a parsimonious model to estimate large volatility matrices
by combining DCC-GARCH, sparsity-induced weak factors (sWFs) and POET frame-
work in Fan et al. (2013). We call this method the DCC and sWFs extended POET
(DCC-ePOET). Built on the mixed factor structures, we estimate volatility matrices
through the univariate volatilities of observable factors and weak latent factors with a
linear transformation. We further include a sparse noise covariance estimator obtained
by an adaptive threshold method proposed in POET to address the singularity issue
when the cross-sectional dimension N is larger than the sample size T , and capture the
weak correlations in the factor models’ idiosyncratic terms. Simulation studies show
that our proposed method achieves good finite-sample performance. Empirical studies
demonstrate that the developed method is superior to several candidates in the analysis
of out-of-sample minimum variance portfolio allocations.

Keywords: Volatility matrix; multivariate GARCH; factor models; thresholding; high-
dimensional data; ePOET.
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1 Introduction

Much existing research focuses on estimating large static covariance matrix. However, over

long time horizons, the covariance matrices of economic or financial time series variables

often show structural changes such as volatility clustering and structural breaks. Therefore,

there has been a growing interest in estimating a wide variety of large dynamic covariance

matrices in recent years. see, e.g., Guo et al. (2017), Chen et al. (2019), Dendramis et al.

(2021), Wang et al. (2021), and Ke et al. (2022). See more in a recent survey by Li (2021).

In this paper, we study a typical type of large dynamic covariance matrices, volatility

matrices, which are used for modelling the co-volatile structures of many financial time

series.

There are various ways to model volatility matrices. Among them, the multivariate

(generalized) autoregressive conditional heteroskedasticity model, a multivariate extension

of famous univariate ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) model, is a pop-

ular strand. Multivariate ARCH model is first considered by Engle et al. (1984) and then a

general version, multivariate GARCH (MGARCH), is introduced by Bollerslev et al. (1988)

in the form of VECH-GARCH. Later, Engle and Kroner (1995) extend VECH-GARCH to

famous BEKK model.

It is well-known that conventional MGARCH models usually suffer from the curse of

dimensionality that the number of parameters will be significantly increasing as the cross-

sectional dimension (or number of series) N increases. To address this problem, Bollerslev

(1990) propose the constant-conditional-correlated GARCH (CCC-GARCH) model, which

assume the MGARCH model comprises N univariate GARCH processes that are related

through with a constant conditional correlation matrix. In the early 2000s, Engle (2002)

extended the CCC-GARCH to DCC-GARCH to allows for time-varying conditional corre-

lation. However, in large or high dimension, estimating the targeting correlation matrix of

CCC or DCC-GARCH is quite challenging. Engle et al. (2019) recently propose DCC-NL-

GARCH model by employing nonlinear shrinkage (NL) method of Ledoit and Wolf (2012)

to estimate the correlation targeting matrix of DCC in large dimension.

On the other hand, Ding (1994) first proposes the principal component (PC) GARCH

to capture the co-volatility by several PCs. PC-GARCH provides an effective way to
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parameterize the MGARCH model and has been extended to many variants, such as O-

GARCH and GO-GARCH models. See Alexander (2000) and Van der Weide (2002). Note

that PCs also can be treated as some latent factors that drive the variation of the data, so

PC-GARCH is often denoted as a type of Factor-GARCH model. Factor-GARCH family

mainly assumes that the data is composed of a series of common factors, whatever real

and latent factors. Besides PC-GARCH, many other types of Factor-GARCH have been

extensively studied in the past two decades. Vrontos et al. (2003) propose the Full-Factor

GARCH model, assuming the number of conditionally uncorrelated factors are the same as

N . Hafner and Preminger (2009) prove the asymptotic properties of the QMLE for general

Factor-GARCH models. In Zhang and Chan (2009), they further improve the Factor-

GARCH model by embedding DCC to capture the dynamic structures in the factors. The

aforementioned methods are based on so-called static factor models, namely factor loadings

are assumed to be time invariant. More flexible and complex dynamic factor models are

also utilised to estimate MGARCH in the past decade. See typical examples such as Santos

and Moura (2014) and Barigozzi and Hallin (2017).

In the high dimensional space, Fan et al. (2008), Fan et al. (2011) and Fan et al. (2013)

consecutively propose the structure of common factors plus noise covariance matrix to model

the static covariance matrix. The first two assume the factors are known such as famous

Famma-French 3 and 5 factors, whereas the third one captures the unobservable latent

factors by PCs. In the same paper, they further assume that the error terms after extracting

latent factors are weakly correlated so that the error covariance has conditional sparsity

structure. Combined PCs and sparse error matrix, they propose the famous the Principal

Orthogonal complEment Thresholding (POET) framework. Inspired from Fan’s consecutive

contributions, Li et al. (2022) use observable factors equipped with CCC-GARCH structure

plus the diagonal matrix of sample error covariance to estimate large volatility matrix. This

method is denoted by Factor-CCC-Diag hereafter. Following Fan et al. (2011) and Fan et al.

(2013), Li et al. (2022) extends the diagonal error covariance matrix estimate of Factor-

CCC-Diag to a sparse one, and we denote this modification as CCC-POET. However,

using only observable factors to estimate covariance matrix arises a typical concern of

omitted variables and factors. For instance, see omitted factors issues in asset pricing by

Giglio and Xiu (2021) and the research of factor zoos by Feng et al. (2020). A natural
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and intuitive remedy is to extract more latent factors in the residuals. Shi et al. (2022)

augment Fama-French models by introducing latent factors to extract information from

Fama-French model’s residuals for estimating large covariance matrices. Their approach

inherently assumes that the latent factors in the residuals (LFR) are strong factors, namely

LFR diverges with the same rate of N . However, as pointed out in the extended POET

(ePOET) method by Dai et al. (2022), the latent factors in the residuals of Fama-French

models are usually relatively weak in that each latent factor may diverge slower than N .

In particular, the scree plot in that article shows that the sample eigenvalues of residuals

decreases in a relatively smooth manner, which violates the strong factor assumption that

a big gap exists among the eigenvalues. Following these discussions, based on ePOET, we

propose a novel large volatility matrix estimator by utilising the benefits of Factor-GARCH

and weak latent factors in the residuals. The weak latent factors can be estimated by

the sparsity-induced weak factor (sWF) framework developed in Uematsu and Yamagata

(2022). Moreover, to further capture the dynamic structure of observable factors, following

DCC-Factor strategy proposed by Zhang and Chan (2009), we assume the observable factors

have DCC-GARCH structure and we call our method DCC-ePOET.

1.1 Notations

Throughout the paper, IN is a N×N identity matrix and 0 is a zero matrix. For any square

matrix A, we denote the kth, the largest and the smallest largest eigenvalues by λk(A),

λmax(A) and λmin(A), respectively. |A| means the determinant of A. For any matrix M =

(mti) ∈ RT×N , we define l2 (spectral) norm, the Frobenius norm, the entrywise maximum

norm and l1 norm as ∥M∥2 = λ
1/2
max(M′M), ∥M∥F = (

∑
t,im

2
ti)

1/2, ∥M∥max = maxt,i|mti|,

respectively. Given a N × N positive definite matrix Σ, the weighted quadratic norm of

an N × N matrix P of Σ is defined as ∥P∥Σ = N−1/2∥Σ−1/2PΣ−1/2∥F. Let ≲ and ≳

represent ⩽ and ⩾ up to a positive constant factor. For two positive values x and y, let

x ∧ y =: min{x, y} and x ∨ y =: max{x, y}. Finally, for two positive sequences an and

bn depending on n, an ≍ bn if an ≳ bn and an ≲ bn. The terms “errors”,“noise”, and

“idiosyncratic terms/errors” share the same meaning in the paper.
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1.2 Organisation

The rest of the paper is arranged as follows. Section 2 introduces the DCC-ePOET model.

The estimation methodologies are discussed in Section 3. In Section 4, we discuss the

selection of the threshold constant for the DCC-ePOET estimator. Two sets of Monte

Carlo experiments are presented in Section 5. In Section 6, we further compare the DCC-

ePOET model with other candidate models in portfolio analysis. Section 7 concludes this

paper.

2 Model descriptions

We consider the estimation of the volatility matrix of N -dimensional financial series vector

yt, generated by the linear model

yt = A0xt + ut, (2.1)

where xt and A0 = (a01, . . . ,a
0
r) represent the r-dimensional observable factor and its factor

loadings, respectively. Furthermore, the error term ut has the latent factor structure

ut = B0f0t + et, (2.2)

where f0t and B0 = (b0
1, . . . ,b

0
K) represent the K-dimensional unobservable factor and its

factor loadings, respectively, and et is the idiosyncratic error term. We can also rewite the

models in the matrix from: Y = XA′ +U and U = FB′ + E. The number of observable

factors r and the number of latent factors K are assumed to be finite and small. We further

suppose that xt and latent parts ut are uncorrelated to separately estimate A0 and B0.

One may stand on a more rigorous model that considers the endogeneity problem such as

Bai (2009). It is also worth mentioning that to avoid omitted variable problem, model (2.1)

is allowed to include many observable factors, whereas we do not pursuit theses directions

to avoid technical and computational issues. Without loss of generality, we suppose the

following conditions to identify the latent factors and loadings,

E[f0t f
0′
t ] = IK and B0′B0 diagonal, (2.3)

throughout the paper. For the unobservable weak factors in 2.2, we formally introduce the

sWF model according to Uematsu and Yamagata (2022). We assume that λmin(B
0′B0) is
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bounded away from zero and λmax(Σe) is bounded from infinity. Then for k = 1, . . . ,K,

the latent factor model in (2.2) is called the weak factor (WF) model if

λk(B
0B0′) ≍ Nαk , k = 1, . . . ,K (2.4)

for some αk ∈ (0, 1]. The sWF model is realised by assuming B0 is sparse. That is for each

k = 1, . . . ,K, suppose b0
k has Nk := ⌊Nαk⌋ nonzero elements for some constant αk ∈ (0, 1],

and this is so-called sparsity-induced WF (sWF). Notice that αk being close to zero means

a factor is extremely weak, while αk = 1 implies a so-called strong factor. In contrast to

the sWF model, a typical strong factor model such as Fan et al. (2013) relies on

λk(B
0B0′) ≍ N, k = 1, . . . ,K. (2.5)

Regarding the volatility modeling of yt, for each l = 1, ..., r and k = 1, ...,K, we denote

the univariate volatility (hxtl, ..., h
x
tr) for observable factor xl and (hft1, ..., h

f
tK) for latent

factor fk. The observable factors xt is assumed to have DCC-GARCH(p, q) structure as

follows. For i.i.d ηt and Dt = diag
(√

hxt1, ...,
√
hxtr

)
,

xt = Σx(t)
1/2ηt, Σx(t) = DtRtDt,

Rt = diagQt
−1/2Qt diagQt

−1/2,

Qt = (1− a− b)S+ aη∗
t−1η

∗′
t−1 + bQt−1,

hxtl = ω0
l +

q∑
i=1

α0
ilx

2
t−i,l +

p∑
i=1

β0
ilh

x
t−i,l, (2.6)

where η∗
t =

(
xt1/

√
hxt1, ..., xtr/

√
hxtr

)
and S is a positive-definite unconditional covariance

matrix. Note that hxtl demonstrates a standard univariate GARCH(p, q) process (Bollerslev,

1986) and the definition of hftk is similar. Then, under the orthogonal condition between xt

and ut, the volatility matrix of yt is given by

Σy(t) = A0Σx(t)A
0′ +B0Σf (t)B

0′ +Σe, (2.7)

where Σf (t) is the volatility matrix of latent factors. In this work, we assume the latent

factors are conditionally uncorrelated so that Σf (t) = diag
(
hft1, ..., h

f
tK

)
. One may also

assume DCC (or CCC) structure in the latent factors if necessary, while our empirical

studies will show that equipping DCC to latent factors makes a very tiny difference.
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After taking out the pervasive observable and (weak) latent factors from the target

variables, it is reasonable to assume the remaining terms are weakly correlated. Thus,

following Cai and Liu (2011) and Fan et al. (2011), we assume the noise covariance matrix

Σe is conditionally sparse. That is Σe ∈ Υ(mN ), where

Υ(mN ) =

Σe = (σe
ij)N×N ≻ 0 : max

i⩽N

N∑
j=1

|σe
ij |q(σe

iiσ
e
jj)

(1−q)/2 ⩽ mN

 (2.8)

for the sparsity measure mN = maxi⩽N
∑

j⩽N |σe
ij |q with some constant q ∈ [0, 1].

3 Estimation

The estimation procedure first applies the ordinary least squares (OLS) to (2.1) to obtain

the estimated loadings Â for observable factors and the initial residuals Û. Then, we

estimate latent factors with loadings from Û and calculate the error Ê. After these, the

remaining is to estimate the volatility matrix of observable factors, the volatility matrix of

latent factors and the error covariance matrix, respectively.

3.1 Estimation of the volatility matrix of observable factors

As the factors and r are known, we only have to estimate the r-dimensional DCC-GARCH

model in this stage. The estimation is simply based on standard quasi-maximum likelihood

estimation (QMLE) and not computationally challenging due to the small r. We follow

the usual DCC-GARCH estimation method proposed in Engle (2002). The log-likelihood

function is given by

L = −1

2

T∑
t=1

[r log(2π) + log |Σx(t)|+ x′
tΣx(t)

−1xt]

= −1

2

T∑
t=1

[r log(2π) + log |DtRtDt|+ x′
tD

−1
t R−1

t D−1
t xt]

= −1

2

T∑
t=1

[r log(2π) + 2 log |Dt|+ x′
tD

−2
t xt − η′

tηt + log |Rt|+ η′
tR

−1
t ηt].

We observe that L can be decomposed into two sub-functions, the univariate volatility one

and the conditional correlation one. Denote θxg as the univariate GARCH parameter for

observable factors and ϕc = (a, b) as the correlation parameter. The usual stationarity
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conditions: 0 <
∑q

i=1 αil+
∑p

i=1 βil < 1, ωl > 0 for GARCH(p, q) and a, b ⩾ 0, a+ b < 1 for

DCC are satisfied. Then, we have

L(θxg , ϕc) = −1

2

T∑
t=1

[r log(2π) + 2 log |Dt|+ x′
tD

−2
t xt]

− 1

2

T∑
t=1

[−η′
tηt + log |Rt|+ η′

tR
−1
t ηt]

= Lg(θ
x
g ) + Lc(θ

x
g , ϕc), (3.9)

where Lg(θ
x
g ) is for estimating the univariate GARCH, and Lc(θ

x
g , ϕc) is for estimating

the conditional correlation matrix. It is obvious that given θxg , the maximum of Lc can

be achieved, leading to a two-step QMLE. The final estimator of DCC-GARCH is then

obtained by solving the following:

θ̂xg = argmin−Lg(θ
x
g ), ϕ̂c = max

ϕc

Lc(θ̂
x
g , ϕc).

Denote the volatility estimator and correlation estimator according to above estimations

by ĥxtl and R̂t, respectively. The estimator of Σx(t) is given by Σ̂x(t) = D̂tR̂tD̂t. Recall

the model for DCC-GARCH, we also need an estimate for unconditional covariance matrix

S to conduct the correlation estimation, and in our case we use Ŝ = T−1
∑T

t=1 η̂
∗
t η̂

∗′
t ,

where η̂∗
t =

(
xt1/

√
ĥxt1, ..., xtr/

√
ĥxtr

)
. Note that in this study, we assume the number of

observable factors, r, is finite and small, and T is very large. Thus, compared to the sample

covariance matrix in high-dimensional cases, the sample version in our work is not a concern.

If r is allowed to be large or grow comparably to N and T , another issue of estimating a

large dimensional covariance matrix will arise. Furthermore, it has been pointed out in

Aielli (2013) that the sample version, Ŝ, may lead to an inconsistent estimate of the DCC-

GARCH model as S ̸= E(η∗
t η

∗′
t ), thus he propose a corrected or tractable DCC (cDCC)

model as a remedy to this issue. For more details, please check that article. While based on

our preliminary numerical studies, cDCC and DCC produce almost identical results (when

r is small.). Thus we keep the usual DCC in our work.
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3.2 Estimation of the volatility matrix of latent factors

To estimate the sWF model, we first obtain sparse orthogonal factor regression (SOFAR)

estimator (Uematsu et al., 2019; Uematsu and Yamagata, 2022) of (B,F) by

(B̂, F̂) = argmin
(B̃,F̃) ∈ RN×K̂×RT×K̂

1

2
∥Û− F̃B̃′∥2F + ηNT ∥B̃∥1 (3.10)

subject to F̃′F̃/T = IK̂ and B̃′B̃ diagonal,

where K̂ is the estimated number of factors and ηNT > 0 is a penalty coefficient. Next, we

focus on the estimation of GARCH(p, q) model using estimated factors F̂ through QMLE.

For each k = 1, ...,K, the volatility is modelled by GARCH(p, q):

hftk = hftk(θ
f
k , f̂tk) = ωf

k +

q∑
i=1

αf
ikf̂

2
t−i,k +

p∑
i=1

βf
ikh

f
t−i,k

And the conditional log-likelihood function is given by

Lk = Lk(θk) =
1

T

T∑
t=1

log
(
hftk

)
+

f̂2
tk

hftk
,

The univariate GARCH parameter θ̂fk is achieved according to

θ̂fk = argmin
θk∈Θf

k

− Lk(θk),

where Θf
k is a compact parametric space in which the stationarity conditions 0 <

∑q
i=1 α

f
ik+∑p

i=1 β
f
ik < 1 and ωf

k > 0 are satisfied. The univariate volatility estimator is denoted by

ĥftk so that the estimator of Σf (t) is given by Σ̂f (t) = diag

(√
ĥft1, ...,

√
ĥftK

)
.

3.3 Determining the number of latent factors

In practice, we have to estimate the number of latent factors. There have been many

techniques developed in the past decades, including famous Bai and Ng (2002) and Ahn

and Horenstein (2013). However, these two methods are designed for the strong factor

models with all the K signal eigenvalues diverging proportionally to N . For example,

POET paper adopts the information criteria (IC) methods from Bai and Ng (2002), while

the simulation studies of Uematsu and Yamagata (2022) demonstrates the K̂ estimated by

IC could be far away from the true K, especially when weak factors exist. See the details in
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that paper. In this work, we recommend to use the approach of Onatski (2010). Basically,

this method is to determine the number of (weak) factors by K̂ = K̂(δ) with

K̂(δ) = {k = 1, . . . , kmax − 1 : λk − λk+1 ⩾ δ},

where δ > 0 is a fixed constant. Empirically, δ is predetermined on a calibration by the

edge distribution (ED) method of Onatski (2010). The consistency of this selection has

been proved in Uematsu and Yamagata (2022) for sWF models.

3.4 Noise covariance matrix via POET.

We follow Fan et al. (2013) to impose the conditional sparsity (2.8) on the noise covariance

matrix. We obtain the estimate of Σe by employing adaptive thresholding techniques on

the sample covariance matrix of the residuals Ê = Û− F̂B̂′ as follows.

Σ̂
τ
e = (σ̂τ

ij)N×N with σ̂τ
ij =


σ̂e
ii for i = j,

sτij(σ̂
e
ij) for i ̸= j.

(3.11)

where σ̂e
ij is the (i, j)-th entry of the sample covariance matrix of êt, s

τ
ij(·) is a soft thresh-

olding function given by

sτij(σ̂
e
ij) = sign(σ̂e

ij)max(0, |σ̂e
ij | − τij)

with

τij = CτωNT (θ̂ij)
1/2 and θ̂ij = T−1

T∑
t=1

(êtiêtj − σ̂e
ij)

2 (3.12)

for some sequence ωNT > 0 depending on N & T , and sufficiently large constant Cτ > 0.

Finally, the estimate of volatility matrix of yt is given by

Σ̂y(t) = ÂΣ̂x(t)Â
′ + B̂Σ̂f (t)B̂

′ + Σ̂τ
e ,

= ÂD̂tR̂tD̂tÂ
′ + B̂diag

(√
ĥft1, ...,

√
ĥftK

)
B̂′ + Σ̂τ

e . (3.13)

Remark 3.1 In practice, we have to determine some rate ωNT in (3.12). Note that Dai

et al. (2022) prove that under some mild assumptions, ∥Σ̂τ
e − Σe∥ ≲ ω1−q

NT mN with high

probability, where

ωNT = T−1/2 N
3/2
1 (N1 ∨ T )1/2

N
3/2
K (NK ∧ T )1/2

log1/2(N ∨ T ) log1/2 T,
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and we may use this complex rate ωNT or T−1/2 log1/2N for simplicity. They perform

almost identically because the value of τij is also adjusted by some threshold constant Cτ ,

which is obtained by optimal selections.

Remark 3.2 If no factor is observed, one may estimate the volatility matrix starting from

Section 3.2. Then, the volatility matrix is obtained by a linear transformation of univariate

volatilities of several weak/strong latent factors plus a ePOET noise covariance matrix.

It is feasible to start the estimatin from Section 3.2 even if some observable factors are

known. However, based on our preliminary numerical studies, including observable factors

will significantly enhance the robustness of estimation.

Remark 3.3 One may also consider a time-varying noise covariance matrix. For instance,

we can estimate the noise volatility matrix based on DCC-NL method proposed in Engle

et al. (2019), where the unconditional covariance matrix of DCC is achieved according

to the non-linear shrinkage technique developed in Ledoit and Wolf (2012). However, the

DCC-NL method performs unstable in some cases and the underlying intuition in economics

data is not clear.

4 Choice of the threshold constant

In practice, we have to select the tuning constant Cτ in the threshold level τij = CτωNT (θij)
1/2.

Following the procedures of Fan et al. (2013), we use cross-validation to select Cτ . Repeat

the following Step 1-2 H times and denote each time as h.

Step 1. Obtain the residuals {êt}Tt=1 based on our two-step regressions.

Step 2. Randomly divide {êt}Tt=1 into two sets, denoted byM1 andM2. LetM1 be the training

set {êt}t∈M1 , and M2 be the validation set {êt}t∈M2 . The training set has size T (M1)

and the validation set has size T (M2), where we simply set T (M1) = ⌊T (1− log−1 T )⌋

and T (M1) + T (M2) = T .

Step 3. Obtain the optimal tuning parameters C∗
τ according to the Frobenius loss:

C∗
τ = argmin

Cτ∈[Cmin, C̄]

1

H

H∑
h=1

∥∥∥Σ̂τ
e(Cτ )

M1,h − Σ̂M2,h
e

∥∥∥2
F
.
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For each time h, Σ̂τ
e(Cτ )

M1,h is the ePOET estimator of {êt}ht∈M1
with the threshold con-

stant Cτ . Σ̂
M2,h
e is the sample covariance matrix of {êt}ht∈M2

. Note that C∗
τ is selected from

a interval [Cmin, C̄], where Cmin is the minimum constant to ensure the positive definiteness

and C̄ is some large constant set by users.

5 Monte Carlo simulations

In this section, we investigate the finite sample behaviour of DCC-ePOET through Monte

Carlo experiments.

5.1 Design 1: data are generated from observabale factors plus latent

factors

In this experiment, we consider a data generating process (DGP) from the DCC-ePOET

model in Section 2. Recall the linear factor model we proposed:

yt = A0xt +B0f0t + et.

We consider xt follows a standard DCC-GARCH process:

xt = Σx(t)
1/2ηt, Σx(t) = DRtD,

where

ηt ∼ i.i.d. N(0, Ir),

Dt = diag (
√

hxt1, ...,
√
hxtr),

Rt = diagQt
−1/2Qt diagQt

−1/2,

Qt = (1− a− b)S+ aη∗
t−1η

∗′
t−1 + bQt−1,

with
√
hxtl following GARCH (1,1) for each l ⩽ r, η∗

t =
(
xt1/

√
hxt1, ..., xtr/

√
hxtr

)
and S

is a positive-definite unconditional covariance matrix. In this experiment, we assume the

true S is the sample covariance matrix of Fama-French 3 factors collecting from April 2,

2002 to December 29, 2017. Namely, r = 3. We set the univariate GARCH(1,1) parameters

ω = 0.02, α = 0.25 and β = 0.7. The DCC parameters are designed to be a = 0.1 and

b = 0.85. The factor loading a0il is generated from i.i.d. N(0, 1).
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For the latent factors part, we follow a similar DGP process in Uematsu and Yamagata

(2022). The factors ftk and the corresponding factor loadings bik satisfy the conditions

T−1
∑T

t=1 f
0
tkf

0
ts = 1{s = k} and N−1

∑N
i=1 b

0
ikb

0
is = 1{s = k}. These conditions can be

realized by the Gram-Schmidt orthogonalisation to f∗
tk and b∗ik. Here, b

∗
ik ∼ i.i.d.N(0, 1) for

i = 1, . . . , Nk and b∗ik = 0 for Nk+1, . . . , N. f∗
tk = ρfkf

∗
t−1,k + vtk with |ρfk| < 1, f∗

t−1,k ∼

i.i.d.N(0, 1), and vtk ∼ i.i.d.N(0, 1 − ρ2fk). We assume the number of weak latent factors

K = 2 and the factor strength is (0.8, 0.8). The factors follows the identical univariate

GARCH(1,1) process with parameters ω = 0.02, α = 0.25 and β = 0.7.

For the idiosyncratic term, et = (eti)N×1, its covariance matrix Σe is assumed to be

block-diagonal. Each block has 10 × 10 non-zero elements, with the diagonal randomly

generated from i.i.d. Unif(0.25,0.5). We fixed the within-block correlation to be 0.2. et is

also assumed to be (weakly) serially dependent following AR(1) process:

et = ϕeet−1 + (1− ϕ2
e)

1/2ϵt, (5.14)

where ϵt for t = 1, ..., T are generated independently from N(0,Σϵ). Note that the covari-

ance matrix of ϵ, Σϵ, is identical to Σe. We set the AR(1) parameter ϕe = 0.2.

5.2 Design 2: data are generated from observable factors and only partial

factors are known

In this case, we do not consider the latent factors in the DGP. Suppose

yt = A0xt + et,

where the observable factors xt follows DCC-GARCH(1,1) with the same DCC and GARCH

parameters as in Design 1. We further set the number of factors xt is five. The true

unconditional covariance matrix S is the sample covariance matrix of Fama-French five

factors spanning from April 2, 2002 to December 29, 20171. We keep the DGP process of

error term et in Design 1. Most importantly, we assume that only first three factors are

observable in this experiment, and we estimate the number of latent factors according to

the selection method proposed in Onatski (2010).

1See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

13

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


5.3 Results

We use the following standard statistical losses to evaluate the estimation accuracy.

(a) Relative error: ∥Σ̂(t)−Σ(t)∥Σ = ∥Σ(t)−1/2Σ̂(t)Σ(t)−1/2 − IN∥F.

(b) Maximum norm loss: ∥Σ̂(t)−Σ(t)∥max.

(c) Spectral loss of the inverse: ∥Σ̂(t)−1 −Σ(t)−1∥2.

Loss (a) is a relative error measure for covariance matrix estimation, which is initially pro-

posed by Fan et al. (2011). (b) and (c) are usual criteria. We compare our proposed method

with the CCC-POET approach recently developed in Li et al. (2022), where they consider

the volatility matrix is composed of observable factors equipped with CCC-GARCH and

POET noise covariance matrix. The simulation results are stored in Table 1 and 2.

Table 1: Performance of the DCC-ePOET and CCC-POET estimates when data generated

from observable factors and latent weak factors.

T = 100 Methods ∥Σ̂(t)−Σ(t)∥Σ ∥Σ̂(t)−Σ(t)∥max ∥Σ̂(t)−1 −Σ(t)−1∥2

N = 50

DCC-ePOET mean 0.890 4.679 3.722

median 0.840 3.622 3.630

CCC-POET mean 1.233 4.886 52.706

median 1.118 3.637 28.475

N = 100

DCC-ePOET mean 0.984 5.458 3.378

median 0.904 4.532 3.240

CCC-POET mean 1.587 5.843 2380.258

median 1.454 4.795 568.148

N = 300

DCC-ePOET mean 1.256 6.708 3.004

median 1.171 5.556 2.917

CCC-POET mean 4.225 7.989 221.062

median 3.724 6.426 123.592

Our simulation results show that (i) The proposed DCC-ePOET method generally works

well whether the observable factors are fully or partially known. The DCC-ePOET esti-

mators are consistent under any statistical losses, whatever N < T and N ⩾ T . (ii) In

any case, our approach has beaten the recently developed CCC-POET method in Li et al.
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Table 2: Performance of the DCC-ePOET and CCC-POET estimates when only partial

factors are observable.

T = 100 Methods ∥Σ̂(t)−Σ(t)∥Σ ∥Σ̂(t)−Σ(t)∥max ∥Σ̂(t)−1 −Σ(t)−1∥2

N = 50

DCC-ePOET mean 0.706 3.431 3.161

median 0.682 2.903 2.985

CCC-POET mean 0.985 4.251 23.764

median 0.933 3.391 10.212

N = 100

DCC-ePOET mean 0.827 4.503 2.898

median 0.773 3.637 2.782

CCC-POET mean 1.262 5.277 1144.294

median 1.215 4.218 169.251

N = 300

DCC-ePOET mean 1.048 5.193 2.788

median 0.983 4.482 2.740

CCC-POET mean 2.786 7.065 358.619

median 2.434 5.623 214.293

(2022). It is clear that the superiority of our method is enhanced as N increases. CCC-

POET performs acceptably in the relative error and maximum norm. However, it collapses

in terms of precision (inverse of the covariance matrix) estimator mainly because it cannot

capture the dynamic structure in the observable factors and sufficient correlation informa-

tion in the residuals. In the following section, we will show how the collapse of the precision

estimator deteriorates the performance in a real dataset.

6 Empirical studies

To evaluate the goodness of the estimation of volatility matrix in practice, we carry out

minimum variance portfolio (MVP) analysis of S&P 500 data based on several multivariate

GARCH approaches and ePOET estimate. We follow the similar strategy and the same

dataset in Dai et al. (2022), where they aim to evaluate the performance of static covariance

matrix estimates. The goal of MVP is to allocate N financial assets to make portfolio risk

w′Σ̃tw as low as possible. Here, w is a vector of weights and Σ̃ is a volatility matrix

estimate of the given assets at time t. In detail, the MVP solves the following optimisation
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problem:

min
w

w′Σ̃tw subject to w′1N = 1, (6.15)

where 1N = (1, . . . , 1)′. We allow short sales and ignore any transaction cost for simplicity.

The optimal weight w∗ is obtained by the quadratic problem (6.15) and the corresponding

risk R∗
t are computed as

w∗ =
Σ̃−1

t 1N

1N
′Σ̃

−1
t 1N

, R∗
t = w∗′Σ̃tw

∗. (6.16)

We obtained the S&P 500 data from Yahoo Finance, comprising 2520 daily excess

returns spanning from April 2, 2002, to March 30, 2012 with full information. This period

covers approximately 10 years of trading, with an average of 21 trading days per month.

Alongside the time span of the S&P 500 data, we also collected the Fama-French five factors

data from Kenneth R. French-Data Library.

The trading strategy is: on the first trading day of each month, we constructed an

optimal portfolio using a candidate covariance estimate on the historical data from the

preceding T days. We set the time dimension T to be 126, about six months of trading days.

Under a rolling window scheme, the vector of optimal portfolio weights (w∗
t ) is updated

monthly for constructing next month’s portfolios until March 30, 2012. The cross-sectional

dimension N is fixed at 395, the maximum number of stocks available in the dataset. Once

obtaining all the out-of-sample portfolios, we calculate the out-of-sample variance (Var),

the total out-of-sample excess returns (TR) and the mean Sharpe ratio (SR) according to

the formulas in DeMiguel et al. (2009) and Lam (2016) as follows.

TR =
120∑
i=6

21i+21∑
t=21i+1

w∗′
i Rt

∗, TRi =
21i+21∑
t=21i+1

w∗′
i R

∗
t ,

Var =
1

2520

120∑
i=6

21i+21∑
t=21i+1

(w∗′
i R

∗
t −TRi)

2, Vari =
1

21

21i+21∑
t=21i+1

(w∗′
i R

∗
t −TRi/21)

2,

SR =
1

114

120∑
i=6

TRi

Vari
.

We compare the out-of-sample forecasting performance of following 7 candidate methods.

(i) ePOET: A static covariance matrix proposed in Dai et al. (2022) that the covariance

matrix consists of observable factors, latent factors and the sparse noise covariance

matrix and this estimator is the winner in that article.
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(ii) DCC-ePOET-1: Our proposed estimator;

(iii) DCC-ePOET-2: This method is similar to DCC-ePOET-1, and the latent factors

are also allowed to be DCC-GARCH;

(iv) ePOET-GARCH: This approach is similar to DCC-ePOET-1, but does not impose

the DCC structure on any factor;

(v) DCC-Factor-GARCH: This method is DCC-ePOET-1 without latent factors, in-

spired from Zhang and Chan (2009) but including sparse noise covariance matrix to

tackle the singularity issues arising from large N ;

(vi) CCC-POET: This method is proposed by Li et al. (2022), where the volatility matrix

is composed of observable factors with CCC-GARCH structure plus the sparse noise

covariance matrix estimate according to Fan et al. (2011).

(vii) PC-GARCH: This one applies univariate GARCH on each latent factor in the POET

model by Fan et al. (2013).

Note that all the DCC-GARCH estimations are implemented by the R package, xdcclarge2.

We employ GARCH(1,1) in each univariate volatility estimation as suggested in Hansen

and Lunde (2005). GARCH(1,1) is typically adequate for capturing the clustered nature of

volatilities observed in the data for most scenarios. In each window, the number of latent

factors is selected according to the method of Onatski (2010) and the optimal threshold

tuning parameters is determined by CV.

Table 3 reports the out-of-sample MVP performance of all the candidate methods. The

most important criterion is the out-of-sample variance because our primary focus is to make

the risk as low as possible. The total return and mean Sharpe ratios should be placed as

the secondary criteria in our evaluation. Table 3 shows that (i) As expected, considering

dynamic structure (DCC) in the observable factors significantly reduces the out-of-sample

risk while imposing dynamic structure on latent factors has no effect on risk-reduction

and only brings some tiny improvements in TR and SR. (ii) For DCC-Factor-GARCH and

CCC-POET, their performance collapsed in any aspect. This is not a surprising result

2See https://cran.rproject.org/web/packages/xdcclarge/index.html
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Table 3: Performance of 7 methods in out-of-sample minimum variance portfolio analysis.

Criteria ePOET DCC-ePOET-1 DCC-ePOET-2 ePOET-GARCH

Var 0.448 0.438 0.438 0.448

TR 39.89 42.272 42.416 43.333

SR 1.362 1.375 1.379 1.398

Criteria DCC-Factor-GARCH CCC-POET PC-GARCH

Var 0.803 0.805 0.462

TR 1.976 1.883 36.871

SR 1.199 1.200 1.366

because omitting latent factors in the residuals will lead to unstable precision estimations,

as we also discussed in the simulation studies. (iii) Finally, even though ePOET still works

acceptably among the competitors, replacing the static covariance matrix with the ePOET-

based dynamic covariance estimates significantly and robustly improves the out-of-sample

performance in every criterion. Generally, our proposed method works very well in every

aspect.

7 Conclusion remarks

This paper proposes a new type of Factor-GARCH model, DCC-ePOET, to estimate large

volatility matrices, especially addressing the issues of omitted variables and singularity

in Factor-GARCH families under the high-dimensional space. We capture the dynamic

structure in the factors by embedding DCC-GARCH into observable factors. We further

capture the covariance information in the residuals by a Factor-GARCH using sparsity-

induced weak factors plus a sparse noise unconditional covariance obtained from ePOET

techniques. Monte Carlo simulations demonstrate that the finite sample performance of

the proposed estimator is quite satisfactory even if the observable factors are just par-

tially known. The out-of-sample MVP analysis confirms that our proposed DCC-ePOET

estimator works robustly and generally outperforms the other candidate models.

There are three potential extensions for future studies. (i) As our model uses the
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simplest ARMA(0,0)-GARCH model in the signal part, we may consider more extensions

in univariate GARCH models, such as A-GARCH, T-GARCH, and E-GARCH for some

specific scenarios. (ii) We assume the factor loadings are time-invariant, while it is natural

to allow the loadings of observable factors to be time-varying for more flexibility. For

instance, many researchers have pointed out that structure breaks in factor models are

reflected through the changes in loadings. The time-varying loading for sWF factors is

still an open question for future research. (iii) Finally, we may incorporate the QMLE of

GARCH Models with heavy-tailed likelihoods proposed in Fan et al. (2014) to enhance the

efficiency when the factor innovation distribution exhibits heavy tails.
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