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Fig. 3. Temperature dependence of the opacity due to the leaves of a beech 
at 4.9 GHz. The open symbols are measured data from 1987, the full sym- 
bols those of 1988, and the two curves are computed values based on (7) 
and (8) with A,, = 1 and LA1 = 10 and 15, respectively; md = 0.26 and 
d = 0.1 mm. 

in this case A, = 1 [IO]. Since k = 1.03/cm the only unknown 
quantity is LAI. We only know that LA1 was larger in 1988 by a 
factor of about 1.5 [3]. If we assume LA1 = 10 for the 1987 data 
and LA1 = 15 for the 1988 data we obtain the solid and dashed 
curves, respectively. These LA1 values are quite high. However, 
since the sun leaves near the top are thicker than the modeled shade 
leaves, the result does not appear unreasonable. Also, the temper- 
ature variation modeled by (7) and (8) agree with the observed be- 
havior. 

IV. CONCLUDING REMARKS 

The derivation of a formula for the permittivity of fresh leaves 
leads to (7), which only depends on two explicit variables, namely 
md and cSw. This formula is simpler than an earlier expression de- 
rived by Ulaby and El Rayes [8], where density was an additional 
parameter, and where an effect by bound water was hypothesized. 
According to the observations of Sume et al. [7] and of Matzler 
and Sume [4], the density of fresh leaves of all the observed plants 
is between 0.9 and 1 .O g/cm3. Therefore density does not seem to 
be a significant variable for leaves. On the other hand, the hypoth- 
esized behavior of the bound-water relaxation [8] does not seem to 
fit the observations of Matzler and Sume [4]. Therefore, in the 
present case of leaves with a high water content, we adopted the 
new and simpler approximation. It is clear that bound-water effects 
would have to be considered for dryer leaf material. 

The fact that (7) not only fits the frequency behavior over the 
entire 1-100 GHz range, but also follows the correct temperature 
variation at 4 .9  GHz, puts confidence in the validity of this new 
formula. 

In the future the test of the temperature dependence should be 
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extended to higher frequencies with more sophisticated propaga- 
tion models. Further tests should include other vegetation ele- 
ments, such as needles and stalks and the influence of variable sa- 
linity. 
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Multidimensional Analysis Method for NOAA 
AVHRR Images 
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Norio Shiratori, Hiroshi Kawamura, Seijiro Obata, 

and Shoichi Noguchi 

Abstract-As a fundamental study of multiple image processing, we 
have developed a new technique for the analysis of multispectral re- 
mote sensing data. Though the basis of our algorithm is similar to a 
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histogram analysis, we have proposed a novel way of the representa- 
tion of multidimensional image data, which facilitates a nonexpert to 
locate and assign different classes present in the data set. Our experi- 

11. THE BASIC METHOD 

A. Clustering in the Multidimensional Spatial Distribution 
mentation was done with NOAA satellite image data. Here, the bright- 
ness of the received data from channels of different frequency bands 
are the different dimensions of the multispectral image. By using our 
method. we could successfullv classifv NOAA satellite data received 

The multidimensional data consists of images received from N 
different frequency channels. When different image points are plot- 
ted in N-ditt~ensional brightness hyperspace, we get an N-dimen- 

from the northern part of Japan, and located the plane areas as an 
exercise. We quantitatively compared our result with official data and 
our result was found to be only 1 percent in deviation with the official 
data. 

sional spatial distribution of the image points. A function P [ ~ r l ,  
Or2, . , a,] is defined that denotes the number of pixels with 
brightness values a,  from channel Or* from channel 2 ,  and so on 
161. 

I .  INTRODUCTION 

For image analysis, to classify multidimensional data in a spatial 
distribution, it is necessary to classify data according to some re- 
semblance or closeness. The previous methods of clustering, 
namely the Karhunen-Loeve transform or the conventional pattern 
recognition methods, calculate the distance of the different sample 
vectors in the multidimensional spatial distribution. When the di- 
mension is high and the amount of data is large (as with satellite 
data), computation almost beyond the scope of ordinary computers 
is required [l]. Histogram analysis is a possible approach. 

In the previous work of three-dimensional histogram analysis by 
C. E. Livingstone et al. [ 2 ] ,  elliptical clusters were assumed. In 
other related works [3[-[SI some a priori knowledge of clusters 
were presumed. In our previous work [ 6 ] ,  [7 ]  no such restriction 
of cluster shapes, or a priori knowledge of clusters was required. 

In our previous work, we used the NOAA (National Oceanic and 
Atmospheric Administration) AVHRR (advanced very high reso- 
lution radiometer) image data [ 8 ] ,  [ 9 ] ,  and reported how to identify 
the location and area of fog from three-dimensional histogram im- 
ages. There x ,  y, and z axes of the image histogram directly cor- 
responded to the three-image channel data, respectively. We pro- 
posed a simple, user-friendly method to identify clusters from a 
three-dimensional histogram, which can be used by nonexperts. 

Our previous work had the following drawbacks. It could only 
cope with three-dimensional data. This is a strong restriction, as 
with present-day satellites, we can receive many channels of data 
simultaneously. Also, the separation boundaries of the different 
classes are not very clear. A human factor was involved in demar- 
cating the difference clusters. In this communication, we propose 
a new method for the segregation of multichannel data into dis- 
tinctly separate groups. The algorithm poses no restriction on the 
number of channels that could be analyzed. In this method, the 
different groups of data form distinct clusters on the visual screen. 
So, the human factor involved in correctly separating the different 
clusters is very low, and is therefore suitable for nonexperts. 

In this work, instead of plotting the different sample points di- 
rectly according to the brightness data, we first calculate some or- 
der number from the brightness value of each sample, and find the 
mean brightness value for each sample. This ordering of samples 
is simple and is not restricted to the number of channels. Using 
these two quantities, we should be able to find some discreate clus- 
ters from the samples and finally classify the multidimensional im- 
age data. Thus, the method is simple, computationally soft, and 
useful to nonexperts. To show the validity of our method, we ap- 
plied our proposed algorithm on NOAA satellite image data, as a 
simple experiment. We were able to classify and separate the plane 
area and verify the correctness of our method. By plane area we 
mean areas other than hills and high mountains. Thus, the plane 
area mainly consists of harvest land and town and city areas. We 
introduce our idea in the next section, which is followed by an 
application example. 

. .  

The distribution of P in the N-dimensional brightness space is 
obtained by scanning all brightness images from channel 1 to chan- 
nel N. 

B. Ordering of the Brightness 

The image can only be drawn from the visible channel data, by 
coloring different brightness levels differently. There the basic 
components such as land and sea are distinguishable, but no sig- 
nificant classification is possible. Even when the component is the 
same, brightness is not constant over the whole region of the im- 
age, for reasons such as that the brightness depends on the angle 
of the satellite and solar elevation angle, etc. Similarly, the same 
brightness values do not always mean that they belong to the same 
category. We need to exploit all the information stored implicitly 
and in a combined way, in other nonvisible channel images. We 
proposed an ordering of the composite data to classify it. 

In the usual two- and three-dimensional analysis of remote 
sensing data, clusters are classified by the center of gravity in which 
each cluster is defined as a collection of closely placed points. So, 
they suffer from two drawbacks. For visual methods, one can use 
data from two or at most three channels, as we used in [ 6 ] .  Also, 
the range or center of a cluster is not fixed, and depends slightly 
on the user’s choice. In the method proposed here, by proper ma- 
nipulation, first the multidimensional data is broken into small 
groups or clusters, distinctly separated. A range of such small clus- 
ters was selected and a designated class is attributed to them. The 
selection of position and range of such clusters, corresponding to 
a particular class is done in a supervised manner, explained in the 
next section. 

C. 0-MGraph 

In this section, we describe how we break the multidimensional 
data into a series of ordered groups. Multidimensional data are con- 
sidered to be like words consisting of several letters. The letters 
here are the brightness values from different channels, i.e., channel 
1, channel 2, , channel N. Now, the way the words are ordered 
lexicographycally in the dictionary, we order the multidimensional 
data in a table. A small part of that table is shown in Table I. We 
assign a serial order number to every piece of multidimensional 
data, which is the first column entry of Table I. In the next four 
columns, the brightness values, as obtained from the four channels, 
are entered. (Considering the number of channels N = 4). The 
sixth column of Table I is the mean value of brightness received 
from the four channels. Individually, this average value has no 
meaning. Quite different data like (1 ,  1, 100, loo), (100, 100, 1, 
l ) ,  or (100, 1, 1, 100) will all bear the same meaning. But, com- 
bined with the order number, it will be different for all the above 
examples. (100, 100, 1, 1) will have a much greater order number 
than (1, 1, 100, 100). In Table I we see for order numbers 223, 
229, 235, and 240 we have same average, 21. But, the duple, (or- 
der, mean), is different for all four of these entries. 

In the last column of Table I, we enter the value of the histogram 

* 
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231 
232 
233 

95 1 

3 4 39 40 21.50 25 
3 4 40 34 20.25 11 
3 4 40 35 20.50 41 

TABLE I 
PART OF SAMPLE LIST SHOWING THE ORDER OF THE BRIGHTNESS DATA 

235 
236 
237 
238 

I Order I Channel 1 I channel 2 I channel 3 I channel 4 I Mean I P 1 

3 4 40 37 21.00 1567 
3 4 40 38 21.25 2331 
3 4 40 39 21.50 866 
3 4 40 40 21.75 108 

220 I 3 1  4 1  38 I 36 I 20.25 I 3 2 8  
221 I 3 1  4 I 38 I 37 I 20.50 I 1014 

239 
240 
241 

I 222 I 3 1 4 I 38 I 38 I 20.75 I 538 1 

3 4 41 35 20.75 17 
3 4 41 36 21.00 179 
3 4 41 37 21.25 1288 

Mean: mean value of brightness. 
P: histogram function value. 

function P. For example, the entry 328 in the P-column of the first 
row in Table I simply means that the number of image pixels with 
a brightness value from channel 1 ,  channel 2 ,  channel 3, and chan- 
nel 4 as 3, 4, 38, and 36, respectively, is 328. Similar to our pre- 
vious work [6], where we have used some thinning of sample points 
to make the boundaries of the clusters clearer, here we use a similar 
approach. If we list all the multispectral data points in Table I, the 
range of the order numbers becomes unmanageably great. To deal 
with this problem, we enter in Table I only those entries for which 
the P value (the histogram function value) is equal to or greater 
than 10. Thus, only those sample data are entered in Table I, which 
have occurred at least 10 times or more. We delete entries with P 
values less than 10. Then, we assign serial order numbers (column 
1 of Table I) to the entries in Table I. This keeps the order number 
within a manageable range. 

Now, we are ready to plot the multidimensional data on a two- 
dimensional screen. We plot the two-dimensional data (order, 
mean) on a graph we will call the 0-M graph. We can say that this 
0-M graph is a two-dimensional persentation of a multidimen- 
sional plot. How, using this 0-M graph, we could successfully do 
some supervised classification, is elaborated in the next section. 

III. APPLICATION OF 0-M GRAPH FOR LAND CLASSIFICATION 
A .  Description of Data 

As an application example, to see the validity of our classifica- 
tion method, we used NOAA AVHRR satellite image data. The 
data consists of five channels, the wavelength ranges of which are 
given below [9]: 

channel 1: h = 0.58-0.68 pm (visible) 

channel 2: h = 0.73-1.10 pm (near infrared) 

channel 3: h = 3.55-3.93 pm (infrared) 

channel 4: h = 10.5-11.5 pm (infrared) 

channel 5 :  h = 11.5-12.5 pm (infrared) 

Though the classification method of the 0-M graph can handle 
many channels of data, we restricted our experiment to four chan- 
nels. 

The time of record of the data is 13:OO Hrs Japan standard time 
(04:OO GMT) on the clear sunny day of November 9, 1988. We 
used only the first four channels of data received from NOAA-11. 
The reason behind dropping the channel 5 data during experimen- 
tation is that the thermal channels channel 4 and channel 5 have 
very near h range, as shown above. 

The data collected by the NOAA-11 satellite are obtained by 
scanning Tohoku, the northern region of Japan. The original image 
area is 256 X 512 pixels, 1 pixel covering an area of 1.1 (km’). 
The choice of area facilitated us the access to some official data 
from the prefactural office, Miyagi Prefecture in Tohoku being our 
local region. Thus, some quantitative analyses of the classification 
results were possible. 

The requisite preprocessing of the data, received by NOAA, is 
done by the Faculty of Science, Tohoku University. The data re- 
ceived from channel 1 to channel 4 were converted to image data 
by Mercater projection. Channel 1 (visible) and channel 2 (near- 
infrared) data were converted into albedo, and channel 3 and chan- 
nel 4 (both infrared) were converted into brightness temperature. 
The albedo means reflectance. The brightness is multiplied by a 
suitable factor [ 101 to get the reflectance from channel 1 and chan- 
nel 2 data. We received the data after that preprocessing. 

B. Normalizing of Image Data 

In this study, we normalize the IO-b data to 6 b. Though by 
reducing from 10 to 6 b we lose some of the information content 
of the data, we had to do this to perform our experiments within 
the available memory size. This is done as a preliminary step of 
experimentation with our algorithm, and a machine with larger 
memory is expected to give better results. 

We adopt a simple algorithm to normalize the brightness data of 
the channels. This ignores the correlation of visible and thermal 
bands. Actually, the weight of every channel is to be balanced ac- 
cording to the visual image components. But as a first step, we 
assume that the weight of all the channels are the same. 

For normalization, we first find the mean brightness value for a 
particular channel from the frequency distribution of the samples. 
That point is mapped to the middle point of the normalized 6-b 
data. Then, from the minimum value to the arithmetic mean, and 
from the arithmetic mean to the maximum value, linear interpola- 
tion is used to map 10-b data to 6-b. 

C. 0 - M  Graph for Classifying AVHRR Data 

We use four channels of data received from NOAA AVHRR. 
For a particular point (pixel) in the image, we have the data vector 
consisting of brightness information from channel 1, channel 2, 
channel 3, and channel 4. Now, the seriality of the entries in Table 
I is prepared in the order, with channel 1 at the most significant 
and channel 4 at the least significant position. Finally, those entries 
of Table I with a P value less than 10 are deleted. Now we assign 
the order number, Le., column 1 of Table I, serially. Thus, order 
number changes slowly with a change in the value of the channel 
4 data. But small changes in the value of channel 1 data may lead 
to a large change in order number. In this study, considering that 
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Fig. 1 .  0-M graph. 

channel 1 data is most important, we assigned it the highest prior- 
ity. In other studies it can be decided differently, depending on the 
physical meaning of the particular data, using the prior experience 
of the user. We propose that these two parameters, the order num- 
ber and the mean value, will map the n-dimensional data points on 
a two-dimensional computer display, in a way to extract the clus- 
ters easily. The 0-M graph is shown in Fig. 1. This also allows 
one to view the whole set of data in the smaller area of the display. 
The shapes of the groups of points, obtained in this method are 
small ramps, like the teeth of a saw. 

As an application of this four-dimensional analysis method, we 
tried to extract the plane area of the Tohoku region. We first dis- 
cuss our classification results qualitatively and then perform some 
quantitative analysis by comparing with the available data. 

While creating the 0-M graph, we have assigned channel 1 data 
the most significant position. This is done rather intuitively, con- 
sidering that channel 1 being visible may contain the most signifi- 
cant features of the Earth’s surface. To assign an image category 
to the clusters of the 0-M graph, we have the following steps. 

1) Fix the range of a group of points on the 0-M graph by using 
a pair of vertical cursors on the computer screen. They fix a range 
of order number. Similarly, by using a horizontal cursor, we can 
specify a range of the y-axis, i.e., the mean value. And thus, finally 
we can use a rectangular box to fix the range of selection for the x 
as well as the y axis of the 0-M graph. 

2) The portion selected as above can be projected on the image, 
with the color of choice, as shown in Fig. 2. 

3) Compare the result from step 2 on the computer display with 
a map or topographical data, noting coastline, plane, mountain area, 
and so on. 

This interactive system is made using the graphics tool of an 
engineering work station and programs in the C language. This 
method needs only area information from map, and thus facilitates 
even use by nonexperts with ease. 

Following step 2 above, it is found that the groups of points in 
the range from (A) to (B) as in Fig. 1, correspond to plane areas, 
by superimposing on the channel 2 image and comparing with the 
map. 

Also, the range from origin to (A) corresponds to sea, coastline 
and mountain areas. The range beyond (B) are groups of points 
corresponding only to clouds. 

In Fig. 2, the plane area as obtained by selecting the clusters 
ranging from (A) to (B) of Fig. 1 is shown in green, superimposed 
on the channel 2 image. Different prefectures of North Japan are 
demarcated by yellow lines (by using available data). In this case, 
the channel 2 image is used, because land areas can be recognized 
most clearly in channel 2 image. The main plane areas in Tohuku 
region are marked as (A) to (L) in Fig. 2, and are listed in Table 
11. We see in Fig. 2 that all of the green patches as obtained by our 
classification algorithm strikingly correspond to the exact locations 
of the plane areas in the Tohoku region. This qualitatively ensures 
the correctness of our analysis method. 

A:Hirosaki 
0 :Aki ta  
C:Yokote 
D:Kitakani 
E:Tsuruoka 
F:Yamagata 
G:Yoneraws 
H:Sendai 
1:Fukushima 
J:Kariyama 
K:Aizwakamai 
L : N i  i g a t a  

tS” 

Fig. 2.  Plane area as obtained by our analysis colored in green, and SU- 
perimposed on the channel 2 image. 

TABLE I1 
MAIN PLANE AREAS OF TOHOKU REGION OF JAPAN 

Mark I Plane 1 MainTown I 
A I Tsugaru I Hirosaki I 

Akita 
Yokote Yokote 

Tsuruoka 
F I Yamagata I Yamagata 1 

Sendai 
Fukushima Fukushima 

K I Aizu 1 Aizu I 
L I Niigata I Niigata ] 

D. Quantitative Analysis 

The results from the analysis of plane area in Miyagi prefecture 
were compared with the data [ll] available from the Miyagi Pre- 
fecture Office, Statistical Division. Table 111 lists the different clas- 
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Class 

Agriculture 
(in rice field) 
(in farm) 
Forest 
(in private) 
Waste field 
Water channels 
(in river) 
Road 
(in thoroughfare) 
Building land 
(in living) 
(in industrial) 
Others 

TABLE 111 
CLASSIFICATION OF LAND IN MIYAGI PREFECTURE [ 111 

Area (km2) 
1515.71 

(1204.90) 
(307.54) 
4235.48 

(2897.52) 
20.81 
318.60 

(204.16) 
270.52 

(174.04) 
370.78 

(231.39) 
(21.97) 
559.79 

This Study 
(km2) 

Total I 7291.69 I 

Statistical [ll] 
(km2) 

Miyagi Pref. 
Plane Area t 

7,279 7,292 
2,132 2,157 

sifications of land area obtained from these data. In Table 111, the 
figures are not always the absolute correct values, and includes 
observational errors and some presumed values. The summation of 
different classes (including “Others”) are adjusted so as to be the 
same as the total area of Miyagi prefecture. Thus, the estimation 
as obtained from Table I11 is only a first approximation and not the 
exact values. 

As agricultural areas, residential quarters, and roads generally 
correspond to the plane area, we add these items to approximately 
obtain the total plane area. The map of the Tohoku region with 
prefecture boundaries was overlaid on the image by matching the 
distinguishable promontories and small islands. Table IV compares 
the results. The area of Miyagi prefecture calculated from pixel 
counting was found to be quite close to the official data. This means 
that the boundary and the geometric rectification of the image by 
Mercator projection is accurate. Therefore, it is acceptable to be 
used for area calculations. The plane area in Miyagi prefecture, 
colored in green in Fig. 2, was almost the same as the area obtained 
from the prefecture office. The error was about 1.16 percent. This 
value of the error is negligibly small, considering the inherent 
sources of errors in the statistical data obtained from the Miyagi 
Prefecture Office, and in our consideration of plane area. 

IV. DISCUSSION 

For multidimensional analysis of image data, in remote sensing 
the maximum likelihood method is commonly used. But the max- 
imum likelihood method is useful in cases when the different image 

categories are clearly separated due to the high resolution of the 
received data, as in the case of land classification using LANDSAT 
data [12]. However, expert knowledge is required to categorize the 
NOAA data, because of the larger area covered by single pixels 
and there is some confusion in categorizing the different image 
points. 

On the other hand, the method proposed in the present study is 
easy to use, even for a nonexpert, when classifying the image cat- 
egories, using the patterned groups of points in 0-M graph. This 
system also provides a convenient man-machine interface (win- 
dows, mouse, cursor, and so on) for the classification, and displays 
the classified results in a colored visual image and that enables us 
to compare the result with the related information directly [13]. In 
spite of the lower spatial resolution of the NOAA AVHRR data, 
we could obtain a relatively accurate result through our analysis. 

Before the three-dimensional classification started, the objects 
were identified using the spectral wavelength band. Therefore, the 
operator’s knowledge of spectral properties was used. On the con- 
trary, we have developed the 0-M graph method, in which essen- 
tially no one need look at the multidimensional spatial distribution 
of data. The 0-M graph is a visual pattem on the two-dimensional 
screen of the clusters present in the multidimensional spatial dis- 
tribution of data. 

Here, we cut or neglected those points, Le., pixels in the image, 
for which the occurrence was less than 10, i.e., the histogram func- 
tion value P < 10. We have calculated that by doing this we ne- 
glected only 0.007 percent of the total 256 x 512 pixel image 
points. On the other hand, we could save a lot in the range value 
of order number, and thus would be able to squeeze the 0-M graph 
onto the display screen. 

NOAA data are usually overlapped in the multidimensional 
brightness space, as is discussed in [6]. In [6] the boundaries be- 
came clear by thinning the sample points. We use a similar tech- 
nique here, by neglecting those samples for which the occurrence 
frequency P < 10, and could get groups of samples that are clearly 
separated in the 0-M graph. 

Because of the low resolution per pixel, or in other words, the 
large area covered by a single pixel, by using NOAA AVHRR data 
we cannot have a close classification of land area. For a broader 
classification of land area, the method we introduced in the com- 
munication is a very useful tool for nonexperts, and at the same 
time is user-friendly and fast. 

V. CONCLUSIONS 

In this study, we proposed a new multidimensional analysis 
method, and as an experiment applied the method to the classifi- 
cation of the multispectral NOAA AVHRR image data. We did 
some classification of land areas using this method. The obtained 
results were compared to the actual survey data and found to be 
quite close, proving the correctness of the approach. 
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The Los Alamos Beacon Receiver Array 

R.  C. Carlos and R. S. Massey 

Abstract-We describe radio receivers that monitor transmissions 
from beacons on geosynchronous satellites. The receivers can detect 
perturbations of a 300-3000 s period in the electron density inte rated 
from beacon to receiver, for amplitudes as low as (1-2) X 101gm-2. 
Data are used in studies of atmospheric acoustic and acoustic-gravity 
waves. 

INTRODUCTION 

In this communication we describe the operation of phase-mea- 
suring receivers developed to measure small fluctuations in the line 
integral of the ionospheric electron density (called total electron 
content, abbreviated TEC). The fluctuations of interest, in the fre- 
quency range 0.3-30 mHz and having wavelengths from a few ki- 
lometers to a few hundred kilometers are caused by acoustic and 
gravity waves in the neutral atmosphere that perturb the local 
plasma. We are interested in studying both the natural background 
of acoustic and acoustic-gravity waves, for which the sources are 
not generally known, as well as waves produced by known sources 
such as large explosions and launches of large rockets. The natural 
background studies require a fixed, two-dimensional array with 
baselines as long as 90 km, operating continuously. Studies of man- 
made sources, by contrast, require easily deployable arrays of au- 
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tonomous stations in a variety of geometries, some with separa- 
tions of hundreds of kilometers. 

The usefulness of radio beacons on satellites for measuring 
ionospheric parameters was recognized soon after the first satellites 
were launched [ 11. A variety of techniques have been developed 
and used for measuring fluctuations of the TEC, each with advan- 
tages and disadvantages for our purposes. A large body of litera- 
ture, typified by [2]-[7], described observations made by measur- 
ing the Faraday rotation of the received signal from a radio beacon 
on a low-earth-orbit or geosynchronous satellite. Faraday-rotation 
instruments are sensitive to TEC fluctuations as low as about loi5 
m-’ [7], are portable, and can operate with present radio beacons 
transmitting on a single frequency from geosynchronous satellites 
(e.g., ATS-3, GOES-2, and MARECS-B). Another technique is to 
measure the differential phase between phase-locked VHF beacons 
at different frequencies (see [8]-[lo]). Fluctuations in TEC have 
also been observed by measuring amplitude scintillations in re- 
ceived signals from beacons on geostationary satellites [ 111, but 
these do not provide quantitative information on the amplitude of 
the fluctuation. Phase fluctuations in signals from celestial sources 
[9]-[lo] have been used to measure TEC fluctuations as small as 
lOI4 m-’, but this technique requires large antennas to obtain ad- 
equate signal-to-noise ratios. Elkins [ 121 surmounted this problem 
by measuring phase fluctuations in signals from single-frequency 
radio beacons on geostationary satellites, and was able to observe 
TEC fluctuations as small as 2 X l O I 3  m-’ using two receivers 
separated by 10 km. Elkins used a microwave link between the two 
receivers to provide the required phase reference. 

Our requirements have been met by extending the technique of 
Elkins, using newly available rubidium oscillators at each receiver 
to avoid the need for microwave links. The phase stability of these 
oscillators is adequate to resolve TEC fluctuations as small as (1- 
2) X 1013 m-’ between sites of arbitrary separation. We have also 
implemented a novel scheme for digitally demodulating the phase 
at each site, and transmitting only the demodulated phase samples 
at sampling rates of 0.1 Hz from the remote sites to a base station, 
rather than having to transport samples of the signal itself. We 
thereby reduce the size of a day’s data file from 34 megabytes to 
about 40 kilobytes without loss of information in the bands of in- 
terest. In the next section we provide details of our method. 

METHOD 

Camer phase measurements depend on the existence of satellite 
radio beacons with frequencies well above the highest plasma fre- 
quency along the path. Beacons on geosynchronous or slowly mov- 
ing satellites are needed to avoid confusion between real propagat- 
ing waves and apparent waves caused by ray-path motion across 
stationary ionospheric structures. In order for the path to be ap- 
proximately the geometric path, frequencies above 100 MHz are 
required. At these frequencies, the received phase is approximately 

where ar is the phase measured at the receiver, @s is the phase at 
the satellite,fis the received frequency (hertz), r is the range from 
the satellite to the receiver, k is a constant, a0 is the phase offset 
through the receiver system, and Ne is the TEC. TEC is defined by 

Ne = 1 ne ds 
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