変分モンテカルロ法による非磁性モット転移の微視的メカニズム

<table>
<thead>
<tr>
<th>著者</th>
<th>宮川 智章</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位授与機関</td>
<td>東北大学</td>
</tr>
<tr>
<td>基調</td>
<td>東北大学機械システム科学研究所</td>
</tr>
</tbody>
</table>
修士論文

変分モンテカルロ法による非磁性状態モット転移の微視的メカニズム

東北大学大学院理学研究科物理学専攻

宮川 智章

平成24年
目次

第1章 背景と研究目的 3

1.1 モット絶縁体の発見 3
 1.1.1 Mott による絶縁体の原因 ～電子間相互作用～ 4
 1.1.2 Slater による絶縁体の原因 ～反強磁性秩序～ 5

1.2 モット絶縁体の研究と解析 6
 1.2.1 ハーバードモデル .. 6
 1.2.2 Gutzwiller による変分理論 7
 1.2.3 Gutzwiller 近似 ... 8
 1.2.4 Brinkman-Rice 転移 11

1.3 変分モンテカルロ法の発展と先行研究 12

1.4 変分モンテカルロ法とその他の計算手法の比較 16
 1.4.1 解析的手法 .. 16
 1.4.2 数値的手法 .. 16
 1.4.3 変分モンテカルロ法の特性 17

1.5 本研究の目的と構成 18

第2章 理論モデル及び解析手法 19

2.1 理論モデル .. 19

2.2 格子モデルのサイズ効果と境界条件 20

2.3 相関因子と試行波動関数 21
 2.3.1 一体部分 .. 22
 2.3.2 Gutzwiller 試行波動関数 22
 2.3.3 最隣接ダブロン-ホロン相関因子 22
 2.3.4 ダブロン-ホロン完全束縛因子 23
 2.3.5 長距離相関因子 ... 24

2.4 変分モンテカルロ法の技術的な点 27
 2.4.1 多重積分の評価 ... 28
 2.4.2 サンプルの抽出法 ... 28
 2.4.3 最適化法 ... 31
<table>
<thead>
<tr>
<th>章目</th>
<th>項目</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>第３章</td>
<td>各試行波動関数の計算結果（物理量）</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>エネルギーの比較</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>物理量から見るモット転移の振る舞い</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>ダブロン-ホロンの相関因子による違い</td>
<td>42</td>
</tr>
<tr>
<td>3.4</td>
<td>転移点のサイズ依存性</td>
<td>46</td>
</tr>
<tr>
<td>3.5</td>
<td>Jastrow型斥力相関を導入したことによる違い</td>
<td>47</td>
</tr>
<tr>
<td>第４章</td>
<td>モット転移の微視的な描像の改善</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>D-H完全束縛状態における微視的な描像</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>一般的なD-H束縛状態における微視的な描像</td>
<td>57</td>
</tr>
<tr>
<td>第５章</td>
<td>結論</td>
<td>63</td>
</tr>
<tr>
<td>参考文献</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>発表論文</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>謝辞</td>
<td></td>
<td>69</td>
</tr>
</tbody>
</table>
第1章
背景と研究目的

1.1 モット絶縁体の発見

金属を良く伝えるのは、金属の端から端まで動き回る伝導電子が存在するからである。伝導電子の最も簡単な描像として自由電子モデルが挙げられる。このモデルは他の電子からのクーロンポテンシャルを均一化し、各電子の動きを独立させた単純なモデルである。これを用いることにより、内殻電子に加えて1つだけ余分にs電子が存在するアルカリ金属元素や金、銀、銅といった貴金属元素の物質の特徴についてよく記述することができた。また、自由電子モデルに原子核からの周期ポテンシャルを導入することで、ブリリアン・ゾーンの端にギャップが現れ、絶縁体が形成されることによる絶縁性についての説明も可能にした。この電子間相互作用を無視するバンド理論によると単位胞あたりの電子数Nの金属と絶縁体の区別について次のことが言える。

1. 単位胞あたりの電子数が偶数の場合は絶縁体になる可能性がある。
2. 単位胞内の電子数が奇数であれば、バンドがどのようなものであれ、□電子、□電子によって部分的にしか詰められないので、その物質は必ず伝導体となる。

上記の考え方により絶縁性を示す物質はバンド絶縁体と呼ばれる。

しかし現実の物質で絶縁体が生じる原因は上記の理論ほど単純なものは少なく、より多彩である。一つは結晶の周期性を乱す不純物、欠陥などによるランダムポテンシャルの影響である。ポテンシャルの乱れが大きくなると、1、2次電子系ではアンダーソン局在による絶縁体が生じる。もうひとつが電子間のクーロン相互作用による多体効果である。電子の運動エネルギーよりも電子間のクーロン相互作用のエネルギーが大きい場合、運動エネルギーのみの場合の基底状態であるフェルミ球はエネルギーの高い状態となってしまい、フェルミ球とまったく異なる基底状態を生じる可能性がある。

実際に1937年de BoerとVerweyはバンド理論では説明できない絶縁体があることを指摘した[1]。このような絶縁体として、遷移金属を含む酸化物MnO, Mn₃O₄, CoO, CuO, FeO, Fe₂O₃, NiOが挙げられる。MnOを考えるとMnの電子数が25個、Oの電子は8個であるため、MnOあたりの合計電子数は33個となり、単位胞
1.1.1 Mott による絶縁体の原因 〜電子間相互作用〜

まず Mott と Peierls はそれまで考慮していなかった電子間相互作用の重要性を指摘した [2]。その上で Mott は NiO などの遷移金属酸化物について、磁性を二次的に扱う（非磁性）、電子間相互作用が主な原因であるとして、以下のように論じた。

初めに、NiO が Ni^{2+} と O^{2-} からなるとする。

\[
(Ni^{2+}O^{2-})_2 \rightarrow Ni^{3+}O^{2-} + Ni^{1+}O^{2-}
\]

と 3d 電子が移動した際、Ni^{2+}O^{2-} を電荷の基準に取ると、負の電荷を持つ電子 (Ni^{1+}O^{2-}) と正の電荷を持つ正孔 (Ni^{3+}O^{2-}) が生じる。この二つの電荷のベアはイオン間にポテンシャル \(-e^2/k\rho\) (\(k\):誘電率) が働くため、互いに引きつけ合い、束縛された状態となる。このため電荷の移動は起きず絶縁性を示す。さらに、式 (1.1) の変化が次々起き、ベアの数が増加すると電荷間に行くポテンシャルは遮蔽され、\(-e^2/k\rho\)exp(\(-q\rho\)) (\(q\):電子と正孔の数により増加する)
する定数) となる。q が十分大きいと、電子と正孔のペアは互いに束縛されず、電荷の移動が可能になるため伝導性を示す（図 1.1）。

このように Mott は電子と正孔間のポテンシャルによる束縛の有無により、絶縁体が生じると考えた [3]。

しかし後に、遮蔽ポテンシャルの指数関数的減少は正しくなく、散乱中心のまわりで電荷密度は $\propto r^{-3} \cos(2k_F r)$ で減少することが分かった。したがって、ここで述べた Mott の考えは歴史的な意味しかなく、今日では後述するハバードモデルで表される原子内相互作用と電子の運動エネルギーとの競合によって生じることが原因であることが広く知られている。

ここではその方法を簡単に記す。原子内の $3d$ 電子間に働くクーロン相互作用の大きさを U とし、式 (1.1) 左辺の Ni^{2+} の $3d$ 電子数を n_d とする。式 (1.1) 左辺でのクーロンエネルギーは 1 原子あたり $U n_d (n_d - 1)$ であるが、$3d$ 電子の移動後である右辺は $U (n_d - 1)(n_d - 2)/2 + U (n_d + 1)n_d/2$ である。これらより、1 つの $3d$ 電子が移動するとエネルギーは U だけ増加する。また、Ni イオンの $3d$ 電子は跳び移り積分があるため、右辺の Ni^{3+} へ周りの Ni^{2+} から $3d$ 電子が跳び移ることができると、また、Ni^{1+} についても同様に、まわりの Ni^{2+} へ Ni^{1+} の $3d$ 電子が跳び移ることも可能である。このように、電子、または正孔の運動によるエネルギーの低下を ω とする。

このことから、式 (1.1) の両辺でのエネルギー差は $E_{\text{gap}} = U - \omega$ となる。また、U が十分大きい場合には $E_{\text{gap}} > 0$ となるため、式 (1.1) 右辺の励起状態を作るためには有限の励起エネルギーが必要である。以上のことから電子相関の強い系では、有限のエネルギー・ギャップ E_{gap} があるため電荷となる電子と正孔が生成されず、絶縁体になる原因として知られている。

1.1.2 Slater による絶縁体の原因 〜反強磁性秩序〜

反対に、Slater は絶縁体を生じる遷移金属酸化物の大半のものが反強磁性を示すことから、反強磁性的磁気秩序が形成され、磁気秩序にともなう周期性（単純な反強磁性のときは 2 倍周期）の発生によって生じたバンドギャップによって絶縁体化すると考えた [4]。単一バンドの反強磁性の状態でスピンは \uparrow, \downarrow となる。Hartree-Fock 近似を使用した際、バンドが上下に分裂し、その間にギャップができる。

しかし、反強磁性磁気秩序により絶縁化しているとするならば、反強磁性が壊れるネール温度より高温では金属的になることが期待され、光学的性質がネール温度の前後で大きく変わらなければならないが、多くの絶縁体ではそのような実験事実は知られていない。このことから、バンド理論では論じ得ることができない新しい絶縁体の生じる原因が直接的な電子間相互作用によることが分かった。この原因によって生じる金属-絶縁体転移はモット転移と呼ばれ、

*1 ここでは、Ni イオンから $3d$ 電子を供給される過程に着目したが、後年、O などのイオンから $2p$ 電子を供給される過程も指摘され、励起に必要なエネルギーの小さい方が絶縁体を生じる原因となることが判った。遷移金属イオンの電子の移動からエネルギー・ギャップが生じる絶縁体はモット・ハバード型絶縁体、酸素などから遷移金属への場合は電荷移動型絶縁体として区別されている [5]。
新たな絶縁体についてはモット絶縁体と呼ばれることとなった。

1.2 モット絶縁体の研究と解析

1.2.1 ハーバードモデル

前述した Mott による金属-絶縁体転移の初期の描像は、強束縛モデルや、Heitler-London モデルなど既存のモデルを利用することで、その性質の説明を行ったが、それは誤った結果であった。よって、d 電子や f 電子の原子内電子の運動・局在の問題や、電子間相互作用に起因する問題を研究するためには新たなモデルを構築する必要が出てきた。

一般に固体中に働く電子間相互作用は、動いている電子間には距離に反比例するクーロン相互作用が働いている。そして、この相互作用は原子核の正の電荷により遮蔽されて、長距離相互作用が有効的に短距離相互作用になっていると考えられている。そのため、Hubbard は長距離まで働くクーロン相互作用に比べて、同一サイトにある電子同士に働くクーロン相互作用（オンサイト・クーロン）の方が重要であると考えた。

この考えに基づき、電子相関をオンサイト・クーロンのみを単純に取り入れた形に落とし、遠距離の効果をオンサイトに繋込んだモデルが Hubbard によって提唱された [6–8]。一般的な単一バンドハーバードモデルは離散的格子上で以下のように記される。

\[
\mathcal{H} = - \sum_{i,j,\sigma} t_{ij} c_i^{\dagger} c_j + U \sum_i n_{i\uparrow} n_{i\downarrow} \tag{1.2}
\]

パラメーター \(t_{ij} (>0) \) は j サイトから i サイトへの跳び移り積分を、\(U \) はオンサイト・クーロンの大きさをそれぞれ表している。また、\(c_i^{\dagger}, c_i \) はそれぞれ、i サイトのスピン \(\sigma \) の生成・消滅演算子、\(n_{i\sigma} (= c_i^{\dagger} c_i) \) は i サイトのスピン \(\sigma \) の数演算子である。式 (1.2) の第 1 項は強束縛近似による電子の運動エネルギーを表している。この項は電子間の非相互作用のみを取り扱い、空間的な非局在性に寄与している。対反第 2 項はクーロン相互作用エネルギーを表している。

\(U/t \ll 1 \) であればクーロン相互作用が弱いので電子の相関効果は小さくなり、電子は自由電子のように振る舞う。そのため、波動関数は空間的に広がった電子状態となっており、一体近似の波動関数による電子状態の記述が良くなる。一方、\(U/t \gg 1 \) では電子間には強いクーロン相互作用が働くため、電子が別のサイトに跳び移り、二重占有状態を形成するとエネルギー的に損になる。そのため、ハーフフィリングのハーバードモデルにおいては電子の移動が制限され、各サイトに一個ずつ孤立してしまうため、波動関数は局在した傾向となる。電子が各格子点に束縛された状態は、電荷の移動は生じ得ないため絶縁体状態となっている。このことから、ハーフフィリングのハーバードモデルにおいて、\(U/t \) が十分大きいとモット絶縁体にならなければならない。さらに、\(U/t \to \infty \) の強相関極限では、絶縁体磁性を表すハイゼンベルグモデルが得られる [9]。このため、ハーバードモデルは電子相関を最も単純な形で取り入れたもののであるが、モット転移の研究を進める上で最も適したモデルであると言える。

ハーバードモデルはその他の相関の問題にも用いられている。例えば、金森が Brueckner 理
論 [10, 11] をもとに金属 Ni が強磁性になりうることを示した (金森理論) [12] ように、伝導電子の関係する磁性体の理論的な出発点となっている。さらに後には超伝導現象の解明など多く
の問題に使われるようになった。ハーバードモデルは非常に簡潔なため、一次元系ではベーテ仮
た厳密な研究が数多く行われている [15]。しかし他の有限次元系では厳密解は未だに得られて
おり、その詳しい性質は解明されていないというのが現状である。また、式 (1.2) は単一バ
ンドだけに簡単化できる電子系を扱う場合のモデルであり [6]、その他にも、さらに強相関領
も基本的なモデルとして活発に研究が進められている。

1.2.2 Gutzwiller による変分理論

Gutzwiller は Ni の強磁性を論じるために、変分理論を用いた変分波動関数の導入を試み
た。Gutzwiller は式 (1.2) の Hubbard モデルに対して、オンサイト・クーロン U の効果を変
分波動関数に取り入れるために、その効果を端的に表す相関因子を導入した、Gutzwiller 試行
波動関数 (GWF) を提唱した [17]。

\[
\Psi_G = \prod_j [1 - (1 - g)n_{j\uparrow} n_{j\downarrow}] \Phi_F = \mathscr{P}_G \Phi_F \tag{1.3}
\]

\[
\mathscr{P}_G = \prod_j [1 - (1 - g)n_{j\uparrow} n_{j\downarrow}] \tag{1.4}
\]

式 (1.3) で \(\Phi_F \) は一体の波動関数であり、一般にブロッホ関数で作られたスレーティーノ行式で
与えられるが、ここでは \(U = 0 \) の解、すなわち平面波によるフェルミ球を考える。式 (1.4)
の相関因子部分は Gutzwiller 因子 (Gutzwiller 射影演算子) と呼ばれる。Gutzwiller 因子は
オンサイト・クーロン U の効果を取り入れる相関因子として最も基本的で不可欠である。式
(1.4) に含まれている Gutzwiller パラメーター \(g \) は斥力系 \(U/t > 0 \) に対しては 0 から 1 ま
で取る変分パラメーターである。Gutzwiller 因子により、電子があるサイト \(j \) を二重占有す
ると一体部分 \(\Phi_F \) に \(g \) が掛かる。そのため、モット転移に重要な役割を果たす二重占有サイト
の状態の重みが \(g \) により減少される。\(g \to 1 \) において \(\mathscr{P}_G = 1 \) となり、GWF は自由電子系
\(\Phi_F \) に還元される。また、\(g \to 0 \) の場合では二重占有サイトが完全に排除された強相関極限の
波動関数を表すことになる。

この GWF を用いて計算したサイトあたりの変分エネルギー \(E(g) \) は以下のように与えら
れる。

\[
\frac{E(g)}{N_s} = \frac{\langle \Psi_G | H | \Psi_G \rangle}{N_s \langle \Psi_G | \Psi_G \rangle} = \frac{\langle \Psi_G | - \sum_{i,j} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} | \Psi_G \rangle + \langle \Psi_G | U \sum_i n_{i\uparrow} n_{i\downarrow} | \Psi_G \rangle}{N_s \langle \Psi_G | \Psi_G \rangle} \tag{1.5}
\]

\(N_s \) は全サイト数を示している。式 (1.5) の基底エネルギーは変分原理に則り、\(E(g) \) を \(g \)
に対して最小化することにより求められる。その際の最適化パラメーターを \(g^* \) とすると、\(\Psi_G(g^*) \)
は最適化された試行波動関数を表す。また、$U = 0$ の場合 ($\Psi_G \to \Phi_F$)、式 (1.5) の非相関項の σ スピンをもつ電子の格子あたりの平均運動エネルギーは

$$
\bar{\varepsilon}_\sigma \equiv - \sum_{i,j} \frac{t_{ij}}{N_s} \langle \Phi_F | c_{i\sigma}^\dagger c_{j\sigma} | \Phi_F \rangle = \sum_{|k| \in k_{F\sigma}} \varepsilon(k) < 0 \tag{1.6}
$$

となる。k_F はフェルミ波数を表している。

1.2.3 Gutzwiller 近似

ここで問題の、式 (1.5) をいかにして計算するかである。式 (1.3) の GWF は外見は単純であるが、一体部分は

$$
\Phi_F = \prod_{|k| \in k_{F\sigma}} c_{k\sigma}^\dagger |0\rangle \tag{1.7}
$$

といった波数表示である。それに対し、相関因子は実空間表示であり、式 (1.5) を解析的に正確に解くことは容易ではない。

Gutzwiller は近似的に式 (1.5) の期待値を求めるために様々な仮定を導入し、確率論的にエネルギーの期待値を評価した [18]。この近似は Gutzwiller 近似 (GA) と呼ばれる。Gutzwiller はこの近似の上に立って Ni の強磁性を論じ、金森理論と同様の結論を得た。また、小川らは Gutzwiller が導いた結果をより明解な方法で導き [19]、その近似の物理的意味を明らかにした。その後、Vollhardt はランダウのフェルミ流体論を GA に適用し、3He の磁性について論じた [20]。ここでは小川らが導いた方法に従って説明する。

全サイトの数を N_s、上向き、下向きのスピンの電子の数を N_\uparrow、N_\downarrow、二重占有サイトの数を D とする。また、サイト数との比として、$n_\uparrow = N_\uparrow / N_s$、$n_\downarrow = N_\downarrow / N_s$、$d = D / N_s$ とする。式 (1.3) の Φ_F は各サイトに上向き、下向きのスピンの電子がいろいろな形にばらまかれた状態の重ね合わせである。このようないろいろな分布が持つ状態を、二重占有サイトの数 D によって分類をする。与えられた N_s、N_\uparrow、N_\downarrow に対して、一定の D をもつ電子配列の数 N_D は確率論の組み合わせの数にしたがって、

$$
N_D(N_s, N_\uparrow, N_\downarrow) = \frac{N_s!}{(N_\uparrow - D)!(N_\downarrow - D)!D!(N_s - N_\uparrow - N_\downarrow + D)!} \tag{1.8}
$$

となる。また、サイト占有に関して空間的相関を無視した場合における、スピン σ をもつ N_σ 個の電子が、ある 1 つの配列をとる確率は

$$
P(N_s, N_\sigma) = n_\sigma^{N_\sigma}(1 - n_\sigma)^{N_s - N_\sigma} \tag{1.9}
$$

となる。このとき、式 (1.5) の規格化因子は、

$$
\langle \Psi_G | \Psi_G \rangle \simeq \sum_D g^{2D} N_D(N_s, N_\uparrow, N_\downarrow) P(N_s, N_\uparrow) P(N_s, N_\downarrow) \tag{1.10}
$$

*2 後年、1 次元 [21, 22] と ∞ 次元 [23] では解析的に厳密な結果が得られたが、2 次元以上の有限次元系では正確な解析計算は未だに存在しない。
図 1.2 スピン \(\uparrow \) を持つ電子が \(j \) サイトから \(i \) サイトへ跳び移る際で取り得るの \(4 \) つの配置について示す。(a) 電子の跳び移り前後で二重占有的数 \(D \) が変化しない場合、(b) \(D \) が変化する場合の跳び移りを示している。式 (1.15) の第一項は (a) 上図、第二項は (a) 下図。第三項は (b) の二つの図に対応している。

と近似できる。また、式 (1.10) の二重占有着目数 \(D \) についての和を解析的に計算するのは容易ではないため、熱力学極限 \((N_s \to \infty) \) をとることにより、\(D \) に関する和の中で最大値となる項のみ考慮する近似を行う。最大値を与える \(D^* \) の値は

\[
\frac{\partial}{\partial D} \left[\frac{g^2 D}{D! (N_{\uparrow} - D)! (N_{\downarrow} - N_{\uparrow} - N_{\downarrow} + D)!} \right] = 0 \tag{1.11}
\]

という条件を満たすことで決定される。実際には、式 (1.11) の被微分関数は \(D \) に関する不連続関数であるので、\(D \) に関する差分をとることで、以下の \(g \) と \(d^*(D^*/N_s) \) の関係を導くことができる。

\[
g^2 = \frac{d^*(1 - n_{\uparrow} - n_{\downarrow} + d^*)}{(n_{\uparrow} - d^*)(n_{\downarrow} - d^*)} \tag{1.12}
\]

この関係式より、式 (1.10) は熱力学極限の下、以下のように近似される。

\[
\braket{\Psi_G | \Psi_G} \simeq g^{2D^*} N_{D^*} (N_s, N_{\uparrow}, N_{\downarrow}) P(N_s, N_{\uparrow}) P(N_s, N_{\downarrow}) \tag{1.13}
\]

同様の計算法を式 (1.5) の分子にも適用する。まず \(\braket{\Psi_G | \sum_{i,j} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} | \Psi_G} \) の場合を考える。まずは、\(\uparrow \) のスピンを持つ電子が跳び移る場合、

\[
\braket{\Psi_G | c_{i\sigma}^\dagger c_{j\sigma} | \Psi_G} = \braket{\Phi_F | c_{i\sigma}^\dagger c_{j\sigma} (\pi_{i\downarrow} + gn_{i\downarrow}) (\pi_{j\downarrow} + gn_{j\downarrow}) \prod_{l \neq i,j} [1 - (1 - g) n{l\uparrow} n{l\downarrow}]^2 | \Phi_F} \tag{1.14}
\]

と変形できる。ここでは、\(\pi_{i\sigma} = c_{i\sigma}^\dagger c_{i\sigma} \) を示している。式 (1.14) は図 1.2 のような \(4 \) つの跳び移りの過程を示している。図 1.2(a) の二つの過程では \(D \) の数が変わらない跳び移り、すなわち、空サイトや二重占有サイトが移動する過程である。一方、図 1.2(b) の二つの過程では電子が跳び移り前後で \(D \) の数が増減する過程で、それぞれ二重占有サイトと空サイトが生成・消滅する。本来、\(U \neq 0 \) であるならば、これらの \(4 \) つの跳び移りの過程は異なる確率で生じるはずである。例えば \(U/t > 0 \) ならば、(b) の上側の過程は下側の過程より起こりやすいことが予想されるが、GA はそうした局所配置依存性を取り入れず、二重占有数のみに依存した平均値で置き換える。詳しく言及すれば、この跳び移り項があるため、式 (1.14) に GA を用いた
場合の電子配列の数 \(N_D\) については \(i, j\) の 2 サイドを除外して考え、図 1.2 を参考に \(i, j\) サイドにある \(\uparrow, \downarrow\) 電子を除いた、\(N_s - 2\) サイド上にある残りの電子数 \(N_\sigma\) ついて考慮すればよい。さらに、\(P(N_s, N_\uparrow)\) については、一つの \(\uparrow\) スピンを持つ電子が \(j\) サイドから \(i\) サイドへ飛び移るため、その電子と配置の情報が固定される。そのため、その他の \(\uparrow\) 電子の配列を持つ確率となる。以上の近似から、式 (1.8) と式 (1.9) を用いると、

\[
\langle \Psi_G | \sum_{i,j} t_{ij} c^\dagger_i c_j | \Psi_G \rangle \simeq \sum_D g^{2D} [N_D(N_s - 2, N_\uparrow - 1, N_\downarrow) + g^2 N_D(N_s - 2, N_\uparrow - 1, N_\downarrow - 2) \\
+ 2 g N_D(N_s - 2, N_\uparrow - 1, N_\downarrow - 1)] P(N_s - 2, N_\uparrow - 1) P(N_s, N_\downarrow) \varepsilon_\uparrow
\]

(1.15)

となる。また、式 (1.5) の同一サイト斥力相関の項は、

\[
\langle \Psi_G | U \sum_i n_i \uparrow n_i \downarrow | \Psi_G \rangle = U g^2 \sum_i \langle \Phi_F | n_i \uparrow n_i \downarrow \prod_{l \neq i} [1 - (1 - g) n_l \uparrow n_l \downarrow] \rangle \langle \Phi_F \rangle \\
\simeq N_s U \sum_D g^{2D+2} N_D(N_s - 1, N_\uparrow - 1, N_\downarrow - 1) P(N_s, N_\uparrow) P(N_s, N_\downarrow)
\]

(1.16)

式 (1.15) と式 (1.16) の \(D\) に関する和も、熱力学極限の下、\(\langle \Psi_G | \Psi_G \rangle\) の場合と同様に最大項に置き換える近似を行うと、両方とも条件式 (1.12) が成り立つことが分かる。

このことから、式 (1.15) と式 (1.16) の \(D\) に関する和の最大項、\(D^*\) の項と式 (1.13) をそれぞれ式 (1.5) に代入すると、GA を行った際の各エネルギーが求められる。これらの式は関係式 (1.12) を用いることで、最終的に \(g\) の代わりに \(d^*\) の関数として（すなわち \(d^*\) を最適化パラメーターとして）

\[
\frac{\langle \Psi_G | \sum_{i,j} t_{ij} c^\dagger_i c_j | \Psi_G \rangle}{N_s \langle \Psi_G | \Psi_G \rangle} \simeq \frac{[\sqrt{(n_\uparrow - d^*)(1 - n_\uparrow - n_\downarrow + d^*)} + \sqrt{(n_\downarrow - d^*)d^*}]^2}{n_\uparrow (1 - n_\uparrow)} \varepsilon_\uparrow
\]

(1.17)

\[
\frac{\langle \Psi_G | U \sum_i n_i \uparrow n_i \downarrow | \Psi_G \rangle}{N_s \langle \Psi_G | \Psi_G \rangle} \simeq U g^{2D^*+2} N_{D^*}(N_s - 1, N_\uparrow - 1, N_\downarrow - 1) \frac{g^{2D^*} N_D(N_s, N_\uparrow, N_\downarrow)}{U d^*}
\]

(1.18)

と求めることができる。二重占有の密度は式 (1.18) によって正確な期待値として与えられているが、式 (1.17) の運動エネルギー部分は前述の近似を用いた結果となっている、一体の波動関数のエネルギー \(\varepsilon_\sigma\) が、Gutzwiller 因子による二重占有サイトの抑圧効果によって修正される形で与えられる。

式 (1.17) は \(\uparrow\) スピンの飛び移りの項を取り扱ったが、\(\uparrow\) と \(\downarrow\) を取り替えたものが \(\downarrow\) スピンの飛び移りの項に対応する。最終的に式 (1.5) の GA を用いて計算されたエネルギー \(E_{GA}\) は、

\[
E_{GA} = \frac{E_{GA}}{N_s} = - \sum_\sigma \gamma_\sigma \varepsilon_\sigma + Ud
\]

(1.19)

\[
\gamma_\sigma = \frac{[\sqrt{(n_\sigma - d)(1 - n_\sigma - n_{-\sigma} + d)} + \sqrt{(n_{-\sigma} - d)d}]^2}{n_\sigma (1 - n_\sigma)} \leq 1
\]

(1.20)
が導かれる。ここで用いた γ_σ はホッピングによるエネルギーを減少させる因子となっている。この因子は $U = 0$ の相互作用のない状態 $(d = n_\uparrow n_\downarrow)$ においては、$\gamma_\sigma = 1$ となり、非相互作用状態を正しく記述できていることがわかる。また、γ_σ は一粒子占有確率 $\langle c_{k\sigma}^\dagger c_{k\sigma} \rangle$ のフェルミ波数 k_F における不連続性 (準粒子繰り込み因子) に対応している。

GA を用いて導出された結果において、Gutzwiller 因子の効果は相関項である Ud にはあらわに現れず**3、非相関項にすべて押し込められる形となっている。さらに、非相関項は図 1.2 が示す 4 つの跳び移りの過程を平均的に 1 つにまとめてしまっているため、求められた運動エネルギーの正しさについては十分な検証が必要である。

このように GA は比較的荒い近似によって、導出された結果であるがスレーブ-ポソン軸点近似による結果と全く同等となることが知られており [24], さらにポソン系においてはあらゆる次元で GWF の厳密な結果を与えることが知られている [25, 26]。従って、十分検討するに値する近似ではあるが、フェルミオン系における金属-絶縁体転移に適用する場合には、この理論が破綻してしまうことを次に述べる

1.2.4 Brinkman-Rice 転移

Brinkman と Rice [27] はモット転移を研究するにあたり、非磁性の下において Gutzwiller 近似の範囲内で検討し、U がその臨界値 U_c^{BR} に達すると金属-非金属転移 (Brinkman-Rice 転移) が起こることを示した。（ここでは便宜上、モット転移とは区別する）

以下では、Brinkman と Rice が示した方法を説明する。ハーフフィリングにおいて、$n_\uparrow = n_\downarrow = 1/2$, $n = 1$ である。この値を式 (1.20) と式 (1.12) に代入すると、

$$\gamma \equiv \gamma_\uparrow = \gamma_\downarrow = 8d(1 - 2d)$$

$$g = \frac{2d}{1 - 2d}$$

となる。式 (1.21) を式 (1.19) に代入し、また、式 (1.22) の関係式より d は変分パラメーター g と一致する値を求めるため、エネルギーを最小化する d の値を求めると、

$$d = \frac{1}{4} \left(1 - \frac{U}{U_c^{BR}} \right), \quad U_c^{BR} \equiv 8|\bar{\varepsilon}_0|$$

$$\gamma = 1 - \left(\frac{U}{U_c^{BR}} \right)^2$$

$$\frac{E_{GA}}{N_s} = -|\bar{\varepsilon}_0| \left[1 - \frac{U}{U_c^{BR}} \right]^2$$

という各種の関係式が得られる。また、スピン感受率 χ_s は以下の表式で求められる。

**3 式 (1.12) から見ても分かるように d は g と対応しており、間接的には Gutzwiller 因子の効果取り入れられている
\[\chi_s = \rho(\epsilon_F) \left\{ 1 - \left(\frac{U}{U_c^{BR}} \right)^2 \right\} \left[1 - \frac{1}{2} \rho(\epsilon_F) \frac{1 + U/(2U_c^{BR})}{[1 + U/U_c^{BR}]^2} \right]^{-1} \]

(1.26)

ここで、\(\rho(\epsilon_F) \) は相互作用のない電子の状態密度を表している。

式 (1.23) から、\(U \) が 0から増加してゆくと、\(d = 1/4 \) から \(U \) の一次で減少し、\(U = U_c^{BR} \) で 0になることがわかる。これに対応して \(\gamma \) は 1から減少し、\(U = U_c^{BR} \) でゼロになり、フェルミ面における電子の分布関数 \(n_{k_F} \) の不連続は消え、運動エネルギーもゼロになる。また、\(\gamma \) は大雑把には電子の有効質量の逆数 \(m/m^* \) に対応しているため \(m/m^* \) は発散しており、また、式 (1.26) から \(\chi_s \) も発散するため、連続転移を示している。以上のことから、Brinkman と Rice は \(U = U_c^{BR} \) で状態は金属から絶縁体に転移しており、絶縁体状態は二重占有サイト（もしくは空サイト）の完全な消滅により現実化すると結論を出した。

Brinkman と Rice 自身は磁性を考慮するとこの結果が正しくないことを述べているが、この研究以前、常磁性における Brinkman-Rice 転移についても様々な検証が行われ、この結論が正しくないことが導き出されている。横山-スダ [28] は数値的解析手法である変分モンテカルロ法を有限サイズの 1次元鎖、2次元正方格子のハッパードモデルに対して適用し、GWF を厳密に計算した。その結果、GWF の範囲内では \(U/t < \infty \) での金属-絶縁体転移が起こらないうことを示した。フィリング \(n \) によっては GA の方がハッパードモデルの厳密解よりエネルギー的に低くなることから、GA などの二次的近似を施すと変分原理を満たさないことが分かっており、安定な付加的近似は極力避けるべきであることがわかる。さらに、Metzner と Vollhardt [22] は 1次元系において GWF のエネルギー期待値を \(g^2 - 1 \) による展開を行い、ダイヤグラムを無限次まで足し上げる厳密な計算により、解釈的に求めた。その結果は VMC の結果と正確に一致した。以上のことから GA を用いて有限の \(U \) で転移が起こるとした Brinkman-Rice 転移は正しくなく、実際には生じないことが分かった。

1.3 変分モンテカルロ法の発展と先行研究

ここで一度、モット転移の問題から離れ、本研究で扱った変分モンテカルロ法 (VMC) について触れる。(技術的なことは 2.4 節に載っている)

近年、多体変分法は強相関系を扱うための非常に有用な方法だが、前節でも見たように、最も単純な GWF でさえも解析的に期待値を正確に計算するのは容易ではない。かと言って、付加的な近似を用いると変分原理を損ねてしまい、変分法の数々の利点を失うことになる。VMC は変分期待値の計算にモンテカルロ法を用い、正確に解く方法で、上記の困難は克服される。今世紀に入り、技術的（および計算機の性能）に大きな発展があり、VMC の計算精度は著しく上がり、その適用範囲も格段に広くなった。

歴史的には、VMC は液体 \(^4\)He の基底状態を調べるために McMillan [29] によって初めて導

*4 次元系やポソノ系 [25, 26] では GA が GWF の正確な結果を与えるが、そこで現れる物理は後述のように \(U/t < \infty \) では正しくない。しかし現在でも Brinkman-Rice 転移の挙動を概念的に "Brinkman-Rice" と形容することがあり、注意が必要である。
第1章 背景と研究目的

図1.3 (a)2次元格子系のハーフフィリングにおける $U/t = 8.0$ での運動量分布関数、(b) 1次元系のハーフフィリングにおける U/t に対するサイトあたりのエネルギーを示す。BR は Gutzwiller 近似、GWF は Gutzwiller 因子のみ、A(NN) は Gutzwiller 因子と最隣接ダブルン-ホロン束約因子をそれぞれ導入した試行波動関数を示している。また、exact は Bethe 仏説による厳密解の結果 [13] を図示している。

入された。その後、Ceperley ら [30] によってフェルミオン系へと適用され、現在では原子核物理や原子分子の理論など様々な分野で広く使われている。固体物質の分野で用いられるようになったのはその後のことである。

横山とス波 [31] はこの VMC を初めて格子系に適用させ、GWF では Brinkman-Rice 転移が生じないことについて示した。その論文では、1次元軸、2次元正方格子、単純立方格子のハーフモデルに対して GWF を用いた場合、非磁性状態でのハーフフィリングにおいて $U/t < \infty$ では常に金属的となることを示し、GWF は金属-絶縁体転移を記述する試行波動関数として不適格であることを示唆した。この他にも GWF では定性的に不十分なことがある。

図1.3(a)に示すように運動量分布関数 $n(k)$ は、$\Gamma \sim \pi$ 間において k の増加関数となることを示している。これは一般的に知られるフェルミ流体論の運動量分布関数 (k の減少関数) とはかけ離れた結果である。また、図1.3(b)を見ると、1次元系における強相関領域での GWF のエネルギー E/t は、厳密解と比較をすると大幅に異なることがわかる。この違いから見ても GWF は、強相関系の状態を表すための物理的な要因が欠如していることが分かる。

このように GWF が妥当な理論と異なる結果を出す理由は、Gutzwiller 因子が同一サイトの効果しか取り扱っておらず、サイト間の相関効果を取り入れる因子 (Jastrow 因子) を導入していないことが原因と考えられる [28]。そこで $U/t \rightarrow \infty$ からの改良として2次の摂動を考えた場合、摂動エネルギー $E^{(2)}$ はハーフードモデルにおいて、

$$
E^{(2)} = -\frac{t^2}{U} \left| \langle \varphi_1 | \sum_{\langle i,j \rangle\sigma} e_{i\sigma}^c e_{j\sigma} + h.c. | \varphi_0 \rangle \right|^2
$$

という形となる。ここで φ_1 は φ_0 と比べて、(1つ二重占有サイトが多い) U だけエネルギーが高い中間状態を表している。図1.4のように始状態から電子が移動し、2次半動の中間状態となる。この状態では二重占有サイト (ダブルン : D) と空サイト (ホロン : H) が最隣接サイ
が同士に生成され、再び電子が元の場所に移動することで、初めの状態に戻る。この過程を経ることで、全体のエネルギーが減少する。しかし、Gutzwiller 因子を作用させる ΦF は全体の波動関数ゆえ、摂動の効果を露わに取り入れておらず、また、Gutzwiller 因子自体も同一サイトまでの相関なので、結果として GWF は摂動を 0 次しか考慮していない波動関数となっている。そのため、新たに摂動効果を取り入れ、GWF の物理的不自然さを取り除くためには、図 1.4 の中段のようにダブロンとホロンを近くのサイトに束縛させる因子が必要ある。

このことは、以下の 3 つの研究からも示されている。Castellani ら [32] はハーバードモデルにおいてスピンと電荷の自由度から有効ハミルトニアン導き出した。それによって、ダブロンとホロン間に交換項が現れ、ハーバードモデルにはダブロン・ホロン間の相互作用が元々備わっていることを示した。また、Kaplan ら [33] は 1 次元でのクラスターを研究し、ハーフフィリングにおいてダブロンとホロンの相関因子は強相間においてエネルギーを減らすために重要であることを示した。横山と斯波 [28] は、十分大きい U/t の下、1 次元ハーバードモデルに対して厳密対角化を行った場合、波動関数の展開係数は、U/t = 0 の係数を基準とすると、一つのダブロンからホロンへの距離 r_{dh} に対して、指数関数的に下がることを示した (表 1.1)。

表 1.1 1 次元鎖 N_s = 10, U/t = 16 での厳密対角化した際の U/t = 0 の場合との係数比 [28]。D はダブロンの数、r_{dh} はダブロンとホロン間の距離。簡単のため、D = 1 の配置の場合に限っている。

<table>
<thead>
<tr>
<th>D = 1, r_{dh} = 1</th>
<th>D = 1, r_{dh} = 2</th>
<th>D = 1, r_{dh} = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>基底</td>
<td>比率</td>
<td>基底</td>
</tr>
<tr>
<td>20 + + + + − − − −</td>
<td>4.235</td>
<td>2 + 0 + + + + − − − −</td>
</tr>
<tr>
<td>20 + + + + − − − −</td>
<td>2.516</td>
<td>2 + 0 + + + + − − − −</td>
</tr>
<tr>
<td>20 + + + + − − − −</td>
<td>2.117</td>
<td>2 + 0 + + + + − − − −</td>
</tr>
</tbody>
</table>

これら先行研究の結果から Jastrow 因子を導入する場合、ダブロンとホロン間に働く束縛効果を取り入れる因子 (D-H 相関因子) が不可欠であることが分かった。

D-H 相関因子は t/U の 2 次の効果を導入する因子であるが、横山とス波は電子密度が低い場合、距離に依存する Jastrow 因子の長距離部分が有効であり、反対に、ハーフフィリングの場合、遮蔽効果により Jastrow 因子の短距離部分が有効であるとして、最隣接のみの D-H 相
関効果を導入した [28]。それにより、GWF での図 1.3(a) における不自然な運動量分布関数や、図 1.3(b) の 1 次元系におけるエネルギーの厳密解との大幅な不一致を解消することができた。

最隣接 D-H 相関因子の導入し始めた頃、Millis と Coppersmith [34] による光学伝導度のゼロ振動数の振る舞いからモット転移は起こらないと言われていたが、この十年の研究 [35] では有限の転移点 U_c/t でモット転移が起きることが明らかになった。後で本研究の結果でも示すように、運動量分布関数や電荷密度構造因子が $U > U_c$ で電荷ギャップを開く振る舞いを示すことからもわかる。\[5\]

この D-H 相関因子によって実現するモット転移は次のように理解することができる。U/t が大きい場合は、大部分を占める背景の単一占有サイト（スピノン）は、電荷の点で中性を表す。それにより、ダブロンとホロンは負と正のキャリアとみなせる。最初に、相関因子として Gutzwiller 因子のみを考慮する場合、U/t が有限である限り、ダブロンとホロンは完全な相関を存在し、相互の相関がないので、正と負の電荷を持つキャリアとして図 1.5(a) のように自由（大域的）に動き回る。したがって、U/t が無限大でない限りは金属状態であると考えられる。

一方、D-H 相関因子を導入した場合には U/t が大きいときに、一次転移的にダブロンとホロンが強く束縛されるようになる。このとき、正の電荷と負の電荷は図 1.5(b) のように近接サイトに束縛されて単独で動くことができず、電荷のゆらぎは局所的なものとなる。その結果、U/t が有限の値でモット転移が実現すると考えられる。以上の考えから VMC を用いたモット転移の研究は、Gutzwiller 因子にさらに D-H 相関因子を加えた試行波動関数を用いられている。

\[5\] この論文では D-H 相関因子を含む波動関数ではモット転移は起こらないという結論を $1 - \mu(\mu$ は D-H 相関の変分パラメーター) の展開によって出しているが、モット転移近傍では $g, 1 - \mu$ の両方を同時に展開する必要があり、この結論が正しくないことがわかった [35]。
1.4 変分モンテカルロ法とその他の計算手法の比較

ハパード模型や$t-J$模型のような強相関系における電子の状態を計算することは、非常に困難とされてきた問題である。現在までにこの問題を克服すべく様々な計算手法が開発されてきた。これらは大別すると解析的手法と数値的手法に分かれる。

1.4.1 解析的手法

解析的手法の代表例は摂動法である。単純な摂動計算では、電子間クーロン斥力が弱い極限($U/t = 0$) 場合から出発して、このクーロンポテンシャルを摂動として 3 次、4 次とできるだけ高次の項まで計算するが [36]、実際高次項を計算することは容易ではなく、強相関になるとつれて明らかに精度が悪くなる。また、摂動法に関連した計算方法として、乱離位相近似 (RPA) や揺らぎ交換近似 (FLEX) といった弱相関からの手法もよく用いられる。これらハミルトニアンのクーロンポテンシャルを摂動として展開するが、展開した項の中で物理的に重要だと思われる項だけを無限次までうまく抽出して計算する方法である。しかしこれらの方法でも、やはり強相関になるにつれて切り捨てた項の寄与が大きくなってまいり、秩序相が著しく過大評価される傾向があり、計算の信頼性はなくなると考えられている。

また、平均場近似、Gutzwiller 近似などは、複数の電子がクーロン斥力を及ぼし合う本来の多体問題を、1 つの電子が他の全ての電子が作る一様ポテンシャル場の中を動くという一体問題に焼き直す方法である。これらは、決定して局所的な電子相関の効果を取り入れることではないので、目的とする強相関系の電子状態の本質に決定的な結果を与えるのは不可能である。

1.4.2 数値的手法

数値的手法として、例えば厳密対角化法は一般に系のヒルベルト空間で取り得る全ての電子配置を基底として、巨大な行列の固有値、固有関数を直接求める方法である。得られる計算結果は与えられた有限系に対して厳密解であるが、扱える系のサイズはハパードモデルでは 20 サイト程度が限度であり、熱力学極限の系の状態を知るには、一般的にはその格子サイズはあまりにも小さい。

一方、VMC と同じくモンテカルロサンプリングを用いた計算法として、量子モンテカ
ルロ法 (QMC) があり、様々なパリエーションがある。例えば経路積分モンテカルロ法では、系の波動関数は時間発展とともに基底状態に落ち着くが、量子系ではこの時間変化は、系の全ての電子の経路（座標の時間変化）について和をとることにより求まる（経路上のラグランジアンの時間についての積分）。QMC は、この経路の取り方をモンテカルロ法により抽出し、物理量を求めるために必要なグリーン関数を直接計算する方法である。しかし、QMC では電子のようなフェルミオン系を扱う際には、波動関数の反対称性によりサンプリングの確率密度がしばしば負になり（負符号問題）、考えるモデルやパラメーターによっては実質的に計算が出
来なくなるという問題がある。さらに負符号問題がない場合でも相互作用強度が大きい場合、統計揺らぎが非常に大きくなり、正確な結果が得られない。概ね相互作用強度がバンド幅以下で有効と考えてよい。

相関強度にかかわらず有効な方法として、次の二つの手法が挙げられる。まず、厳密対角化の発展的な方法として密度行列繰り込み群 (DMRG) がある。DMRG は少ない自由度（基底）を用いて大きなサイズの系を精度よく表現することができる方法である。1次元量子系の基底状態を精密に求めることができるが、2次元系では精度が落ちるので適用例は少ない。また、平均場理論を拡張した動的平均場理論 (DMFT) は、有効場の時間揺らぎを考慮し、静的な場において格段に多くの情報を取り込むことができる手法である。しかし、DMFTはサイト間相関を平均場で置き換えるため、空間 (波数) 依存性を取り入れることが難しい。拡張版としてクラスターを用いる方法があるが、波数の分解能は非常に限らざるをえず。また、無限次元で厳密な理論ではあるが、有限次元系に適用して得られる結果はあくまで近似解であり、特に低次元系においては信頼性が乏しい。

1.4.3 変分モンテカルロ法の特性

以上のような様々な計算手法がある中で、変分モンテカルロ法がどのような位置づけにあるかをまとめておこう。

1. 変分モンテカルロ法は試行波動関数を仮定するという点では近似的な方法である。しかし、飽くまで変分原理に基づいた正確な変分期待値が得られる計算なので、エネルギー期待値を低下させることが試行波動関数の改良の指針となる。

2. 電子間クーロン斥力の強弱に関わらず、その局所的相関効果をかなり正確に扱うことができる。また、適当な波動関数の設定をすると、弱相関極限と強相関極限が十分な精度で計算でき、その間を滑らかに繋ぐことができる。そのため、強相関系で起こる代表的な現象の1つであるモット転移も、摂動計算などの展開法で扱うのは不可能だが VMC では扱うことができる。

3. フェルミオン系において、量子モンテカルロ法を用いる際に生じる負符号問題は基本的に起こらないため、近似の範囲内において結果の信頼性は高い。

4. ハーバードモデルにおいて、1次元系では厳密解はペーティ仮説や共形場理論、数値計算では DMRG、厳密対角化などが存在する。また、3次元系以上では平均場や、RPA、DMFTなど強力な計算手法がある。しかし、2次元系においては信頼性の高い手法は多くなく、次元に関係なく扱える VMC は有用な手段であると言える。また、フラストレーションが生じる三角格子系などでは唯一の計算可能な手法である。

5. 自ら定義した試行波動関数を用いて、電子を実空間モデルでシミュレーション的に扱うため、得られた基底状態で起こる物理が目に見え理解しやすいという利点もある。

6. 場合によっては 10^3 番以上の系のサイズを広げることができるほど軽い計算であるため、熱力学的極限をより正確に考察できる。
このように VMC は様々な利点があり、特に強相関系での 2 次元ハーバーモデルに対しては強力な計算手法であると言える。

1.5 本研究の目的と構成

本研究では VMC を 2 次元正方格子ハーバーモデルに適用し、常伝導状態での非磁性モット転移を考える。酸化物超伝導体 κ-(BEDT-TTF) [37] ではモット転移が起こり、鋼酸化物高温超伝導体 [38–41] はドープされたモット絶縁体であることが知られている。これらの物質で生じる現象を解明するためには電子の運動エネルギーと相互作用エネルギーの競合から起きる、純粋なモット転移の機構について深い理解を得ることは意義深い。また、2 次元正方格子のハーバーモデルは鋼酸化物などの重要な物質群の直接的モデルとして扱われており、研究対象として重要である。

本研究の最終的な目標は Mott により初期に考え出された電子 (ダブロン) と正孔 (ホロン) による転移の描像 [2](1.1.1 節) を足がかりに、ダブロンとホロンがモット転移に対してどのような役割を担っているかを理解することである。具体的には、これまでの研究では考えられていなかった次の 3 点をこの研究では行う。

1. 試行波動関数に D-H 相関因子 (引力相関) だけでなく D-D 間や、H-H 間に働く斥力相関因子を導入し、導入前後の結果の相違や変分エネルギーの改善について調べる。
2. ダブロン、ホロン間に働く相関範囲を短距離から長距離に拡張し、それぞれ異なる相関因子の形を与えた試行波動関数の異なる性質を明らかにする。
3. 変分モンテカルロ法の利点を生かし、モット転移の微視的観点から考えたメカニズムを提唱する。

本論文は次のように構成されている。まず、第 2 章で対象とする系の理論モデル、取り扱う試行波動関数、解析手法について説明をする。第 3 章では、主にダブロンとホロンが常に最隣接サイトに束縛されているという特殊な場合を除いた試行波動関数を取り扱い、モット転移点、相関因子の違いによる結果、性質について議論する。第 4 章では、D-H 間、D-D(H-H) 間の 2 つの距離に関する量の振る舞いから、特殊な場合と一般的な場合のモット転移の微視的メカニズムを考察し、転移の描像を詳しく説明する。第 5 章でこれらのまとめを行う。
第2章
理論モデル及び解析手法

この章では、本研究の目的である常伝導状態での非磁性モット転移の微視的メカニズムを理解するために用いた理論モデル、解析手法について述べる。また、本研究では解析手法として変分モンテカルロ法 (VMC) [29-31] を用いており、その性質については1.3 節、1.4.3 節ですでに述べているため、この章では計算方法や技術的な点について説明する。

2.1 節では理論モデル、2.2 節では格子についての説明を行う。また、VMC の計算は次のような過程からなる。

1. 試行波動関数 $\Psi(R,C)$ を設定する。
 ここで $R = (r_1, r_2, \ldots, r_{N_e})$ は N_e 個のフェルミ粒子の位置座標を示し、$C = (C_1, C_2, \ldots)$ は変分パラメーターを示す。

2. この Ψ を用いてエネルギー期待値、$E(C) = \frac{\langle \Psi | \mathcal{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$ を計算する。

3. エネルギー期待値 $E(C)$ を最小にする変分パラメーター C^* を見つける。

4. C^* を持つ試行波動関数 (最適化関数) を用いて、物理量期待値 $Q(C^*) = \frac{\langle \Psi | \hat{Q} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$ を計算する。

2.3 節では、1. の過程に対応する本研究で用いた試行波動関数について説明する。2.4 節では 2. と 3. の過程に対応する技術的な点について述べている。

2.1 理論モデル

本研究では理論モデルとしてハバードモデルを導入する。このモデルの詳細については、すでに1.2.1 節に記述しているため、ここでは触れる程度に説明する。ハバードモデルは歴史的には遍歴強磁性を考えるために導入され [6,12,17]、時代が進むにつれ、相関効果による現象の本質を捉えた最も単純なモデルとして、強相関の格子系に対して広く用いられるようになっ

そのため、電子相関効果によって生じるモット転移の研究に適しており、現在の固体物理学において最も基本的なモデルの一つである。

一般的な単一バンドのハバードモデルはすでに式 (1.2) に示している。本研究では次のように
に、電子の跳び移りが最隣接サイトの場合のみを考慮した2次元ハーバードモデルを使用する。

\[H = -t \sum_{\langle i, j \rangle, \sigma} (c_{i\sigma}^\dagger c_{j\sigma} + c_{j\sigma}^\dagger c_{i\sigma}) + U \sum_i n_i^\uparrow n_i^\downarrow \] (2.1)

\[H_{\text{kin}} \equiv -t \sum_{\langle i, j \rangle, \sigma} (c_{i\sigma}^\dagger c_{j\sigma} + c_{j\sigma}^\dagger c_{i\sigma}) \] (2.2)

\[H_{\text{int}} \equiv U \sum_i n_i^\uparrow n_i^\downarrow \] (2.3)

\(H_{\text{kin}} \) は電子の非相関項、\(H_{\text{int}} \) は電子の相関項を示している。また、\(\langle i, j \rangle \) は \(x, y \) 方向の全ての隣接サイトの和を取ることを意味している。跳び移り積分は \(t > 0 \) とし、エネルギー単位として扱う。また、斥力モデルを考えるため \(U \geq 0 \) とする。

2.2 格子モデルのサイズ効果と境界条件

サイズ効果

VMC では有限サイズの離散格子モデルを扱うので、格子のサイズ効果を調べる必要がある。本研究ではいくつかの格子サイズのデータを同時にプロットして、異なる格子サイズの点が誤差の範囲内で等しいとき、もしくはこれらの点がグローバルな1つの曲線状に近づくときに、これらを熱力学極限のデータとみなす。本研究では、\(N_e = L \times L \) サイトの正方形を考えるが、反強磁性相関を考慮すると \(L \) は偶数の必要があり、\(L = 10, 12, 14, 16, 18 \) の格子サイズを使用する。

境界条件

ある有限サイズの格子に電子を詰めるとき、電子は \(k \) 空間において、強束縛バンド \(\varepsilon_k \) の低い方から順に詰められる。このとき基底状態であるためには、電子の詰まり方は縮退のない一意的なるもの（閉殻）であることが望ましい。なぜならば閉殻条件を満たさなければ、電荷、あるいはスピン流が流れている基底状態を考えることになるからである。そのため、格子サイズが小さいほど閉殻条件を満たす電子数は限られる。例えば \(L \times L = 10 \times 10 \) のサイズの格子にたいして、\(x \) 軸、\(y \) 軸方向ともに周期的境界条件 (PP 境界条件) をとると、閉殻条件を満たす電子数は \(N_e = 2, 10, 18, 26, 42, \cdots, 98, 102, \cdots \) に限られる。ここで \(x \) 方向を周期的、\(y \) 方向を反周期的境界条件 (PA 境界条件) をとると、閉殻条件を満たす電子数は、\(N_e = 4, 12, 16, 24, 32, 36, 44, \cdots, 100, \cdots \) となる。PA では PP のときよりも閉殻を満たす電子数を多くとれるばかりでなく、モード変換が起きるハーフフィリングの場合に常に閉殻になる。従って、本論文では全ての計算において \(x \) 方向を周期的、\(y \) 方向を反周期的境界条件を課した格子モデルを用いる。

サイト間距離の取り扱い

2次元正方格子のサイト間の距離は強相関展開の議論と合うように、マンハッタン距離を用いている。例をあげると、\((i, j)\) サイトから \((i + 1, j + 1)\) サイトへの距離は \(r = \sqrt{2} \) ではなく、
2.3 相関因子と試行波動関数

本研究で用いる試行波動関数には、対象とする状態の本質を含ませるために相関因子を導入する。この過程は VMC の過程の中で最も重要である。なぜならば、もし、この相関因子が着目している問題の本質から外れたものであれば、エネルギー期待値は低下しない。また、たくさんの相関因子を取り入れると、逆に物理描像を把握しにくくなるため、必ずしもパラメーターが多い方が良いわけではなく、むしろ簡単なものが望ましい。そのため、物理的考察から問題の本質を見極め、重要と思われる相関因子を試行波動関数に取り入れなければならない。

多体試行波動関数として最もよく使われるものは、次のようである。

\[
\Psi = \mathcal{R}\Phi
\]

\(\Phi\) は電子相関がない、または平均場近似などの一体近似により導出された波動関数（一体部分）であり、フェルミオン系ではよく Slater 行列式が用いられる。\(\mathcal{R}\) は電子間相互作用の効果を \(\Phi\) に作用させる相関因子であり、Gutzwiller 因子や、Jastrow 因子が対応する。最も単純な Jastrow 因子の場合は二体因子の積で書かれる。一般的に、波動関数は式 (2.4) のような一体部分と相関因子の単純な積の形には書けないため、この形に仮定している時点で既に大胆な近似である。しかし、後に示すように弱相関のときはかりでなく、強相関の場合にもしばしばよい近似解数となる。

以下では本研究で用いる試行波動関数の一体部分と、相関因子について説明する。
2.3.1 一体部分

本研究では常伝導状態の非磁性モット転移を扱うため、試行波動関数の一体部分には通常のフェルミの海 \(\Phi_F(U/t = 0) \) のときの基底状態を用いる。

\[
\Phi_F = \prod_{k < k_F, \sigma} c_{k,\sigma}^\dagger |0\rangle = \sum_\{\{r\}\} \det[\phi_\uparrow(k, r)] \det[\phi_\downarrow(k, r)] c_{r_{1\uparrow}}^\dagger \cdots c_{r_{N_e\uparrow}}^\dagger c_{r_{1\downarrow}}^\dagger \cdots c_{r_{N_e\downarrow}}^\dagger |0\rangle \tag{2.5}
\]

行列式の \(i, j \) 成分、\(\phi_\sigma(k_i, r_{j\sigma}) = \exp(ik_i \cdot r_{j\sigma}) \) である。\(k_i \) については自由電子の \(i \) 番目の波数ベクトルを、\(r_{j\sigma} \) はスピン \(\sigma \) の \(j \) 番目の電子の位置を示す。また、\(k \) の積は、\(\varepsilon_k \) を強束縛バンドとしたとき、与えられた数の電子を \(k \) 空間において \(\varepsilon_k \) の低い順にフェルミ順位 \(\varepsilon_F \) まで詰められることを意味する。本研究ではこの一体部分には最適化される変分パラメーターは導入しない。

2.3.2 Gutzwiller 試行波動関数

本研究では、同一サイト上における電子間クーロン斥力の効果を端的に取り入れる相関因子として Gutzwiller 因子を導入する。

\[
\mathcal{P}_G = \prod_j \left[1 - (1 - g) n_{j\uparrow} n_{j\downarrow} \right]. \tag{2.6}
\]

また、この相関のみを取り入れた試行波動関数は Gutzwiller 試行波動関数 (GWF) と呼ばれる。

\[
\Psi_G = \mathcal{P}_G \Phi_F \tag{2.7}
\]

それぞれの詳細説明は、すでに 1.2.2 節で述べているためここでは割愛する。また、後に紹介する相関因子を GWF に作用させるため、本研究では基本的な試行波動関数として扱っている。

2.3.3 最隣接ダブロン-ホロン相関因子

ハーバードモデルにおいて相関関係を考える場合、GWF では有限の相互作用強度でモット転移が生じた振る舞いが見られない。そのため、モット転移を表すためにはサイト間のクーロン相互作用の効果を取り入れる相関因子が必要である。これについては 1.3 節ですでに述べたので、ここでは要約する。

強相関系、特にハーフフィリングの場合は基本的には単一占有サイト (スピノン) の割合が大きく、多重占有サイト (ダブロン: D) や空サイト (ホロン: H) は少ない。このとき、Gutzwiller 因子は単にダブロンを排除するだけなので、ダブロンとホロンの間の距離はどれだけ離れてても構わない。しかし、1.3 節で述べたように \(t/U \) による摂動として考えたとき、ダブロンやホロン
第2章 理論モデル及び解析手法

2.3.4 ダブロン-ホロン完全束縛因子

ここでは、後のために \mathcal{D}^{NN}_A が $\mu = 1$ の場合を考える。このとき、式 (2.8) と式 (2.9) を

$$\Psi_{A(bind)} = \mathcal{D}^{bind}_A \Psi_G$$

(2.11)

$$\mathcal{D}^{bind}_A = \prod_j \{ 1 - \hat{Q}_j \}$$

(2.12)

と改めて定義する。この場合、ダブロンとホロンが互いに完全に束縛された状態である。一見グローバルな電荷の移動が起きず、常に絶縁体状態であるように見える。しかし、この場合も4.1節で述べるように小さい U/t で転移を起こすことが解った。このことはモット転移の微視的なメカニズムを考える一つの端緒として説明するため、$\Psi_{A(NN)}$ とは区別している。
2.3.5 長距離相関因子

2.3.3 節で説明した最隣接 D-H 相関因子は最隣接サイトまでしか考慮されていなかったため、実際には必ず存在する長距離相関の効果がよく解らない。そこで、この節ではさらに長距離まで拡張した相関因子について説明する。

まず、長距離 D-H 相関因子の形に手掛かりを与える、ハーフフィリングにおける 1 次元ハーバッドモデルを厳密対角化した研究 [28] がある。この研究は 1.3 節でも触れており、一つの D-H 間の距離が 0 の波動関数の展開係数比の大きさは、0 の指數関数の減衰を示すことが示されている (表 1.1)。変分法では、展開係数比の大きさが射影演算子で決定する部分に相当する。1 次元であること、0 = 5 程度までの情報しかないので、2 次元の長距離相関の形を特定することは無理だが、二次元でも同様に D-H ベア間の距離 0 に依存する相関因子の必要性を示している。

本研究では相関因子がどのように 0 に依存するかということから始めることにし、様々な関数形を持つ長距離 D-H 相関因子 0 を導入する。また、単一占有サイトを基準とするとダブロンは負の、ホロンは正の荷電をみなせるため、D-H 相関因子（引力因子）だけでなく、D-D(H-H) 間に働く斥力を想定した斥力因子 0 を導入する。

\[
0 = \prod_j \left(f_A (|r_j^A|) \left\{ d_j \left[1 - \prod_{r \in \{r_j^A\}} (1 - h_{j+r}) \right] + h_j \left[1 - \prod_{r \in \{r_j^A\}} (1 - d_{j+r}) \right] \right\} \right) \\
0 = \prod_j \left(f_R (|r_j^R|) \left\{ d_j \left[1 - \prod_{r \in \{r_j^R\}} (1 - d_{j+r}) \right] + h_j \left[1 - \prod_{r \in \{r_j^R\}} (1 - h_{j+r}) \right] \right\} \right)
\]

(2.13)

(2.14)

ここで、添え字 A は引力 (Attractive)、R は斥力 (Repulsive) の頭文字を示している。積 Πの添え字 j はサイト番号を表しており、0A, 0R は距離 0 に対する関数形を与える。0j はダブロン (ホロン) が j サイトに存在している場合、そのサイトからホロン (ダブロン) が存在する一番近いサイトまでを示すベクトルであり、0j は一番近い D-D, H-H 間を示すベクトルである。マンハッタン距離 (図 2.1) を適用しているため、|0jA|(|0jR|) の値は整数となる。

また、{0jA} は図 2.2(a) のように、同一の距離 |0jA| を持つベクトルの組を表す。これらこと、式 (2.14) についても同様である。そのため、式 (2.13) は一番近い D-H 間の距離に対して、0A(|0jA|) の相関を加え、式 (2.14) は一番近い D-D(H-H) 間の距離に対して、0R(|0jR|) の相関を加える演算子である。ここでは、強結合展開 [42] (1 組の D-H ベアの高次摂動) という考えから、図 2.2(b) のように 1 組の一番近い D-H ベアのみに相関を加え、2 番目以降に近いペアは考慮しない。これは遮蔽効果を考えると 0 \sim 0c でもそれほど悪くない近似である可能性が高い。

注 この研究で使われたモデルはすでに厳密解が求められており、0/t > 0 の範囲において基底状態は常磁性絶縁体であることが知られている [13]。
相関を与える関数形 $f_A(r), f_R(r)$ として、ここではそれぞれ以下の3つの形を考える。

$$f_A(r) = \begin{cases} \exp\left(-\frac{r-1}{\xi}\right) & (a) \text{指数型} \\ \frac{1}{r^\xi} & (b) \text{べき型} \\ \xi_r \ (2 \leq r \leq L) & (c) \text{完全最適化型} \end{cases}$$ \hspace{1cm} (2.15)$$

$$f_R(r) = \begin{cases} 1 - \alpha \exp\left(-\frac{r-1}{\beta}\right) & (a) \text{指数型} \\ 1 - \frac{\alpha}{r^\beta} & (b) \text{べき型} \\ \alpha_r \ (1 \leq r \leq L) & (c) \text{完全最適化型} \end{cases}$$ \hspace{1cm} (2.16)$$

式 (2.15) は D-H 間の引力相関に対応した関数形である。$f_A(r)$ は相対的な大きさのみに意味があるため、ここでは $f_A(1) = 1$ を基準としている。また、$f_A(r)$ は引力相関なので $f_A(r) \to 0 \ (r \to \infty)$ となることを考慮して、変分パラメーター ξ で減衰を操作できる (a) 指数関数型減衰と (b) べき関数型減衰となる典型例として考えた (図 2.3)。一方、(c) では ξ_r が変分パラメーターであり、完全最適化の場合は距離 r ごとに変分パラメーターを与え、それぞれを最適化するため3つの関数形の中では最良の因子であり、(a), (b) も (c) のパラメーター空間に含まれる。

一方、式 (2.16) は斥力相関因子である。最隣接サイト ($r = 1$) では相関が大きく働き、距離 r が増加するとともに相関は小さくなることが予想される。そのため、$f_R(r) \to 1 \ (r \to \infty)$ が基準となるように取った。$f_R(r)$ は $f_A(r)$ の場合と同様に3つのタイプの関数形を考える。 (a) 指数関数型減衰と (b) べき関数型減衰では、変分パラメーターは係数を操作する α と距
離による減衰を操作する \(\beta \) の 2 つである。また、(c) においては \(\alpha_r \) が変分パラメーターであ
り、\(f_A(r) \) の完全最適化と同様に \(r \) ごとに変分パラメーターを与え、それぞれ最適化させる。
\(\alpha_r < 1 \) の場合抑制される (斥力相関) が、\(\alpha_r > 1 \) となる場合 \(P_R \) は D-D(H-H) 間を増大させる
(引力相関) となる。また、式 (2.16) は D-D 間、H-H 間で働く相関であるため、同一サイト
上のダブロンに働く Gutzwiller 因子としばしば相互に干渉を起こす。

以上を踏まえて、本研究で以後用いる長距離相関を取り入れた試行波動関数の簡約表式を次
に示す。

\[
\Psi_A(\text{exp}) = \mathcal{A}_A^{(a)} \Psi_G
\]
\[
\Psi_R(\text{exp}) = \mathcal{A}_R^{(a)} \Psi_G
\]
\[
\Psi_{AR}(\text{exp}) = \mathcal{A}_A^{(a)} \mathcal{R}_R^{(a)} \Psi_G
\]
\[
\Psi_A(\text{pow}) = \mathcal{A}_A^{(b)} \Psi_G
\]
\[
\Psi_R(\text{pow}) = \mathcal{A}_R^{(b)} \Psi_G
\]
\[
\Psi_{AR}(\text{pow}) = \mathcal{A}_A^{(b)} \mathcal{R}_R^{(b)} \Psi_G
\]
\[
\Psi_A(\text{opt}) = \mathcal{A}_A^{(c)} \Psi_G
\]
\[
\Psi_R(\text{opt}) = \mathcal{A}_R^{(c)} \Psi_G
\]
\[
\Psi_{AR}(\text{opt}) = \mathcal{A}_A^{(c)} \mathcal{R}_R^{(c)} \Psi_G
\]

\(\mathcal{A}_A \) と \(\mathcal{R}_R \) の上付き文字はそれぞれ、式 (2.15) と式 (2.16) の (a)-(c) のタイプに対応してい
る。\(\Psi_{AR} \) は引力相関因子 \(\mathcal{A}_A \) と斥力相関因子 \(\mathcal{R}_R \) の両方を取り入れており、同じタイプの
相関関数を使用することにする。本研究で扱うすべての相関因子と試行波動関数については表
2.1 にまとめた。

また、本研究とは異なる相関因子の一例として、Capello ら [43,44] は式 (2.19) の完全最適
化型の相関因子 \(\mathcal{A}_A^{(c)} \mathcal{R}_R^{(c)} \) と類似した相関因子を用いている。具体的に、Capello らが 1 次元

![図 2.3 サイト間距離 \(r \) と変分パラメーター \(\xi \) を持つ長距離 D-H 相関因子 \(f_A(r) \) との対応。](image)
表 2.1 本研究で用いる試行波動関数の性質のまとめ。「図中の略式」の列は 3 章以降で図の中の各試行波動関数の説明に用いる。「取り入れた相関」の列は Gutzwiller 因子はすべての試行波動関数に適用されているため、それを除いた相関について示している。「VP の数」の列は試行波動関数内にある変分パラメーターの数を示している。

ハードモデルで用いた完全最適化型の相関因子は以下の表式である [43]。

\[J = \exp \left(\sum_{i,j} \frac{1}{2} v_{i,j} (n_{i\uparrow} + n_{i\downarrow} - 1)(n_{j\uparrow} + n_{j\downarrow} - 1) + w_{i,j} h_i d_j \right) \] (2.20)

\(v_{i,j} \) と \(w_{i,j} \) の部分が変分パラメーターである。\(i, j \) サイトにのみ相関が働くとした場合、D-H 引力相関は \(\exp(w_{i,j} - v_{i,j}) \)、D-D(H-H) 斥力相関は \(\exp(v_{i,j}) \) の大きさとなる。D-D(H-H) 相関因子の大きさと、D-H 引力相関が逆数の関係になっており、式 (2.19) の相関因子より自由度の低い Jastrow 因子である。この因子では斥力的に及び引力的相関効果を区別するのが難しい。そのため、本研究では D-H と D-D(H-H) に働く相関を明確に区別したものを導入している。

2.4 変分モンテカルロ法の技術的な点

VMC の定性的な説明は 1.3 節、1.4.3 節で述べたため、この節では数値計算を行うための技術的な点、工夫した点や条件についてまとめる。
2.4.1 多重積分の評価

変分エネルギーの期待値を変分パラメーター \(C \) に対し、\(E(C) \) という関数で書くと、\(d-p \)モデルやハバードモデルなど、強束縛近似で考えた離散的な格子上の多粒子系に対しては、

\[
E(C) = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \left(\frac{\sum R \Psi^*(R,C) \mathcal{H}_\Psi(R,C) \Psi(R,C)}{\sum R |\Psi(R,C)|^2} \right)
\]

(2.21)

と、括弧内の式のように \(R \) に関する和となる。ハミルトニアンや他の物理量の期待値を計算するためには、各電子の座標に対する多重積分 (多重和) を計算する必要がある。一般的には数値的に多重積分の計算を行うことは非常に小さい系など特殊な場合を除いて不可能である。そこで、変分モンテカルロ法では確率的重みが大きな電子配置を選択的に抽出 (重点サンプリング) し、これらの多重積分を近似的に評価する。

これを実行するために、まず式 (2.21) を次のように書き換える。

\[
E(C) = \int \frac{\mathcal{H}_\Psi(R,C)}{|\Psi(R,C)|^2} P(R,C) |\Psi(R,C)|^2 dR
\]

(2.22)

\[
P(R,C) = \frac{|\Psi(R,C)|^2}{\int |\Psi(R,C)|^2 dR}
\]

(2.23)

式 (2.23) の \(P(R,C) \) は正定値であり、\(\int P(R,C) dR = 1 \) を満たす。これはある変分パラメーター \(C \) に対して系の電子配置が \(R \) となる確率分布である。そこで \(P(R,C) \) の重みに比例して粒子の配置 \(R \) を多数発生させ、物理量に関してその平均をとる。これが重点サンプリングによるモンテカルロ法の考え方である。確率分布 \(P(R) \) に従い、\(R \) を配置空間の中でランダムウォークさせながら、\(N_{\text{sample}} \) 個の配置サンプルを発生させれば、式 (2.22) の \(R \) に関する積分はこれらのサンプルについての平均で置き換えられる。

\[
E(C) \simeq \frac{1}{N_{\text{sample}}} \sum_{m=1}^{N_{\text{sample}}} \frac{\mathcal{H}_\Psi(R_m,C)}{|\Psi(R_m,C)|^2}
\]

(2.24)

ここで \(R_m \) は \(m \) 番目の配置サンプルである。この方法でエネルギー期待値 \(E \) を計算するには選ばれた各電子配置 \(R_m \) に対する \(\mathcal{H}_\Psi/|\Psi| \) を計算して、\(N_{\text{sample}} \) 個分の平均をとればよい。また、この方法ではサンプル数 \(N_{\text{sample}} \) に対して期待値の誤差は \(\sigma \propto 1/\sqrt{N_{\text{sample}}} \) となるため、より \(N_{\text{sample}} \) が多いほど計算されるエネルギー期待値は選ばれた試行波動関数の範囲内で厳密な値に近づく。

2.4.2 サンプルの抽出法

式 (2.24) を計算するために、確率 (式 (2.23)) に依存したサンプルを抽出しなければならない。確率 \(P(R) \) に従うサンプルの抽出法には、マルコフ過程を基礎に置いた、メトレポリス
法 [45–47] を使用する。マルコフ過程は未来の状態が現在の状態にのみ決定され、それ以前の過去の状態には無関係であるという性質を持つ確率過程である。このような過程は例えば、確率的にしか記述できない物理現象の時間発展の様子が見られる。本研究では任意の配置 R_1 から R_2 を、R_2 から R_3 をと、前の配置から各サイトごとに確率分布 $P(R)$ に従うように、それぞれランダムウォークさせ、新しい配置を作成していく。

また、前の配置 R_m から新しい配置 R_{m+1} を選択する方法としてメトロポリス法を用いる。この方法は一様乱数 $\xi (0 \leq \xi \leq 1)$ 利用し、一次的に作成した試行配置 R_t を R_{m+1} として採択するか否かを判断する方法である。具体的には、R_m から R_{m+1} を作成するために、まず R_m の配置を持つ電子をそれぞれランダムウォークさせ、試行配置 R_t を作る。その上で、新しい配置 R_{m+1} は、ξ の値に応じて次式により決定する。

$$R_{m+1} = \begin{cases} R_t & \left(\frac{P(R_t)}{P(R_m)} > \xi \right) \quad \cdots (i) \\ R_m & \left(\frac{P(R_t)}{P(R_m)} \leq \xi \right) \quad \cdots (ii) \end{cases} \tag{2.25}$$

式 (2.25) は (i) の場合、試行配置 R_t へと更新し、(ii) であれば前の配置 R_t を採択する。また、$P(R_t)/P(R_m) > 1$ となる場合、乱数は $0 \leq \xi \leq 1$ の範囲しか取れないので、この範囲にある新しい配置は乱数 ξ に依存せず、必ず更新されることになる。图 2.4(c)(d) の緑の範囲)そのため、図 2.4(c) など乱数 ξ に依存しない地点が特に広すぎる場合、ほとんどの試行配置が新しい配置として盲目的に更新され、確率 $P(R)$ に依存していない。

本来なら配置が採択される際、R_c など採択される確率が低い配置は式 (2.25) に従って採択されにくいため、上記のようなことが起こる場合は少ない。しかし、R_c が初期配置として選ばれてしまった場合、次に採択される配置は確率 $P(R)$ によらない。そのため、作成されたサンプルの配置の確率 $P(R)$ を基に作成されているかどうか、疑わしい問題となる。

これを防ぐため、式 (2.24) の平均を求めるのに使用するサンプルは、統計的な平衡 (R_d のような状態) に達した後に生成されたものでなければならない。従って平衡に達するまではランダムウォークを空回し、最初のいくつかの配置は捨てる必要がある。この手続きは試運転 (thermalization) と呼ばれている。

また、式 (2.25)(ii) の判断が続き、延々と配置が更新されない場合、個々のサンプルの統計的独立性が保てない場合がある。これを防ぐために、抽出するサンプルとサンプルの間でランダムウォークを何度か空回しさせる必要がある。十分な空回しの度合いを調べるため、ある電子配置に対して粒子数だけ、式 (2.25) の試行を適用させた過程をモンテカルロステップ (MCS) と定義し、その MCS の間、試行配置が新しい配置として採択された割合 (配置の更新率、acceptance ratio) を求める。試運転中の配置の更新率から、サンプリング間隔に必要な MCS の目安を見積もる。

こうして、ランダムウォークを続けていくと、配置 R_m は $P(R)$ に従い、確率が大きい配置が頻繁に生じることになり、結果として、全サンプルは漸近的に確率 $P(R)$ に基づく配置の

\footnote{例として 36 電子の場合は、式 (2.25) の試行を適用させた回数が 36 回を 1MCS とする。また、試行の前後で更新された電子が 18 電子ある場合、更新率は 0.5 となる。多くの場合、更新率は 0.3 を超えていれば、前の配置とは十分独立しているとみなせる。}
図 2.4 (a) ある確率分布 $P(R)$ のグラフ。 (b), (c), (d) は (a) の $P(R_b), P(R_c), P(R_d)$ をそれぞれ基準にした場合の $P(R)$ のグラフ。 (b) の赤の範囲はある式 (2.25)(ii) に対応しており、試行配置が採択される範囲をしめしている。また、青の範囲は (ii) に対応する。 (c), (d) の緑の範囲は $P(R_c)/P(R_m) > 1$ の部分を示しており、どのような乱数 ξ においても試行配置が採択される範囲を表す。

集まりとなる。この過程を繰り返すことで N_{sample} 個のサンプルが得られる。また、サンプルが確率 $P(R)$ を完全に再現し、式 (2.24) のサンプルによる平均が式 (2.22) の積分の結果と一致するのは、$N_{\text{sample}} = \infty$ の場合のみである。

以下では本研究で行ったサンプルの取り方と条件である。

1. 初期配置を任意に定め、更新率 θ を計測しつつ、試運転を 2000MCS 回行う。
2. 試運転し終えた配置に対して、式 (2.25) の試行を適用しサンプルとして保存していく。
 この際、抽出サンプルの配置の更新率を 0.3 以上になるようにするため、$\theta < 0.3$ であれば数回 MCS を行い ($\theta = 0.1$ であれば 3 回の MCS)、その後サンプルを保存する。
3. 集めた $N_{\text{sample}} = 250,000$ 個のサンプルを使用し、式 (2.24) の計算を行う。

モンテカルロ計算に伴う統計誤差 σ は、Q を全サンプルのある物理量 Q_i の平均値とすると、

$$
\sigma = \sqrt{\frac{1}{N_{\text{sample}}} \sum_{i=1}^{N_{\text{sample}}} (Q_i - Q)^2}
$$

(2.26)

で求められるが、計算速度を優先するために以下のような方法を取り、計算精度の目安としている。全サンプルを N_G 個のグループに均等に分け、各グループ内での物理量の平均値 Q_i を
求めることによって，σ を以下のように見積もり。

\[
\sigma = \sqrt{\frac{1}{N_G} \sum_{i=1}^{N_G} (Q_i - Q)^2}
\] \hspace{1cm} (2.27)

式 (2.26) と式 (2.27) は表式は違えど，求められる σ に違いない。本研究では \(N_G = 20\) をとっている。

2.4.3 最適化法

かつては，エネルギー期待値を最小とする変分パラメーターの最適値を求める場合，手動で
離散的にパラメーター空間内のエネルギーの期待値を計算し，描画して最適値を求める方法を
取っていた。しかし，手動で比較をしているようでは非常に時間がかかり，結果の精度も良く
ない。そこで最適値を求める方法として，エネルギー期待値を変分パラメーターに対する関数
として，計算機による数値解析アルゴリズムを用いることにより最適値を導き出す方法が取ら
れるようになった。この方法を用いることで，従来の方法より短時間で精確な最適化を行うこ
とができる。

エネルギー期待値の最小値を求める手法として，数値のパラメーターの最適値を求めるには
強力な方法であるが，Brent 法がある。Brent 法は 1 つ 1 つのパラメーターに対する関数の曲線
上で，二分法や割線法などを用い，繰り返しエネルギー期待値を求めて比較を行うことで徐々
に最適値へと収束させる方法である。しかし，多数のパラメーターの最適化の場合，最適化す
るパラメーター以外のものは固定されるので，多次元方向に収束点が存在する場合は最適化が
うまく行われない場合があり，結果の精度や信頼性を損なってしまう問題がある。また，計算
時間がパラメーターの数に比例してしまうため，多数のパラメーターを持つ試行波動関数の最
適化には不向きである。

よって本研究では，そのような多数パラメーターを持つ波動関数に対して最適値を求める方
法として，勾配法の一種である準ニュートン法を用いる。勾配法は関数の勾配などの情報から
最適解を探索する方法であり，最終的には関数の傾きが 0 となる点と最適性条件を満たす点を
最適値と判断する。この方法を用いたものとして，ニュートン法を簡単に説明する。

任意の点 \(x\) における関数 \(f(x)\) の勾配ベクトル \(\nabla f(x)\) と Hessian 行列 \(\nabla^2 f(x)\) はそれぞれ
以下のようになる。

\[
\nabla f(x) = \begin{bmatrix}
\frac{\partial f(x)}{\partial x_1} \\
\vdots \\
\frac{\partial f(x)}{\partial x_n}
\end{bmatrix}
\] \hspace{1cm} (2.28)

\[
\nabla^2 f(x) = \begin{bmatrix}
\frac{\partial^2 f(x)}{\partial x_1^2} & \cdots & \frac{\partial f(x)}{\partial x_1 \partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial f(x)}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2}
\end{bmatrix}
\] \hspace{1cm} (2.29)
適当な初期値 $x^{(0)}$ から出発して、最適値に収束するような点列 $x^{(k)}$ を生成する反復法が用いられる。ニュートン法は関数 $f(x)$ を点 $x^{(k)}$ でテイラー展開して得られる2次関数

$$
g^{(k)}(x) = f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)}) + \frac{1}{2}(x - x^{(k)})^T \nabla^2 f(x)(x - x^{(k)}) \tag{2.30}
$$

で近似し、この近似関数が最小となる点を次の反復点 $x^{(k+1)}$ とし、徐々に最適値を求める方法である。ニュートン法は最適解への収束は非常に速いが、以下の重大な欠点を持っている。

1. 解の近傍に初期点を選ばなければ必ずしも収束が保障されない。 (局所的収束性)
2. 各反復において Hessian 行列を評価しなければならず、計算に大きな負担を強いる。

この問題を解消するために考え出された方法が準ニュートン法と言われる方法である。準ニュートン法では、次の反復点 $x^{(k+1)}$ を式 (2.30) の近似関数の最小点から求めるのではなく、降下方向ベクトル $d^{(k)}$ と適当なステップ幅 $\ell^{(k)} > 0$ を用い、}

$$
x^{(k+1)} = x^{(k)} + \ell^{(k)} d^{(k)} \tag{2.31}
$$

といった式により反復点を求める。$\ell^{(k)}$ を徐々に小さくしていくことで、ニュートン法で問題であった、局所的収束性を解消し、大域的収束性を持つようになった。また、Hessian 行列を直接計算するのではなく、勾配ベクトルを用い、Broyden-Flecher-Goldfarb-Shanno 公式 [48] によって近似された Hessian 行列を使い、最適値を求めた。この近似は最適値の精確さには影響は与えない。

準ニュートン法は、このニュートン法の難点を解消したものであり、現在のところは制約なし非線形最適化問題に対する最も有効な手段の一つである。実際の計算アルゴリズムについては、北上と福島 [49] が考案したものを使用した。また、変分パラメータに対するエネルギー期待値の勾配ベクトルの導出方法として Umrigar と Filippi [50] による、数値微分を用いずに厳密に勾配ベクトルを計算する方法を用いる。

補足として、準ニュートン法は単一の変分パラメーターで、かつ、極小点付近がなだらかであるとうまく最適化できない場合があった。この影響が出た試行波動関数は GWF や D-H 完全束縛波動関数 $\mathcal{P}_{A}^{\text{bind}}$ の Gutwiller バラメーター g のみを最適化する波動関数である。2つ以上のパラメーターを持つ試行波動関数に関しては、両方の変分パラメーターの最適化を同時に行うため、上記の問題が起こらなかった。実際に、2つ以上の変分パラメーターを持つ試行波動関数に対しては、Brent 法と準ニュートン法の両方を用い、最適化を行ったが、最適値の精度には影響はしないことを確認している。そのため、本研究では最適化方法として、GWF と Ψ_{A}^{bind} には Brent 法を用い、その他の試行波動関数については準ニュートン法を用いている。

2.4.4 固定サンプリング法

変分モンテカルロ法ではエネルギー期待値 $E(C)$ を最適化するために、複数の変分パラメーターをそのパラメーターの空間内で動かすが、その都度 N_{sample} 個の配置サンプルを抽出して
$E(C)$ を計算すると、$E(C)$ は C の滑らかな関数とはならず、サンプルに依存した乱雑なものになり、2.4.3 節で述べた一致化法を有効に使えない。また、C を変化させることに N_{sample} 個のサンプルを取得すると、計算時間が急激に増えてしまう。このような状況は固定サンプリング法 [51] を用いると回避できる。

この方法は、2.4.1 節で記述したエネルギーの期待値の式 (2.21)-(2.24) を次式のように書き直すことから始まる。

$$E(C) = \frac{\int \Psi^*(R) \mathcal{H} \Psi(R) dR}{\int |\Psi(R)|^2 dR} \tag{2.32}$$

$$= \frac{\int \mathcal{H} \Psi(R) w(R) |\Psi_c(R)|^2 dR}{\int |\Psi_c(R)|^2 dR} / \frac{\int w(R) |\Psi_c(R)|^2 dR}{\int |\Psi_c(R)|^2 dR} \tag{2.33}$$

$$= \int \mathcal{H} \Psi(R) w(R) P(R) dR / \int w(R) P(R) dR \tag{2.34}$$

$$w(R) = \frac{|\Psi(R)|^2}{|\Psi_c(R)|^2} \tag{2.35}$$

$$P(R) = \frac{|\Psi_c(R)|^2}{\int |\Psi_c(R')|^2 dR'} \tag{2.36}$$

$$E(C) \simeq \frac{1}{N_{\text{sample}}} \sum_{m=1}^{N_{\text{sample}}} \frac{\mathcal{H} \Psi(R_m)}{\Psi(R_m)} w(R_m) / \frac{1}{N_{\text{sample}}} \sum_{m=1}^{N_{\text{sample}}} w(R_m) \tag{2.37}$$

ここで、式 (2.37) における和が確率分布 $|\Psi|^2$ ではなく $|\Psi_c|^2$ で発生した配置サンプルについて取られている。式 (2.35) の w は、電子配置 R をとる $|\Psi_c|^2$ に対する $|\Psi|^2$ の相対確率であり、これは式 (2.37) で $|\Psi|^2$ の代わりに $|\Psi_c|^2$ を用いたことへの補正の役割を果たす。

固定サンプリング法は上記の式に基づいて、ある一つの変分パラメーターを最適化する関は同じ配置サンプル（すなわち同じ確率分布 $|\Psi_c(R)|^2$）を使用する方法である。以下にその手順を示す。

1. (1 ラウンド目) 変分パラメーターとして適当な初期値の組,

$$C_0 = (C_{0,1}, C_{0,2}, \ldots, C_{0,N}) \tag{2.38}$$

を設定する。

第 2 章 理論モデル及び解析手法

33
2. 最初は $\Psi_c = \Psi(R, C_0)$ とする。つまり、Ψ_c と Ψ には変分パラメーター C_0 が代入されており、$w = 1$ となっている。

3. この状態で式 (2.37) に基づいてエネルギー期待値を計算するが、このとき用いた N_{sample} 個の配置サンプルを記憶しておく。

4. 各変分パラメーターに対するエネルギー期待値の勾配

\[
\text{grad } E(C_0) = \left(\frac{\partial E}{\partial C_{0,1}}, \frac{\partial E}{\partial C_{0,2}}, \ldots, \frac{\partial E}{\partial C_{0,N}} \right)
\]

(2.39)

を求める [50]、準ニュートン法を用いて変分パラメーター C_0 を変化させながら、その都度式 (2.37) に基づいてエネルギー期待値を計算し、C_0 の最適値 C_0^* を探す。ただしこのとき C_0 が変化するのは Ψ の中だけであり、Ψ_c の中の C_0 は初期値で固定されている (そのため $w \neq 1$ となる)。さらに C_0 を最適化している間は、N_{sample} 個の配置サンプルをずつと 3. で記憶したものを使い続ける。

5. (2 ラウンド目) 最適化された変分パラメーター C_0^* を元に C_1 を作成し、これを再び新たな初期値として Ψ_c, Ψ の両方に代入し、$\Psi_c = \Psi(R, C_1)(w = 1)$ となるようにする。C_1 を作成するにあたり、極小点が複数存在することによる不完全な最適化を防ぐため、

\[
C_1 = (C_{1,1}, C_{1,2}, \ldots, C_{1,N})
\]

\[
= (C_{0,1}^* + \eta_1 C_{0,1}^*, C_{0,2}^* + \eta_2 C_{0,2}^*, \ldots, C_{0,N}^* + \eta_N C_{0,N}^*)
\]

(2.40)

と、各種乱数 $\eta_1, \eta_2, \ldots, \eta_N$ を使用し、新たな初期値 C_1 は C_0^* より少しずらす操作を行う。

6. 以降は再び 3. から順繰りに操作を行い、最適値 C_1^* を求める操作を行う。この操作を何ラウンドも繰り返すと、エネルギーと変分パラメーターは最適値に収束するので、収束したところであるべく多くのラウンド数分のエネルギーと変分パラメーターの平均値と誤差を計算すると、それが最適化されたそれぞれのデータとなる。

以上が、固定サンプリング法を用いた変分モンテカルロ法の流れである。本研究ではこの方法を使用する際には、だいたい 30 ラウンドまで計算する。経験的に変分パラメーター数が多い場合でも、だいたい 10 ラウンドあたりでエネルギーと変分パラメーターは収束するので、11 ラウンド目以降の計 20 ラウンド分でこれらの平均値と誤差を計算している。

この方法で重要な部分は 3. で記憶した N_{sample} 個の配置サンプルは 4. で変分パラメーターを最適化している間も、同じ配置サンプルを使い続けるところである。従来のモンテカルロ法では変分パラメーターが変化させる度に、その都度 N_{sample} 個の配置サンプルを何度か取りなおさなくてはならないが、固定サンプリング法ではこの過程が除かれるので、計算速度が格段に速くなる。
第3章
各試行波動関数の計算結果（物理量）

この章では各試行波動関数に対して、モット転移の有無とその性質について考察する。なお、文章内の試行波動関数の名称は表2.1の「定義した試行波動関数」を、図中の名称においては「図中の略式」を用いる。

3.1 節では最適化した変分エネルギーを試行波動関数間で比較し、モット転移についても言及する。3.2 節では、その他の物理量の結果を示し、モット転移の移動値 U_c/t を考察する。3.3 節では、D-H 相関因子の違いを議論する。3.4 節では、モット転移点 U_c/t のサイズ依存性を議論する。3.5 節では、式 (2.14) の斥力相関を導入した場合について考察する。

3.1 エネルギーの比較

最適化された試行波動関数は、変分原理により近似の範囲内においての最低エネルギー状態である。変分原理に従って、2.3 節において定義した試行波動関数の変分エネルギーを比較し、どの試行波動関数がより良い関数で評価する必要がある。

まず、サイトあたりのエネルギーを E と表記すると、全エネルギー E_{tot}、運動エネルギー E_{kin}、相互作用エネルギー E_{int} はそれぞれ以下のように書ける。

$$E_{\text{tot}} = 1 \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$ (3.1)

$$E_{\text{kin}} = 1 \frac{\langle \Psi | H_{\text{kin}} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$ (3.2)

$$E_{\text{int}} = 1 \frac{\langle \Psi | H_{\text{int}} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = dU$$ (3.3)

d はダブロン密度を表している。以後は簡単のため、ある試行波動関数 Ψ_{Ω} の E_{tot}/t を $E(\Psi_{\Omega})$ という形で簡略化する。（Ω は表2.1の「定義した波動関数の列」の名称に対応）また、$\Psi_{\text{R(exp)}}$、$\Psi_{\text{R(pow)}}$、$\Psi_{\text{R(opt)}}$ には Gutzwiller 因子と Jastrow 型斥力相関因子のみを導入しており、D-H 相関因子を導入していない。後に3.5 節で論じるが、これら波動関数の性質は GWF とほとんど変わらず、モット転移を生じない。さらに、$\Psi_{\text{AR(exp)}}$ と $\Psi_{\text{AR(pow)}}$ については、$\Psi_{\text{AR(opt)}}$
のパラメーター空間に含まれている。以上のことから、この5つの試行波動関数の結果は比較の際に省く。

まず図3.1(a)で示している、U/tに対するE_{tot}/tについて議論する。GWF は $U/t < \infty$において常に金属状態を示し、Brinkman-Rice 転移値 $U_{BR} (= 12.97t)$ より十分小さい Uにおいて、摂動計算との比較ではフェルミ流体として良い数値である[27]。また、$\Psi_{A(\text{bind})}$は $U/t \gtrsim 3$において絶縁体状態を示す（この絶縁体状態についての議論は、4.1 節参照）。$E(\text{GWF})$ と $E(\Psi_{A(\text{bind})})$を比較すると、図3.1(a)では、$U/t < 7.4$において $E(\text{GWF})$ の方が低く、反対に $U/t > 7.4$ では $E(\Psi_{A(\text{bind})})$ の方が低い値を示す。この結果と上記の GWF、$\Psi_{A(\text{bind})}$の性質を考慮すると、金属状態から絶縁体状態に転移する点は $U/t \sim 7.4$ あたりだと目星をつけられる。

次に D-H 相関因子を取り入れた試行波動関数 ($\Psi_{A(\text{bind})}$は除く) は、$U/t \leq 5$ の領域において、E_{tot}/tが GWF の値とほぼ一致している。これは、D-H 相関因子を含む相関因子がこの領域において有効ではなく、Gutzwiller 因子のみが効いていることを示している。しかし、5 $\leq U/t \leq 10$の中間範囲では、$E(\text{GWF})$だけが他の波動関数の結果より高くなる。また、$U/t \gtrsim 9$で D-H 相関因子を取り入れた波動関数の結果は $E(\Psi_{A(\text{bind})})$に近づいている。このことは、D-H 相関因子が中間範囲から効果を及ぼし始め、D-H 相関因子を持つ波動関数は $U \sim W$ ($W(= 8t)$:バンド幅)において金属状態から絶縁体状態に変化すると考えられる。この結果は過去の結果 [52]と一致している。

転移点近傍を拡大した図3.2(a)について注目する。 $E(\Psi_{A(\text{NN})})$については $U/t \sim 8.55$においてグラフが折れ曲がり、1次転移が生じていると思われる。また、D-H 間距離に依存しない、単純な D-H 相関型のため $U/t > 8.8$ で D-H 相関を含む因子の中では最大のエネルギーを示している。$E(\Psi_{A(\text{exp})})$は $U/t \sim 8.12$ ($\equiv U_c$)で同様に 1次転移が生じていることがわかる。さらに $U < U_c$においては、その他の D-H 相関を含んでいる波動関数の結果より高い値を示している。これはD-H 相関が距離に対する指数関数型減衰で、ダブロンとホロンがその他の D-H 相関よりも近距離に束縛されやすいため、金属状態の描像が悪いことに起因している (3.3 節参照)。一方、$E(\Psi_{A(\text{pow})})$、$E(\Psi_{A(\text{opt})})$は中間地点においても曲線は滑らかである。$\Psi_{A(\text{opt})}$は E_{tot}/tが常に一番低い結果を示しており、期待通り我々が扱った試行波動関数の中で最もよい関数であることがわかる。全体的にみると、$U \leq U_c$において $E(\Psi_{A(\text{opt})})$からのが低下は非常に小さいが、$U/t \sim 8.3$ で $E(\Psi_{A(\text{exp})})$ と同様に 1次転移を起こしているように見える。$U > U_c$においてはすべて波動関数の中で、常にエネルギーが大きく下回る曲線になる。$E(\Psi_{A(\text{opt})})$ と $E(\Psi_{A(\text{opt})})$の比較から、斥力相関は $U/t \sim 8.30$ 以降から大きく効くと思われる。

次に E_{kin}/t と E_{int}/tについて着目する。図3.1と図3.2にはそれぞれ (b) 運動エネルギーE_{kin}/t と (c) ダブロン密度 $d = E_{\text{int}}/U$を図示した。一次転移が起きた際、全エネルギーはU/t に対して連続的な関数となるが、E_{kin}/t や E_{int}/tなどのエネルギー構成要素は、転移点U_c/tで不連続性を示す。

図3.2では $\Psi_{A(\text{NN})}$、$\Psi_{A(\text{exp})}$、$\Psi_{A(\text{opt})}$の結果は、E_{kin}/t、dとともにU_c/tで不連続性になっている。他の波動関数の結果と比較しても不連続性は顕著である。E_{tot}/tの場合でも折れ曲
図 3.1 (a) 最適化した全エネルギー E_{tot}/t、(b) 運動エネルギー E_{kin}/t、(c) ダブロン密度 d を、凡例に載せている 7 つの波動関数について U/t の関数として示した。系のサイズは十分大きな 16×16 を用いた。また、(a) のマーカーのない実線は $-t/U$ に比例した線である。強相関展開の結果 [42] から $\propto -t/U$ は絶縁体状態の目安である。
図3.2 図3.1の転移点付近（7.2 ≤ U/t ≤ 9.4）を拡大したもの。 (a)の矢印はその色に対応する試行波動関数の一次転移と思われる点を示している。
がりが確認されており、特に \(\Psi_{A(\text{exp})} \) は、転移点付近においてヒステリシスが観測された。これらの結果は明確に一次転移が起きていることを示している。その他の波動関数 \(\Psi_{A(\text{pow})} \)、\(\Psi_{A(\text{opt})} \) は系の大きさが \(L = 16 \) では、滑らかな振る舞いを示している。3.4 節で確認するように、これらの場合も系を大きくすると \(\Psi_{A(\text{exp})} \) と同様に変分パラメータなどで一次転移の振る舞いが起きる。

D-H 相関因子を含んだ全波動関数は、転移点前後の領域で \(U/t \) が増加するに従い、\(E_{\text{kin}}/t (d) \)が急激に增加 (減少) する。このことはモット転移の必要条件である。これは、金属-絶縁体転移であるモット転移は、絶縁体領域では相互作用エネルギーを下げるために、運動エネルギーを損失するという一貫性のある原因によって生じることによる。この現象は強相関領域において反強磁性転移や超伝導転移で秩序が生じるときとは逆である [41,53]。

3.2 物理量から見るモット転移の振る舞い

この節ではエネルギー以外の物理量に着目し、モット転移の出現を確認する。3.1 節より、エネルギー的に一番良い関数である \(\Psi_{AR(\text{opt})} \) の結果を例として挙げる。この \(\Psi_{AR(\text{opt})} \) の転移点は図 3.2(a) のエネルギーでは \(U/t \sim 8.3 \) 程度である。

まず、以下の表式で求められる運動量分布関数 \(n(k) \) に着目する。

\[
n(k) = \frac{1}{2} \sum_{\sigma} \langle c_{k\sigma}^\dagger c_{k\sigma} \rangle = \frac{1}{2N_s} \sum_{j,\ell,\sigma} e^{ik \cdot r_{j\ell}} \langle c_{r_j,\sigma}^\dagger c_{r_{\ell\ell},\sigma} \rangle.
\]

図 3.3 には、\(\Psi_{AR(\text{opt})} \) の \(n(k) \) の結果を示した。\(X = (\pi,0) \) のフェルミ面近傍の振る舞いについて注目する。\(U/t < 8.3 \) では、X 点で明確な不連続性が現れている。一方、\(U/t = 8.3 \) で急激に不連続性が消え始め、\(U/t > 8.3 \) においてはほぼ不連続性は消失している。

フェルミ流体論によると準粒子繰り込み因子 \(Z \) は準粒子の有効質量に依存する反比例して
図3.4 各波動関数の準粒子繰込み因子ZをU/tに対する関数として示した。Zは
$k = X(\pi, 0)$における$n(k)$の跳びから見積もった。(b)はモト転移点付近($7.2 \leq U/t \leq 9.4$)を拡大したものを見積もっている。系のサイズは$L=16$である。

より、$Z = 0$では絶縁体状態を示す。また、運動量分布関数$n(k)$のフェルミ面での不連続の
大きさに対応する。Zから金属状態か絶縁体状態かを判別するため、定量的な議論をする必要
がある。ここでは、$X = (\pi, 0)$点における$n(k)$の跳びからZを見積もる際に、以下の表式を
用いる。

$$Z = n(k)|_{k \to X(\Gamma-\Delta)} - n(k)|_{k \to X(\Gamma-M)}$$

(3.5)

本研究では有限サイズのモデルを使用しているため、運動量分布関数の値は図3.3のように
離散的なk点でのみ定義される。したがって、式(3.5)の方法で極限操作はできないので、
$\Gamma - X$間と$X - M$間において、それぞれ3次までの最小2乗法を用いて$n(k)$の近似関数を
導出することにする。

この近似関数に$k = (\pi, 0)$の値を代入して求めたZを図3.4に示した。図3.4(a)において、
$U/t < \infty$で金属状態を示すGWFのZは漸近的に0に近づいている。同様の振る舞いは[35]
においても示されている。対称的にD–H相関因子を導入した波動関数は、$U/t = 8.0 - 9.0$の
範囲において急激に$Z \sim 0$に近づく。転移点付近を拡大した図3.4(b)を見ると、波動関数の
違いにより$Z \sim 0$への近づき方はそれぞれ異なるが、十分大きいU/tでZが微小な値を示
していることは共通である。これは有限サイズのモデルを扱っており、Zを導出するために
近似を用いているからである。実際に$U/t = 9.0$におけるZの残存微小値を$1/L^2$に対して
描画し、外挿を行うと$L \to \infty$で$Z = 0$なることが確認された。よってZの跳びが見られる
$\Psi_{A(\text{NN})}$, $\Psi_{A(\text{exp})}$については、微小な値が残っていたとしても転移を起こしていると判断
できる。また、$\Psi_{A(\text{opt})}$の結果はZはU/tが8.2-8.3の範囲において急激に減少しており、同
様に絶縁体状態になるとみられる。これによりE_{tot}/tから見積もった転移点と一致している。
$\Psi_{A(\text{bind})}$の振る舞いについては、4.1節について詳しく述べる。

*1 各波動関数の実際の$n(k)$と近似関数の誤差σは、各kにおいて$\sigma < 2.0 \times 10^{-3}$であり、十分良い精度で近
似されている。
図 3.5 AR(opt) の (a) 電荷相関関数 $N(q)$ と (b) スピン相関関数 $S(q)$ を $(0, 0) \rightarrow (\pi, 0) \rightarrow (\pi, \pi) \rightarrow (0, 0)$ の経路に沿って示した。転移点 $U_c/t \sim 8.3$ 付近の結果を載せている。系のサイズは $L = 16$ である。

次に、電荷相関関数 $N(q)$ について考察する。電荷相関関数は以下のように書ける。

$$N(q) = \frac{1}{N_s} \sum_{i,j} e^{i q \cdot (r_i - r_j)} \langle n_i n_j \rangle - n^2,$$

(3.6)

単一モード近似によれば [54]、電荷自由度によるギャップが開かない限り（金属状態の場合）、$|q| \to 0$ で $N(q) \propto |q|$ のように振る舞う。一方、ギャップが開いた絶縁体状態では $N(q) \propto |q|^2$ となることが知られている。図 3.5(a) は $\Psi_{AR(opt)}$ の $N(q)$ の計算結果を示している。$|q| \sim 0$ での $N(q)$ の振る舞いは $U/t = 8.15 - 8.30$ 間において急激な変化が起こっている。特に $U/t \geq 8.30$ では、電荷相関関数は $|q| \sim 0$ において $|q|^2$ となっているように見え、電荷ギャップが生じていることを示されている。これは Z などで見積もった転移点 U_c/t と一致している。

次に、スピン相関関数 $S(q)$ を計算した結果からモット転移を起こしていることを見積もる。スピン相関関数は以下のように書ける。

$$S(q) = \frac{1}{N_s} \sum_{i,j} e^{i q \cdot (r_i - r_j)} \langle S_i^z S_j^z \rangle.$$

(3.7)

図 3.5(b) では $\Psi_{AR(opt)}$ の $S(q)$ の結果を示している。$|q| \to 0$ における振る舞いに注目すると、常に $S(q) \propto |q|$ となっている。このことは、金属状態と絶縁体状態のいずれにおいても低エネルギースピン励起が存在し、常にギャップは生じないことを示している。しかし、反強磁性ネスティングベクトルである $q = (\pi, \pi)$ では、U/t が増加するに従って $S(q)$ が増加している。特に $U/t = 8.3$ 近傍においては急激に増大していることがわかる。図 3.6 には、各波動関数の $S(\pi, \pi)$ の値を示した。図 3.6(a) から解るように GWF や D-H 相関因子を導入した試行波動関数の結果は、弱相関領域においてダブロンとホロンが多く、スピン自由度が死んでしまうため $S(\pi, \pi)$ の値は小さい。しかし強相関領域では Gutzwiller 因子や D-H 相関因子の効果により、ダブロンの数が抑制され、ほとんどが単一占有サイトとなって各サイトにスピンが生じることで $S(\pi, \pi)$ の値が増大していると思われる。絶縁体状態においては反強磁性相関を
導入すれば、反強磁性秩序が現れるが、D-H 相関因子を導入した試行波動関数の \(S(\pi, \pi) \) の急激な増大はその傾向を示している。最弱接 D-H 束縛因子もこのような側面を持っていますことが知られている [52]。

図 3.6(b) においては、転移点近傍での拡大写真を示している。\(\Psi_{A(\text{NN})} \), \(\Psi_{A(\text{exp})} \), \(\Psi_{A(\text{opt})} \) の \(S(\pi, \pi) \) は跳びを示しています。上記で既に述べているように、この跳びは転移を示しており、この点は他の物理量から見積もった転移点と一致している。\(\Psi_{A(\text{pow})} \) の結果にも跳びに近い急激な変化が観察されるが、\(\Psi_{A(\text{opt})} \) は比較的滑らかな間隔であり、金属状態から絶縁体状態への変化はゆるやかである。また、絶縁体領域で \(S(\pi, \pi) \) に幾つかパララつきが見られるが、配置の更新率低下による誤差の範囲内である。

3.3 ダブロン-ホロンの相関因子による違い

今まで考察してきた物理量の結果から見ても、D-H 相関因子はモット転移を生じさせるために必要不可欠な因子であることが解る [28, 32, 33]。モット転移を論じるためには、D-H 相関の強さを示す変分パラメーターの振る舞いを確認する必要がある。よってこの節では、最適化された D-H 相関の変分パラメーターについて考察していく。

ここではまず、D-H ペアの分布確率 \(W_{\text{DH}}(r) \) について議論する。ダブロン (ホロン) から一番近くにあるホロン (ダブロン) のペア間の距離を \(r \) とする。また、\(W_{\text{DH}}(r) \) は以下の式を満たしている。

\[
\sum_{r=1}^{L} W_{\text{DH}}(r) = 1 \tag{3.8}
\]

図 3.7 は \(\Psi_{A(\text{opt})} \) の \(W_{\text{DH}}(r) \) を示している。まず \(U < U_c \) の金属領域について考察する。\(W_{\text{DH}}(1) \) は全体を通して大きな割合を占めていることが解る。弱相関領域においては、ダブロン密度が大きいため、D-H ペア間の隔が狭く、\(r \geq 4 \) のペア間距離を持つ D-H ペアはほとんど存在していない。\(U/t \) が大きくなるにつれてダブロン密度が減少し始め、D-H ペア間の間隔が広くなる。そのため \(r = 1 \) の分布は減少、\(r = 2, 3, 4 \) の分布が大きくなる。しかし、\(W_{\text{DH}} \)
第3章 各試験波動関数の計算結果（物理量）

図3.7 AR(opt)の一番近いD-Hベアの分布確率WDHをU/tに対して示す。各ベア間
は距離r = 1 – 7の範囲を示している。垂直の破線は3.4節により定めたモット転移点で
ある。

は転移点を境に急激に変化し、U > U_cの絶縁体状態ではダブロンとホロンが互いに最隣接サ
イトに束縛されるため、r = 1のD-Hベア以外は極端に制限される。
本研究ではVMCを用いており、D-Hベアの数が抽出サンプル内に十分に存在しなければ
最適化が完全に行われない問題がある。実際に、D-Hベアが全く存在しないr = Lの距離に
おいては、最適化は不完全であることを確認した。この問題を防ぐため、距離rのD-Hベア
に対する最適化されたパラメーターは、以下の条件を満たしたものを選別している。

\[\rho(r) > \rho_{\text{min}} \quad (\rho(r) = W_{\text{DH}}(r) \times d) \quad (3.9) \]

\(\rho(r) \)はサイトあたりのベア間距離rのD-Hベアの出現確率を示している。\(\rho_{\text{min}} = 4 \times 10^{-4} \)
とする。この理由は、本研究では\(2.5 \times 10^5 \)サンプルに対する計算を行っており、その抽出サンプル内でrの距離を持つD-HベアがL = 16の系において、\(\rho_{\text{min}} < 256 \times 2.5 \times 10^3 \approx 2.5 \times 10^4 \)
回以上出現していることを示している。経験則により\(2.5 \times 10^4 \)回以上出現していれば
十分最適化しているものとした。仮に式(3.9)がr = r^*において満たされない場合、距離r^*
の変分パラメーターが正しいかどうかに関わらず、対応するサンプルの数が少ないの
で、その他の物理量には影響しない。

以上のことを踏まえて、まず最適化された変分パラメーターのサイズ依存性について議論す
る。図3.8で、最適化したD-H相関の各変分パラメーターを転移点近傍（U/t ≈ 8.0）の範囲
において示す。まず、U/t ≤ 7.0の範囲に絞って考察をする。この領域は金属状態であり、図
3.8の全グラフの結果から、D-H相関はあまり効いていないことが解る。後の図3.9(a),(b)で
はより詳しく距離に対する相関の強さを議論するが、その結果を見ても各距離に対するD-H
相関は弱く、ダブロンとホロンは互いにほとんど束縛せず、系を自由に動き回ることができ
る。よってこの領域ではD-H因子が系のサイズに依存する要因がないため、そのサイズ依存
性の影響は小さい。
第3章 各試行波動関数の計算結果（物理量）

図3.8 D-H相関因子内の変分パラメータの最適値を転移点近傍の範囲 (U/t ≃ 8.0) を中心にサイズ L の3つの値に対して示した。D-H 束縛因子の変分パラメータは (a) 1-μ : A(NN), (b) 1/ξ : A(exp), AR(exp), (c) ξ : A(pow), AR(pow) (d)ξr : A(opt), (e)ξr : AR(opt) である。ξr 是 D-H ベア間距離 r = 2, 3, 4 について、条件式 (3.9) を満たす点のみ描画している。 (a)(d)(e) は1からパラメーターの値を引くと相関の大きさに応じてる。 (b)(c) は相関の式 (2.15) の内部パラメータであるため、飛躍すれば、相関距離の逆数に対応する。

一方、U/tが十分大きい領域の場合、図3.7に示しているようにほとんどのダブロンとホロンが互いに最隣接サイトに束縛され、近距離の D-H 相関のみが重要である。ダブロン密度も十分小さく、各 D-H ベアは独立している。そのため、この領域において D-H 相関はサイズ依存性がない。このことは図には載せていないが、実際に確認することができた。

逆に、図に示した U/t ≃ 9.0 の中間領域では、絶縁体に転移直後であり、D-H 相関は近距離も遠距離も重要になる。系のサイズが小さい場合、D-H ベアはサイズの大きさより離れたものは存在できない。そのため D-H ベアに対しては、本来の相関の抑制効果だけでなく、サイズの大きさによる抑制効果が存在する。このことから、最適化された変分パラメーターは大きなサイズ依存性が存在していることがわかる。実際に U/t ≃ 9.0 の近傍のサイズ依存性は、
図 3.9 最適化後の D-H 相関の大きさ $f_A(r)$ を各 U/t に対して示した。 (a) は D-H 相関因子、(b) は D-H 相関因子 + 効力相関因子を導入した試行波動関数の結果用いている。式 (3.9) の条件を満たすデータのみ選定されているため、最適化は十分に行われている。

図 3.8 の各グラフの結果を合わせると詳しく解。図 3.8(a)(d)(e) では、系が大きくなるとサイズの抑制効果がなくなるため、D-H 相関がその効果を補完するため強くなる。結果として L が増大すると変分パラメーターは小さくなる。また、図 3.8(b)(c) に関しても変分パラメーターは上昇しているが距離に応じた減衰度を表しているため、上記の結果と同じことを意味している。これらの性質は相関型の間で共通であるため、D-H 相関に在する本質であると思われる。

結果として、金属領域でサイズ依存性が小さく、転移点近傍の絶縁体領域ではサイズ依存性が大きいため、サイズが大きくなればなるほどこの中間領域での差が大きくなり、跳びを示す。図 3.8(c) を見ると、一番サイズが小さい $L = 10$ においてγの変化が曲線的であり、飛びは見られない。しかし、$L = 14$ になると中間領域で立ち上がりを見せ、$L = 18$ になると明確な跳びが存在し、一次転移を起こしていることが解る。このように系のサイズが大きくなるにつれ、転移の様子が顕わになることは、有限サイズのモデルを元に計算した場合によく起きる性質である [55]。この性質については、図 3.8 に示されている各変分パラメーターでも同様に確認された。

最後に異なる相関因子の違いについて考察していく。図 3.9(a)(b) は条件式 (3.9) によって選定した最適化された各 D-H 相関の大きさ $(1 - \mu)$ より式 (2.15) を距離 r に対して示している。図 3.9(a) と (b) の大きな違いは $\Psi_A(\text{opt})$ と $\Psi_A(\text{opt})$ の $U/t \geq 8.5$ のデータであるが、$\Psi_A(\text{opt})$ の転移点は $U/c/t \sim 8.3$ であるため違いが現れている。それ以外では大きな変化がなかったため、図 3.9(a) の Jastrow 型斥力相関因子を導入していない波動関数 $\Psi_A(\text{NN})$、$\Psi_A(\text{exp})$、$\Psi_A(\text{pow})$、$\Psi_A(\text{opt})$ の結果のみ取り扱う。

まず、D-H 完全最適化型の $\Psi_A(\text{opt})$ の結果を中心に考察していく。$f_A(r)$ は U/t の値にかかわらず、$r \lessgtr 3$ で急激に減少していき、$r \gtrsim 3$ でほぼ一定となっている。これはダブロンとホロンが互いに 3 サイド以上離れると、相関の強さは変化しないので、束縛から解放され、自由電子のように動き回ることができる事を示している。式 (3.9) の条件を満たす r の最大
値、金属状態 \((U/t \leq 7.0)\) ではダブロン密度 \(d\) が大きく、D-H ベア間同士の距離狭いので小さい値である。\(U_c/t\) 付近において \(d\) の減少により、\(r \leq 8\) と最も広くなるが、絶縁体状態 \((U/t = 12.0)\) ではダブロンとホロンは近くに束縛されるため、範囲が小さくなる。これらの性質については、4.2 節においてモット転移のメカニズムを考察する際に改めて扱う。\(\Psi_{A(\text{opt})}\) は D-H 相関因子の形を適切に最適化できるので、他の D-H 相関因子の形よりも正確な相関形である。この \(\Psi_{A(\text{opt})}\) の D-H 相関因子の形を基準として、その他の D-H 相関因子 \(f_{A}(r)\) を比較する。

最隣接 D-H 相関型の \(\Psi_{A\text{(NN)}}\) は、D-H 相関の強さが \(r \geq 2\) で常に一定であるとは考えているため、\(\Psi_{A\text{(NN)}}\) は単純で良くない関数形であると思われる。しかし、\(U/t = 7\) では \(\Psi_{A(\text{opt})}\) の結果とは \(f_{A}(2)\) を除いて良く一致している。また、図 3.2(a) の \(E(\Psi_{A\text{(NN)}})\) は絶縁体領域において相対的に高い値を示している。これは \(U/t = 12\) において \(f_{A}(2)\) の値が比較的過小評価されているためである。従って \(\Psi_{A\text{(NN)}}\) の不備な点は長距離部分にあるのではなく、\(r = 2\) の相関が適切でないと考えがあることが判る。

長距離 D-H 相関 \(\Psi_{A\text{(pow)}}\)、\(\Psi_{A\text{(exp)}}\) について考察する。金属状態 \((U/t \leq 4.0)\) において \(\Psi_{A(\text{opt})}\) の結果と比較すると、\(r\) が小さい領域では過大評価し、\(r\) が大きい領域では過小評価する傾向にある。特に \(\Psi_{A\text{(exp)}}\) の結果に関しては、この傾向が強く、結果として図 3.2(a) を見ると、\(E(\Psi_{A\text{(exp)}})\) は比較的大きく、モット転移点が他と比べて小さい。対応絶縁体状態 \((U/t = 12.0)\) では、\(\Psi_{A\text{(exp)}}\) と \(\Psi_{A\text{(pow)}}\) の結果は両方とも \(\Psi_{A(\text{opt})}\) とほぼ一致した結果となっている。これは \(f_{A}(r)(r \leq 3)\) の長距離部分がほとんどなくなっているためである。結果として、転移点付近での違いはあるものの \(E(\Psi_{A\text{(exp)}})\) と \(E(\Psi_{A\text{(pow)}})\) は \(E(\Psi_{A(\text{opt})})\) と同等の良いエネルギーであると言える。

3.4 転移点のサイズ依存性

以上のことから、変分パラメーターの振る舞いも一次転移の振る舞いが生じるため、転移点を見積もることは可能である。しかし、系のサイズが小さな場合は物理量の跳びが明確に表れないため、転移点を正確に定めることができない。よって本研究では転移点の決定法として、モット転移の秩序変数であるダブロン密度 \(d\) の傾きから \(U_c/t\) 求める。

\[
\left| \frac{\partial d}{\partial(U/t)} \right| = \left| \frac{d[(U + \Delta U)/t] - d[U/t]}{\Delta U/t} \right| \quad (3.10)
\]

上式はダブロン密度の \(U/t\) に対する傾きである。実際には \(U/t\) に関しては離散的にしか計算できないため、\(d\) の傾きが最大となる \(U/t\) と \((U + \Delta U)/t\) の間を \(U_c/t\) とした。この方法により求められた \(U_c/t\) の値について表 3.1 にまとめた。系のサイズが大きくなくなるに従い、モット転移点 \(U_c/t\) が増大するのは D-H 相関因子を導入している波動関数の一般的な傾向である [52,56]。図 3.1(a) を見てよくわかるように、GWF に D-H 相関因子を導入すると、絶縁体領域がエネルギー的に改善され、また既に述べたように、D-H 相関因子の変分パラメーターは転移点付近の絶縁体領域においてサイズ依存性が存在する。このことから、金属領域側 (転移前) より絶縁体領域側 (転移後) の方が \(E_{\text{tot}}/t\) のサイズ依存性が強くなる。このため、モット
<table>
<thead>
<tr>
<th>Ψ の略式</th>
<th>$L = 10$</th>
<th>$L = 12$</th>
<th>$L = 14$</th>
<th>$L = 16$</th>
<th>$L = 18$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(NN)</td>
<td>7.85</td>
<td>8.25</td>
<td>8.475</td>
<td>8.575</td>
<td>8.675</td>
</tr>
<tr>
<td>$\ell_{DH} = \ell_{DD}$</td>
<td>8.85</td>
<td>8.725</td>
<td>8.575</td>
<td>8.575</td>
<td>8.675</td>
</tr>
<tr>
<td>A(exp)</td>
<td>7.75</td>
<td>7.875</td>
<td>8.025</td>
<td>8.125</td>
<td>8.275</td>
</tr>
<tr>
<td>$\ell_{DH} = \ell_{DD}$</td>
<td>7.95</td>
<td>7.875</td>
<td>8.025</td>
<td>8.125</td>
<td>8.275</td>
</tr>
<tr>
<td>AR(exp)</td>
<td>7.65</td>
<td>7.775</td>
<td>7.925</td>
<td>8.025</td>
<td>8.125</td>
</tr>
<tr>
<td>$\ell_{DH} = \ell_{DD}$</td>
<td>7.75</td>
<td>7.775</td>
<td>7.925</td>
<td>8.025</td>
<td>8.125</td>
</tr>
<tr>
<td>A(pow)</td>
<td>7.55</td>
<td>7.95</td>
<td>8.375</td>
<td>8.575</td>
<td>8.675</td>
</tr>
<tr>
<td>$\ell_{DH} = \ell_{DD}$</td>
<td>8.55</td>
<td>8.475</td>
<td>8.525</td>
<td>8.625</td>
<td>8.725</td>
</tr>
<tr>
<td>AR(pow)</td>
<td>7.65</td>
<td>7.95</td>
<td>8.175</td>
<td>8.375</td>
<td>8.525</td>
</tr>
<tr>
<td>$\ell_{DH} = \ell_{DD}$</td>
<td>8.35</td>
<td>8.275</td>
<td>8.325</td>
<td>8.425</td>
<td>8.525</td>
</tr>
<tr>
<td>A(opt)</td>
<td>7.15</td>
<td>8.075</td>
<td>8.275</td>
<td>8.525</td>
<td>8.875</td>
</tr>
<tr>
<td>$\ell_{DH} = \ell_{DD}$</td>
<td>8.75</td>
<td>8.775</td>
<td>8.825</td>
<td>8.925</td>
<td>9.025</td>
</tr>
<tr>
<td>AR(opt)</td>
<td>7.45</td>
<td>7.925</td>
<td>8.125</td>
<td>8.275</td>
<td>8.375</td>
</tr>
<tr>
<td>$\ell_{DH} = \ell_{DD}$</td>
<td>8.225</td>
<td>8.125</td>
<td>8.175</td>
<td>8.275</td>
<td>8.375</td>
</tr>
<tr>
<td>A(bind)</td>
<td>2.10*</td>
<td>2.28*</td>
<td>2.365*</td>
<td>2.39*</td>
<td>2.42*</td>
</tr>
<tr>
<td>$\ell_{DD} = 3$</td>
<td>2.00</td>
<td>2.175</td>
<td>2.275</td>
<td>2.375</td>
<td>2.425</td>
</tr>
</tbody>
</table>

表 3.1 各試行波動関数ごとのモット転移点 U_c/t をまとめたもの。1 列目は試行波動関数の略式を、2 列目以降は各サイズごとの結果を示す。表に記されている転移点のうち上の数値は式 (3.10) が最大となる U/t から導き出した転移点の値を示す。下の数値は 4.2 篇で導き出された ℓ_{DH} と ℓ_{DD} の交差点を示している。なお、4.1 篇で説明するが、A(bind) だけは例外であり、上の数値は Z を外挿して 0 になる点を U_c/t とし、下の数値は $\ell_{DD} = 3$ となる値を示す (式 (4.2))。

ト転移点 U_c/t はサイズと共に増大することになる。

この問題は、ダブロンとホロンを束縛する D-H 相関だけでなく、ダブロンとダブロン (ホロンとホロン) を互いに離す斥力相関因子 (式 (2.14)) を導入することにより、大きく緩和される (表 3.1 の結果参照)。また、図 3.2(a) から分かるように、斥力相関因子を導入すると、絶縁体領域での E_{tot}/t は低下することからも、この問題が改善されることがわかる。他の D-H 相関因子を導入した試行波動関数も、一般に斥力相関因子を導入することにより、エネルギーが下がる傾向にある。従って U_c/t を正確に決定するには斥力因子が重要な役割を担うことがわかった。

3.5 Jastrow 型斥力相関を導入したことによる違い

この節では斥力因子の効果について式 (2.16)(c) の完全最適化型の斥力相関因子を導入したものを中心に考察する。なお、式 (2.16)(a) の指数関数型と式 (2.16)(b) べき関数型について
は、式 (2.16)(c) のパラメーター空間内に含まれ、ほぼ同様なためにここでは省略する。

まず、斥力相関因子を導入した場合のエネルギーの改善について考察する。表 3.2 には、GWF や完全最適化型の試行波動関数 (式 (2.19)) の E_{tot}/t の数値を示した。表 3.2 を見ると、$U/t \leq 4.0$ においてはどの波動関数の結果も大きな違いは見られない。しかし、$U/t \geq 7.0$ から D-H 相関因子を導入していない GWF、ΨR(opt) と、導入している ΨA(opt)、ΨAR(opt) の二

<table>
<thead>
<tr>
<th>U/t</th>
<th>GWF</th>
<th>R(opt)</th>
<th>A(opt)</th>
<th>AR(opt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>-1.3865(2)</td>
<td>-1.3866(3)</td>
<td>-1.3867(4)</td>
<td>-1.3867(3)</td>
</tr>
<tr>
<td>4.0</td>
<td>-0.7895(9)</td>
<td>-0.790(1)</td>
<td>-0.7960(8)</td>
<td>-0.7961(6)</td>
</tr>
<tr>
<td>7.0</td>
<td>-0.374(1)</td>
<td>-0.375(2)</td>
<td>-0.418(2)</td>
<td>-0.418(2)</td>
</tr>
<tr>
<td>7.5</td>
<td>-0.323(2)</td>
<td>-0.323(2)</td>
<td>-0.379(2)</td>
<td>-0.379(2)</td>
</tr>
<tr>
<td>8.0</td>
<td>-0.276(2)</td>
<td>-0.277(2)</td>
<td>-0.348(2)</td>
<td>-0.348(3)</td>
</tr>
<tr>
<td>8.5</td>
<td>-0.234(2)</td>
<td>-0.234(2)</td>
<td>-0.325(3)</td>
<td>-0.330(2)</td>
</tr>
<tr>
<td>9.0</td>
<td>-0.196(2)</td>
<td>-0.197(2)</td>
<td>-0.310(2)</td>
<td>-0.317(2)</td>
</tr>
<tr>
<td>12.0</td>
<td>-0.061(2)</td>
<td>-0.063(2)</td>
<td>-0.255(3)</td>
<td>-0.261(2)</td>
</tr>
</tbody>
</table>

表 3.2 図 3.1 で示した変分エネルギー E_{tot}/t の数値を示した。系のサイズ $L = 16$ の GWF、R(opt)、A(opt)、AR(opt) の 4 つの試行波動関数の結果を示している。括弧内の数字は末尾の数字の誤差を示している。表 3.1 から、$L = 16$ の A(opt) の転移点は $U_c/t = 8.525$、AR(opt) は $U_c/t = 8.275$ である。
第3章 各試行波動関数の計算結果（物理量）

図3.10 L = 16の (a) A(opt) と GWF, (b) AR(opt) と A(opt) の E_{tot}/t, E_{kin}/t, E_{int}/t の差をそれぞれプロットしたものを示している。負の値ならば, (a) A(opt) は GWF より, (b) AR(opt) は A(opt) よりエネルギーが低いことが示される。 (b) の両者は U_c/t が一致しないので, U/t = 7 - 9 では異なる状態を比べており, 大きな差が生じている。

エネルギー, 相互作用エネルギー, 全エネルギーの差を以下のように定義し, 論議していく。

$$\Delta E_A^\Gamma = E_A[\text{opt}] - E_A[\text{GWF}]$$ (3.11)
$$\Delta E_R^\Gamma = E_R[\text{AR(opt)}] - E_R[A\text{(opt)}]$$ (3.12)

末尾の Γ はそれぞれ "kin", "int", "tot" を示す。図3.10(a) に, 式(3.11)によって求めた結果を U/t に対して示す。ΔE_{tot}^A の結果を見ると U/t ≥ 4.0 において明らかな負の値を示しており, E($\Psi_{A\text{(opt)}}$) が低いことが解る。また, U/t ≤ 11 では $\Delta E_{int}^A < 0$, $\Delta E_{kin}^A > 0$ を示しており, 運動エネルギーを代償に相互作用エネルギーを下げるで安定化していることが解る。このことから, この領域において D-H 相間因子は, 自由に動き回るダブロンとホロンを互いに束縛させて消減させ易くする役割を担うと考えられる。逆に U/t ≥ 14 では相互作用エネルギーを代償に運動エネルギーを下げるで安定化していることが解る。この領域では D-H 相関が強く働いており, 大半のダブロンとホロンは相互に最接近サイトに束縛されている。この束縛によってダブロンとホロンが生成されても, 容易に消滅することができるため, 電子が比較的動きやすくなっていると考えられる。

図3.10(b) に, 式(3.12) で求めた結果を表している。中間領域 U/t = 7 - 10 では大きな変化が生じているが, $\Psi_{AR\text{(opt)}}$ と $\Psi_{A\text{(opt)}}$ は U_c/t が異なっているため状態が等しくないことや, また転移点付近の不安定さからきているのでここでは考えない。U/t ≤ 7.0 では, $\Delta E_{tot}^R / t$ を見ると基本的にゼロであり, 斜率相関 \mathcal{R} を加えたとしても E_{tot}^R / t に大きな変化はないことを示している。ここで, $\Delta E_{kin}^R / t$ や $\Delta E_{int}^R / t$ は U/t = 3.0 と 6.0 において多少のガタつきが見られるが, $\Delta E_{tot}^R / t$ は 0 に等しいため, 最適化の各要素間でうまく行われなかったものと判断して, ここでは無視する。U/t > 10 の領域に入ると, $\Delta E_{tot}^R / t$ は負の値を示すようになる。$\Delta E_{kin}^R / t < 0$ であり, $\Delta E_{pot}^R / t > 0$ であることから, 斜率相関因子は質体領域において, E_{int} / t の増大を代償に E_{kin} / t を減少させる効果があり, D-II 相関因子の効果を促進するものである。GWF に単に斜率因子を導入してもエネルギーの利得がほとんどないというこ
図 3.11 一番近いD-D ベアの分布確率 $W_{DD}(r)$ を U/t に対して示す。(a) は A(opt), (b) は AR(opt) の各ベア間距離 $r = 1 - 7$ の範囲の結果を示している。垂直の破線は 3.4 節により定めたモット転移点である。

とを考慮合わせると、斥力相関因子は D-D 間距離を広げることで D-H 相関因子の働きを助けると想定される。

斥力相関因子がどのように D-H 相関因子の効果を補っているかを確かめるため、斥力因子の性質を考察していく。そのために、まず 3.3 節で導入した $W_{DH}(r)$ と同様に、最近接距離を r としたダブロン-ダブロン（ホロン-ホロン）間の存在確率 $W_{DD}(r)$ を導入する。$W_{DD}(r)$ は以下の条件を満たしている。

$$\sum_{r=1}^{L} W_{DD}(r) = 1 \quad (3.13)$$

図 3.11(a)(b) は共通して、$U < U_c$ 領域では U/t が大きくなり始めるとすぐに $W_{DD}(1)$ に代わり、$W_{DD}(2)$ が優勢になる。これは、U/t の増大によるダブロン密度の減少によって互いに離れることが可能な距離が増大したことに起因している。また、二つのダブロンが隣同士に存在してしまうと、パウリの排他律によって電子の移動可能性箇所が減ってしまい、運動エネルギー的損であるため、斥力相関因子を導入しなくても、$W_{DD}(1)$ は減少する。そのため、転移点直前になると $r \geq 2$ の $W_{DD}(r)$ が揃って優勢になる。$U > U_c$ の領域において、$\Psi_{A\text{(opt)}}$ と $\Psi_{AR\text{(opt)}}$ の結果を比較すると、特に $W_{DD}(2)$ の結果が大きく異なり、$\Psi_{AR\text{(opt)}}$ の方が小さくなっている。このことから斥力相関因子は特に $r = 2$ の D-D(H-H) ベアを抑制していることがわかる。

図 3.12 には、図 3.11(a)(b) の $U/t = 28$ の $W_{DD}(r)$ を距離 r に対して示している。図中のサイト数比はキャプションで説明した量で、r であるサイトの数の確率分布である。この図から、$\Psi_{A\text{(opt)}}$ と $\Psi_{AR\text{(opt)}}$ の結果で大きく異なる点は $W_{DD}(2)$ の値だけである。また、両方とも $r \leq 7$ でサイト数比より高く、$r \geq 8$ で低い。これは、常に 2 個であればサイト数比
に一致するが、ダブロンの数が3個以上存在すればダブロン間の各々の間隔は狭まるため、rが小さい距離を持つD-D(H-H)ペアが出現し易いためである。このことと、図3.11(a)(b)の$U/t\to28$へ向かう振る舞いから解るように、さらにU/tが大きい領域においては、サイト数比と$\Psi_{A(opt)}$、$\Psi_{AR(opt)}$が一致することが期待される。

D-H相関が十分最適化したかどうかを判別する条件式 (3.9) を用いたように、D-D相関も最適化を判別する条件式が必要である。ここでは以下の式のように条件式を定めている。

$$\rho(r) > \rho_{\text{min}} \quad (\rho(r) = W_{DD}(r) \times d) \quad (3.14)$$

ダブロンがもし一つならD-Dペアは存在しないが、仮にダブロンが4つある場合、D1 \to D2ペアはD1から一番近いD2とのペアとするため、D1, D2, D3, D4から出る矢印は一つずつであり、D-Dペアの数もダブロンの数と同じく4つになる。そのため$\rho(r) = W_{DD}(r) \times d$となり$\rho(r)$はサイトあたりのペア間距離$r$のD-Dペアの出現確率を示している。式 (3.9) と同様に$\rho_{\text{min}} = 4 \times 10^{-4}$とする。

ここでは$\Psi_{AR(opt)}$の最適化された斥力相関$f_R(r)$の重みについて考察する。図3.13(a)はGutzwiller相関因子1−gを、(b)は$r \leq 4$の$f_R(r)$をU_c/t近傍において示している。金属領域では、$f_R(r)$はU/tごとに乱れた結果であるが、各r間においては同じ値を示している。さらに、$U < U_c$において$E(\Psi_{AR(opt)})$と$E(\Psi_{A(opt)})$は違いがないことから (表3.2)、この領域において斥力相関は実質的に効果がない。また、同一サイトの斥力効果であるGutzwiller相関とサイト間に働く斥力相関f_Rはまったく同じ傾向であることから、この二つの相関が干渉していることが判る。Gutzwiller因子とサイト間に働く斥力相関は個々に見れば乱れた振る舞いをしているが、両者のバランスで全体としては等価な効果となり、図3.2などの物理量は滑らかな関数になる。一方、$U > U_c$の絶縁体領域では$f_R(2)$のみ、その他のrの斥力相関と比べて減少している。これは、図3.11(b)の$W_{DD}(2)$の振る舞いと一致している。$f_R(r)$は規格化をしていないため、$f_R(r)$が1を超えた場合、D-DやH-H間相関が斥力的ではなく、

図3.12 $U/t = 28$でのA(opt)とAR(opt)の$W_{DD}(r)$を比較した。$L = 16$の系を用いた。またサイト数比とはrであるサイトの割合である。具体的には$r = 1, 2, 3, 4, \cdots$であるサイトの数はそれぞれ4, 12, 16, \cdots と4の倍数で増えていく。$r = 8$は周期境界条件から30, 9, 10, 11, \cdots は28, 24, 20, \cdots と減少していき、$r = 16$は1となる。それらを元のダブロンのあるサイト以外のサイトの総和255で割ったものである。
図 3.13 $L = 16$ の AR(opt) の (a) Gutzwiller パラメーター (同一サイトの斥力因子) $1 - g$、
(b) 式 (2.16)(c) の長距離斥力相関の重み $f_R(r)$ を転移点近傍において示した。斥力相関は
条件式 (3.14) を満たす $r = 1 - 4$ の結果を示している。縦軸の破線は AR(opt) の転移点
を示している。

引力相関になっている。図 3.11(b) でも、$r > 3$ の $W_{DD}(r)$ が $W_{DD}(1)$ より大きくなってお
り、D-D ペア間の距離が大きいものを増やすことにより、相対的に近くにあるダブロン間の斥
力を促進させる効果をもたらしている。
第4章
モット転移の微視的な描像の改善

この章では、モット転移の微視的な描像について、D-H 間距離や D-D(H-H) 間距離を用いて考察していく。4.1 節では、D-H を完全に束縛させた特殊な状態 \(\Psi_{A(bind)} \) について焦点をあてる。転移点を物理量から定めることから始め、その転移の生じる微視的描像を仮定し、D-H、D-D 間距離を用いることで、仮定した描像が妥当かどうかを決定する。また、考え付いたモット転移のメカニズムから、\(\Psi_{A(bind)} \) の特殊な状態がどのようになっているかを考察する。4.2 節では、\(\Psi_{A(bind)} \) 以外の試行波動関数を用い、モット転移の微視的な描像について考察していく。

4.1 D-H 完全束縛状態における微視的な描像

3 章では、D-H 完全束縛因子を導入した \(\Psi_{A(bind)} \) の結果を詳しく考察せずに、絶縁体状態の指標として扱っていた。そのため、まずは \(\Psi_{A(bind)} \) による物理量について簡単に考察していく。図 3.1(a) の E(\(\Psi_{A(bind)} \)) の振る舞いは、\(U/t = 0.0 \) でその他の試行波動関数とは異なる値から出発しており、\(U/t \sim 2.5 \) 付近において急激な変化を示している。図 3.1(c) のダブロン密度 \(d \) は \(U/t \lesssim 1.5 \) あたりでは、GW などその他の波動関数の結果より大きな値を示す。その後、急激に減少し、D-H 相関因子を導入した波動関数の中では一番小さな値を示す。図 3.1(b) の \(E_{\text{kin}}/t \) は D-H 相関因子を導入した波動関数の中では常に高い運動エネルギーを示している。また、図 3.4 の準粒子繰り込み因子 \(Z \) は、\(U/t \lesssim 2.5 \) においては有限の値を示し、\(U/t \gtrsim 4.0 \) において微小の値のみが残る。図 3.6 の (\(\pi, \pi \)) でのスピン相関関数 \(S(q) \) の振る舞いは、\(U/t \lesssim 2.5 \) 付近で急激な増大を示す。2.3.4 節で既に触れたように、D-H が最隣接サイトに完全に束縛されていると、常に絶縁体状態であるように思われていた。だが、これらの物理量の結果は明らかに、\(\Psi_{A(bind)} \) が \(U/t \) の十分小さい領域では金属的であり、その後に転移を生じて絶縁体状態になっていることを示している。

本研究の目的であるモット転移の微視的描像を考察するにあたり、まず \(\Psi_{A(bind)} \) の結果を考察する。\(\Psi_{A(bind)} \) は D-H 対を完全に最隣接サイトに束縛しているので、D-D(H-H) 間のことをについてのみ考えればよく、また、ハーフフィリングであるためダブロンとホロンは対称的に扱うことができるので、非常に考えやすい系である。以下では、この特殊な波動関数の微視
的な転移の描像について考える。まず、\(\Psi_{A(bind)} \) では、ダブロン (ホロン) が最低でも一つのホロン (ダブロン) が最隣接サイトに付随していないければならないという条件が課されてる。そのため、文献 52 のようにダブロンとホロンの束縛が小さく、自由に動き回るという金属状態の描像が成り立たないように思われる。だが、D-H ベアを完全に束縛している状態でも、ダブロン (ホロン) の最隣接サイトに複数のホロン (ダブロン) が存在する場合は、完全束縛の効果は複数のホロン (ダブロン) のうちの一つだけにしか効かない。そのため、残りのホロン (ダブロン) は独立した状態となり、正（負）の電荷として伝搬していくことが可能になる。このように考えた場合、\(\Psi_{A(bind)} \) は金属状態を示すことができる。実際に、図 3.1(c) から \(U/t \approx 1.5 \) において、\(\Psi_{A(bind)} \) のダブロン (ホロン) 密度 \(d \) は他の D-II 相関因子 \(d \) より大きな値を示し、キャリアとしてのダブロン (ホロン) 密度が高くなっていることからも上記の描像は裏付けられる。

この性質から \(\Psi_{A(bind)} \) の転移の微視的描像を以下のように考える。以降では簡単のためホロンが伝搬を担う場合として記述する。まず、金属状態では既に述べたように、ダブロン密度が高い状態で、ダブロンの最隣接サイトに複数のホロンがいる場合、ベアを組む一つ以外の余剰のホロンが正の電荷として自由に動く。一方、絶縁体状態ではダブロン密度が低く、ダブロンの最隣接サイトにホロンが 1 つしかない場合があると、完全束縛状態であれば、ダブロンは独立したホロンを放出できず、それによる伝導はできなくなる。結果として局所的な電荷が落ちる起こらず、絶縁体状態となる。要約すると、金属状態の条件として D-H のベアが互いに連続的に接触していることが必要である。このことから、転移点は D-H ベアが互いに接触しないため \(U/t \) によって起きると特定できる。

上記の微視的状態により転移が起こっているかを見極めるため、D-D(H-H) 排斥距離 \(\ell_{DD}^* \) という物理量を定義する。D-II 完全束縛因子ではなく、後に考える一般的な D-H 相関因子を取り入れた場合の表式と区別するため、\(\ell_{DD}^* \) の肩に * を付けることにする。まず、D から一番近い H(H から D) の距離を \(r_{DH} \)、D から一番近い D(H から H) の距離を \(r_{DD} \) とする。それら
図 4.2 A(bind) の金属-絶縁体転移の概略図を示す。空の正方形は単一占有サイトを示している。赤 (青) 線内のサイトは赤 (青) く縁取ったダブロンから距離 $r_{DD} = 2$ の範囲内のサイトを示している。この範囲内に別のダブロンが存在した場合、D-H ベア同士が接触する場合があるため、余剰のダブロン (ホロン) を放出し金属状態となる。一方、D-D(H-H) 間が最低でも $r_{DD} = 3$ 以上離れると、1つ1つの D-H ペアはそれぞれ孤立し、絶縁体状態になると考えられる。

の平均値を $\langle r_A \rangle$ (A = DH または DD) とすると、標準偏差 σ_A は、

$$\sigma_A = \sqrt{\frac{1}{M} \sum_{i=1}^{M} (r_{Ai} - \langle r_A \rangle)^2}, \quad (4.1)$$

と示せる。ここで添え字 i は測定サンプルにあるすべてダブロンとホロンのペアを示しており、M はすべてのペアの数を示している。これらの量を用いて、ℓ_{DD}^* を次のように置くと都合のよいことがわかった。

$$\ell_{DD}^* = \langle r_{DD} \rangle + \sigma_{DD}. \quad (4.2)$$

$\Psi_{A(\text{bind})}$ は、D-H は完全に束縛されているため、$\langle r_{DH} \rangle = 1, \sigma_{DH} = 0$ である。$\Psi_{A(\text{bind})}$ の転移には d が主に関与していると考えられ、$1/\sqrt{d}$ はダブロン1つが占有する面積を正方形で表したときの一辺の長さを表している。ℓ_{DD}^* を式 (4.2) の形として定義した理由は、図 4.1 に示したように、$1/\sqrt{d}$ と ℓ_{DD}^* が $U/t < 4$ においてほぼ等しい値を持っており、この二つの物理量を同等と見てよいからである。また、ℓ_{DD}^* は D-D 間平均距離に標準偏差を足したものであり、ほとんどの D-D(H-H) ペアが $r_{DD} < \ell_{DD}^*$ という条件を満たす。そのため ℓ_{DD}^* は互いに D-D(H-H) が近づける距離の上限と考えてよい。以後、式 (4.2) で定義した ℓ_{DD}^* を用いて説明していく。

まず、図 4.2 に今まで仮定してきた転移点での状態 (スナップショット) を示す。D-H ペアは完全に束縛されているため、ダブロンとホロンは互いに最密接触サイトにある。$\Psi_{A(\text{bind})}$ は D-H ペアが互いに孤立していれば絶縁体状態と考えられるので、局所配置を考えると、$r_{DD} = 2$ だと D-H ペアは接触するので、図 4.2 のように $r_{DD} = 3$ が転移点と見えてよい。これを踏まえると、$\ell_{DD}^* = 3$ は全体として、最大 D-D 間距離が 3 になる値であり、$r_{DD} > 3$ となる D-D(H-H) ペアが出现し始める。従って $\ell_{DD}^* = 3$ となる点が転移点に該当し、$\ell_{DD}^* < 3$ の場
図 4.3 3 つのサイズ L に対して A(bind) のモット転移点 \(U_c/t \) の決定方法を示す図。以下の 2 通りの方法を比較した。 (1) 準粒子繰り込み因子 \(Z \) を \(U/t \leq 2 \) の範囲において 3 次までの最小二乗法によって近似した関数 \(Z^* \) を用いて外挙し、\(Z^* = 0 \) となる点。垂直の破線が \(U_c/t \) を示している。 (2) \(\ell_{DD}^* = 3 \) となる点。 (1)(2) ともに数値の詳細については表 3.1 に記述してある。

合は金属状態、\(\ell_{DD}^* > 3 \) の場合は絶縁体状態であると考えられる。図 4.3 に、\(U/t \) に対する \(\ell_{DD}^* \) を示す。\(\ell_{DD}^* = 3 \) となる \(U/t \) 値は \(\ell_{DD}^* = 3 \) 前後の \(U/t \) 値の中間値を用いその数値を表 3.1 にまとめた。

以上で \(\Psi_{A(bind)} \) の転移機構を考察し、それを見積もるための長さを新しく定義したが、この描像が正しいならば、\(\Psi_{A(bind)} \) の金属-絶縁体転移は他の場合と少し違った事情で起こっている。なぜなら、一般にモット転移は電子の運動エネルギーと相互作用エネルギーの競合によって起こることが知られている。3 章で議論した \(\Psi_{AR(opt)} \) などの転移は、1 つの D-H ペアが束縛されるかどうかに起因しており、また、物理量の振る舞いか見ても一次転移的な振る舞いが見られる。しかし \(\Psi_{A(bind)} \) の転移の描像は、ダブロン密度の増減により、独立したダブロンまたは、ホロンを放出できるか否かによって決まる。言い換えれば、D-H ペアがサイドに多数存在するかという空間的要因によって決まる。物理量の振る舞いか見ても、滑らかな曲線を描いており、他のモット転移とは性質が異っている。実際に、式 (3.10) を用いて転移点を求めてみと、\(L = 10, 12, 14, 16, 18 \) において \(U/t = 1.85, 1.85, 1.95, 1.95, 1.85 \) (表 3.1 には記載していない) となりサイドによってもまちまちの結果が出てしまう。

このことから \(\Psi_{A(bind)} \) の転移点 \(U_c/t \) の決定法についても、モット転移の秩序変数 Mandel 3.10 で用いて求める上記の方法はやめて、\(Z = 0 \) となる点で転移点として定めた方が良いと思われる。準粒子繰り込み因子は有限サイズの影響で、強相関領域においても微小な値が残るため、まず、\(Z \) を \(U/t \leq 2 \) の範囲において 3 次までの最小二乗法によって求めた近似関数 \(Z^* \) によって外挙し、\(Z^* = 0 \) となる点を \(U_c/t \) とする。この結果は図 4.3 に示してあり、これにより求めた \(U_c/t \) の値は表 3.1 にまとめた。

最後に \(Z^* = 0 \) と \(\ell_{DD}^* = 3 \) で見積もった転移点について考察する。図 4.3 には、この二つの
物理量を3つのサイトごとに示している。垂線は$Z^* = 0$となるU_c/tを示しており、この垂線と$\ell_{DD}^* = 3$が交わる点は、サイト数が増えることによって、徐々に等しくなっている。転移点の数値は表3.1に示しており、$L = 10$では二つの転移点の差$\delta U/t$が0.10だったものが、$L = 18$では0.005まで縮まっており、このことから見ても$\Psi_{A(bind)}$の微視的転移の描像是正しいことが伺える。

4.2 一般的なD-H束縛状態における微視的な描像

$\Psi_{A(bind)}$はダブロンとホロンが互いに束縛されているので、D-H間の距離は一定であった。しかし、一般的なD-H相関因子を導入した波動関数は、ダブロンから一番近いホロン間の距離は変化するため、4.1節で述べたようにD-D(H-H)間距離だけでなく転移を記述できない。そこで$\Psi_{A(bind)}$で用いたℓ_{DD}^*を参考に、D-H束縛距離ℓ_{DH}、D-D排斥距離ℓ_{DD}という距離に関する物理量を導入し、$\Psi_{A(bind)}$以外のモット転移の微視的な描像について考察していく。

図4.4(a)には$\Psi_{AR(opt)}$の、平均距離$\langle r_A \rangle$を、図4.4(b)には標準偏差$\langle r_A \rangle$をU/tに対して示した($\Lambda = DH$またはDDを表す）。図の(a)(b)を見比べると、σ_Aは$\langle r_A \rangle$と似たような振る舞いをしていることがわかる。転移点近傍ではσ_{DH}はカスプが現れており、カスプのU/t値は各Lに対するU_c/tと正確に一致する。金属状態においては、$\langle r_{DH} \rangle$とσ_{DH}は増加する。これはU/tが増加すると、ダブロン密度が減少することが原因である（図3.1(c)）。この効果はD-H相関効果によるr_{DH}の減少を上回るため、ダブロンはホロンからある程度離れた状態になっていると思われる。転移点近傍で$\langle r_{DH} \rangle$とσ_{DH}は急激に小さくなり、以降はそれぞれ1と0に漸近する振る舞いを示す。これは絶縁体状態ではD-H相関効果が支配的になるためである。一方、$\langle r_{DD} \rangle$とσ_{DD}はU/tの増加とともにダブロン密度が減少し、ダブロン（ホロン

図4.4 (a) 一番近いD-H(H-D)間平均距離$\langle r_{DH} \rangle$と、一番近いD-D(H-H)間平均距離$\langle r_{DD} \rangle$ (b) 標準偏差σ_{DH}とσ_{DD}をU/tに対して示した。波動関数AR(opt)の3つのサイズに対して計算したものを扱っている。

物理量を3つのサイトごとに示している。垂線は$Z^* = 0$となるU_c/tを示しており、この垂線と$\ell_{DD}^* = 3$が交わる点は、サイト数が増えることによって、徐々に等しくなっている。転移点の数値は表3.1に示しており、$L = 10$では二つの転移点の差$\delta U/t$が0.10だったものが、$L = 18$では0.005まで縮まっており、このことから見ても$\Psi_{A(bind)}$の微視的転移の描像是正しいことが伺える。

4.2 一般的なD-H束縛状態における微視的な描像

$\Psi_{A(bind)}$はダブロンとホロンが互いに束縛されているので、D-H間の距離は一定であった。しかし、一般的なD-H相関因子を導入した波動関数は、ダブロンから一番近いホロン間の距離は変化するため、4.1節で述べたようにD-D(H-H)間距離だけで転移を記述できない。そこで$\Psi_{A(bind)}$で用いたℓ_{DD}^*を参考に、D-H束縛距離ℓ_{DH}、D-D排斥距離ℓ_{DD}という距離に関する物理量を導入し、$\Psi_{A(bind)}$以外のモット転移の微視的な描像について考察していく。

図4.4(a)には$\Psi_{AR(opt)}$の、平均距離$\langle r_A \rangle$を、図4.4(b)には標準偏差$\langle r_A \rangle$をU/tに対して示した($\Lambda = DH$またはDDを表す）。図の(a)(b)を見比べると、σ_Aは$\langle r_A \rangle$と似たような振る舞いをしていることがわかる。転移点近傍ではσ_{DH}はカスプが現れており、カスプのU/t値は各Lに対するU_c/tと正確に一致する。金属状態においては、$\langle r_{DH} \rangle$とσ_{DH}は増加する。これはU/tが増加すると、ダブロン密度が減少することが原因である（図3.1(c)）。この効果はD-H相関効果によるr_{DH}の減少を上回るため、ダブロンはホロンからある程度離れた状態になっていると思われる。転移点近傍で$\langle r_{DH} \rangle$とσ_{DH}は急激に小さくなり、以降はそれぞれ1と0に漸近する振る舞いを示す。これは絶縁体状態ではD-H相関効果が支配的になるためである。一方、$\langle r_{DD} \rangle$とσ_{DD}はU/tの増加とともにダブロン密度が減少し、ダブロン（ホロン
図 4.5 モット転移の微視的メカニズムの概略図を示す。D はダブロンを、H はホロンを示している。ダブロンを基準として図を描いているが、ダブロンとホロンを入れ替えた場合も同じである。(a) のダブロンを中心に半径 \(\ell_{\text{DH}} \) の実線で描かれている円は、そのパートナーであるホロンが移動できる領域を示している。(b) のダブロンから半径 \(\ell_{\text{DD}} \) の破線で描かれている円は、他のダブロンがそれ以上近づくことのできない領域を示している。(c) と (d) はそれぞれ、一般的な D-H 相関因子を導入した波動関数の金属性状態と絶縁体状態を微視的に見た場合の模式図である。金属状態と絶縁体状態は \(\ell_{\text{DH}} \) と \(\ell_{\text{DD}} \) のどちらかが大きいかで区別することができる。(e) と (f) は金属状態と絶縁体状態をモデル全体で示した。緑丸は一重占有サイトを示す。

図 4.5 モット転移の微視的メカニズムの概略図を示す。D はダブロンを、H はホロンを示している。ダブロンを基準として図を描いているが、ダブロンとホロンを入れ替えた場合も同じである。(a) のダブロンを中心に半径 \(\ell_{\text{DH}} \) の実線で描かれている円は、そのパートナーであるホロンが移動できる領域を示している。(b) のダブロンから半径 \(\ell_{\text{DD}} \) の破線で描かれている円は、他のダブロンがそれ以上近づくことのできない領域を示している。(c) と (d) はそれぞれ、一般的な D-H 相関因子を導入した波動関数の金属性状態と絶縁体状態を微視的に見た場合の模式図である。金属状態と絶縁体状態は \(\ell_{\text{DH}} \) と \(\ell_{\text{DD}} \) のどちらかが大きいかで区別することができる。(e) と (f) は金属状態と絶縁体状態をモデル全体で示した。緑丸は一重占有サイトを示す。

以上の結果から、一般的な D-H 相関因子を導入した波動関数に対する、D-H 束縛距離 \(\ell_{\text{DH}} \)、D-D 排斥距離 \(\ell_{\text{DD}} \) を以下のように定義する。

\[
\ell_{\text{DH}} = \langle r_{\text{DH}} \rangle + \sigma_{\text{DH}} \quad (4.3)
\]

\[
\ell_{\text{DD}} = \langle r_{\text{DD}} \rangle - \sigma_{\text{DD}} \quad (4.4)
\]

D-H 束縛距離 \(\ell_{\text{DH}} \) は式 (4.2) の \(\ell^*_{\text{DD}} \) と同形で、平均距離に標準偏差を加えた形が適当である。\(r_{\text{DH}} < \ell_{\text{DH}} \) である D-H ベアが大部分を占めるため、\(\ell_{\text{DH}} \) は図 4.5(a) のように、ホロンがダブ
図 4.6 AR(opt) の 3 つのサイズの D-H 束縛距離 ℓ_{DH} と D-D 排斥距離 ℓ_{DD} とダブロン密度 d を U/t に対して示す。ダブロン密度から求めた転移点 U_c/t は垂直線で表している。具体的な U_c/t 値は表 3.1 に示した。

ロクから離れることができる上限の距離を表している。そのため、ℓ_{DH} は D-H ペアの占有している (最低でも D-H ペアが一つある) 領域とほぼ一致する。また、D-H 相関因子は $U > U_c$ で U/t の增大に伴って D-H 束縛距離を小さくする効果を持つことは明らかである。

反対に、D-D 排斥距離 ℓ_{DD} は式 (4.4) のように、平均距離に標準偏差を減じた形が妥当である。このときは、ほとんどの D-D(H-H) ペアが $r_{DH} > \ell_{DD}$ の条件を満たすので、ℓ_{DD} は図 4.5(b) に示すように D-D(H-H) 同士が互いに近づくことができる下限の距離を表している。このため、ℓ_{DD} は D-H ペア同士の間の距離に大まかに対応している。図 4.4(a)(b) のように一般的に U/t に対する単調増加関数である。

一般的な D-H 相関因子を導入した試行波動数の場合は、D-H 束縛距離と D-D 排斥距離を使うことによって、図 4.5(c) や図 4.5(d) のようにモット転移の微視的なメカニズムを議論できる。図 4.5(c) は $\ell_{DH} > \ell_{DD}$ の場合を示している。ℓ_{DH} が ℓ_{DD} より大きいと、D-H ペアの占有領域が互いに重なり合う。その領域では一つの D-H ペアのホロンと隣接した D-H ペアのホロンの交換が可能で、それにより、電荷の移動が起こる。結果として、ダブロンとホロンのペアは相互にそれぞれのパートナーを次々と変えることにより、図 4.5(e) のように電荷として独立に動くことが可能となるため金属状態 $(U < U_c)$ を示している。図 4.5(d) は $\ell_{DH} < \ell_{DD}$ の場合を示している。この場合、大部分の D-H ペア同士は占有領域は重ならず、ℓ_{DH} の範囲内に限定され、1 つ 1 つの D-H ペアは孤立してしまう。その結果、局所的な電荷ゆらぎが存在するだけであり、図 4.5(f) のように全体的な電荷の移動はなく、絶縁状態 $(U > U_c)$ となる。絶縁体状態における図 4.5(f) の状態は以前に提唱されたもの [52] と基本的に同じである。以上から、ℓ_{DH} と ℓ_{DD} が等しい点ではモット転移が起こることになる。

実際に、ℓ_{DH} と ℓ_{DD} の交差する点が、他の物理量により見積もりった転移点 U_c/t と一致するかどうかを確かめる。図 4.6 に、式 (4.3) と式 (4.4) により求めた ℓ_{DH} と ℓ_{DD} を U/t に対して示した。また、モット転移点 U_c/t はモット転移の秩序変数であるダブロン密度の傾きが最
図 4.7 図 4.6 と同じ物理量 ($\ell_{\text{DH}}, \ell_{\text{DD}}, d$) を同様に 4 つのタイプの試行波動関数 (a)A(NN)、(b)A(exp)、(c)AR(pow)、(d)A(opt) で計算したものを表示している。この式を満たす値は表 3.1 にまとめている。

この式を満たす値は表 3.1 にまとめている。
果を持つ。このことから、一般的な D-H 相関因子を導入した波動関数に現れるモット転移は、普遍的に図 4.5 に示したものであることが示唆される。

また、比較として GWF, \(\Psi_{\text{R(exp)}} \), \(\Psi_{\text{R(pow)}} \), \(\Psi_{\text{R(opt)}} \) という D-H 相関因子の入っていない 4 つの試行波動関数の \(\ell_{\text{DH}}, \ell_{\text{DD}} \) の振る舞いを考える。3.5 節で既に述べたが、D-H 相関因子を導入していないこれらの試行波動関数は、モット転移を生じず、\(U/t < \infty \) において常に金属状態を示す。図 4.8 には、例として式 (4.3) と式 (4.4) から求めた GWF の \(\ell_{\text{DH}} \) と \(\ell_{\text{DD}} \) を示した。図をみると、\(\ell_{\text{DD}} \) は \(U/t \) に対して単調増加しており、\(\Psi_{\text{A}} \) と \(\Psi_{\text{AR}} \) にとらえられる振る舞いに一致している。一方、\(\ell_{\text{DH}} \) は大きな \(U/t \) で減少する \(\Psi_{\text{A}} \) と \(\Psi_{\text{AR}} \) と異なって単調増加しており、\(\ell_{\text{DD}} \) と比べて常に約 2 倍の大きさとなっている。これは当然、D-H 相関因子を導入していないことが原因である。よって、\(\ell_{\text{DH}} \) と \(\ell_{\text{DD}} \) が交わる点（モット転移点）は存在せず、常に \(\ell_{\text{DH}} > \ell_{\text{DD}} \) の金属状態を示す。この結果はその他の 3 つの試行波動関数でも同様である。

このようにモット転移の新しい観点は D-H 相関因子を導入していない試行波動関数の振る舞いに対しても妥当な説明を与える。モット転移では D-H 間の束縛が本質であることが再認識できる。

最後に对称的なペアの性質を持つ超伝導の場合（BCS-BEC クロスオーバー）と比較してみる。

まずモット転移のメカニズムを整理すると、背景の単一占有サイト（電荷平均）内で、ダブロン（ホロン）は負（正）の電荷単体である。\(U > U_{\text{c}} \) では D-H ペアが生成されても D-H ペア間距離が小さく、ペア同士の隙間に重ならないので孤立する。こうして電荷の励起は局所的に留まるため、大荷電荷の移動が起きず絶縁体となる。この際、D-H ペアは孤立している（ペア領域が相互に重ならない）ときのみ安定に存在できることが重要である。\(U = U_{\text{c}} \) になってペア同士の隙間に重なり合い始めると、すぐに D-H ペアは崩壊し、互いのパーティナーを交換出来るようになる。さらに、\(U < U_{\text{c}} \) では手のダブロンとホロンが交差している（独立に移動できる）プラズマ状態（普通のフェルミ液体）になり、伝導が起こる。このため、状態の変化はおの \(U_{\text{c}}/t \) で急激に起きるために転移になる。ここで得られたモット転移の描像是、かつてエキシトンの崩壊で考えられたメカニズム [57] と基本的に同一と見て良さそうである。
次に、超伝導（典型例として引力的ハバードモデル）の場合について考える。

\[|U|/t \] が大きい場合には、ポース-アンシュタイン凝縮 (BEC) 型機構であることが知られる。すなわち、サイズが小さい空間的に独立したインコーレントな一重項ベアが \(T > T_c \) で生成され、温度降下によってこの一重項ベア（ポソン）が BEC を起こして、超伝導のコーヒーレンスを獲得する機構である。\(T > T_c \) のインコーレントなベアは、一重項-三重項スピンギャップを持っているが、電荷のギャップは持たない。D-H ベアの場合と同様に、\[|U|/t \] が減少すると、D-H ベア間距離が増大し、\[|U| \sim W \] で D-H ベア同士の重なりが出来始める。しかし超伝導相 \((T < T_c) \) のクーパーペアの場合は、ペアの重心運動量がゼロという制限があるため、波数が限定されたパートナー（つまり \(k \) と \(-k\)）とペアを組んでいるので、相互にペアの領域が重なり合ってもペアの組み替えができない。\[|U| << W \] となってペア領域が複雑に重なり合っても、\((k, -k) \) のペアの崩壊は起きず安定的にペアを組んだままである。このことは、ごく最近多数のクーパーペアの問題が解かれたことで、厳密に証明されている [58]。したがって、\[U/t \rightarrow -0 \] の極限まで超伝導状態が依然として続く。一方、この \[U/t \] の領域での \(T > T_c \) のノーマル相では、超伝導相と同様に D-H ベア間距離は十分大きくなっており、超伝導状態と違って \((k, -k) \) でペアを組む制限が無いため、モット転移と同様にペアの交換が起こり、ペアは解消されプラズマ（金属）状態になる。超伝導のコーヒーレンスが \(T = T_c \) で壊れると、すぐにフェルミ液体に変化する BCS のメカニズムである。BEC 領域と BCS 領域の間では、超伝導状態に関してはゆっくりコーヒーレンス長が変化するだけなので、この場合は転移にならずよく知られた BCS-BEC クロスオーバーになる。ただ、\(T > T_c \) のノーマル状態はフェルミ液体からスピンギャップを持った状態にモット転移同様に転移するので [59]、有限温度とは言え、超伝導よりは急な振る舞いが見られると思われる。

ちなみに斥力的ハバードモデルのハーフフィリングにおける \(d \) 波超伝導では、本研究のノーマルの場合と同様に、\[U/t \sim 6.5 \] でモット転移を起こすので [53]、メカニズムは本研究の場合と基本的には同じと考えられる。
第5章
結論

本研究では変分モンテカルロ法を用いて、二次元ハーバードモデルにおける非磁性モット転移の研究を行った。最近の研究で、モット転移の本質が、正負のキャリアーである空サイト（ホロン：H）と二重占有サイト（ダブロン：D）の束縛およびその解放であることがわかってき
た [52]。ただし、これらの研究で用いられた D-H 相関は隣接サイト間に限られており、いか
なる形の D-H 相関が最適であり、具体的にどのような描像でモット転移を理解すればよいか、
わかっていなかった。

本研究では、これらの点を定量的に理解するために、オンサイト・クーロンの相関効果のみの Gutzwiller 試行波動関数に、さらに自由度の高い長距離 D-H 相関因子、長距離 D-D(H-H)
斥力相関因子を導入し、それらを最近、急速に進展した変分モンテカルロ法の最適化手法を駆
使して計算し、上に述べた問題に明解な理解が得られた。これらのモット転移の性質はエキシ
トン-プラズマ転移や引力ハパーバードモデルにおける、BCS-BEC クロスオーバーと比較すると、
それぞれの物理の類似性と特殊性を明確にできることは、第 4 章の終りに議論した。以下に、
本研究で得た主な結果を要約する。

1. 様々な D-H 相関因子、D-D(H-H) 相関因子を用いた計算を通し、1 次転移である非磁性モット転移を表すには D-H 相関因子が必要不可欠であることを確認した。また導入
する D-H 相関因子の形に詳細は依存するが、いずれも U ≥ W (= 8t）において変分エ
ネルギーは GWF の結果に比べ、非常に大きく安定化する。

2. 最適化した D-H 相関の大きさ f_A(r) は、金属領域では近距離の r ≲ 3 で急激に減少し、
r ≳ 3 ではおおよそ一定の値を取ることがわかった。絶縁体領域では、D-H 相関効果は
最隣接サイトにおいて非常に強力に働くため、最隣接サイトにダブロンとホロンが互い
に束縛される。以上から、相関範囲は最隣接サイトのみが重要になるため、これまで多
くの研究で深く考えることなく用いられた、最も単純な短距離型 D-H 相関因子によっ
てモット転移を定性的に正しく記述出来る理由がわかった。定量的には f_A(2) の最適
化が重要である。

3. 長距離 D-D(H-H) 間斥力因子の導入は、金属状態では誤差程度のわずかなエネルギーし
か改善されないが、絶縁体状態では小さいながら有意のエネルギー改善を生じる。これ
によって、モット転移点 U_c/t のサイト依存性を抑える効果がある。長距離 D-D(H-H)
間斥力因子は、単体でモット転移を引き起こすことはないが、モット転移の定量的記述
には一定の寄与がある。

4. D-H が束縛されてモット転移が生じるメカニズムについて、D-H 束縛距離 ℓ_{DH} と
D-D(H-H) 排斥距離 ℓ_{DD} という二つの距離に関する量を導入し、それらを比較するこ
とで、以前に提案された定性的なモット転移の描像を、定量的に取り扱えるように修正
した。ℓ_{DH} はダブロンとホロンが互いに離れる上限距離を示すように、ℓ_{DD} は二つのダ
ブロン (ホロン) 間の近づける下限距離を表すように設定すると、この二つの量は一般
的に U/t に依存する。ℓ_{DH}, ℓ_{DD} の振る舞いを比較すると、金属状態では $\ell_{DH} > \ell_{DD}$、
絶縁体状態では $\ell_{DH} < \ell_{DD}$ となり、ちょうど $\ell_{DH} = \ell_{DD}$ で他の物理量から見積もりった
モット転移点 U_c/t と正確に一致することがわかった。

5. これらの ℓ_{DH} と ℓ_{DD} の相互関係は、本研究で扱った一般的 D-H 相関因子でも成り立
つ。さらに、この描像はボースハーバードモデルにおけるモット転移にも適用された。本
研究と同じ様に ℓ_{DH} と ℓ_{DD} を定義すると、正方格子と三角格子の超流動-絶縁体転移に
に対しても成り立つことがわかった [56]。ちなみに、ボース系に対しては冷却原子気体に
に対する原子顕微鏡の実験が最近行われ、具体的に D-H 束縛の状況が目に見えるようにな
っている [60]。これらの進展で本研究の結果を定量的に確認できる比も遠くないであろう。
以上より、本研究で提案したモット転移の描像は広範囲に適用可能な普遍的なもの
だと考えられる。

将来の展望として、(1) エキシトン-プラズマ転移などの類似メカニズムの統一的記述を構築
する。 (2) ベリー位相による絶縁体の記述と本研究ではどう結び付くか、(3) 銅酸化物系高温
超伝導体はドープされたモット絶縁体であり、ドープした場合にこの描像がどこまで成り立つ
か、または修正が必要かなどを考えていきたい。
参考文献

 Greiner: Science 329 (2010) 547;
 467 (2010) 68,
 C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, and
1. “Effects of Long-Range Correlations on Nonmagnetic Mott Transitions in Hubbard model on Square Lattice”
2. “Doublon-holon-binding mechanism of Mott transition in low dimensional Hubbard model”
4. “Mechanism of superfluid-insulator transition in two dimensional Bose Hubbard model”
謝辞

指導教官である横山寿敏先生（東北大学理学研究科助教授）をはじめ、たくさんの方々の助力のもとに本研究を行うことができました。

横山先生には学部４年生の頃から修士課程前期までの４年間にわたり、研究の方向性や構成などたくさんの指導をしていただきました。研究に関して右も左も分からない私が４本の論文を投稿できたのは、横山先生の多くの助言や、お力添えがなくてはできなかったと言っても過言ではありません。長期に渡り、大学を休んでいたときも優しい言葉をかけていただきました。非常に多くのご迷惑をおかけしたことが心残りではありませんが、このような私を最後まで熱心にご指導していただき、心から感謝しております。

柴田尚和准教授（東北大学理学研究科）には将来の事で悩んでる際にご相談に乗っていただきました。自身の気持ちに気づかせたいただき、これから先のことに決意を付けることができたのも、柴田先生のご協力があってのことです。

田村駿さん（博士課程前期２年）には意味のない軽口をたたき合い、研究生活を楽しく過ごさせていただきました。東北大学理学研究科性理論研究室の皆様に出会えた事を嬉しく思って心から感謝申し上げます。

また、家族には長年の援助をしていただき、有益な時間を過ごさせていただきました。これからは精一杯頑張っていきたいと思います。

最後に、大学での研究生活を支えてくれた指導教官の横山先生に改めて深く感謝いたします。