種イモ用ナガイモの形状に及ぼす土壌水分の影響
技術研究発表会要旨 平成14年度複合生態フィールド教育研究センター研究発表会資料

<table>
<thead>
<tr>
<th>著者</th>
<th>佐々木 友紀</th>
</tr>
</thead>
<tbody>
<tr>
<td>雑誌名</td>
<td>複合生態フィールド教育研究センター報告</td>
</tr>
<tr>
<td>巻</td>
<td>19</td>
</tr>
<tr>
<td>ページ</td>
<td>86-87</td>
</tr>
<tr>
<td>発行年</td>
<td>2007年12月</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10097/00109343</td>
</tr>
</tbody>
</table>
乾燥させ、園芸用ガーデンシュレッダーにて粉碎した後にふるい分けし、葉のみとしたものを供試した。
播種後 0.5cm の土を覆土し、リター区はそれぞれ 1.5cm の厚さのリターをその上にのせた。
またリター区由来の他感作用物質による影響を調査する目的で、2 時間煮込みその後水洗したリター（W）と未処理のリター（N）を準備した。

オオバシャブシとウダイカンバでは、リター区とリターが無い対照区間での発芽率の違いに、有意差がみられ
た。この試験では、種子が発芽できなかったのか、発芽した後の種子が地上まで土とリターを抜き抜け出芽できなかっ
たのが判断としなかった。

3）種イモ用ナガイモの形状に及ぼす土壌水分の影響
環境調和型作物生産研究科 佐々木 友紀

研究目的
東北大学大学院農学研究科附属複合生態フィールド教育
研究センターでは、平成 11 年から、ムカゴから養成した 1
年子の種イモ用ナガイモ栽培を行なってきた。種いも用ナ
ガイモは収穫部が短く収穫作業が容易であり、貯蔵性も良
い。しかしながら種いもとして出荷できる規格が基本的に
は 40 ～120g であり、それ以外は出荷できない難しさがあ
る。そのためにムカゴの大きさに応じて施肥量、栽植間隔
を調節する必要があり、ムカゴを用いた種いも栽培におけ
る適正な施肥管理により大きさの調節を行なってきた。し
かし、種いもの形状は、天候により左右されがちが多く、
とくに平成 15 年度のように多雨で地形的温湿りをうけると
奇形イモが増え規格内の重量であっても出荷できない。ま
た、平成 16 年度のように多雨が続くと長細い熟度の悪い
種いものができる。そこで、畑の高低の違いによる排水とパ
ラストックフィルム黒マルチ資材により乾燥を制限して土
壌水分をコントロールすることによる種いも栽培を行い種
いもの形状を検討する。

研究実施計画
東北大学大学院農学研究科附属複合生態フィールド教育
研究センターの種イモ用ナガイモ栽培圃場において、高圧、
水浸による栽培と、また、それぞれでプラスチックフィル
ム黒マルチを使用した畑としない畑を設定し灌水によって
土壌水分を調節し種いも栽培を行う。栽培期間中の土壌水
分と温度を自己記録して、土壌水分が種いもの収量と形状
に及ぼす影響を検討する。

栽培計画
栽培品種：ナガイモ品種トロフィー 1066 のムガゴ（ム
カゴ重 0.6g）
施肥設計：LP コーン専用（15-15-15）N = 25kg/10a
播種時期：5 月中旬（5 月 22 日播種）
栽植距離：畦幅 120cm 株間 3cm
支柱・ネット張り：畦間別 ネット（角目）の高さ 1.2m
とする。
収穫時期：収穫後 11 月 15 日播種

試験区（1 試験区 畦幅 120 cm 長さ 150 cm）

<table>
<thead>
<tr>
<th>区</th>
<th>畦</th>
<th>マルチ</th>
<th>灌水</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>高</td>
<td>有</td>
<td>有</td>
</tr>
<tr>
<td>2</td>
<td>高</td>
<td>有</td>
<td>無</td>
</tr>
<tr>
<td>3</td>
<td>高</td>
<td>無</td>
<td>有</td>
</tr>
<tr>
<td>4</td>
<td>高</td>
<td>無</td>
<td>無</td>
</tr>
<tr>
<td>5</td>
<td>平</td>
<td>有</td>
<td>有</td>
</tr>
<tr>
<td>6</td>
<td>平</td>
<td>有</td>
<td>無</td>
</tr>
<tr>
<td>7</td>
<td>平</td>
<td>無</td>
<td>有</td>
</tr>
<tr>
<td>8</td>
<td>平</td>
<td>無</td>
<td>無</td>
</tr>
</tbody>
</table>

※灌溉は Watermark 土壌水分センサーの低 10chbar 以上の
時を基準に行う。

調査項目
・土壌水分の測定（深さ 5cm） Watermark 土壌水分セン
サー使用
・地温
・種いも収量
調査結果

表 1. Watermark 土壌水分センサーの土壌水分表示単位（cbar）

<table>
<thead>
<tr>
<th>cbar</th>
<th>解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>土壌中の水分が飽和している状態。</td>
</tr>
<tr>
<td>10-30</td>
<td>粗い砂地をのぞいて浸透状態。</td>
</tr>
<tr>
<td>30-60</td>
<td>ほとんどの土壌で灌溉のタイミング。</td>
</tr>
<tr>
<td>60-100</td>
<td>粘質の土壌においては灌溉のタイミング。</td>
</tr>
<tr>
<td>100-200</td>
<td>土壌は重度の乾燥状態。</td>
</tr>
</tbody>
</table>

図 2. 試験区における地温測定値

表 2. 収穫時の生育・収量（1本平均）

<table>
<thead>
<tr>
<th>試験区</th>
<th>いも長（cm）</th>
<th>いも径（mm）</th>
<th>いも重（g）</th>
<th>固形物含量（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>高収マルチ灌水</td>
<td>17.6</td>
<td>31.3</td>
<td>47.0 ± 27.1</td>
<td>26.0</td>
</tr>
<tr>
<td>高収マルチ</td>
<td>19.6</td>
<td>28.7</td>
<td>52.0 ± 33.6</td>
<td>29.0</td>
</tr>
<tr>
<td>高収灌水</td>
<td>10.4</td>
<td>29.8</td>
<td>30.8 ± 21.0</td>
<td>31.7</td>
</tr>
<tr>
<td>高収</td>
<td>15.2</td>
<td>30.4</td>
<td>41.4 ± 23.9</td>
<td>31.6</td>
</tr>
<tr>
<td>平収マルチ灌水</td>
<td>14.3</td>
<td>37.7</td>
<td>53.3 ± 31.5</td>
<td>29.8</td>
</tr>
<tr>
<td>平収マルチ</td>
<td>17.3</td>
<td>33.4</td>
<td>60.0 ± 32.6</td>
<td>26.8</td>
</tr>
<tr>
<td>平収灌水</td>
<td>8.1</td>
<td>35.5</td>
<td>30.2 ± 23.4</td>
<td>30.2</td>
</tr>
<tr>
<td>平収</td>
<td>10.3</td>
<td>34.0</td>
<td>29.5 ± 16.7</td>
<td>31.7</td>
</tr>
</tbody>
</table>