講演抄録 フェニトインによるヒト歯肉線維芽細胞の産生について 第21回東北大学歯学会講演抄録 一般演題

<table>
<thead>
<tr>
<th>著者</th>
<th>佐藤 公麗 □渡邊 聡子 □米田 榮吉 □堀内 博</th>
</tr>
</thead>
<tbody>
<tr>
<td>雑誌名</td>
<td>東北大学歯学雑誌</td>
</tr>
<tr>
<td>巻</td>
<td>□</td>
</tr>
<tr>
<td>号</td>
<td>□</td>
</tr>
<tr>
<td>ページ</td>
<td>□</td>
</tr>
<tr>
<td>発行年</td>
<td>□</td>
</tr>
<tr>
<td>巻号ページ</td>
<td>□</td>
</tr>
</tbody>
</table>
知覚過敏症防止剤、歯髄覆罩材などへの応用等が検討されている。

今回、CPCを歯冠補寫物の合着用として応用する可能性を探るため、CPCに各種添加剤を加え、従来の合着用セメントと同様の操作性を得られたものについ
て、圧裂強度を測定した。

用いたCPC粉末は、TTCP72.6wt%，DCPA27.4
wt%の混合物、練和液は分子量24万のポリアクリル酸25%水溶液（硬化促進剤、以下PAA）を原液としていた。添加物としてIDAA、MIDAA、HEIDAA、Mg
(OH)2、MgO（いずれも硬化抑制剤）を用い、粉末比2:1とした場合、従来の合着用セメントに類似した操作性と操作時間を得ることができた。圧裂強度試験は、
直径6mm、厚さ3mmの円盤状試料を用い、圧縮速度10mm/minで行った。測定は試料を37℃蒸留水に24時
間保存後行った。なお、水のみを用いて練和したもの
(P/L=4)、無添加のPAAおよび市販のグラスアイオ
ノーマーセメントも比較として測定した。

圧裂試験の結果、PAAを用いて練和した試料の圧
裂強度は、添加物の有無に関わらずいずれも5〜6
MPaであり、市販の合着用グラスアイノーマーセメン
ト(約10MPa)よりやや小さな値であった。一方、CPC
を純水で練和(P/L=4)したものは約9MPaであり、
CPC自体の強度は従来の合着用と匹敵する強度を持
つことがわかった。

4. フェニトインによるヒト歯肉線維芽細胞の
bFGF産生について
佐藤篤紀、渡辺聡子、米田栄吉、堀内、博（第一保存)
basic Fibroblast Growth Factor, (以下bFGF)は、
さまざまな細胞で産生される細胞成長因子であり、
DNA合成の活性、コラーゲン合成、GAG等の非コ
ラーゲン蛋白質合成などの機能を活性化させるといわれています。これまでに我々は、フェニトイン性歯肉
増殖症患者の抹消部位にbFGF濃度が約3倍上昇
していること、および増殖歯肉組織中にbFGFが大量
に存在していることを報告しています。本研究はヒト
歯肉線維芽細胞がbFGFを産生するかどうか、また
フェニトインによる影響はどうかについて検討しまし
た。

その結果、培養歯肉線維芽細胞にフェニトインを添
加した細胞群は、非添加群の細胞に比べ、細胞数の増
加は認められず、免疫染色ではより高濃度に染色され
ていることがわかりました。

歯肉増殖症における歯肉の腫脹は、主としてコラー
ゲン等の細胞外基質の増生によることと一致していま
す。また本研究のヒト歯肉線維芽細胞にbFGFが存在
したことから、ならびにフェニトイン添加により高濃度に
染色されたこと、前述のこれまでの研究から、bFGFは
歯肉増殖の発症機序の一端を担うことを意味している
と思われます。

5. 歯肉線維芽細胞の電位依存性Ca2+チャネル
の検討
米田栄吉、三浦千賀子、孫 逸超、堀内、博（第一保存）
細胞内の情報伝達の重要なメッセージである
Ca2+は、チャネルの開閉によって調節されている。本研究は歯肉線維芽細胞の情報伝達機構の解明の一端
として、バッチクランプ法を用いて、細胞膜上のCa2+
チャネルの存在と型を検討した。

材料と方法：ヒトの歯肉より得られた歯縁間組織を
3〜8継代培養して用いた。バッチクランプ法はホール
セルモードとし、保持電位は-80mVとした。膜電位の
固定・電流の記録はAxon PClamp™、データの解析
はClampex™ Ver. 6.0.3を用いた。

結果：-80から+40mVまで10mVずつ膜を脱分
極させると、電位依存性の内向きの電流が得られた。
ピーク電流は+10mV付近の電位にみられ、L型のカ
ルシウムチャネルを示唆した。電位依存性のチャ
ネル電流に対し、Cd2+0.5μM含細胞外液で洗浄する
と、ほぼ完全に内向き電流は抑制された。このことは
内向き電流がCa2+チャネルが開いたことを示す。

ニフェジピン43.3μM含細胞外液で洗浄することに
より、カルシウム電流は抑制された。このことはこの
電流はL型チャネルであることを示す。

考察：カルシウムイオンは細胞の情報伝達機構の重
要なメッセージであり、細胞膜のカルシウムチャ
ネルがその取り込みを調節している。歯肉線維芽細
胞でカルシウムチャネルを検討したという報告はな
く、今回、初めて電位依存性のL型チャネルの存在
が確認された。しかし、神経細胞や骨格筋などのや
り興奮性膜を持たない線維芽細胞がどのような機序
で、脱分極してカルシウムチャネルが開くのかは不明
である。現在、非電位依存性チャネルによる細胞
の情報伝達機構について検討を行っており、将来、線
維芽細胞の情報伝達機構の全容が解明されれば、歯肉
増殖症に対する解決策も見出せるものと思われる。