<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>杉本 忠夫 北村松 淳司 伊藤 宏行 周 晃平 陳 洪龄 小西 暢彦 白田 亮 佐藤 真也 佐藤 仁 増永 靖隆 植田 行晴 小野 昭裕 宇戸 宏光</td>
</tr>
<tr>
<td>雑誌名</td>
<td>東北大学素材工学研究所彙報</td>
</tr>
<tr>
<td>巻</td>
<td>□□</td>
</tr>
<tr>
<td>号</td>
<td>□□</td>
</tr>
<tr>
<td>ページ</td>
<td>□□</td>
</tr>
<tr>
<td>発行年</td>
<td>□□</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10097/00119831</td>
</tr>
</tbody>
</table>
【研究活動報告】 液相製御研究分野(1999.1〜1999.12)

教 授:杉本忠夫
助 教 授:村松淳司
助 手:伊藤宏行
研究留学生:周 興平, 陳 洪齡
大 学 院 生:小西暢彦, 白田 聡
学 部 学 生:斎藤真也, 佐藤 仁, 増永靖隆, 植田行晴, 小野昭裕,
安戸宏光

液相製御研究分野は、素材形態制御部門の一員として、高品質素材の精密形態制御、特に超微粒子や微粒子のサイズや形状を極めて精密に制御する手法の開発などの研究を推進している。1999年の研究活動を概括すると以下の通りである。

A. 単分散微粒子の合成法「ゲルゾル法」とその機構
本研究分野では、先端材料の素材として重要な単分散粒子の工業規模の合成法の開発、あるいはそれら粒子を含む加工プロセスの発展における新たなイノベーションの発展が行われている。本年も昨年から引き続き、当研究室で開発された高精度での単分散粒子合成法である「ゲルゾル法」の適用範囲の拡大を目指す研究を展開した。

1. アナタース型チタニア粒子のサイズ形態制御とその機構
加水分解しやすいチタンイソプロピレニトリエタノールアミンで処理すると、安定なチタニウム酸化合体となる。この水溶液（最終濃度 0.25 mol/l）の pH を 1〜11 の範囲で変化させて加熱経時することで、得られる立方体状のアナタースタイプのチタニアのサイズを数 nm から数十 nm の範囲で制御可能であることが分かった。また、pH を 13 程度まで高くすると、エリプソイド型粒子が得られることが分かった。さらに、このサイズ制御機構は、pH による前駆体物の構造の变化と反応中間体として生成する水酸化チタンゲルの構造に起因するものであることを明らかにした。

2. 単分散スピンドル型単結晶ヘマタイト粒子のサイズ形態制御と磁性材料への応用
予め FeOOH をリン酸根存在下で合成し、充分に水洗した後 0.05〜1M の濃度となるように 0.06M HCl, 0.5M NaNO₃ の水溶液に分散させ、別途多結晶ヘマタイト粒子を粉砕して得た粉末を添加した後、140℃で経時して単分散スピンドル型単結晶ヘマタイト粒子を得た。これを水素還元、さらに空気酸化することで、出発のヘマタイト粒子の形態を維持したままマグネシオライトおよびマグヘマタイトへと変換した。粒子のサイズおよびアスペクト比を添加する種の量と FeOOH 合成時のリン酸根濃度を変えることで系統的に変化させ、その磁気特性との関連を明らかにした。また、本法で調製した磁性体粒子は、多結晶タイプのヘマタイトを出発として同様にして得たものに比べて著しく高い磁化力を有することが示された。

3. 単分散金ウッセック粒子の合成
水酸化ニッケル粒子を出発物質とし、pH 調整した水溶液に最終濃度 0.1 mol/l となるように分散させ、還元剤として炭酸亜鉛酸リトリウム（最終濃度 4.0 mol/l）溶液を加え、50℃で 20 時間経時すると、球形金属ニッケル粒子が生成する。この系に陽イオン界面活性剤やポリエチレングリコールを添加することにより、凝集防止の効
果のほか、核生成と成長を分離し単分散粒子を与える効果があることが分かった。また、別途合成した金属ニッケルの超微粒子を種としてこの系に添加することで、得られる粒子のサイズ制御も可能であることが示された。

4. 単分散チタン酸バリウム粒子の合成

加水分解しやすいチタンイソプロピルアミンでトリテトラーチルアミンで錯化処理すると、安定なチタン錯体となる。水酸化バリウムとの混合溶液([Ti⁺] = [Ba²⁺] = 0.25 mol/l)を室温で1時間経過してゲル化させ、さらに、90℃で1週間経過することにより、六角柱状のチタン酸バリウム粒子が得られることが分かった。この系のpHを制御し、あるいは種粒子を添加することにより単分散性が向上した。また、100℃以上にすると、六角柱状粒子の他に球形粒子が混在するようになった。

5. バリウムフェライト粒子の合成

鉄イオンの供給源としてβ-FeOOHを、またバリウムイオンの供給源として水酸化バリウムを用い、これらの濃厚懸濁液を強アルカリ性下で加熱経時することで明瞭な晶齢をもつ六角盤状のバリウムフェライト粒子を得た。経時的にアルカリ濃度により得られる粒子のアスペクト比が制御可能であった。また、この系にポリエチレングリコール等を添加することで、サイズおよび形態が比較的よく揃った粒子を得ることができた。

B. その他の研究

1. よく定義された酸化物粒子上への貴金属ナノ粒子の選択析出とその水素化触媒への応用

Pt, Ru, Rh, Pd, Irの塩化物水溶液をpH調整し、錯体生成が完了するまで、室温で1日経過し、そこに担体粒子(種々の形態および構造を有するヘマタイト、α-FeOOH、β-FeOOH、ジルコニア、チタニア等)を所定量分散し、100℃で2日経過させ、それぞれの貴金属の水酸化物あるいは酸化物(0.5〜3 nm)を担持率13〜20 wt%で担体表面上に選択的に析出させることに成功した。これに水素還元を施すことにより、貴金属ナノ粒子(1〜4 nm)が得られること分かった。従来のイオン交換法では高分散触媒を得られるものの、担持率は3 wt%止まりであったことと比較すると、本法により、高い担持率を実現し、かつ高分散な金属触媒の調製が可能になったといえる。

2. レーザートラッピング技術を用いたコロイド粒子間力の直接測定

2本のレーザービームで一対のコロイド粒子を捕捉する基礎技術に基づいて、粒子間力と粒子間距離を正確に測定する方法を既に開発している。この方法を用いて、水面に浮遊させたシリコーン粒子あるいはポリスチレンラテックス粒子に作用する粒子間力を、粒子表面間距離の関数として測定した。また一方では、水面に浮遊させたシリコーン粒子では、20 μm程度の距離を保って規則的に配列するという興味深い現象が観察されている。現在、その力の根源を解明すると同時に、2粒子間で測定された力に基づいて多粒子系での粒子配列現象を説明すべく研究を進めている。