経尿道的結石破砕術のための形状記憶合金を用いた屈曲機構

<table>
<thead>
<tr>
<th>著者</th>
<th>太刀岡 俊樹</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位授与機関</td>
<td>札幌大学 医学部</td>
</tr>
<tr>
<td>学位授与番号</td>
<td>札幌甲第 1757号</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10097/00125128</td>
</tr>
</tbody>
</table>
博士学位論文

経尿道的結石破砕術のための
形状記憶合金を用いた屈曲機構

東北大学大学院 医工学研究科
医工学専攻
太刀岡 俊樹
目次

1. 緒言・・・1
 1-1. はじめに・・1
 1-2. 尿路結石症と治療・・2
 1-2-1. 尿路結石症
 1-2-2. 薬物治療
 1-2-3. 体外衝撃波結石破砕術(ESWL)
 1-2-4. 経皮的腎砕石術(PNL)
 1-2-5. 経尿道的結石破砕術(f-TUL)
 1-3. レーザ治療と照射位置制御・・・9
 1-3-1. 能動カテーテル
 1-3-2. MEMS ミラーを用いたスキャナ
 1-3-3. 単一光ファイバースキャナ
 1-4. 本研究の目的・・・13
 1-4-1. 能動屈曲機構を用いた f-TUL の改良
 1-4-2. 要求仕様
参考文献

2. 能動屈曲機構の設計・・20
 2-1. 能動屈曲機構の比較・・20
 2-1-1. ワイヤ牽引
 2-1-2. 形状記憶合金(SMA)アクチュエータ
 2-1-3. 液圧アクチュエータ
 2-1-4. ポリマーアクチュエータ
 2-2. SMA アクチュエータの動作原理・・･･･28
 2-3. 構造・・・34
 2-4. 設計・・・36
 2-5. FEM を用いた解析・・・39
 2-6. 模擬屈曲機構を用いた実験的な解析・・・42
 2-6-1. 評価方法
 2-6-2. 結果
 2-6-3. 考察
参考文献
3. 能動屈曲機構の作製
3-1. 作製方法
3-1-1. 先端はんだ付けによる屈曲機構
3-1-2. 先端導電性接着剤付けによる屈曲機構
3-1-3. 先端金属リンクかしめによる屈曲機構
3-2. 組み立て精度に関する考察

4. 能動屈曲機構の評価
4-1. 屈曲角度と表面温度
4-1-1. 評価方法
4-1-2. 結果
4-1-3. 考察
4-2. 応答速度
4-2-1. 評価方法
4-2-2. 結果
4-2-3. 考察
4-3. 繰り返し再現性
4-3-1. 評価方法
4-3-2. 結果
4-3-3. 考察
4-4. 温度特性
4-4-1. 評価方法
4-4-2. 結果
4-4-3. 考察
4-5. ヒステリシス
4-5-1. 評価方法
4-5-2. 結果
4-5-3. 考察
4-6. 多方向屈曲

参考文献

5. コントローラの設計と作製
5-1. 要求仕様
5-2. ユーザインターフェースの検討
5-3. フットスイッチ方式
5-3-1. 構成
5-3-2. 設計
 5-3-2-1. 回路
 5-3-2-2. プログラム
5-3-3. 評価と考察
5-4. レバー式
 5-4-1. 構成
 5-4-2. 設計
 5-4-2-1. 回路
 5-4-2-2. プログラム
 5-4-3. 評価と考察

参考文献

6. 腎盂・腎杯モデルを用いた評価
 6-1. 腎盂・腎杯モデルの設計と作製
 6-2. 実験方法
 6-2-1. 内視鏡視野内での屈曲実験
 6-2-2. 屈曲状態での屈曲機構の回転実験
 6-2-3. 内視鏡がモデルと干渉した状態での動作実験
 6-3. 結果
 6-4. 考察

参考文献

7. 結言

参考文献

研究業績

謝辞
1. 序論
1-1. はじめに
近年、衛生環境の改善や、医療技術の発展により平均寿命は大きく伸びている。それについて医療に求められるようになったのが、単純な延命ではない生活の質(QOL)の改善や、増大する医療費の削減などである。この解決策として低侵襲治療という考えが急速に発展した。低侵襲医療は体に大きな傷をつけることなく行う医療のことで、代表的なものが内視鏡治療やカテーテル治療である。低侵襲治療では外科手術のように大きな切開を行わないことから、患者の体力的な負担の軽減、治療期間の短縮、美容的観点での利点などが期待できる。

低侵襲治療が発展した背景には機械工学的技術の進歩がある。内視鏡では光ファイバーに代わって CCD や CMOS といった超小型の撮像素子が体内の観察に利用されることで高画質化と細径化の両立が可能となり、適用可能な部位の拡大につながった。また MRI や CT により体内を非侵襲で高精度に診断することも可能となった。一方で医療と工学では基盤となる知識が解離し、有用な工学的技術がなかなか医療応用されないという課題がある。そこで近年では医療関係者と工学技術者による医工連携が教育機関や民間企業で重視されるようになっている。

本研究では尿路結石に対して行われる内視鏡を用いた低侵襲治療、軟性内視鏡を用いた経尿道的結石破砕術(f-TUL)に焦点を当て、手技の効率化、高精度化を可能とするデバイスの医師との共同研究を行った。

第１章では尿路結石及び f-TUL の解説と、解決すべき問題点及び本研究の目的を述べる。第２章では形状記憶合金(SMA)ワイヤーを用いた能動屈曲機構による解決策とその設計について述べる。第３章では能動屈曲機構の作製手順について述べ、第４章では能動屈曲機構の水中での駆動と評価について述べる。第５章では能動屈曲機構の駆動回路とユーザインタフェースの検討と、コントローラの作製について述べる。第６章では腎臓モデル内で、能動屈曲機構とコントローラからなるシステムに対し、総合的な評価を行った結果を述べる。
1-2. 尿路結石症と治療
1-2-1. 尿路結石症
尿路結石症は尿中に含まれるカルシウム、尿酸、シュウ酸などが尿路内で結晶化する病気である。一般に激しい痛みを引き起こす尿管結石が知られているが、腎臓や膀胱など様々な部位で発生する[1-1]。近年、日本では動物性タンパク質の多い食生活に変化したことで増加傾向にある。特に男性では高く、日本人男性の7人に1人は生涯のうちに罹患するという統計がある[1-2]。尿路結石により尿の排出が阻害されると腎臓の機能低下や尿路感染などの合併症を引き起こす。

尿路結石は尿中の結石成分の上昇やpHの変化など尿路内で結石ができやすい環境になっていることで発生する。したがって尿路結石の根本的な原因は多岐にわたる。例として、内分泌・代謝の異常、結石成分の含まれる食事、尿路感染などである。尿路結石の成分も様々である。代表的なものがカルシウム結石、尿酸結石である。

1-2-2. 薬物治療
結石が小さく、自然排出が期待できる場合には保存的療法が行われる。積極的な水分摂取、尿量を増加させ結石の移動を促進させるための利尿薬の使用や、尿のpHを適正にするためのクエン酸製剤の使用、結石の溶解を促す結石溶解療法などがある。尿路結石の成分・原因には様々なものがあるため、結石溶解剤は成分・原因に合わせた薬が使用される[1-1, 1-3]。

1-2-3. 体外衝撃波結石破砕術(ESWL, Extracorporeal Shockwave Lithotripsy)
ESWL(体外衝撃波結石破砕術)は体外から尿路結石に衝撃波を照射し、破砕する手術である。ESWLでは患者は図1-1[1-4]に示すような破砕装置の上に横たわることで行われる。医師は結石の位置をX線または超音波で確認を行い、ディスプレイ上で結石に照準を合わせ、衝撃波の照射を行う。

ESWLではメスによる切開や機器の挿入の必要がない治療である。無麻酔で治療時間も1時間ほどと短いため、日帰りも可能である[1-5]。医師の側においても内視鏡やカテーテルのような熟練を要する処置がないため、比較的経験の浅い医師でも行うことができるなどメリットが大きい。

一方で大きな結石や結石の成分（シスチン、シュウ酸カルシウム等）によっては破砕に必要な衝撃波の照射回数が増え、患者の身体的、経済的負担が大きくなる。またX線に映りにくい成分の結石（尿酸結石等）や、衝撃波の伝わりにくい骨盤に囲まれた部位の結石には不向きである[1-6]。
図 1-1. 体外衝撃波結石破碎術 (ESWL) [1-4]
1-2-4. 経皮的結石破砕術（PNL, Percutaneous Nephrolithotripsy）

PNL は背部の皮膚上から腎臓に硬性内視鏡を挿入し、腎盂内の腎結石を破砕する方法である[1-7, 1-8]。結石の破砕には超音波や Ho-YAG レーザが用いられる。手術は硬膜外麻酔や全身麻酔下で行われ、術後は数日の入院が必要である。

腎結石の代表的な結石破砕法として用いられてきたが、より侵襲性の低い後述の f-TUL に置き換えられてきている。現在では主に珊瑚状結石と呼ばれる巨大な結石に対して用いられる。
1-2-5. 経尿道的結石破砕術（f-TUL, flexible-Transurethral Ureterolithotripsy）

軟性尿管鏡（Flexible ureteroscope）を用いた経尿道的結石破砕術（f-TUL）は、シャフトが柔軟な軟性尿管鏡を尿道から膀胱を経て尿管内に挿入し、尿路結石を破砕する手技である。結石の破砕には内視鏡のチャネルに挿入された石英系レーザファイバから Ho-YAG レーザを照射することによって発生する水中衝撃波を用いる[1-9, 1-10]。f-TUL は内視鏡のイメージにより結石を直接確認できることから確実に結石を破砕することができる。

f-TUL の普及以前では内視鏡を用いた砕石術は、腎盂・腎杯の結石には PNL、膀胱結石、尿道結石などその他の結石に硬性内視鏡を用いた TUL が用いられたが、柔軟な軟性内視鏡の登場により腎臓内まで到達できるようになったことから、多くの症例で f-TUL が採用されるようになっている[1-7]。

図 1-3. 経尿道的結石破砕術（f-TUL）[1-8]
内視鏡は体内の観察及び治療を体外から行うことを目的とした医療機器である。内視鏡は大きく軟性内視鏡と硬性内視鏡に分けられる。前者は挿入部が硬質な管で構成される内視鏡である。代表的なものが腹腔鏡であり、腹部に小さな穴を開け、そこに硬性内視鏡や鉗子などの処置具を挿入し、手術を行う。軟性内視鏡は挿入部がしなやかなチューブにより構成される内視鏡であり、気管支や循環器など複雑な管腔構造を持つ臓器へ使用される。软性内視鏡の挿入は鼻腔、口腔、尿道などとから開口している部分や、わずかに体表を切開した部分から行われる。体への負担を最小限にするため、細長い形状をしている。

内視鏡は先端部、挿入部、操作部、コネクタ部に分かれる[1-11](図 1-4)。先端部には観察のためのイメージング部があり、光ファイバやCCDセンサにより画像を取り込むことができる。操作部には先端部を操作するアングルノブの鉗子口があり、内部のチャネルを通じて先端のチャネルにつながっている。手術の際にはここで体内へ鉗子やレーザファイバ等の器具を出し入れすることで治療を行うことができる。

軟性内視鏡挿入部の先端側には多くの場合湾曲部が存在する。湾曲部は一般的に1自由度または2自由度程度の屈曲機構を持っており、挿入時の分岐選択や先端部の向きの調整に用いられる。湾曲部の操作は操作部のノブの回転やレバーを倒すことで行う。

一般的に内視鏡治療は体内で行われるため、内視鏡の状態を肉眼で観察することができない。そのため内視鏡による視野やX線といった間接的な方法で位置を確認しながら挿入し、処置は内視鏡の視野内で行わなければならない。また、内視鏡と内腔との摩擦により挿入や回転がうまく行えないことなどもあり、この対処には手技上のコツといった定量化しうる経験が求められる。広くf-TULにおいてはOlympus社のURF TYPE Vがあり、この内視鏡は外径3.3mm、チャネル径1.2mmの軟性内視鏡で上下への湾曲が可能である(図1-5)[1-12]。

この内視鏡を用いたf-TULにおいても内視鏡特有の問題は存在する。具体的な問題を以下に示す。

(1)複雑な位置の結石にレーザファイバを向けにくい（図1-6(1)）。

腎臓内は複雑に入り組んだ管腔構造をしている。f-TULではこの内部に内視鏡を進め、さらに先端部を結石に正確に向けした必要がある。一方でOlympusURF TYPE Vは多くの内視鏡と同様に一つの湾曲部を持つ内視鏡である。したがってこれらの作業はすべてこの一つの湾曲部で行う必要があるが、例えば図1-6(1)に示すような位置の結石では内視鏡の向きの制御に湾曲部を用いてしまっているので、このままでは結石にレーザファイバを向けことができない。

また本内視鏡は上下方向にしか湾曲できないため、それ以外の方向へ照射位置を移動させる場合には内視鏡シャフト部の回転が必要である。しかし複雑な管腔構造内では、内壁との干渉により回転が困難な場合がある。

(2)レーザファイバ先端は内視鏡の屈曲時に視野内で移動し、安定しない（図1-6(2)）。

6
f-TULにおいて、レーザファイバは尿管鏡のチャネル内に挿入され、内視鏡の前方に先端が向けられる。しかし、このレーザファイバ先端は必ずしも視野の中心に位置するとは限らない。なぜなら、レーザファイバは内視鏡のチャネル内径に比べて小さいため、図1-6(2)のように内視鏡の湾曲に伴いチャンネル内で位置ずれが生じるからである。このずれの度合いは内視鏡の湾曲操作や移動によって変化してしまうため、先端を向けようとして内視鏡を操作しても意図した位置に向かせることが難しい場合がある。また、これらの問題がきた場合、現状では内視鏡全体の回転や抜き差しなどを行うことで解決を図る。しかしレーザ照射位置に求められる精度は数mm以下であるのに対して、大きく移動してしまうことが多く、正確な移動には時間を要する。

図1-4 内視鏡構造（軟性内視鏡）[1-9]
図 1-5. Olympus 社 URF TYPE V [1-10]

(1)
図 1-6. f-TUL の現状の問題点

(2)
1-3. レーザ治療と照射位置制御

上記のようなレーザ治療における課題を解決するための照射位置制御に用いることが可能と思われる先行研究について、以下に列挙して述べる。

1-3-1. 能動カテーテル

カテーテルは体内に挿入し、薬剤の注入や内容物の排除、器具の挿入などに使われる医療用チューブの総称である。血管、消化器、体腔など様々な領域で使用されるが、血管内で使用されることが多い。代表的なものに心臓の冠動脈の狭窄部を広げる経皮的冠動脈形成術 (PTCA, percutaneous transluminal coronary angioplasty)や脳動脈瘤コイル塞栓術などがある。

これらの手術ではカテーテルにガイドワイヤーが併用される。管腔内でガイドワイヤーを先行させ、それに沿わせる形でカテーテルをスライドさせることで目的の部位まで挿入する。カテーテルは内視鏡とは異なり、イメージングが存在しないため、X線による透過画像により先端位置を確認しながら行われる。カテーテル、ガイドワイヤーには先端が直線状の物だけでなくあらかじめ曲がりのついたものもあり、これらを組み合わせることで複雑な管腔の分岐を選択し、目的の部位まで挿入を行う。

カテーテルに形状記憶合金(SMA)コイルアクチュエータを搭載し能動的な屈曲を行う研究がある。屈曲機構の中心部にインナーチューブをもち、その中にガイドワイヤーや光ファイバのような処置具を挿入して使用する[1-13,1-14, 1-15](図 1-7)。通常のカテーテルでは1方向、一段階にしか曲げることができないため、複雑な位置への到達には熟練を要する。一方でこれらの能動屈曲機構を搭載したカテーテルでは多方向に曲がるものや、ジョイスティック式コントローラにより直感的に操作することが可能なものもある。

1-3-2. MEMS ミラーを用いたスキャナ

レーザ治療のためのレーザ照射位置制御の方法としてはMEMS (Micro Electro Mechanical Systems)を用いたミラーによる反射を用いた研究がある[1-16] (図 1-8)。この研究では圧電材料である PZT と金属を貼り合わせたユニモルフによる変位でカンチレバーを曲げ、先端に設置されたミラーの角度を変えことでレーザの方向を制御する。作製は PZT、真鍮、電極の3層構造をレーザで加工することで行っており、一括作成による量産が期待できる。しかし、本研究では前方方向へのレーザ照射を目標とするのに対し、この研究のミラーは構造上、側方へのレーザしか調整することができない。また反射でレーザの方向を変えるという特性から照射位置とミラーがあるある程度離れなければレーザの移動量を大きくすることができないと考えられる。しかし f-TUL に広く用いられる Ho-YAG レーザは水への吸収が大きいため、レーザファイバ先端と結石はほとんど接触状態で起こわれる[1-4]。この距離を大きくすると結石まで伝わるエネルギーが減少し、結石が破砕されない可能性がある。
図 1-7. 形状記憶合金コイルを用いた能動屈曲カテーテル[1-13]

図 1-8. MEMS ミラーを用いた反射によるレーザ方向制御[1-16]
1-3-3. 単一光ファイバスキャナ
光ファイバの方向制御のために光ファイバ自体を振動させる方式のスキャナもある[1-17, 1-18, 1-19]。1 本の光ファイバの先端を超音波素子や電磁駆動コイルにより数 kHz で共振させ、それに同調したレーザ光を光ファイバに入光・受光することで目的の位置をスキャンすることができる。

図 1-9 は電磁駆動コイルによる方式である[1-17]。動作原理を図 1-9(A)に示す。光ファイバに固定された永久磁石を外側の電磁コイル(図 1-7(B))と相互作用させることによって駆動させる。この研究ではフォトファブリケーションにより電磁コイルを作製している。

図 1-10 は、圧電素子により光ファイバを共振させるスキャナである[1-18]。4 つの圧電素子が組み込まれたチューブ(図 1-10 スケール表記部)が振動することにより、スパイラルスキャンが可能である。

図 1-11 は圧電バイモルフによる振動を用いている[1-19]。MEMS 技術により微小な光導波路を持つカンチレバーを作製し、共振周波数で振動させることで出力光の方向を制御する。

これらの研究の目的は観察が主であるが、例えば図 1-9 の研究では OCT (Optical Coherence Tomography)での使用を前提としてレーザ照射を行うことから、本研究のような結石破砕を目的とした要求数にも応用できる可能性がある。
図 1-10. 圧電素子チューブを用いた単一光ファイバスキャナ[1-18]

図 1-11. 光導波路付きカンチレバーを持つ圧電バイモルフによる単一光ファイバスキャナ[1-19]
1-4. 本研究の目的
1-4-1. 能動屈曲機構を用いた f-TUL の改良

本研究では 1-2-2-4 に挙げた課題を、内視鏡本体の湾曲部追加することなく照射位置を変更するデバイスを目指した。

デバイスの全体像として以下のような解決策を検討する。
(1) レーザの方向制御機構を持つ尿管鏡の作製
(2) 内視鏡に挿入してレーザファイバを屈曲させるデバイス

解決策(1)は内視鏡本体を開発するという案である。先端部に MEMS ミラーによる反射やレーザファイバ屈曲機構の導入により、レーザの照射位置を制御する。本案は既存の内視鏡の制限を考慮する必要がないため、作製の自由度が高い。しかし、内視鏡の新規開発による医療機器としての申請の難易度の高さに加え、既存の内視鏡の操作感と変わってしまうという難点がある。

解決策(2)は既存の内視鏡のチャンネルに屈曲機構を挿入して、レーザファイバを屈曲させる案である。既存の内視鏡と組み合わせての仕様になるため、開発の自由度は低くなる。特に日本で広く用いられる尿管鏡: URF TYPE V (Olympus) はチャンネル径 1.2 mm であるため1-10、それよりも細いデバイスとする必要がある。

本研究では機能性材料や MEMS による小型アクチュエータを使用することで解決策(2)を用いることとした。位置制御の方法としては前節で上げた MEMS ミラーを用いたスキャナのようにレーザ光をミラーで反射させ方向を変える方法、レーザファイバ自体を曲げる方法が考えられる。

f-TUL に用いられる Ho-YAG は 0.5-1.0 J 程度の強力な赤外線レーザであるため1-20、本研究ではミラーのダメージを考慮し、ミラーで反射させ方向を変える方法は難しいと判断した。また、照射回数が多くなるとレーザファイバ先端の劣化が生じる。そのため、臨床の現場でも内視鏡からファイバを抜いて先端をカットする作業が行なわれる。

そこで本研究では既存の内視鏡で使用可能なレーザを導光するレーザファイバを屈曲する機構を作製し、f-TUL の課題を解決することを目標とした。図 1-12 に具体的な方法をまとめた。

(1) 複雑な位置の結石にレーザファイバを向けにくい（図 1-6(1)）という課題は、図 1-12(1)のように、屈曲機構により合計 2 段階の屈曲を行うことで解決する。
(2) レーザファイバ先端は内視鏡の屈曲時に視野内で移動し、安定しない（図 1-6(2)）という課題は、内視鏡の湾曲部を用い、ある程度の位置を合わせた後、最終的な照射位置をレーザファイバに搭載した屈曲機構を利用することで解決する（図 1-12(2)右）。内視鏡の湾曲部を動かさなければチャンネルの中に位置するレーザファイバや屈曲機構は移動しないため、課題(2)を解決することができる。
（1）
現状の課題

複雑な位置の結石にレーザファイバを向けにくい。

レーザファイバ先端は内視鏡の屈曲時に視野内で移動し、安定しない。

（2）
解決策

レーザファイバに能動屈曲機構を使用

内視鏡の屈曲に頼らずレーザファイバの位置を操作できる。

合計2段階の屈曲で複雑な位置の結石にも対応できる。

図1-12. f-TULの現状の問題点と能動屈曲機構を用いた解決策
1-4-2. 要求仕様

URF TYPE V の仕様を表 1-1 に、作製する屈曲機構の要求仕様を表 1-2 に示す。

表 1-1 Olympus URF TYPE V の仕様

<table>
<thead>
<tr>
<th>仕様</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>視野角</td>
<td>90° (1.57 rad)</td>
</tr>
<tr>
<td>観察深度</td>
<td>2-50 mm</td>
</tr>
<tr>
<td>外径</td>
<td>Φ3.6 mm</td>
</tr>
<tr>
<td>有効⾧</td>
<td>670 mm</td>
</tr>
<tr>
<td>チャンネル径</td>
<td>Φ1.2 mm (3.6 Fr)</td>
</tr>
<tr>
<td>湾曲角度</td>
<td>UP180°(3.14 rad), DOWN 275° (4.80 rad)</td>
</tr>
</tbody>
</table>

表 1-2 要求仕様

<table>
<thead>
<tr>
<th>要求仕様</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>外径</td>
<td>1.1 mm 以下</td>
</tr>
<tr>
<td>最大屈曲角度</td>
<td>10° (0.17 rad)以上</td>
</tr>
<tr>
<td>屈曲部⾧さ</td>
<td>5-10 mm</td>
</tr>
<tr>
<td>表面温度</td>
<td>41°C 以下</td>
</tr>
<tr>
<td>応答速度</td>
<td>10° (0.17 rad)まで数秒</td>
</tr>
<tr>
<td>繰り返し再現性</td>
<td>1 回の手技中で安定</td>
</tr>
</tbody>
</table>

本内視鏡は内径 1.2 mm のチャンネルを持つため、作製する屈曲機構はこのチャンネルに挿入するため 1.2 mm より十分に細径である必要がある。したがって本屈曲機構の外径は 1.1 mm 以下とした。屈曲部⾧さは、節 1.2.5 で述べたように一般的な f-TUL における内視鏡端面と結石の距離は約 5-20 mm 程度であることから、5-10 mm とした。

図 1-13 の画像は水中において内視鏡端面から結石までの距離 5-20 mm の間に 5 mm 間隔で 5 mm、10 mm、15 mm および 20 mm の位置に同心円図（同心円の円と円の間隔は 0.5 mm）を設置し、内視鏡視野範囲における同心円図の見え方を比較したものである。この見え方から、医師の意見を元に、内視鏡視野内にある結石のみが破砕可能である点や、精度的に内視鏡操作のみでの移動が難しい距離といった観点から総合的に判断し、必要なレーザ照射位置移動量を決定した。図 1-13 下に内視鏡端面から結石までの距離と必要な照射位置移動量を示す。
また、屈曲機構に求められる屈曲角度と、上記の必要なレーザ照射位置移動量の関係は図1-14に示す幾何的な関係から求められる。屈曲機構から突出したレーザファイバは直線形状であるとし、レーザファイバから出射したレーザ光は直進することから、内視鏡端面から突出する屈曲機構の長さを \(l \) [mm]、屈曲機構端面と結石の距離（レーザファイバ突出長さ + レーザ光路長さ）を \(a \) [mm]、屈曲角度を \(\theta \) [°]、としたとき、曲率半径 \(r = \frac{180l}{\theta \pi} \) [mm] となり、レーザの照射位置移動量 \(h \) [mm]は式(1-1)により表される。

<table>
<thead>
<tr>
<th>距離</th>
<th>必要移動量</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mm</td>
<td>0.5-2 mm</td>
</tr>
<tr>
<td>10 mm</td>
<td>1-3 mm</td>
</tr>
<tr>
<td>15 mm</td>
<td>1-4 mm</td>
</tr>
<tr>
<td>20 mm</td>
<td>2-5 mm</td>
</tr>
</tbody>
</table>

図 1-13. 内視鏡端面から結石(同心円図)までの距離と見え方、必要なレーザ照射位置移動量

図 1-14. 屈曲角度と照射位置の関係

\[
h = \frac{180l}{\theta \pi} (1-\cos\theta) + a \tan \theta \text{ [mm]} \quad (1-1)
\]
図1-13で示した内視鏡端面から結石(ターゲット)までの距離Lは、内視鏡端面から突出する屈曲機構の長さlと屈曲機構端面から結石までの距離を足した値l+aとなり、同心円囲で求めた必要なレーザ照射位置移動量が式(1-1)のhに対応する。
式(1-1)から、内視鏡端面から突出する屈曲機構の長さを3mm、5mm、10mmとしたときに、内視鏡端面から結石までの距離と内視鏡端面から突出した屈曲機構の長さの条件ごとの屈曲機構に必要な屈曲角度θを式(1-1)から求めると表1-3のようになる。

<table>
<thead>
<tr>
<th>内視鏡端面から結石までの距離L(=l+a)</th>
<th>5 mm</th>
<th>10 mm</th>
<th>15 mm</th>
<th>20 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>必要なレーザ照射位置移動量 h</td>
<td>0.5-2 mm</td>
<td>1-3 mm</td>
<td>1-4 mm</td>
<td>2-5 mm</td>
</tr>
<tr>
<td>内視鏡端面から突出する屈曲機構の長さl [mm]</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>屈曲機構に必要な屈曲角度θ[°]</td>
<td>8-31</td>
<td>12-50</td>
<td>-</td>
<td>7-20</td>
</tr>
</tbody>
</table>

動作速度は、ある程度低速の方が安全上望ましいため、最大角度に達するまでに数秒程度が必要である。
f-TULに用いられるHo-YAGレーザは高出力な赤外線レーザのためレーザファイバ先端が使用により劣化する。この際、レーザファイバ先端をカットする必要があるため、本デバイスではデバイスにチャンネルを搭載し、内視鏡から抜くことなくレーザファイバのみを抜くことができる構造とする。
安全のため、表面温度は41℃以下[1-21,1-22]とした。デバイスは比較的低コストで作製することを前提に、再使用しない一回使い捨て（ディスポーザブル）とする。
参考文献

[1-1] 岡庭豊，“病気が見える vol. 8 腎・泌尿器”メディックメディア, 2012

[1-6] 千葉西総合病院 尿路結石症結石治療センター (http://www.chibanishi-hp.or.jp/pages/link%E7%B5%90%E7%9F%B3%E6%BB%BB%E7%99%82%E3%82%B9%E3%83%B3%E3%82%BF%E3%83%BC) (2017 年 12 月 11 日閲覧)

Precise Laser Surgery and Small Size Head Mount Display", 13th International Display Workshops (IDW ’06), Ootu, Japan, pp.1603-1606, 2006

2. 能動屈曲機構の設計
2-1. 能動屈曲機構の比較

マイクロアクチュエータについて、体内で用いる医療用能動カテーテルやガイドワイヤー、内視鏡等の屈曲機構の曲げ駆動用の用途を考えた場合には、特に次の性能が重要となる。

(1)剛性的高い屈曲機構を曲げるためには、大きな発生力が必要である。
(2)組織損傷を避けるためには、ある程度遅い曲げ動作の方が安全であり、極端な高速動作は必要ない。
(3)人体への安全性の点では極力、低電圧、小電流、低発熱での駆動が望ましい。

近年、フォトファブリケーションを利用した微細加工技術や、導電高分子アクチュエータなどの新規材料を利用したマイクロアクチュエータの開発が進められている。医療用途に限っても多種多様な研究が存在するため、本節では各アクチュエータの特徴を医療応用の観点から述べ、本研究で用いる方式の選定を行う。

2-1-1. ワイヤー牽引

ワイヤー牽引型の屈曲機構は多くの医療機器で採用される方式である。一般的な2自由度の内視鏡の内部構造を図に示す(図2-1)[2-1]。図の湾曲部にワイヤー牽引型の屈曲機構が組み込まれている。図の屈曲機構では多数の節輪(リンク)がつながることで屈曲機構を構成している。リンクには一対の突起状の可動軸があり、これによって前後のリンクと接続される。リンクの可動軸は交互に直交する形でつながっているため、全体としては2自由度の屈曲となる。

連結されたリンクの駆動には4本のワイヤーが使われる。ワイヤーは先端側の保持金具からチューブに包まれたシャフト部を通って操作部までつながっている。ワイヤーは各リンクの可動軸に対応するように4か所に通されており、ワイヤーを引くことでその方向に折れ曲がる。

ワイヤーの牽引にはアングルノブが用いられる。このノブは一方のワイヤーを引張り、対側のワイヤーを押し出す仕組みになっている。これにより湾曲部が曲がっても各ワイヤーが突っ張らないようになっている。

本屈曲機構のメリットは機械的にワイヤーを引っ張ることで大きな屈曲角度と駆動力を実現できることである。屈曲角度の大きさは複雑な管腔構造を持つ人体内の挿入に重要である。また内視鏡手術においては鍫子、カテーテル、レーザファイバなど様々な処置具をチャンネルに挿入する必要があり、屈曲機構は内視鏡本体だけでなくこれらを同時に曲げる必要がある。以上の理由から屈曲角度、駆動力の両方が求められる内視鏡の屈曲機構としては最初からワイヤー牽引型が使用されてきた。

一方で機械式であるが故のデメリットも多く存在する。一点目は細径化に伴う自由度の制限である。先述のように一見シンプルに見える内視鏡の内部は複雑なリンク機構により構成される。したがってこれを小型化するには限界があり、細い内視鏡では2自由度の屈
曲はできず、上下2方向の物も多い。また内視鏡の屈曲機構は通常1段に限られ、2段階以上の複雑な屈曲ができるものはない。

2点目はシャフト部の硬さの制限である。本屈曲機構はワイヤーを引っ張ることで各リンクに曲がろうとする力がかかりが、ワイヤーはシャフト部にもつながっているため、当然シャフト部にも力がかかってしまう。したがって屈曲部のみを屈曲するためにはシャフト部の硬さが屈曲部よりも大きいことが必要となる[2-1]。一方でシャフト部が硬くなると軟性内視鏡で重要な柔軟性が損なわれることになる。また内視鏡のチャンネル内で使用する処置具の場合ではシャフト部が硬くなることによって内視鏡の湾曲部が曲がりにくくなることがある。

図2-1. 内視鏡の内部構造 [2-1]
2-1-2. 形状記憶合金(SMA)アクチュエータ

形状記憶合金 (Shape Memory Alloy, SMA)は元の形状を記憶し、変形させても一定以上の温度に過熱することで初期状態に回復する性質(形状記憶効果, SME)を持った合金である。形状記憶合金はアクチュエータとしても用いられ、電流やレーザなどによる加熱で変形することで様々な用途に用いられる。

医療機器の分野では SMA コイルを用いた細径かつ多方向屈曲が可能なカテーテルの開発も行われている[2-3]。 SMA ワイヤーや SMA コイルといった大量生産される部材を用いてアクチュエータを作製する研究も行われている。SMA ワイヤーは形状記憶合金をワイヤーに形成した素材であり、ワイヤーの長軸方向に4%程度の収縮を行うことができる。SMA ワイヤーを用いた研究ではマルチルーメンチューブを使用した研究がある[2-5]。この研究ではマルチルーメンに SMA ワイヤーを3方向に配置してそれぞれを駆動することで屈曲動作を行う。外径 1.5 mm と細径で SMA ワイヤーは機構中心に近いため、小さな変位量でも大きな屈曲を得られるが、この研究ではマルチルーメンを用いているため、SMA ワイヤーの放熱が難しく、表面温度は 60 °C まで達している。また、側曲部だけでなく全ルーメン内で SMA ワイヤーを用いていることから結果として多くの SMA ワイヤーを必要としている。

SMA ワイヤーをコイル状にした SMA コイルを用いた研究もある。図 2-2 はライン－コーヨルを 3 本の SMA コイルの内側に配した内骨格型のアクチュエータであり、1 mm 程度の外形である。図 2-3 は外側に配した外骨格型であり、外径 1.4 mm である。リングレス構造にすることにより、曲がらない領域を短くすることができ、内骨格型では、約 5 mm 長さの1関節あたり 45 ° (0.79 rad)近い曲げ角度を得ている[2-6]。SMA コイルは SMA ワイヤーをコイル状にしたものであり、長軸方向に数 10%という大きな収縮量を得ることができる。多くの研究で用いられる有効なアクチュエータであるが、更なる細径化を目指した場合、機械全体に占めるコイル径のディッドスペースの割合が増大し、機構の小型化に障害になる。コイル径を小さくするとコイルの剛性が増大し、発生力は大きくなるが変化量は得られにくくなる。SMA ワイヤーと比較すると長さに対する形状記憶合金に使用量が SMA ワイヤーに比べて増えるため、材料代の増加やそれに伴う発熱量の増大といった欠点がある。また SMA ワイヤーを1本ずつコイリングすることでアクチュエータを作製するため、生産性やコストの面で工業的な実用化の際の課題になるものと思われる。

SMA パイプやシートをエッチングすることでアクチュエータを一括作製する研究もおこなわれている(図 2-4)[2-3]。ジグザグばね形状の可動部に加え、カテーテルの取り付けや通電用配線接続用のパットやフックなどの任意形状の部品も同一シート材から一括作成できる利点がある。しかし、ばね形状にすることでアクチュエータの発生力が低下するため、剛性低い機構には有効であるが、剛性高い機構には応用することが難しい。

SMA ワイヤーには長さと抵抗値がよく一致するという特徴があり、センサを用いることなく動作量のフィードバックを行うことが可能である。この特徴は小型であることが求め
られる医療機器では大きな利点になる[2-7]。

図2.2. SMAコイルを使用した能動カテーテル(内骨格)[2-6]

図2.3. SMAコイルを使用した能動カテーテル(外骨格) [2-6]
図2-4. フォトファブリケーションによる能動カテーテル[2-3]
2-1-3. 液圧アクチュエータ

図 2-5 は、シリコーンゴム圧力室とベローズで構成された 1 方向曲げ型の流体圧アクチュエータである[2-8]。低圧（LPV）及び高圧（HPV）で開口する 2 種類のバルブを用い、特定の圧力域でのみ動作するバンドパスバルブ（BPV）を構成している。種々の動作圧力の BPV を用いてアクチュエータを多関節状に連結すれば、根元部で印加圧力を制御することによって任意の関節を動作させることができ、多関節の実現の可能性もある。光造形法によって外径 3 mm の BPV が作製されている。いずれのタイプの流体アクチュエータも、人体内に挿入する部分では全く電気信号を用いないので、漏電などの危険性は低い反面、屈曲機構の根元部を圧力制御の装置に連結する必要がある。カテーテルなどの屈曲機構へ応用するためには中空のチューブ状にする必要があるが、隔壁などの構造が複雑化するために細径化は容易でないものと考えられる。

一方、液圧駆動型の中空チューブを有するカテーテルが開発されている[2-9]。このデバイスはマッキベン式空気圧人工筋肉のような空気や液体の出し入れによる動作原理を用いており、図 2-6 のように伸縮チューブにコイルを巻きつけた構造である。駆動する際には伸縮
チューブを膨張させると、長軸方向に伸びようとするが、偏心して配置されているインナチューブにより拘束されているため、屈曲動作する。液圧を用いて内腔を確保することがで
きているが、多方向構造に応用することは難しい。
また、ポリパラキシリレン（パリレン）を金属コイルに成膜することで蛇腹構造にした液圧駆動型の屈曲機構が開発されている（図2-7）[2-10]。
外径360μm、屈曲部長さ16.8mmで、
1MPaの圧力を加えたときに屈曲角度は97°（1.70rad）（曲率半径10mm）となっている。血管内用のガイドワイヤーとして用いることができるほど細径であるが、内部の圧力を支える部材は厚さが8μmパリレン膜のみなので、強度が低いことが課題である。

2-1-4. ポリマーアクチュエータ

高分子アクチュエータは比較的大きな変位量を得られるので、屈曲アクチュエータとして用いられている[2-11, 2-12]。高分子アクチュエータは、イオン導電体あるいは誘電体が電子伝導体に含まれた構造を持つ電気化学素子である。特に、イオン導電性高分子
イオン導電体としてフッ素系のイオン交換樹脂を用い、電子伝導体に貴金属（金、白金、銅、アルミなど）を用いる。卑金属を用いる場合は酸化しないようにする必要がある。電圧を印加して高分子アクチュエータ内部でイオンを移動させることにより、陰極側を膨張、陽極側を収縮させることにより曲げ変形させるのである[2-13]。また、ICPFアクチュエータは能動ガイドワイヤーの駆動に応用されている[2-14]。カテーテル先端に搭載された能動ガイドワイヤーを屈曲させることにより選択的に挿入が可能である。高分子アクチュエータは発生力が小さいため、剛性の低い場合はある程度曲げ駆動が可能だが、光ファイバなど剛性の高い部品を屈曲する用途への応用は難しい。

本研究では構造を単純にできること、多方向屈曲機構の実績があること、光ファイバなど剛性の高い部品を屈曲できることから、SMA ワイヤーを用いた能動屈曲機構を作製することとした。
2-2. SMA アクチュエータの動作原理

SMA ウイヤーを用いた設計の前に、SMA アクチュエータの動作原理を詳しく述べる。

SMA は元の形状を記憶し、変形されても一定以上の温度に過熱することで初期状態に回復する性質（形状記憶効果；SME；Shape Memory Effect）を持つ合金である。Ni-Ti 系、Ni-Ti-Co 系やチタンを用いないCu-Zn-Al系など様々な合金によるSMAがあるが、実用に広く用いられるのは最初に開発されたNi-Ti系の形状記憶合金である。

形状記憶合金の動作メカニズムについて解説する。形状記憶合金の形状記憶効果は結晶構造の変化によるものである。物質は温度や圧力によって固体、気体、液体などの相変化を持つが、特に金属では固体においても結晶構造を変える固相変態と呼ばれる現象がある。例として鉄においては温度によりα-Fe（フェライト、体心立方格子）、γ-Fe（オーステナイト、面心立方格子）、δ-Fe（デルタフェライト、体心立方格子）の構造がある。またδ-Feを急冷することでできる高硬度なマルテンサイト相は工具鋼として利用される（マルテンサイト変態）。このように金属においても同じ組成であってもその結晶構造により性質が大きく異なる。

形状記憶合金においてはオーステナイト相とマルテンサイト相の固相変態が形状記憶効果をもたらす。高温状態の形状記憶合金はオーステナイト相（母相）をとる。これを冷却していくと、マルテンサイト変態開始温度（Ms点）を下回ると、オーステナイト相からマルテンサイト相へ変化する（マルテンサイト変態）。マルテンサイト相はオーステナイト相が様々な
方向をもつ兄弟晶からなる（図 2-10(b), A, B）。このとき兄弟晶同士は剪断ひずみを打ち消し合おうように形成されるため、マクロ的な形状は変化しない。マルテンサイト相においては兄弟晶同士が低応力で容易に移動するため、応力が加えられても金属分子の結合が切れることなくマクロ的に変形することができる。これは一般的な金属の変形において原子同士の結合のすべりが発生することと対照的である（図 2-10(a), A, B）。次にマルテンサイト相を過熱し、マルテンサイト変態開始温度（As 点）を超えるとオーステナイト相に逆変態する。オーステナイト相はマルテンサイト相に比べ原子同士が規則正しく整列した構造を持つため、形状の自由度は低下する。そのためマルテンサイト相で生じた変形はオーステナイト相になることで解消され、母相の形状に戻る。
図2-9. 通常の金属と形状記憶合金

通常の金属

形状記憶金属

超弾性金属
図 2-10. 一般的な金属と形状記憶合金の変形
SMAワイヤーやSMAコイルを用いたアクチュエータは様々なものが開発されてきたが、基本的には以下のような構造となる。図2-11(a)はリンク間にSMAワイヤーを張ったタイプである。このタイプはリンク間が引っ張られることで全体がたわみ、屈曲が起きる。図2-11(b)はチューブ等にSMAワイヤーが張り付けられたタイプであり、チューブ全体がひずむことで屈曲が起きる。(a)は複数段が連結されることも多く、巨視的には(b)と同様であるものの多い。本研究では図2-11(a)の方式を採用した。理由としては、(1)マルチルーメンチューブや内視鏡のワイヤー牽引を置き換えた方式ではSMAワイヤーの短所である収縮率を補うことができるが、SMAワイヤーの長所であるシャフト部との動作の独立や、屈曲部の単純さといったメリットを得ることができない。また(2)(b)のようにチューブに密着させると熱による非駆動側SMAワイヤーの過熱が起こりうるといった理由が挙げられる。図2-12は3本のSMAワイヤーを搭載した屈曲機構を端面から見た図である。3本のSMAワイヤーのうち1本を駆動させることで、3方向に屈曲し(図2-12(b))、2本を調整して駆動することで360°(6.30 rad)方向に屈曲可能である。f-TULの用途においても、このような自由度の高い屈曲方向が望ましいが、4章6節で後述するように2本駆動の際に座屈するか、または意図しない方向に屈曲する結果となり安定して多方向に屈曲することはできなかったことから、本研究では1本のみの駆動による120°(2.10 rad)ずつ3方向屈曲の仕様とし、試作と評価を行い、2本駆動は今後の課題とした。
図 2-11. SMA ワイヤーを用いた屈曲機構の動作原理

図 2-12. 端面からみた SMA ワイヤーを用いた多方向屈曲機構の駆動
2-3. 務造

作製する屈曲機構の構造を図 2-13.に示す。f-TUL に用いられる屈曲機構の要求仕様を表 1 に示す。屈曲部長さは 10 mm とし、内視鏡端面から突出する屈曲機構の長さを状況に応じて変化させることとし、最大突出長さは 10 mm となる。

<table>
<thead>
<tr>
<th>必要仕様</th>
<th>要求仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>屈曲方向</td>
<td>3 方向 (120° (2.10 rad)ごと)</td>
</tr>
<tr>
<td>外径</td>
<td>1.1 mm 以下</td>
</tr>
<tr>
<td>屈曲角度</td>
<td>10° (0.17 rad)</td>
</tr>
<tr>
<td>屈曲機構の長さ</td>
<td>10 mm (屈曲部長さ 7 mm)</td>
</tr>
<tr>
<td>表面温度</td>
<td>41 °C 以下</td>
</tr>
<tr>
<td>応答速度</td>
<td>10° (0.17 rad)まで数秒</td>
</tr>
<tr>
<td>繰り返し再現性</td>
<td>1 回の手技中で安定</td>
</tr>
</tbody>
</table>

本研究に用いる内視鏡は f-TUL に用いられる代表的な内視鏡である腎盂尿管ビデオスコープ Olympus URF Type V での使用を前提としている。1 章でも述べたように、本内視鏡はチャンネル直径が 1.2 mm であることから、チャンネルに挿入する屈曲機構の外径は 1.1 mm 以下とする。屈曲方向は 3 方向、屈曲角度は 10° (0.17 rad)とした。また f-TUL では手技中にレーザ照射により劣化した光ファイバ先端を研磨する必要があるため、光ファイバは手技中でもスライドして出し入れ可能な構造とする。

屈曲機構の長さは 10 mm としたが、SMA ワイヤーを固定するリンクや防水のための封止等が必要であることから、屈曲する部分 (屈曲部)の長さは 2 枚のリンク間となる。この距離はリンクの素材に厚さ 1 mm 程度のペーブライト板を使用することを前提に、7 mm とした。
図2-13. 能動屈曲機構の構造
屈曲部長さ（赤いリンク近位端～黄色いリンク遠位端）：7 mm、リンク長さ：1 mm、リンク外径：0.8 mm
2-4. 設計

はじめに、屈曲機構の屈曲角度と照射位置の関係は第1章の図1-14および式(1-1)で述べた関係から表1-3のようになる。屈曲部7 mm、屈曲角度5, 10, 20°の場合について、式(1-1)を用いた内視鏡-結石間10-20 mmの範囲の照射位置の算出を行うと各距離における必要な移動量とそれに対応する屈曲角度は表2-2のようなになる。

<table>
<thead>
<tr>
<th>必要的照射位置移動量と屈曲角度の関係</th>
<th>内視鏡端面から結石までの距離 L (=l + a)</th>
<th>5 mm</th>
<th>10 mm</th>
<th>15 mm</th>
<th>20 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5-2 mm</td>
<td>1-3 mm</td>
<td>1-4 mm</td>
<td>2-5 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>あらゆる照射位置の移動量 h</td>
<td>-</td>
<td>9-26</td>
<td>5-19</td>
<td>7-17</td>
<td></td>
</tr>
</tbody>
</table>

以上の結果から要求仕様の最低基準を十分に満たす屈曲角度10°(0.17 rad)以上なるように設計を行うことにした。屈曲角度10°(0.17 rad)の時、屈曲機構先端(内視鏡-結石間10 mm)は約1.1 mm変位し、屈曲機構先端から10 mm(同20 mm)での照射位置は約2.9 mm移動する。

次にSMAワイヤーを用いたアクチュエータの動作原理について説明する。短軸断面上での中心からSMAワイヤーとの距離は、屈曲角度とSMAワイヤーの収縮量の関係をもとに検討を行った。以下にその算出手順を示す。

図2-14(a)は本屈曲機構をモデル化したものであり、図2-14(b)は屈曲機構の持つSMAワイヤーの1本が収縮し、屈曲角度θになった状態を示す。SMAワイヤーの収縮率αは初期状態の⾧さl、屈曲時の⾧さをl'とすると式(2-1)のように定義される。

\[\alpha = \left(\frac{l - l'}{l} \right) \times 100 \% \]

(2-1)

中心のインナーチューブの長さはlと等しく、屈曲の前後で変化しないため、屈曲部のインナーチューブが描く弧の半径rは式(2-2)で求められる。

\[r = \frac{180l}{\pi \theta} \] [m]

(2-2)

またl'はSMAワイヤーの短軸断面上でのインナーチューブ中心からの距離dを用いて、式(2-3)で表すことができる。

\[l' = 2(r - d) \sin \left(\frac{1}{2} \theta \right) \] [m]

(2-3)

したがって式(2-1)、(2-2)、(2-3)から屈曲に必要なSMAワイヤーの収縮率αは、式(2-4)で表される。
式(2-4)を用いて求めた屈曲角度の下限の要求仕様 10°の屈曲角度における SMA ワイヤーとインナーチューブの距離 d と収縮率 α の関係を図 2-15 に示す。SMA ワイヤーとして Ti-Ni 製 BMF(バイオメタルファイバー、トキ・コーポレーション株式会社)を想定した。図 2-15 から本屈曲機構は SMA ワイヤーとインナーチューブの距離が小さくなるほど SMA ワイヤーに必要な収縮量は減少することが分かる。一方で、SMA ワイヤーとインナーチューブの距離が近づくことは SMA ワイヤー同士の距離も近づくことを示している。これにより駆動する SMA ワイヤーの熱が他の SMA ワイヤーに伝わり、意図しない収縮が起きる可能性や、SMA ワイヤー同士が接触し、電気的に短絡する可能性が高まるという問題がある。また一般に曲げモーメントは力と距離の積で求められることから、本屈曲機構においても SMA ワイヤーとインナーチューブの距離が近づくことで SMA ワイヤーに必要な発生力は大きくなると考えられる。

本屈曲機構のリンク径は内視鏡のチャンネル系 1.2 mm による制限に加え、接着材、アウターチューブの厚みを考慮し、外径 0.8 mm とした。したがって SMA ワイヤーとインナーチューブの距離 d は最大でも 4 mm であり、この条件で必要な収縮率は約 1%である（図 2-15）。本研究で用いる SMA ワイヤーの最大収縮率は 4%であることから本屈曲機構では SMA ワイヤーの収縮率は十分に余裕がある。また、本屈曲機構の構造上、SMA ワイヤー同士がショートしたり、伝熱することで手手に駆動したりする可能性があることから、SMA ワイヤー同士の距離はできるだけ離した方がよい。したがって本研究では SMA ワイヤーを構造上最も外側になるように配置した。

\[\alpha = \frac{l - 2\left(\frac{180l}{\pi\sigma} - d\right)\sin\left(\frac{1}{2}\theta\right)}{l} \times 100 \% \] (2-4)
図 2-14. SMA ワイヤーの設置位置と収縮量、屈曲角度の関係。
2-5. FEM を用いた解析

2-1. で検討した動作原理(収縮量・発生力・屈曲角度)を FEM 解析により再検討した。解析には Femtet(ムラタソフトウェア)を用いた。

本研究では多方向屈曲機構であるが、最も駆動力が弱いと考えられる方向は SMA ワイヤーをのみ屈曲させる場合であるため、本節では、SMA ワイヤー1本での解析を行った。

解析に用いたモデルを図 2-16 に示す。BMF には BMF75、100、150 (各外径 75, 100, 150 μm)の選択肢があり、これを用いて3種類のモデルを作製した。モデルは3本の SMA ワイヤーのうち、2本の非駆動 SMA ワイヤーをヤング率 72 GPa の円柱とし、1本の駆動側 SMA ワイヤーを集中荷重に置き換えたものである。SMA ワイヤーまたレーザファイバを通すインナーチューブをポリイミドチューブ(内径 0.17 mm、外径 0.29 mm、ヤング率 5 GPa)とした。またアウターチューブを PTFE チューブ(内径 1 mm、外径 1.1 mm、ヤング率 0.5 GPa)とした。

集中荷重の値を 0-2 N に変化させた際のリンク間距離を駆動側ワイヤーの長さとし、SMA ワイヤーの収縮量と屈曲角度の関係を図 2-17 のグラフに示す。FEM の結果によるグラフの曲線は、SMA ワイヤーの収縮率が大きくなるにつれて傾きが小さくなっており、幾何的な解析による式(2-4)と同様の特徴を示している。一方で同じ収縮率に対する FEM の示す屈曲角度は式(2-4)より常に小さい。この原因は2-2.で前提とした屈曲時の形状と実際の形状が異なっているためであると考えられる。図 2-14(b)の形状は屈曲角度が小さい場合には成立する。しかし、屈曲角度が大きくなると、インナーチューブのとある点にかかる曲げモーメントは力と力からの距離に比例するため、先端が変位するにつれて曲げモーメントは大きくなる。したがってインナーチューブにかかる曲げモーメントは相対的に両端部分小さく、中心部に近いほど大きくなる。曲率は曲げモーメントと比例するため、曲率も中心に近づくほど大きくなる。

また式(2-4)のモデルでは非駆動側 SMA ワイヤーと PTFE チューブが屈曲により引き伸ばされることで発生する屈曲方向とは反対方向へ荷重を考慮していない。そのため、インナーチューブに力がかかり、インナーチューブが座屈状態となっている可能性がある。実際に発生力が 1.4 N と比較的大きい場合の FEM の結果は、中心付近の曲率が大きくなっていることがある(図 2-18)。

SMA ワイヤーの発生力と屈曲角度の関係は図 2-19 のようになった。図中の BMF75, 100、150 と表記した線はそれぞれの最大発生力を示す。要求仕様 10° (0.17 rad)の屈曲には約 0.8 N 必要であることが分かる。図 2-17、図 2-19 の結果から、本構造の屈曲機構では外径 150 μm の BMF150 を用いることで余裕を持って 10° (0.17 rad)以上の屈曲が行えると考えられる。
図2-16. FEMに用いた解析モデル

図2-17. FEMによるSMAワイヤの収縮量[%]と屈曲角度[°]の関係の解析結果と幾何的な解析(式(2-4))との比較
図 2-18. 発生力 1.4 N におけるインナーチューブの形状
インナーチューブの形状を見やすくするため、非駆動側 SMA ワイヤーとアウターチューブを非表示にしている。

図 2-19. FEM による SMA ワイヤーの発生力と屈曲角度の関係の解析結果
上述の設計ではレーザを導光する光ファイバ(レーザーファイバ)を考慮していないが、光ファイバの剛性は屈曲機構全体に比べて小さく、屈曲に影響しないと考えられるため省略した。

以上の結果から本研究では作製する屈曲機構の構造を以下のように決定した。屈曲機構は、外径140μmの光ファイバを通すためのインナーチューブ(ポリイミド製、外径290μm、内径170μm)、屈曲動作のためのSMAワイヤーと、SMAワイヤーとインナーチューブを固定するための溝を短軸断面上120°(2.10rad)間隔に有した樹脂製円筒形状リンク(外径0.8mm)、そして最外層となるアウターチューブで構成される。アウターチューブにはPTFEチューブ(外径1.092mm、内径1.016mm)を用いた(図2-12(a))。SMAワイヤーは短軸断面上120°(2.10rad)間隔に計3本配置する(図2-12(b))。各リンク間の長軸上での距離は7mmとする。先端側のリンク及び固定に必要なはんだ部分、接着剤部分の大きさを含め、屈曲部先端から後端部までの長さを10mm以下とする。

2-6. 模擬屈曲機構を用いた実験的な解析
2-6-1. 評価方法
屈曲機構の目標屈曲角の下限10°(0.17rad)までの動作に必要なSMAワイヤーの収縮率と発生力を実験により見積もった。評価セットアップを図2-20に示す。3本あるSMAワイヤー(BMF150)のうち1本を接続された被覆鋼線ごと外径110μmのSEA(超弾性合金)ワイヤーに変更し、近位側のリンク上の溝の上をスライドできるようにし、SMAワイヤーの収縮の代わりに超弾性合金性ワイヤーを近位側に牽引することで屈曲動作する屈曲機構を作製した。本屈曲機構で用いるSMAワイヤー長は7mmであり、模擬屈曲機構のSEAワイヤーを0.07mm牽引するとSMAワイヤーの1%の収縮率と同等となる。試作した模擬屈曲機構を用い、屈曲動作時の超弾性合金ワイヤーにかかる張力と、SMAワイヤーに換算した場合の収縮率を測定した。ワイヤーの牽引には自動ステージ(SGSP20-85(X),シグマ光機)を用いることで微小な移動制御を行い、張力の測定にはフォースゲージ(FGP-5,日本電産シンポ)を用いた。
図2-20. 収縮率と発生力の評価用セットアップ

模擬屈曲機構

フォースゲージ

SMAワイヤー（固定）

SEAワイヤー（非固定）

模擬屈曲機構

自動ステージ
2-6-2. 結果

収縮率の測定結果を図 2-21 に示す。屈曲角度は収縮率の増加に伴い、線形的に増加した。10°(0.17 rad)屈曲時の収縮率は約 2.3 %であり、SMA ワイヤーに置き換えた際も十分に動作可能であることが示された。一方で実測における屈曲角度の増加率は式(2-4)による算出結果に比べると小さくなっている。式(2-4)による算出ではアウターチューブと 2 本の非駆動側 SMA ワイヤーを考慮していないため、実測の際には反対側への曲げモーメントが増大し、駆動時の形状と図 2-17 に示した形状に差があった可能性がある。

図 2-22 に必要な発生力と屈曲角度の関係を示す。屈曲角度は力の増大に伴い線形的に増大し、約 0.6 N の発生力で目標屈曲角度 10°(0.17 rad)に達した。

2-6-3. 考察

先に紹介した幾何的な計算及び FEM 解析の結果と比べるとグラフ形状は近いものとなった。必要な収縮量のグラフについては幾何的な計算が最も傾きが大きく、ついてで FEM 解析、最も小さいのが実験的な解析であった。

発生力においては FEM 解析の結果のグラフは実験的な結果に比べて傾きが小さかった。

FEM 解析のモデルと模倣屈曲機構を比較すると前者は SMA ワイヤーやアウターチューブといった部材が正確に張られた状態を前提としているが、模倣屈曲機構は作製誤差や屈曲動作による永久変形による部材の弛みがある。これにより SMA ワイヤーやアウターチューブによる反対方向へのモーメントが小さくなったことで、屈曲角度が大きくなったと考えられる。

実際の屈曲機構の動作のためには SMA ワイヤーの発生力と収縮量が仕様の範囲内であることが必要である。本試作で用いた SMA ワイヤー BMB150 は、収縮率が 2.3 %の際に最大約 1.3 N の発生力が得られる仕様であり、十分な余裕があると考えられる。
図 2-21. 幾何的な解析、FEM 解析、実験的な解析の比較（収縮率）

図 2-22. FEM 解析、実験的な解析の比較（発生力）
参考文献

能動屈曲機構の作製

3-1. 作製方法

本研究で作製した屈曲機構はいずれも先端側が共通配線となるため、先端は機械的・電気的に強固に固定される必要がある。そこでまず、はじめに SMA ワイヤーの固定について述べる。

一般に電気的な接続でははんだ付けを用いるが、Ti-Ni 系 SMA ワイヤーはチタン合金のため表面に強固な酸化被膜を作るため、はんだ付けが難しい。先行研究において用いられた SMA ワイヤーの固定法としては、鍍金や特殊なフラックスを用いてのはんだ付けや、圧着やねじ止めなどの機械的な方法がある。

前者のはんだ付けが用いられる際には、上記の理由から通常の銅線のようにはんだ付けを試みても濡れ性の不足によりはんだをはじくことが多く、一見接続されたように見えても接着力が低いためにすぐ外れてしまうことが多い。そのため先行研究では次のような方法が用いられることがある。

(1) SMA ワイヤーの端をコイル状に加工したり(3-1)、逆に接続する導線の方をコイル状に加工して SMA ワイヤーに巻き付けたりする。これにより表面積が大きくなる効果と毛細管現象による、はんだの浸透を促進する効果を期待できる。
(2) 鍍金(めっき)や専用のフラックスの使用により SMA ワイヤーのはんだ性を改善する。

後者の圧着は機械的・電気的に強力に固定できる優れた方法であり、SMA ワイヤーでも用いられる(図 3-1)。一方で個別の部品を組み合わせることから大きくなりがちであり、比較的サイズの大きい機器に使用される。またはんだ付け後に圧力をかけて固定する方法もある(図 3-2)(3-2)。

本研究で本研究では先端の固定方法の違いにより、3 種類の屈曲機構を作製した。

(a) 先端はんだ付けによる屈曲機構
(b) 先端電性接着剤付けによる屈曲機構
(c) 先端金属リンクかしめによる屈曲機構

47
図 3-1. SMA ワイヤーの動作見本と SMA ワイヤーの固定

図 3-2. はんだと機械的な固定の組み合わせ [3-2]
3-1-1. 先端はんだ付けによる屈曲機構

図 3-3 に作製フローを示す。SMA ワイヤーを固定する役目のリンクは、厚さ 1 mm のベークライト基板 (R-8700, パナソニック電工) を切断加工することで作製した。リンクの外径は 0.8 mm であり、120° (2.10 rad) 毎に SMA ワイヤーを通すための最大深さ 150 μm の溝が作られている（図 3-3）。リンクの中心には直径 0.3 mm の貫通穴が設けられており、リンクの長さは加工したベークライト板と同じ 1 mm である。

光ファイバを通すためのインナーチューブとして外径 290 μm、内径 170 μm のポリイミドチューブを用い、リンクを 7 mm 間隔で配置し、アクリル系接着剤（アロンアルファ、東亜合成）を用いてインナーチューブ上に固定した（図 3-4 (a)）。その後リンクの各溝に外径 150 μm の SMA ワイヤー（バイオメタル・ファイバー BMF150、トキ・コーポレーション）を挿入した（図 3-4 (b)）。電気配線には外径 60 μm の被覆銅線を使用し、各 SMA ワイヤーをはんだにより電気的、機械的に固定した。SMA ワイヤーとリンクにはアクリル系接着剤を塗布後、組立て工程における SMA ワイヤーと溝の位置を固定するための先端リンクに内径 0.8 mm 外径 0.88 mm、長さ 1 mm のポリイミドチューブ（PIT-S 0.80×0.06、古河電工）を被せた（図 3-4 (c)）。共通配線と 3 本の SMA ワイヤーはフラックス（Flux #2, Indium）を塗布した後、先端部ではんだにより電気的、機械的に固定した（図 3-4 (d)）。次に、作製工程で生じた SMA ワイヤーの変形をなくし、初期状態に戻すために 400 mA の電流を流した。その後、各 SMA ワイヤーを端側リンクにアクリル系接着剤で固定した。最後にアウターチューブとして PTFE チューブ（外径 1.092 mm、内径 1.016 mm）（SLW-AWG18、ハギテック）を被せ、チューブの前後をエポキシ系接着剤（LOCTITE Easy Mix、ヘンケルジャパン）で封止した（図 3-4 (e)）。また導線やインナーチューブを手元側までシャフト部として内径 0.8 mm、外径 0.88 mm のポリイミドチューブ（PIT-S 0.8×0.04、古河電工）を屈曲機構の後端側に接続した。
図3-3. リンク形状 (O.D. 0.8 mm)

(a) インナーチューブ（ポリイミド） リンク（ベークライト）

(b) SMA ワイヤー 導線

(c) カバー（ポリイミドチューブ）

(d) 導線

(e) はんだ

図3-4. 先端はんだ付けによる屈曲機構の作成フロー
作製した屈曲機構を図 3-5 に示す。空気中において 3 本のうち 1 本の SMA ワイヤーに 400 mA の電流を流したところ、本屈曲機構は図 3-6 のように屈曲動作を行うことが可能であった。

3-1-2. 先端導電性接着剤付けによる屈曲機構
3-1-1 で作成した先端はんだづけによる屈曲機構は簡易的に試験において良好な結果を得られた。一方ではんだによる接合は以下のような理由から困難であった。

1. SMA ワイヤーがはんだの熱により移動し正確な位置で固定することが難しい。
2. 難はんだ性のチタン合金で SMA ワイヤーを先端リンクの小面積の銅箔に接着することが難しい。

そこで本研究では、はんだ以外の方法で接続する方法として、まず導電性接着剤による作製を試みた。

図 3-3(d)における、はんだ付け部を導電性接着剤(CW2400, Circuit Works)を用いた接着に変更したものを作製した。また、リンクは 0.95 mm に拡大したリンク(図 3-7)を使用した。本リンクは 3-1-2.の屈曲機構とは異なり、SMA ワイヤーの設置部が溝ではなく穴にな
っており、図 3-4(c)のカバーチューブをなくすことが不要になる。本リンクに SMA ワイヤーの挿入した後に導電性接着剤を塗布し、常温で 24 時間静置することで先端部を作製した。作製した屈曲機構は図 3-8 のようになった。本屈曲機構を試験するため、空気中で 200 mA の電流を流したところ、図 3-9 のように全体が座屈し、屈曲が行われなかった。また先端部の導電接着剤部とリンク部が解離していることが分かる。本屈曲機構の先端に熱電対を設置することではんだ付けによるものと先端の表面温度を比較したところ、図 3-10 のようになった。導電性接着剤による屈曲機構の先端温度は最大約 90 ℃ まで上昇しており、最大でも約 30 ℃ であったはんだ付けによる屈曲機構より大幅に高い。導電性接着剤の抵抗は一般にはんだよりかなり大きく、接着力も弱くないため、本屈曲機構は SMA ワイヤーの熱か SMA ワイヤーの変位により導電性接着剤と SMA ワイヤーが解離し、先端部の抵抗が上昇したと考えられる。またこの熱が屈曲機構全体に伝わることで非駆動側 SMA ワイヤーが加熱され、座屈したと考えられる。
図3-8. 作製した先端に導電性接着剤を使用した屈曲機構
図3-9. 駆動実験後の屈曲機構
図3-10. 先端温度の比較
3-1-3. 先端金属リンクかしめによる屈曲機構

先端のリンクの材料を黄銅に変更した屈曲機構(図3-10)を作製した。リンク形状は図3-11のようになっており、厚さ1 mmの黄銅板を切断加工することで作製した。ポリイミドチューブ(内径200 μm、外径280 μm)先端リンクの外径は0.82 mmであり、中心のインナチューブを通す穴は直径0.3 mm、SMA ワイヤーを通す穴は各直径170 μm、共通配線を通す穴は直径0.1 mmである。長さ(厚さ)は加工前の黄銅板と同じ1 mmである。本屈曲機構は金属のかしめによる圧着でSMA ワイヤーを先端リンクに機械的・電気的に接続される。共通配線と金属リンクをはんだにより固定した後に先端リンクにSMA ワイヤーを通し、先端リンクをワイヤーストリッパーで圧力をかけ変形させる。SMA ワイヤーと穴の隙間はわずかであるため、圧力により、隙間はなくなり固定される。作製した屈曲機構を図3-12に示す。先端は作製した屈曲機構を内視鏡チャネルへ通す際に内腔を傷つけないように、封止するエポキシ系接着剤に丸みを持たせた。インナチューブのエポキシから突出した長さは約1 mmである。外径の変更に合わせ、PTFEチューブを内径0.813 mm、外径0.915 mm(SLW-AWG20、ハギテック)に変更した(図3-12)。

上記の改良を行った結果、困難であった先端部のSMA ワイヤーのはんだ工程が無くなり、歩留まりが向上した。また変形しやすい樹脂製リンクから金属製リンクになったことで、より精密なリンクが作製可能となり、細径化に成功した。

以上のことから、今後の章で述べる、固定方法は、屈曲機構の評価などでは“先端はんだによる屈曲機構”、6章の腎盂・腎杯モデルを用いた評価では“先端金属リンクかしめによる屈曲機構を用いた。
図 3-10. 先端金属リンク加締めによる屈曲機構(O.D. 0.92 mm)の構造

図 3-11. 作製した金属リンク(O.D. 0.82 mm)

(a) 正面 (b) 側面

図 3-12. 先端金属リンクかしめによる屈曲機構(先端部)
3-2. 組み立て精度に関する考察

今回の組立てを行ったことで、最終的に用いたはんだを用いた SMA 固定方法においても組立ての精度、特に SMA の非駆動時の長さを精密に制御して組み立てる際に以下の課題があり、今後の改善が必要と考えられた。

1. SMA ワイヤーがはんだの熱により収縮・移動するため、はんだづけにより正確な位置で固定することは難しい。

2. 難はんだ性のチタン合金で SMA ワイヤーを先端リンクの小面積の銅箔に接着することが難しい。

3. リンクの貫通穴を通す部材の隙間によるずれの発生
 3-1-1 及び 3-1-2 は樹脂リンクを用いた屈曲機構であり、選別により使用されなかったが、加工精度の低いリンクが多数あった。これは加工時の摩擦熱や力により樹脂が変形するためだと考えられる。一方で金属リンクの場合では比較的高精度のリンクが作製可能であり、3-1-3 での細径化にもつながった。樹脂リンクの場合では数 10 μm 程度の誤差があると考えられる。最大屈曲にはあまり影響がないことは 2 章の解析から示唆されるが、より精密な角度制御が必要な際には問題となる可能性がある。

4. リンク間の SMA ワイヤーのテンションの制御が難しい。

本屈曲機構はいずれもリンク間に SMA ワイヤーが張られるが、この際の SMA ワイヤーの内部応力や収縮状態の測定は難しいため、現状では一度過熱、冷却することで状態の均質化を図っている。SMA ワイヤーのテンションに偏りが発生すると、必要な収縮量の計算に誤差が生じるため、制御時の誤差要因となる。

4. 能動屈曲機構の評価

4-1. 屈曲角度と表面温度

本研究のデバイスは生理食塩水で満たされた腎臓内で使用するため、水中内での屈曲機構の屈曲特性と表面温度を評価した。使用した屈曲機構は3章の最後で述べたように、3-1-1で作製した“先端はんだ付けによる屈曲機構”である。

4-1-1. 評価方法

実際の手術では、普段はつぶれている尿路内の視野を確保するため室温程度の生理食塩水を内視鏡の鉗子孔から注入し、内腔を満たす。このことから、腎臓内の水温は室温と同じ25°C程度になると考えられ、本評価は水温25°Cの環境下で行った。計測のセットアップを図4-1に示す。25°Cの恒温水槽(B-490, Buchi社)内に光ファイバ(CF04406-11, 古河電工)を挿入した屈曲機構を設置した。駆動電流は直流電源装置(PMR24-1QU, 菊水電子)から供給した。電流量は100mAから460mAまでの20mA間隔で変化させ、各電流量における15秒後の屈曲角度と表面温度を測定した。屈曲角度の測定はカメラによる動画撮影を行い、直線状態からの変位量で観測した。表面温度は直径25μmの熱電対(COCO-001, OMEGA社)を屈曲機構の図4-1(b)に接着剤(アロンアルフア, 東亜合成)で示した位置に接着し、データロガー(DL708E, 横河電機)により記録した。表面温度を測定した時間は、屈曲動作が安定した、駆動後20秒後とした。
図4-1. 屈曲特性と表面温度の評価実験セットアップ
4-1-2. 結果

屈曲する 3 方向のうち 1 方向について、電流値に対する屈曲角度とその時の表面温度を測定した結果を図 4-2 に示す。電流量の上昇とともに屈曲角度と表面温度は緩やかに増大した。屈曲角度は駆動電流約 400 mA で飽和し、最大屈曲角度は 460 mA の際に 18.8 ° (0.33 rad) であった。表面温度は供給電流に対し、ほぼ直線的に増加し最大屈曲角度 (460 mA) のとき 27.9 ° C であった。

図 4-2. 駆動電流と屈曲角度、表面温度の関係

4-1-3. 考察

表面温度は安全上の理由から体内で用いる医療機器で許容される 41 °C 以下という基準 (JIS T-0601-1) を十分に下回った。400 mA 以上では屈曲角度の変化が少ないことから本屈曲機構は 0~400 mA の範囲で電流を変化させることができ妥当だと考えられる。また 25 °C の水中で 10 分間 400 mA の電流を供給した場合の表面温度は供給開始から 15 秒以内はほとんど変化せず 30 °C 以下を維持した。

なお、本屈曲機構を用いたレーザー照射システムは、術者が内視鏡観野中において、光ファイバを挿入された屈曲機構を直接観察し角度制御を行うことから、正しい手順で手技を行うことで屈曲機構は組織に触れることなく、常に水中で動作する。
4-2. 応答速度

4-2-1. 評価方法
応答性の評価は非駆動状態から駆動電流 400 mA を流し、開始からの時間と屈曲角度を記録することで行った。実験セットアップは 4-1 と同様である。

4-2-2. 結果
図 4-3 より、最大屈曲角度は 16° (0.28 rad) であった。約 2 秒後の時点で 14° (0.24 rad) に達し、4 秒後以降は約 16° (0.28 rad) に達して安定した。

4-2-3. 考察
屈曲角度が大きく変わるのは開始から約 2 秒までで、それ以降はほとんど変化がなかった。この屈曲機構の挙動は組み込まれた SMA ワイヤーの温度変化の影響を受けていると考えられる。2 秒後から 4 秒後までの緩やかな角度変化は、SMA ワイヤーから屈曲機構を介した水への放熱と、SMA ワイヤーへの投入電力が平衡状態に達するまでの過程を示していると考えられる。本実験では想定する最大電流量である 400 mA で実験を行ったが、より低い電流量では水温と SMA ワイヤーの温度差が小さいため、より早く安定化すると考えられる。
前述したように医療用アクチュエータにおいて早い応答速度は求められておらず、数秒程度で問題ないと考えられるしかし実際に求められる応答速度は本屈曲機構と用いる駆動回路やインターフェース、内視鏡と組み合わせた際の状況に左右されると考えられるため、総合的な考察は 6 章で行うモデル実験の結果を考慮して行う。
図4-3. 屈曲機構の応答速度
4-3. 繰り返し再現性

4-3-1. 評価方法
繰り返し再現性的評価は駆動電流 400 mA で 20 秒加熱後、20 秒冷却することを合計 10 サイクル行い、各サイクルにおける最大屈曲角度を記録することで行った。実験セットアップは 4-1 と同様である。

4-3-2. 結果
図4-4のグラフに測定の結果をまとめた。駆動電流400 mA 時の角度は安定的に約 15°(0.26 rad)となり、誤差は±0.5°(0.0087 rad)に収まった。

4-3-3. 考察
本屈曲機構の繰り返し再現性は安定している。SMA ワイヤー自体の再現性は収縮量と発生力(荷重)が適正範囲内に収まっているかに左右される。本屈曲機構は高い再現性を示すことから、本実験の 10 回の駆動に関して SMA の設計上問題ないことが示唆される。また本屈曲機構で用いた先端のはんだ、後端部のエポキシ接着剤による固定は駆動により変化していないと考えられる。
耐久性に関しては本実験の範囲では不十分であり充分に議論することができないが、本屈曲機構はディスポーザブルであることから、一回の手術で使用する限りでは大きな問題にはならないと考えられる。
4-4. 温度特性

4-4-1. 評価方法

水温の違いによる屈曲特性の評価を行った。屈曲機構の水温による影響を検証するため、図4-1と同様の方法で30°C及び37.7°Cにおける評価を行った。

4-4-2. 結果

結果を図4-5に示す。この結果から同じ供給電流量に対する屈曲角度は水温に依存し、水温の上昇により屈曲角度も増加した。また水温37.7°C、駆動電流400mAの条件であっても15秒後の表面温度は41°Cには達しなかった。

![図4-5. 水温の違いによる駆動電流と屈曲角度の関係の比較](image)

4-4-3. 考察

全水温に関して表面温度が41°Cを超えたことから、発熱に関しては安全上問題ないことが示唆される。一方で屈曲角度に関しては水温の違いは大きいと考えられる。f-TULは視野を良好に保つために還流が行われるが、温度の管理は一般に行われないため室温に左右されると考えられる。従って温度特性の違いへの対処法として水温の情報を利用とに駆動電流量を変更すること、循環する生理食塩水の温度を一定に保つようにすること、SMA温度やSMAの抵抗値測定を用いた屈曲角度フィードバック制御を行うことなどが考えられる。
4-5. ヒステリシス
4-5-1. 評価方法
一電流量増加時(0-500 mA)と減少時(500-0 mA)の電流に対する屈曲角度を比較した。各電流量における持続時間は20秒である。その他の条件は図4-1と同様である。

4-5-2. 結果
電流減少時の電流量に対する屈曲角度は電流増加時に比べて常に大きく、ヒステリシスがみられた（図4-6）。

4-5-3. 考察
本研究で使用したSMAワイヤーであるBMF150は他のSMAワイヤーと同様にヒステリシスが存在し、また本屈曲機構の屈曲角度はSMAワイヤーの収縮量によって決まることから本屈曲機構のヒステリシスはSMAワイヤーの特性に起因すると考えられる。

SMAの温度ヒステリシスはSMAの相変化のM変態開始温度：M_fとM逆変態：A_fの温度の違いに由来する。図4-7にNi-Ti系SMAの示差走査熱量計曲线を示す。過熟時が赤、冷却時が青で示されている。変態開始温度M_f及びA_fはピーク曲線の傾きが大きくなる部分に一致する直線とピーク以外の部分に重なるように引いた直線の交点として求められる。図4-7のようにM_f及びA_fは温度が大きく離れている。これにより、SMAは収縮時に高い温度を必要とするが、回復時にはより低い温度になることが必要となる。図4-6のグラフは図4-7のSMAの特性を反映していると考えられる。

この結果から、屈曲角度制御のユーザーインターフェースには工夫が必要と考えられる。
医師自身が視野で角度や先端位置を確認して入力量を上下させる方法であればヒステリシスや周辺温度の影響は実用上大きな問題にならないと考えられる。実際の使用状況や使用するインターフェースを考慮し、フィードバック制御を導入するか検討する必要がある。また、前述のフィードバック制御が有効と期待される。SMA アクチュエータのフィードバック制御には別途センサーを使用するものもあるが、SMA ワイヤーの特徴を生かした方としてSMA ワイヤーの抵抗値によるフィードバック制御も存在する。SMA ワイヤーの抵抗値と収縮量には相関関係があり、収縮すると抵抗値が減少する。この関係はオーステナイトとマルテンサイトの比率に由来するため、加熱時・冷却時の違いや周囲の温度に影響を受けることがない。実際に本屈曲機構で用いた BMF150 の収縮量と抵抗値を測定したところ、抵抗値は収縮により約30%減少し、収縮量に対する抵抗値は加熱・冷却時でほぼ一定となった。

図 4-7. Ni-Ti 系 SMA ワイヤーの DSC 曲線 [4-1]
4-6. 多方向屈曲

作製した屈曲機構は SMA ワイヤー3 本が組み込まれ、そのうち2 本の電力量を調整することにより、設計上多方向 (360°(6.28 rad) 方向) に屈曲することが可能である。しかし、これまで作製した屈曲機構は、2 本の SMA ワイヤーを過熱した際に、座屈するか、または意図しない方向に屈曲する結果となり安定して多方向に屈曲することはできなかった。また駆動後に3 方向にも屈曲できなくなる場合もあった。

座屈するか、または意図しない方向に屈曲する原因として、次の3 点が考えられる。
(A) 非駆動側 SMA ワイヤーの加熱

SMA ワイヤーは最大400mA 程度で駆動するが、2 本以上過熱した際にはアウターチューブ内の温度が上がり、非駆動側 SMA ワイヤーまで加熱される。3 本の SMA ワイヤーすべてが収縮状態となり、インナーチューブに大きな力がかかるため座屈が起きる。

(B) 非駆動側 SMA ワイヤーが引かれる反力

SMA ワイヤーを1 本駆動させた場合、2 本駆動させた場合の力とモーメントの比較は以下のようになる(図4-8)。まず SMA ワイヤー1 本を駆動させた場合について述べる。図4-8(a)より SMA ワイヤーを1 本駆動させた際、屈曲機構の中心 (中立面) から非駆動側 SMA ワイヤーまでの距離は0.5d となる。また非駆動側 SMA ワイヤーのばね定数を k、屈曲動作により引き伸ばされる量を Δx とすると、屈曲と反対方向へのモーメント：M_R は式(1)となる。

\[M_R = 2 \times 0.5d \times k \Delta x = dk \Delta x \quad (4-1) \]

またインナーチューブをθ [°] 屈曲させるために必要なモーメント：M は駆動側 SMA ワイヤーの発生力を F1 とすると、式(2)となる。

\[M = F_1 d - M_R \quad (4-2) \]

また式(2)を変形すると F1 は式(3)となる。

\[F_1 = \frac{M}{d} + k \Delta x \quad (4-3) \]

したがって、インナーチューブが軸方向から受ける力の総量：F_1total は式(4)となる。

\[F_1total = \frac{M}{d} + 3k \Delta x \quad (4-4) \]

つぎに SMA ワイヤーを2 本駆動させた際について述べる。図4-8(b)より、屈曲機構の中心 (中立面) から非駆動側 SMA ワイヤーまでの距離は d となる。したがって屈曲と反対方向へのモーメント：M_R2 は式(5)となる。

\[M_R2 = d \times k \times 2 \Delta x = 2dk \Delta x \quad (4-5) \]

M_R2 を用いて M を表すと式(6)となる。

\[M = 2 \times F_2 \times 0.5d - M_R2 \quad (4-6) \]

式(6)を変形すると F2 は式(7)となる。
したがって、2 本駆動時にインナーチューブが軸方向から受ける力の総量：$F_{2\text{total}}$ は式(8)となる。

$$F_{2\text{total}} = \frac{2M}{d} + 6k\Delta x = 2F_{1\text{total}}$$ (4-8)

式(8)より SMA ワイヤー2 本駆動時の力の総量：$F_{2\text{total}}$ は $F_{1\text{total}}$ の 2 倍となるため、本構造による屈曲機構は SMA ワイヤーの 2 本同時駆動により座屈の可能性が高くなると考えられる。

図 4-8. SMA ワイヤー1 本駆動時と 2 本駆動時の比較
(C) SMA ワイヤーのテンションのばらつき

3 章 2 節で述べたように、現状の屈曲機構の組立方法では、SMA ワイヤーの非駆動時の長さを精密に制御することができない状態で組み立てている。また SMA ワイヤーを取り付け るリンクとインナーチューブからなる部材の部材の屈曲も考えられ、SMA ワイヤーの非駆動時の長さには、ばらつきがあると考えられる。したがって 2 本同時駆動時にはワイヤー、 2 本の SMA ワイヤーの非駆動時の長さのばらつきより、意図しない方向への屈曲が起きると考えられる。今後の対策として SMA ワイヤーの初期長さを精密に計測する手段を講ず る他、SMA ワイヤーを取り付ける構造自体の変形を防ぐ対策も必要だと考えられる。

多方向への屈曲が最善ではあるものの、手動の回転操作を行うことによって疑似的に 360° (6.30 rad)方向へ先端を向けることが可能であると考えられる。5 章以降では 120° (2.10 rad)ずつ 3 方向への屈曲を前提とした評価を行う。
5. コントローラの作製

5-1. 要求仕様

本研究の屈曲機構に用いるコントローラは f-TUL に用いられる内視鏡 (URF TYPE V, Olympus) やレーザファイバと同時使用することから、既存の f-TUL の手技を妨害しない方法であることが求められる。また前章の評価より、駆動電流は最大 400 mA が供給される仕様とする。本研究では 4 章にて 3 方向への屈曲に成功したため、3 方向へ屈曲可能なコントローラの開発を行う。

5-2. ユーザインターフェースの検討

作製した屈曲機構のコントロールを行うためのユーザインターフェースの検討を行った。本研究と同様のアクチュエータの先行研究においては、ジョイスティック型[5-1]やインタクティブサージカル合同会社の手術ロボットダヴィンチ (da Vinci) サージカルシステムのコントローラのように手で握りこむ形のもの[5-2]が用いられている。これらの研究では研究対象の機器のみでの使用や、機器専用の処置具の使用を前提としているため、片手、または両手を操作に使うことができる (図 5-1)。一方で本研究の屈曲機構は f-TUL において既存の内視鏡 (URF TYPE V など) と同時使用することが求められ、内視鏡を左手に握り、右手で光ファイバなど他の医療機器を操作するのに使用する (図 5-2)。本屈曲機構を使用するためにどちらかの機器から手を離すことは安全上、及び手術の効率上問題がある。したがって本研究では以下のようインターフェースを検討した。

(1) 手を使わないインターフェース（フットスイッチ、音声入力など）。
(2) 内視鏡に取り付ける方式のインターフェース
(3) 医師 2 名以上で手術することを前提としたインターフェース

本章では(1)として足を使用するフットスイッチ、(2)及び(3)として 2 軸レバーをユーザインターフェースとして使用したコントローラを検討した。

フットスイッチは既存の医療機器でも広く用いられ、前述した da Vinci にも装置のカメラや鉗子の切り替え操作に使用される。フットスイッチは手を使った操作に比べて複雑な作業は難しいという難点がある。しかし本研究の屈曲機構は現状全方向でなく、120° (2.10 rad) 間隔の 3 方向であるため、フットスイッチでもプログラム次第で単純な操作にできると考えられる。

ジョイスティックは既存の内視鏡ではみられない能動屈曲機構を用いた研究では用いられた例がある[5-1]。一般にワイヤー牽引式内視鏡では平行に設置された 2 つのアングルノブが使用されるが、この方法はノブを回す方向と内視鏡を曲げる方向が一致しないため (図 5-3)、直感的にわかりづらいという難点がある[5-3]。これに対してジョイスティックは既存の内視鏡と同様な操作で 360° (6.30 rad) 方向への入力が可能であるという利点がある[5-3]。本章ではこれらのインターフェースとして使用したコントローラの作製と評価について述べる。
図 5-1. Da Vinci Si (Intuitive Surgical)のロボットハンドとインターフェース [5-2]

図 5-2. URF TYPE V と手術の際の両手の位置
図 5-3. 一般的な 2DOF の内視鏡(OLYMPUS GIF TYPE H260Z)の操作部 [5-3]

リモートスイッチ
ビデオプロセッサ装置の設定により、画像の静止、観察光の切替、画像の記録、フォーカス切り替えなどの機能を割り当てることができる。

UDアングル固定レバー

UDアングルノブ

RLアングルノブ

RLアングル固定ノブ

噴霧ボタン MAJ-923
中央の小穴を指でふさぐと送気する。
途中の突き当たり（2段押し込みの1段目）まで押し込むと噴霧が行われ、ボタンをいっぱいに押し込むと送水を行う。
噴霧ボタン MAJ-923詳細参照。
5-3. フットスイッチ方式

5-3-1. 構成

本方式は医師が内視鏡やファイバなど、他の医療機器から手を放さずに使用可能である。本方式にはフットスイッチ 3 台を設置し、医師が足を使って操作する（図 5-4）。

市販されるフットスイッチには大きく 2 種類の方式が存在する。一つがプッシュスイッチ式のもので、この方式では踏むことによってオンとオフの 2 つの状態を操作する。もう一つがポテンショメータ式のもので、こちらは内部に可変抵抗があり、踏込の深さによって入力力量が決まるものである。この方式はミシンなどの速度変化が必要なものに使われる。本研究では、足を離しても屈曲角度が変わらないことが望ましいため、プッシュスイッチ方式のフットスイッチを使用してコントローラの作製を行った。

図 5-4. フットスイッチ式コントローラの使用法
フットスイッチ式コントローラの構成を図 5-5 にまとめた。使用したフットスイッチは（OFL-V-M4、オジデン）はモーメンタリ型のスイッチを内蔵しており、踏むとオン、離すとオフになる。本コントローラではこのフットスイッチを屈曲機構の 1 方向につき 1 台使用する。各フットスイッチの端子はプルダウンしたうえでマイクロコントローラの GPIO（General-Purpose Input/Output）に接続される。屈曲機構の角度調整はフットスイッチのオンの時間でコントロールする方式とした。

5-3-2. 設計
5-3-2-1. 回路

4 章の実験同様に 100-400 mA の電流を出力するコントローラを作製するにはアナログ出力を最低 3 種類以上出力可能なマイクロコントローラが必要であり、低価格帯の製品では非対応であることが多い。そこで本研究では PWM（Pulse Width Modulation）を用いて SMA ワイヤーへの駆動電流をコントロールすることとした。PWM には以下の利点がある。
(1) ほとんどのマイクロコントローラで PWM モジュールを搭載しているため、低価格で容易に使用できる。
(2) 将来的に、PWM のオフの時間に抵抗値のセンシング信号を流すことで抵抗値によるフィードバック制御を行うことができる[5-4]。

接触抵抗と配線の抵抗に係わらず駆動させるため、PWM の増幅には定電流回路を使用した。4 章の結果から本屈曲機構は最大 400 mA での駆動が適切であると考えられることから、PWM のオン時の電流は 400 mA に設定した。これにより PWM の Duty 比が 100%の時、前章における 400 mA の定電流駆動と同様の状態となる。

図 5-6 に本研究で作製した PWM 用増幅回路の回路図を示す。本研究で用いたマイコンの GPIO は約 4.5 V（Atmega328, Atmel）と約 3 V（PIC32MX220F032B, Microchip）を出力する。これを 0.4 V になるように抵抗で分圧し、オペアンプ（LM358, HTC）に入力した。オ
オペアンプは仮想接地により+側端子と-側端子の電位が等しくなるように出力されるため、
Nch MOSFET (EKI04047, Sanken) のゲート端子の電圧はソース端子が常に 0.4 V になるよう
に調整される。本回路では 1 Ω の抵抗がソース-グラウンド間に挿入されているため、抵抗
には 400 mA の電流が流れる。MOSFET はゲート-ソース間にほとんど電流が流れない
ため、屈曲機構の SMA ワイヤーにも同様に 400 mA の電流が流れる。
コントローラには本増幅回路をそれぞれの SMA ワイヤーに各 1 回路使用する。

図 5-6. PWM の増幅回路
PWM の制御にはマイクロコントローラ（Atmega328）を用い、プログラムの作製には Arduino IDE を使用した。PWM 周波数は 245 Hz である。

5-3-2. プログラム

フットスイッチによる制御はスイッチを踏んだ時間によって制御する方式とした。作製したプログラムのフローチャートは以下の通りである（図 5-7）。ソースコードは巻末付録に掲載した。短い押し（10ms 以上 100 ms 未満）の場合は PWM の Duty 比が約 4 %増加し、長い押し（100 ms 以上）の場合は 100 ms 以降は 10ms に 0.4 %ずつ Duty 比が増加する。また本研究の屈曲機構は同時に 1 本の SMA ワイヤーのみを過熱するため、駆動中でない SMA ワイヤーに対応したフットスイッチが押された場合、PWM の出力は停止される。本方式では徐々に Duty 比を減少させる操作はないが、これにより過熱時・減少時に発生する温度ヒステリシスを意識する必要がなくなると考えられる。

![フットスイッチのプログラムのフローチャート](image)

図 5-7. フットスイッチのプログラムのフローチャート
5-3-3. 評価と考察

作製したフットスイッチ式コントローラを図 5-8 に示す。本コントローラは 3 章にて作成した屈曲機構を水中で駆動可能であることを確認した。

図 5-8. フットスイッチ式のコントローラ

本コントローラを使用した場合の屈曲特性を測定するため、3 章で示した先端かしめによる屈曲機構を接続して実験を行った。屈曲機構を 25℃に設定した恒温水槽内に設置し、フットスイッチにより入力量（Duty 比）を約 0-94%の間で変化させ、その時の屈曲角度を記録した。

結果は図 5-X のようになり、4 章で行った電流制御による実験結果と同様に入力量（電流量、Duty 比）の上昇に伴い、屈曲角度が大きくなり、最大角度は全方向で 10°（0.17 rad）以上であった。本結果を電流制御による結果と比べると入力量が低い段階での角度変化が大きく見える。これは PWM を SMA ワイヤーに使用した際の電力量が Duty 比に概ね比例するのに対し、電流制御では電流量の 2 乗に比例するためだと考えられる。SMA ワイヤーの駆動は温度に対応するため、入力量が小さい段階における SMA ワイヤーの収縮量が小さくなったと考えられる。

4 章の結果と同様に本結果からも電流制御時と同様に入力量と屈曲角度の関係が分かりづらいことが分かる。今後は PWM の Duty 比と屈曲角度のデータをもとに Duty 比を決定する方式にすることで、操作性の向上を行う。
図 5-X コントローラを用いた場合の入力量（Duty 比）と屈曲角度の関係
5-4. レバー式
5-4-1. 構成
レバー式コントローラの概要を図5-9にまとめた。本方式は内視鏡に装着する方式（図5-10）と、複数人の医師による操作を前提としたものを作製した（図5-11）。

5-4-2. 設計
5-4-2-1. 回路
PWMの制御にはPIC32MXを用いた。プログラムの作製にはMPLAB X IDEとHarmony（ともにMicrochip社製）を使用した。PWM周波数は1kHzである。ユーザインターフェースには2軸式のレバー（ゲーム用ジョイスティック）を使用した。
増幅回路はフットスイッチ式と同一の回路を使用した。

5-4-2-2. プログラム
レバーの入力は軸付近に設置したプレート（図5-10(a)）により、屈曲機構の屈曲方向に対応した120°（2.10 rad）および3方向各60°（1.05 rad）に制限した。2軸レバーからの入力は電圧としてPIC32MXのADCに直接入力され、値はXY平面上の1024段階の値として得られる。本研究で作製した屈曲機構は3方向であるため、これを3方向の出力値に変換した（図5-12）。レバーからの入力値は以下のように場合分けされ、3本のSMAのいずれかが駆動される。
(1) 1.73<y/x<1.73かつ0<y の場合：SMA A
(2) -1.73<y/x<0かつy<0 の場合：SMA B
(3) 0<y/x<1.73 & y<0 の場合：SMA C
また、PWMのDuty比:D[%]は以下の式で計算し、出力される。
\[D = \frac{\sqrt{x^2 + y^2}}{1024} \% \] \hspace{1cm} (1)

(a) 方向を制限したレバー
(b) ジョイスティックの使用イメージ

図 5-10. 内視鏡に装着するレバー

図 5-11. 複数人での手術を前提としたレバー
作製したプログラムのフローチャートを図5-13に示す。

図5-12. レバーの入力方向と出力値

図5-13. レバー式コントローラのフローチャート
5-4-3. 評価と考察
本コントローラは3章にて作成した屈曲機構を水中で駆動することができた。一方でフットスイッチ式と同様にDuty比が低い段階においては屈曲角度があまり変化しなかった。
本方式で作製した内視鏡に取り付けるタイプのレバーは小型であるため変位量の小さいく入力エネルギーの微調整が難しかった。また内視鏡の操作に親指、人差し指が必要であり、他の指で操作することは困難であった。本方式を使用するためにはレバーの再選択、及び、設置場所を再検討することが必要である。
医師2人で行うタイプのレバーでの操作は問題なく操作可能であった。しかし、手術に医師2人が必要であることは経済的にデメリットが大きいことや、2人が密にコミュニケーションをとらなければならないなどの問題がある。
医師によるタッチ評価では、2種類のジョイスティック型に共通の問題として指を離すと入力が戻ってしまうことを指摘された。通常のワイヤー牽引式内視鏡では、湾曲部の角度が戻ることを防ぐためのロック機能が搭載されている。これにより、湾曲核が安定するとともに、内視鏡から手を離して作業を行うことも可能である。しかし一般的にゲーム用のジョイスティックではスプリングリターン機能により中央にスティックが戻ってしまう。現在の仕様では、短時間の試験では使用可能であっても実際に手術では実用性に欠けると考えられる。今後は入力エネルギーの維持できる方式に変更する必要がある。
参考文献

6. 腎盂・腎杯モデルを用いた評価
6-1. 腎盂・腎杯モデルの設計と作製

本研究で作製した屈曲機構及びコントローラを評価するため、腎盂・腎杯モデルの作製を行った。モデルのベースには使用目的に許諾を得た実際の患者の腎盂・腎杯の CT スキャンから得られた断層データ（DICOM 形式）を使用した。使用したデータは造影剤により尿路が造影されているものである。データは医用画像可視化ソフトウェアである 3D Slicer 4.6.2 [6-1]を使用して 3D モデル化した（図 6-1）。作製したモデルを図 6-2 に示す。

次に 3D モデルを中空化し、外側に厚みをつけたものを図 6-3 に示す。本実験は結石があると仮定した部分の壁をカットし、開口部を設置した。3D モデルの加工には Autodesk Meshmixer [6-2] を使用した。

作製したデータの腎盂・腎杯末梢部を開口し（図 6-4）、この外側に光ファイバの先端位置を確認するためのターゲットを設置する。本データを 3D プリンタ（AGILISTA-3000, キーエンス）で作製したもののが図 6-5 である。材料はアクリルとウレタンである。

図 6-1. 3D Slicer による DICOM データの 3D 化
図6-2. 腎盂・腎杯モデル

図6-3. 中空化した腎盂・腎杯モデル

図6-4. 開口部を設置した腎盂・腎杯モデル

図6-5. 3Dプリントで作製した腎盂・腎杯モデル
6-2. 実験方法

実験は図 6-6 のセットアップで行った。水を入れたタッパーの中央に図 6-5 の腎盂・腎杯モデルを設置した。腎盂・腎杯モデルには尿管として外径 7 mm、内径 9 mm のシリコン樹脂チューブを接続した。レーザ照射位置を確認するために 0.5 mm 間隔の同心円図をターゲットとして用いた (図 6-7)。実験に使用した開口部は図 6-8 に示す部分である。開口部の正面にターゲットを設置した。ターゲットは直径 2.5 mm のアルミ製の針金を介して XYZ 軸ステージに固定した。

使用した屈曲機構は 3 章で作製した“端金属リンク加締めによる屈曲機構” (3-1-3.)を用いた。屈曲動作を観察しやすくするため、図 6-9 のように屈曲方向に合わせて 3 種類の色(赤、黒、青)を油性マーカで着色した。コントローラにはフットスイッチ方式 (5-3.)を使用した。

屈曲機構のインナーチューブにはレーザファイバ (コア径 100 μm、クラッド径 110 μm、被覆径 125 μm、スパークリングフォトロン)を挿入し、後端は赤色レーザ光源 (DPS-2001、ネオアーク)に接続した。レーザファイバの屈曲機構からの突き出し量は 1 mm 以下とした。

屈曲機構は予め尿管鏡 (URF TYPE V, Olympus)の鉗子口からチャネル内に挿入し、その後、内視鏡挿入部を尿管モデル (シリコン樹脂チューブ)を経由して腎盂・腎杯モデル開口部まで挿入した (図 6-10, 図 6-11)。図 6-11 のように内視鏡のシャフト部および湾曲部は曲がった状態となる。
図 6-7. ターゲット

図 6-8. ターゲットの設置位置

図 6-9. 使用した屈曲機構
図 6-10. ターゲットへのレーザの照射

図 6-11. 実験位置の内視鏡とモデルのX線画像
6-2-1. 内視鏡視野内での屈曲実験
内視鏡を腎盂・腎杯モデルに開口部までまで挿入させた後、屈曲機構を内視鏡先端の鉗子出口から突き出した。この状態で赤色レーザ光を照射し、スポットがターゲットの中央部に来るようにステージを操作し、ターゲットを移動させた。この時、内視鏡、屈曲機構、ターゲットは図 6-12 に示す位置関係になる。1 章の表 1-3 から、内視鏡端面から結石(ターゲット)までの距離 (L) は 5, 10, 15, 20 mm、内視鏡端面から突出する屈曲機構の長さ l は 3 mm, 5 mm, 10 mm に設定した。
次にフットスイッチを操作し、Duty 比を 100%まで上昇させ、スポットの移動量を観察した。この操作を駆動させる各 3 本の SMA ワイヤーそれぞれについて行った。

6-2-2. 屈曲状態での屈曲機構の回転実験
作製した屈曲機構は 120°ごと 3 方向への屈曲しか実現できていないため、屈曲機構を回転させることで SMA ワイヤーが配置されていない方向への屈曲を実現できるかの確認をおこなった。
6-2-1 と同様の操作を行い、屈曲機構が最大に屈曲している状態で、屈曲機構シャフト部の後端を指で回転させた。この時のスポットの移動を記録した。
また、回転実験を屈曲機構が内視鏡から完全に出ていない状態で行った。突き出し量は約 5 mm に設定した。突き出し量の確認は内視鏡視野内での見かけ上の突き出し量と実際の突き出し量の比較、及びモデル外からの観察で行った。

6-2-3. 内視鏡がモデルと干渉した状態での動作実験
複雑な位置の結石に光ファイバを向けにくいという従来の f-TUL の課題を作製した屈曲機構により解決できるかの確認を行なった。
内視鏡正面を向けられない位置での屈曲機構の評価を行うため、内視鏡が腎盂・腎杯モデルとぶつかり、それ以上動かない状態にし、ターゲットの中央をレーザのスポットまで移動させた。その後、屈曲機構のみを操作し、先端の移動量を確認した。
図 6-12. 内視鏡、屈曲機構、ターゲットの位置関係
6-3. 結果
6-2-1 節で述べた内視鏡内での屈曲実験の結果を図 6-13、及び表 6-1 にまとめた。屈曲方向に合わせて着色した赤黒青の 3 種類の色は、内視鏡視野内で容易に判別することができた。使用したターゲットは 0.5 mm 間隔の同心円であり、照射位置の移動距離は表 6-1 に示す結果となった。また初期位置から駆動後までの時間は約 4 秒前後であった。

屈曲機構の突出長さ L が 10 mm の際には初期位置から最終的な位置までほぼ直線的に移動した。その一方で L が 5 mm の際には図 6-14 のように途中で移動方向が変わる挙動を示した。
図 6-13. 照射位置の 3 方向への移動
L: 内視鏡端面-結石間距離、l: 屈曲機構の突出長さ
表 6-1 距離設定と各方向への移動量

<table>
<thead>
<tr>
<th>距離設定 [mm]</th>
<th>移動量 h [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>内視鏡端面-結石間距離</td>
<td>内視鏡屈曲機構の突き出⾧さ</td>
</tr>
<tr>
<td>離 L</td>
<td>l</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

図 6-14. 屈曲機構の突き出し長さ $l=5$ mm における照射位置の軌跡
6-2-2 節で述べた屈曲状態（L = 14 mm, I = 7 mm）での屈曲機構の回転実験を青色の方向に対して行った際の結果を図 6-15.にまとめた。内視鏡を操作せずに屈曲機構を屈曲させた状態で回転させた際、徐々に屈曲機構シャフト部がねじれ、反対方向へのトルクがかかる感触が感じられたが、約 90° (1.57 rad) まではゆっくりと回転させることができた。一方でそれ以上に回転させようとした際は徐々にすべりが悪くなり、その後一度に大きく回転してしまった。

同様の実験を突き出し量 I を 5 mm で行ったところ、スポット位置の移動量は 1.5 mm ほどであり、突き出し量 I が 7 mm の際と同様に十分に屈曲している（図 6-16）。しかし、屈曲機構を最大に屈曲した状態での回転は抵抗が強く、ほとんど回転させることができなかった。
屈曲動作後
約90° (1.57 rad)回転後
1回転後
屈曲による照準の移動
回転による照準の移動
図6-15. 屈曲後に回転させた場合の先端の移動
6-2-3 の内視鏡がモデルと干渉した状態での動作実験について、内視鏡の位置を図 6-17、結果を図 6-18 にまとめた。内視鏡とモデルの壁が干渉し、それ以上移動することができない境界を灰色の点線で示した。この状態で赤及び黒の方向へ屈曲機構を操作したところ、それぞれ図 6-17(b), (c)の位置にレーザのスポットが移動した。移動距離はともに約 1.5 mm であった。また、この際の内視鏡-結石間距離 L は約 7 mm、突き出し長さ l は 3 mm であった。
図 6-18. 屈曲機構による内視鏡の湾曲では照射困難な位置への照射
6-4. 考察

6-2-1 の実験結果から本研究で作製した屈曲機構は内視鏡を腎臓モデルに挿入した状態であっても屈曲動作が可能であることが示された。また表 6-1 に示した各方向へのレーザ照射移動量は 1 章表 1-3 で示した要求仕様の最低基準を満たしている。

一方で屈曲機構の突き出し量 a が 5 mm の場合では、10 mm の場合にくらべ屈曲動作が直線的でなくなり、不安定であった。この原因是内視鏡チャネル内壁と屈曲部が接触し、屈曲動作が妨げられるためであると推測される。

応答速度は約 4 秒前後であり十分な速度があると考えられる。第 4 章での実験において 2 秒ほどで屈曲角度が安定しており、使用したコントローラは電力量が最大になるまでに約 2.5 秒かかることから、妥当な結果である。

6-2-2 の結果から屈曲部のほとんどが内視鏡外に出ている突き出し長さ l が 7 mm の場合は、3 方向への屈曲と屈曲機構の回転を組み合わせることで 360° (6.30 rad) 方向に照射位置を移動できると考えられる。一方で本屈曲機構は 90° (1.57 rad) 以上の回転は難しかったことから、屈曲方向は 1 方向だけでは足りないことが示唆された。また、この操作方法は 360° (6.30 rad) 方向へ屈曲できる屈曲機構の操作と比べて煩雑である。したがって今後は 360° (6.30 rad) 方向へ屈曲が行えるよう、屈曲機構の構造の再検討を行うことが望ましい。

突き出し長さ l = 5 mm の場合においては、7 mm の場合に比べて抵抗が強く、ほとんど回転させることができなかった。これは内視鏡チャネル内で屈曲機構の一部が屈曲するため、チャネルの内部と接触して抵抗が生まるためだと考えられる（図 6-19）。したがって現在の仕様の場合は屈曲機構の突き出し長さが 10 mm 未満での使用には注意が必要である。

6-2-3 の結果から、本屈曲機構は内視鏡が移動できない条件であっても照射位置を移動できることができた。これにより、本屈曲機構を用いることでこれまで照射が難しかった部位への照射が可能になることが示唆された。この移動距離は特にモデル内壁と干涉していない 6-2-1 の実験結果（h = 1.5 mm）とも近く、シャフト部の影響を受けにくい能動屈曲機構の利点が再確認された。

これらの結果から屈曲機構本体に関して要求仕様を満たしており、F-TUL の課題解決に有効であると考えられる。一方で実際の F-TUL において、腎内腔と干涉してしまうため、突き出し量をあまり大きくできない状況も考えられ、そのような場合には回転操作が難しくなることから意図した照射位置制御が行えない可能性が出てくる。また装置は内視鏡からの距離が離れると視野内での大きさが小さくなり、状態が分かりにくくなるため、突き出し量はあまり大きくないほうがよい。したがって本屈曲機構を多くの状況で有効に使用するため、また内視鏡端面から 5 mm 程度の結石にも使用するために、屈曲機構の長さを 5 mm 程度に短くすることが望ましい。

コントローラのインターフェースとしてはフットスイッチを使用することで、手で操作する内視鏡やレーザファイバなどを既存の F-TUL と同様に行うことができ、医師より好評価を得られた。一方で、本実験で使用したコントローラでは入力から屈曲動作完了までに約
4秒と長くかかるため、操作する医師にとってあとどれくらい入力すれば先端が目的の位置に達するのか定量的に把握することが難しかった。
図 6-19. 内視鏡と屈曲機構の接触

(a) 突き出し量が大きい場合

(b) 突き出し量が小さい場合

図 6-19. 内視鏡と屈曲機構の接触
参考文献

7. 結言

第1章では尿路結石及びf-TULの解説と、解決すべき問題点、及び本研究の目的を述べた。

2章ではSMAワイヤーを用いた能動屈曲機構による解決策とその設計について述べた。外径1.1mmの屈曲機構を設計し、FEM解析と模擬屈曲機構を用いた実験的な解析で設計の確認を行なった。

第3章では能動屈曲機構の作製手順について述べた。先端に金属リンクを使用した屈曲機構の外径は0.92mmであった。

第4章では能動屈曲機構の水中での駆動と評価について述べた。作製した屈曲機構は水中内で動作し、要求仕様10° (0.17 rad)に対し屈曲角度は18°であり、表面温度も41°Cを下回った。応答速度の試験では約2秒で最大屈曲角度となり、十分な応答速度であった。再現性においては15° (0.26 rad)屈曲時に±0.5° (0.0087 rad)に収まった。一方で水温が異なる場合と、駆動電流の増加時、減少時には電流量に対する角度の違いが確認された。

第5章では能動屈曲機構の駆動回路とユーザインタフェースの検討と、コントローラの作製について述べた。

第6章では腎臓モデル内で、能動屈曲機構とコントローラからなるシステムに対し、総合的な評価を行った結果を述べた。本デバイスは尿管鏡(URFTYPE V)内で屈曲動作が可能であることを確認し、様々な内視鏡-結石(ターゲット間距離)と内視鏡端面から突出させた様々な屈曲長さにおいて、要求仕様の最低基準を超えた。屈曲動作後に回転操作を行うことでレーザ照射位置を初期位置から360° (6.30 rad)方向へ移動させることが可能であった。また作製した能動屈曲機構は尿管鏡を用いた実験で尿管鏡が直接照準できない位置への照準可能であることを確認した。また作製したフットスイッチを用いたコントローラは屈曲機構の操作に有用であることを確認した。

今後は、今後は360°多方向へ屈曲が行えるよう、構造の再検討を行うとともに屈曲部長さの短縮化を試みる必要がある。4章で角度と電流量の関係が一致しない条件が確認されたことから、SMAワイヤーの抵抗値から屈曲角度のフィードバック制御を可能とするコントローラを作製する。また、より多くの医師による試験を行い、屈曲機構とコントローラを有用性の高いものとしていく。
付録1
5-4-2-2で作製したフットスイッチ方式コントローラのソースコードを記載する。

#include<Wire.h>

unsigned char Switch= 0;
unsigned int count1, count2, count3 = 0; //押されていった時間
unsigned char Duty1, Duty2, Duty3 = 0;

void PWM(int inputpin, int outputpin, unsigned int* count, unsigned char* Duty, unsigned char* DutyB, unsigned char* DutyC) {
 Switch = digitalRead(inputpin);
 if (Switch == 1) { //オンの場合
 *DutyB = 0; *DutyC = 0;
 ++*count; //count を増やす
 if (100 <= *count) { //100回以上押し続けた場合は
 if (*Duty<245)*Duty += 1; //Duty を小さくする(Duty が 245 の時はキャンセル)
 }
 }
 else { //オフの場合
 if (1 < *count && *count < 100) { //短い押しだと判断する
...
if (*Duty < 235) *Duty += 10; //Duty を大きくする
}
count = 0; //オフになったので count をやめて 0 にする
analogWrite(outputpin, *Duty); //PWM の Duty を変更
}
付録
5-4-2-2 で作製したレバー方式コントローラのユーザ記述部のソースコードを記載する。

void APP_Initialize(void) {
 /* Place the App state machine in its initial state. */
 appData.state = APP_STATE_INIT;
 DRV_TMR0_Start();
 DRV_OC0_Start();
 DRV_OC1_Start();
 DRV_OC2_Start();
}

void APP_Tasks(void) {
 DRV_ADC_Open();
 while (!DRV_ADC_SamplesAvailable());
 adc1 = DRV_ADC_SamplesRead(0);
 adc2 = DRV_ADC_SamplesRead(1);
 DRV_ADC_Close();

 x = adc1 - 511;
 y = adc2 - 511;
 if (x == 0) x = 1;
 if (y == 0) y = 1;

 double a;
 a = (double) y / x;
 int power = 2 * sqrt(y * y + x * x);

 double wA, wB, wC;
 wA = 0;
 wB = 0;
 wC = 0;

 if ((a < -1.73 || 1.73 < a) && 0 < y) { //A
 wA = power;
 } else if (-1.73 < a && a < 0 && y < 0) { //B

wB = power;
} else if (0 < a && a < 1.73 && y < 0) {//C
 wC = power;
}

/* PWM MAX = 40000 */
OC1RS = wA * 40;
OC2RS = wB * 40;
OC3RS = wC * 40;

//以下省略
}
研究業績

査読付き論文
太刀岡俊樹, 松永忠雄, 柵橋善克, 小林拓生, 芳賀洋一
「経尿道的結石破砕術のための形状記憶合金(SMA)ワイヤーを用いた屈曲機構」
(第 2 章, 第 3 章)

太刀岡俊樹, 松永忠雄, 柵橋善克, 鶴岡典子, 芳賀洋一
「経尿道的尿路結石破砕術のためのレーザ照射位置制御機構」
日本コンピュータ外科学会誌 (掲載決定)
(第 6 章)

学会発表
太刀岡 俊樹, 松永忠雄, 柵橋善克, 小林拓生, 芳賀洋一
経尿道的尿管結石破砕術のための形状記憶合金(SMA)ワイヤーを用いた屈曲機構
電気学会 第 33 回「センサ・マイクロマシンと応用システム」2016 年 10 月 24 日～26 日

太刀岡 俊樹, 松永 忠雄, 柵橋 善克, 鶴岡 典子, 芳賀 洋一
「形状記憶合金(SMA)ワイヤーを用いた経尿道的結石破砕術のための光ファイバ屈曲機構」
第 50 回日本生体医工学会東北支部大会, 2017 年 1 月 21 日
謝辞

本研究を進めるにあたり、終始懇切なるご指導、ご鞭撻を賜りました本学大学院医工学研究科の芳賀洋一教授に心より感謝いたします。

本論文の審査にあたり、適切なるご助言、ご指導を賜りました本学医研究科の田中真美教授、松浦祐司教授に心より御礼申し上げます。

本研究を進めるにあたり、ご指導、助言をいただいていた本学大学院医工学研究科の松永雄准教授、工学研究科の鶴岡典子助教に深く感謝申し上げます。

本研究を遂行するにあたり、多大なるご指導・助言をしてくださった棚橋よしかつ泌尿器科の棚橋善克先生に深く感謝いたします。

日頃より様々なご指導、ご協力、有益な討論をしていただき、研究室の装置・消耗品などが常に使用できるよう管理してくださる研究室の皆様方に心から感謝し、敬意を表します。