Cu-NMR/NQR Studies of Spin Gap in the Edge-Sharing CuO₂ Chains of Ca₂⁺ₓY₂₋ₓCu₅O₁₀

著者

<table>
<thead>
<tr>
<th>姓氏</th>
<th>業績</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kumagai K.</td>
<td>柯美加 K.</td>
</tr>
<tr>
<td>Yoshimitsu Y.</td>
<td>吉光利 Y.</td>
</tr>
<tr>
<td>Shimamura M.</td>
<td>島村 M.</td>
</tr>
<tr>
<td>Kudo K.</td>
<td>広 K.</td>
</tr>
<tr>
<td>Kurogi S.</td>
<td>幸治 S.</td>
</tr>
<tr>
<td>Koike Y.</td>
<td>小池 Y.</td>
</tr>
</tbody>
</table>

journal or publication title

AIP Conference Proceedings

volume

850

page range

1021-1022

year

2006

URL

http://hdl.handle.net/10097/51541

doi: 10.1063/1.2355050
Cu-NMR/NQR Studies of Spin Gap in the Edge-Sharing CuO₂ Chains of Ca₂⁺ₓY₂₋ₓCu₅O₁₀

K. Kumagai*, K. Yoshimitsu*, A. Shimamura*, K. Kudo†, S. Kurogi† and Y. Koike†

*Division of Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
†Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan

Abstract. We have studied 63Cu-NMR of Ca₂⁺ₓY₂₋ₓCu₅O₁₀ with edge-sharing CuO₂ chains. The Knight shift, ^{63}K, and nuclear spin-lattice relaxation time, $^{63}T₁$, of 63Cu show spin gap behavior of $Δ$~50K for x=1.5 and 1.67, which is relevant for the spin dimer formation of Cu²⁺ spins in the chains.

Keywords: NMR, Knight shift, spin gap, dimer, Ca₂⁺ₓY₂₋ₓCu₅O₁₀

PACS: 74.60.-k, 76.60.Cq, 75.30.Kz

INTRODUCTION

After the discovery of high-T_c superconductors, low-dimensional quantum spin systems have attracted much interest, because of their peculiar magnetic and electronic properties. In particular, the fascinating coexistence/competition of a spin dimer (spin gap) state and magnetically-ordered state of the cuprates has caused much attention, as those two different ground states are generally believed to be mutually exclusive. $Sr₀.7₃Cu₂[1, 2, 3]$ and Ca$_x$Cu₂O$_3$ (x~0.85) [4] with edge-sharing CuO₂ chains are particular compounds which contain inherently holes with 40—60 % Cu. Previous measurements reveal a gap behavior for Cu spins in the Ca- and Sr-systems, indicating the existence of dimer spin configuration [3, 4]. Moreover, a magnetic order with small moments is reported at low temperature [5].

An isomorphic edge-sharing CuO₂ chain system Ca₂₊ₓY₂₋ₓCu₅O₁₀ is interesting, as x, hence, hole-doping can be largely changed [6, 7]. The end material Ca₂Y₂Cu₅O₁₀, which has no holes, shows an antiferromagnetic ordering of Cu moments below 29.5 K with ferromagnetic coupling along the chain [8]. With more hole doping (with increasing x) main magnetic interaction may become antiferromagnetic. Thus, the evolution of the magnetic ground state of this material is very important for clarifying magnetic properties in the hole-doped low-dimensional spin systems. Recently large single crystals of this material are successfully prepared [10, 11, 12]. In addition to thermodynamical properties, extensive studies on magnetic properties have yielded a detailed magnetic phase diagram [11, 12]. An appearance of a spin gap originating from the singlet dimers is suggested in a particular doping range in the vicinity of the AF ordered phase. Here we report results of Cu-NMR for single crystals of Ca₂₊ₓY₂₋ₓCu₅O₁₀. We have confirmed spin gap behavior from nuclear spin-lattice relaxation time and Knight shift for x=1.5 and 1.67.

EXPERIMENTAL

Samples were prepared by a traveling solvent floating method from a mixture of CaCO₃, Y₂O₃ and CuO in flowing oxygen of 10 atmosphere. Details of the crystal preparation and characterization were described in Ref.12. Cu-NMR/NQR was measured by a conventional phase coherent pulse method with a superconducting magnet up to H=9 T. We measured Cu-NMR for both single crystal and powdered sample. The Knight shift is obtained by fitting the whole spectrum (including satellite lines of both 63Cu and 65Cu isotopes) by using an nuclear quadrupole interaction of $ν_Q$ ~32 MHz.

RESULTS AND DISCUSSIONS

The observed $^{63}, ^{65}$Cu-NQR spectra are relatively sharp at high temperatures and become gradually broader at lower temperatures. At the lowest temperature (4.2K) the line width is as large as ~1MHz. The accuracy for the value of the Knight shift was poorer below 10K. The nuclear quadrupole frequency, $^{63}ν_Q$, is ~32 MHz is confirmed by the the NQR spectra. $^{63}ν_Q$ is nealy temperature-independent. The temperature dependence of the 63Cu-Knight shift, ^{63}K, is shown in Fig. 1. At high temperature, ^{63}K obeys a Curie-Weiss relation and shows a peak around T=40K followed by a rapid decrease with decreasing temperature for both x=1.5 and 1.67. This result seems to indicate the spin gap behavior in this hole-doping range.

The temperature dependence of $1/T₁$ of 63Cu shown in Fig. 2 also reveals gap behavior, where the $1/T₁$
obeys an activation type relation of \(\exp(-\Delta/kT) \) with \(\Delta = 40 \pm 50 \)K. These results show that the energy gap for the spin excitations does not change appreciably with hole-doping between \(x=1.5 \) and 1.67.

The Knight shift, which is proportional to the magnetic susceptibility, is calculated on the basis of the simple noninteracting dimer energy level scheme, as given by \(K_{\text{spin}}(T) = \mu B_{\text{eff}}(1/3 + \exp(\Delta/kT)) \). In spite of the crude function, the fitting to the experimental values for \(x=1.67 \) is satisfactory as shown in Fig. 1. We estimate the energy gap between the singlet and the triplet state to be \(\Delta \sim 50 \)K for \(x=1.67 \). In order to give insight into the hole-doping effects on the spin gap, one needs a microscopic theory, which takes into account the interchain coupling as well as the change of dimer interaction [13].

The small shoulder around 20K for \(x=1.5 \) and as well for \(x=1.67 \) is observed in the temperature dependence of the Knight shift and nuclear spin-lattice relaxation rate. The Knight shift, which is proportional to the magnetic susceptibility, is calculated on the basis of the simple noninteracting dimer energy level scheme, as given by \(K_{\text{spin}}(T) = \mu B_{\text{eff}}(1/3 + \exp(\Delta/kT)) \). In spite of the crude function, the fitting to the experimental values for \(x=1.67 \) is satisfactory as shown in Fig. 1. We estimate the energy gap between the singlet and the triplet state to be \(\Delta \sim 50 \)K for \(x=1.67 \). In order to give insight into the hole-doping effects on the spin gap, one needs a microscopic theory, which takes into account the interchain coupling as well as the change of dimer interaction [13].

The small shoulder around 20K for \(x=1.5 \) and as well for \(x=1.67 \) is observed in the temperature dependence of the Knight shift and nuclear spin-lattice relaxation rate. The Knight shift, which is proportional to the magnetic susceptibility, is calculated on the basis of the simple noninteracting dimer energy level scheme, as given by \(K_{\text{spin}}(T) = \mu B_{\text{eff}}(1/3 + \exp(\Delta/kT)) \). In spite of the crude function, the fitting to the experimental values for \(x=1.67 \) is satisfactory as shown in Fig. 1. We estimate the energy gap between the singlet and the triplet state to be \(\Delta \sim 50 \)K for \(x=1.67 \). In order to give insight into the hole-doping effects on the spin gap, one needs a microscopic theory, which takes into account the interchain coupling as well as the change of dimer interaction [13].

The small shoulder around 20K for \(x=1.5 \) and as well for \(x=1.67 \) is observed in the temperature dependence of the Knight shift and nuclear spin-lattice relaxation rate. The Knight shift, which is proportional to the magnetic susceptibility, is calculated on the basis of the simple noninteracting dimer energy level scheme, as given by \(K_{\text{spin}}(T) = \mu B_{\text{eff}}(1/3 + \exp(\Delta/kT)) \). In spite of the crude function, the fitting to the experimental values for \(x=1.67 \) is satisfactory as shown in Fig. 1. We estimate the energy gap between the singlet and the triplet state to be \(\Delta \sim 50 \)K for \(x=1.67 \). In order to give insight into the hole-doping effects on the spin gap, one needs a microscopic theory, which takes into account the interchain coupling as well as the change of dimer interaction [13].

The small shoulder around 20K for \(x=1.5 \) and as well for \(x=1.67 \) is observed in the temperature dependence of the Knight shift and nuclear spin-lattice relaxation rate. The Knight shift, which is proportional to the magnetic susceptibility, is calculated on the basis of the simple noninteracting dimer energy level scheme, as given by \(K_{\text{spin}}(T) = \mu B_{\text{eff}}(1/3 + \exp(\Delta/kT)) \). In spite of the crude function, the fitting to the experimental values for \(x=1.67 \) is satisfactory as shown in Fig. 1. We estimate the energy gap between the singlet and the triplet state to be \(\Delta \sim 50 \)K for \(x=1.67 \). In order to give insight into the hole-doping effects on the spin gap, one needs a microscopic theory, which takes into account the interchain coupling as well as the change of dimer interaction [13].

The small shoulder around 20K for \(x=1.5 \) and as well for \(x=1.67 \) is observed in the temperature dependence of the Knight shift and nuclear spin-lattice relaxation rate. The Knight shift, which is proportional to the magnetic susceptibility, is calculated on the basis of the simple noninteracting dimer energy level scheme, as given by \(K_{\text{spin}}(T) = \mu B_{\text{eff}}(1/3 + \exp(\Delta/kT)) \). In spite of the crude function, the fitting to the experimental values for \(x=1.67 \) is satisfactory as shown in Fig. 1. We estimate the energy gap between the singlet and the triplet state to be \(\Delta \sim 50 \)K for \(x=1.67 \). In order to give insight into the hole-doping effects on the spin gap, one needs a microscopic theory, which takes into account the interchain coupling as well as the change of dimer interaction [13].

The small shoulder around 20K for \(x=1.5 \) and as well for \(x=1.67 \) is observed in the temperature dependence of the Knight shift and nuclear spin-lattice relaxation rate. The Knight shift, which is proportional to the magnetic susceptibility, is calculated on the basis of the simple noninteracting dimer energy level scheme, as given by \(K_{\text{spin}}(T) = \mu B_{\text{eff}}(1/3 + \exp(\Delta/kT)) \). In spite of the crude function, the fitting to the experimental values for \(x=1.67 \) is satisfactory as shown in Fig. 1. We estimate the energy gap between the singlet and the triplet state to be \(\Delta \sim 50 \)K for \(x=1.67 \). In order to give insight into the hole-doping effects on the spin gap, one needs a microscopic theory, which takes into account the interchain coupling as well as the change of dimer interaction [13].