Origin of low coercivity of $(\text{Fe}_{0.75}\text{B}_{0.15}\text{Si}_{0.10})_{100-x}\text{Nb}_x$ glassy alloys

<table>
<thead>
<tr>
<th>著者</th>
<th>牧野 彰宏</th>
</tr>
</thead>
</table>

Journal of Applied Physics
Volume 99
Number 8
Page range 08F102-1-08F102-3
Year 2006
URL http://hdl.handle.net/10097/47379
doi: 10.1063/1.2158587
Origin of low coercivity of \((\text{Fe}_{0.75}\text{B}_{0.15}\text{Si}_{0.10})_{100-x}\text{Nb}_x\) (\(x=1-4\)) glassy alloys

T. Bitoh
Department of Machine Intelligence and Systems Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Yurihonjo 015-0055, Japan

A. Makino and A. Inoue
Advanced Research Center of Metallic Glasses, Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

(Presented on 1 November 2005; published online 17 April 2006)

The density and the magnetization process of the melt-spun \((\text{Fe}_{0.75}\text{B}_{0.15}\text{Si}_{0.10})_{100-x}\text{Nb}_x\) \((x=1-4)\) glassy alloys have been investigated to clarify the origin of low coercivity \((H_c)\). Both \(H_c\) and the difference of the densities between the crystalline and glassy phases, which corresponds to the free volume in the glassy phase, decrease with increasing Nb content. An analysis of the magnetization process based on the law of approach to ferromagnetic saturation reveals that quasi-dislocation dipole (QDD)-type defects are the main sources of elastic stress. The results also suggest that the pinning force for magnetic domain walls generated by one QDD-type defect is independent of the Nb content, but the number density of QDDs decreases with increasing Nb content. Therefore, it is concluded that the origin of low \(H_c\) of the glassy alloys is the low number density of QDDs which corresponds to the low number density of the domain-wall pinning sites. © 2006 American Institute of Physics. [DOI: 10.1063/1.2158587]

I. INTRODUCTION

In the last decade, a new class of Fe-based glassy alloys with a high glass-forming ability has been found.\(^1\)\(^2\) These glassy alloys have a large supercooled liquid region \((\Delta T_x =\text{crystallization temperature \((T_x)\)–glass transition temperature \((T_g)\))} before crystallization combined with good soft magnetic properties. Recently, we reported that the glassy Fe-(Al, Ga)-(P, C, B, Si, Ge) alloys exhibit low coercivity \((H_c)\), though their saturation magnetostriiction constant \((\lambda_s)\) is relatively large.\(^3\) We also reported that the origin of low \(H_c\) of the glassy Fe-(Al, Ga)-(P, C, B, Si) alloys is the low number density of the quasi-dislocation dipole (QDD)-type defects due to the small free volume in the glassy phase.\(^4\)

In the present study, Nb content dependence of the density and the magnetic properties of the melt-spun \((\text{Fe}_{0.75}\text{B}_{0.15}\text{Si}_{0.10})_{100-x}\text{Nb}_x\) \((x=1-4)\) glassy alloys\(^5\) are investigated. The origin of low \(H_c\) of the glassy alloy system is also discussed.

II. THEORETICAL BACKGROUND

In crystalline materials \(H_c\) is determined by dislocations and grain boundaries. In amorphous or glassy materials both kind of defects in the conventional picture do not exist. Nevertheless, the observed \(H_c\) has values of the order of magnitude \(0.5 – 10\ \text{A/m}\) which are considerably larger than the expected ones for the intrinsic inhomogeneities \((\leq 3 \times 10^{-5} \text{ A/m})\) or short-range order \((\leq 1 \times 10^{-4} \text{ A/m})\). It is therefore suggested that in amorphous alloys exist inhomogeneities acting as strong pinning sites for magnetic domain walls (DWs). These pinning sites are found to correspond to stress sources.

\(^a\)Electronic mail: teruo_bitoh@akita-pu.ac.jp

![Figure 1](https://example.com/fig1.png)

FIG. 1. Schematic two-dimensional model for formation of QDDs in amorphous/glassy alloys by agglomeration of vacancy-type point defects in planar regions (Refs. 8 and 9). The QDD is characterized by dipole width \((D)\), dipole length \((L)\) perpendicular to the drawing plane and an effective Burgers vector \((b)\).
The type of the stress sources existing in amorphous/glassy alloys was investigated by means of the low of approach to ferromagnetic saturation, \(J = J_s - \Delta J(H) + \Delta J_{\text{par}}(H) \), where \(J \) is the magnetization, \(J_s \) is the saturation magnetization, \(H \) is the magnetic field, \(\Delta J_{\text{par}}(H) \) describes the increase of \(J \) due to the so-called spin wave paraprocess, and \(\Delta J(H) = a_J/H^p \). Since the effect of intrinsic inhomogeneities on \(\Delta J \) is negligibly small,\(^8\) the inhomogeneity term \((a_J/H^p) \) is due to spin inhomogeneities induced by the magnetoelastic interactions between elastic stress \((\sigma) \) and the magnetization. The inhomogeneity term may be attributed to a certain type of the stress sources as follows:\(^8\)

- quasidislocation dipoles: \(\sigma \propto r^{-2} \rightarrow H^{-1} \),
- isolated quasidislocations: \(\sigma \propto r^{-1} \rightarrow H^{-2} \).

It was confirmed that \(\Delta J \) of many ordinary amorphous alloys obeys the \(H^{-1} \)-power law.\(^8,9\) This means that the QDDs are the main sources of the elastic stress. The range of spin inhomogeneities is governed by the so-called exchange length,\(^9\) \(L_{\text{ex}} = (2A/(HI_s))^1/2 \), where \(A \) is the exchange stiffness constant. The mean dipole width can be obtained by the transition field \((H_t) \) from the \(H^{-1} \) law to the \(H^{-2} \) law where \(D = L_{\text{sp}} \), i.e., \(D = (2A/(HI_s))^1/2 \).

Kronmüller and co-workers calculated \(H_t \) of a random distribution of the QDDs with the number density \(\rho_d \) based on the statistical potential theory as follows:\(^8,9\)

\[
H_t^c = 12G\Delta V \sqrt{\frac{\pi \rho_d}{30F\delta}} \ln \left(\frac{\pi L_{\text{DW}}}{2\delta} \right) \frac{\lambda_s}{J_s},
\]

where \(G \) is the shear modulus, \(\Delta V = DLb \) corresponds to the local volume contraction due to the QDDs, \(F \) is the DW area, \(\delta \) is the WD thickness, \(L_{\text{DW}} \) is the domain width, \(L \) is the dipole length, and \(b \) is the length of the effective Burgers vector, respectively.

III. EXPERIMENTAL PROCEDURE

The mother alloys were prepared by arc melting the mixtures of pure Fe (4N), B (2N5), Si (5N), and Nb (3N) in an Ar atmosphere. The rapidly solidified tapes with 5 mm in width and 20–30 μm in thickness were prepared by a single-roller melt-spinning apparatus in a reduced Ar atmosphere (20 kPa). Annealing treatment of the samples was carried out with no applied magnetic field in a vacuum. The amorphicity of the as-quenched and annealed samples was examined by x-ray diffractometry. The Curie temperature \(T_C \), \(T_g \), and \(T_s \) for the as-quenched amorphous/glassy and crystalline (mother alloys) samples were measured with a differential scanning calorimeter (DSC) at a heating rate of 0.67 K/s. \(J_s \) and \(\lambda_s \) were measured by a vibrating sample magnetometer, a dc B-H loop tracer, and a three-terminal capacitance method, respectively. The density \((\rho) \) was measured by the Archimedian method using tetrabromoethane. All the measurements were performed at room temperature.

IV. RESULTS AND DISCUSSION

Figure 2 shows \(T_C \), \(T_g \), \(T_s \), and \(\Delta T_s \) obtained from the DSC curves as a function of the Nb content. When \(x = 0 \), no glass transition was observed: i.e., this is not a glassy alloy but an ordinary amorphous alloy. The annealing conditions were determined from the results of DSC, i.e., for 7.2 ks at slightly below \(T_C = 673 \text{ K} \approx 0.94T_C \) for \(x = 0 \) and for 600 s at slightly below \(T_g = 773 \text{ K} \approx 0.96T_g \) for \(x = 1–4 \).

Figure 3 shows the Nb content dependence of \(\rho \) for the annealed amorphous/glassy and crystalline (mother alloys) samples. The density of the crystalline samples is almost

\[
\Delta \rho = \frac{(\rho_{\text{cryst}} - \rho_{\text{glass}}) / \rho_{\text{glass}}}{\rho_{\text{glass}}} \text{ of (Fe}_{0.75}\text{B}_{0.15}\text{Si}_{0.10}\text{)}_{100-x}\text{Nb}_{x} \text{ alloys.}
\]

Figure 4 shows the saturation magnetization, the magnetorstriction constant \((\lambda_s) \), and the coercivity \((H_c) \) of the annealed amorphous/glassy \((\text{Fe}_{0.75}\text{B}_{0.15}\text{Si}_{0.10})_{100-x}\text{Nb}_{x} \) alloys as a function of Nb content.
independent of the Nb content. On the other hand, ρ of the amorphous/glassy samples increases monotonically with increasing the Nb content. The density difference [Δρ = (ρ_{crystal} − ρ_{glass})/ρ_{glass}] shown in Fig. 3 decreases considerably with increasing the Nb content from 2.9% for x = 0 to 1.1% for x = 4. Figure 4 shows (a) J_{s}, (b) λ_{s}, and (c) H_{c} of the annealed amorphous/glassy samples as a function of the Nb content. The addition of Nb to the amorphous Fe-B-Si alloy causes the decrease in J_{s} and the increase in λ_{s}; however, it also brings the drastic decrease in H_{c}.

Figure 5 shows J as a function of (μ_{0}H)^{-1} (where μ_{0} is the permeability of a vacuum) for the annealed samples. The demagnetizing-field correction was made considering the sample to be an oblate ellipsoid with the same axial ratio.\(^{10}\) The H^{-1}-power law behavior of ∆J is observed for all the alloys in the range of 20 ≤ (μ_{0}H)^{-1} ≤ 50 T^{-1} (20 ≤ μ_{0}H ≤ 50 mT). In the higher magnetic field range of 180 ≤ (μ_{0}H)^{-2} ≤ 400 T^{-2} (50 ≤ μ_{0}H ≤ 75 mT), ∆J of all the alloys obeys the H^{-2}-power law. These results indicate that the QDDs are the main sources of the elastic stress similar to the ordinary amorphous alloys. Table I summarizes H_{t}, the mean dipole width (⟨D⟩), b, and δ. The details of the analysis were already reported.\(^{4}\) All the alloys have almost the same ⟨D⟩ (∼15 nm), b (∼0.05 nm), and δ (∼85 nm). These values are almost the same as those of the Fe–(Al, Ga)–(P, C, B, Si) glassy alloys.\(^{4}\)

The QDDs are formed by agglomeration of vacancy-type point defects in planar regions. Therefore, ρ_{s} is proportional to Δρ/ΔV because Δρ denotes the amount of the free volume in the amorphous/glassy phases. Let us further consider that L is proportional to D. Then all the alloys have almost the same ΔV. Under the above-mentioned assumptions, H_{s}^P can be expressed as follows:

\[
H_{s}^P = \frac{p_{c}(F_{L_{DW}})}{J_{s}} \sqrt{\frac{\Delta \rho}{\lambda_{s}}} \tag{2}
\]

where \(p_{c}(F_{L_{DW}})\) is the prefactor depends on F and L_{DW}. Figure 6 shows observed H_{s}^P(=H_{c}−H_{c}^{surf}) times J_{s}/λ_{s}, as a function of (Δρ)^{1/2}. Here, H_{c}^{surf} denotes the contribution of the surface irregularities to H_{c} and is calculated from the surface roughness of the tapes.\(^{4,11}\) As shown in Fig. 6, H_{s}^{P}/J_{s}/λ_{s} shows a tendency in proportion to (Δρ)^{1/2}. This means that the pinning force for DWs generated by one QDD-type defect is independent of the Nb content, but the number density of QDDs decreases with increasing the Nb content. Since H_{c} originates from the elastic stress of QDDs is proportional (Δρ)^{1/2}, the origin of low H_{c} of the Fe–B–Si–Nb glassy alloys is the low number density of QDDs which corresponds to low number density of the DW pinning sites, same as the Fe–(Al, Ga)–(P, C, B, Si) glassy alloys.

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO) through the R&D Institute of Metals and Composites for Future Industries (RIMCOF), and by Grant-in-Aid for Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology.

Table I. Transition field (μ_{0}H_{t}) from H^{-1} law to H^{-2} law, mean dipole width (⟨D⟩), length of effective Burgers vector (b), and domain-wall thickness (δ) of annealed amorphous/glassy (Fe_{x}B_{0.15}Si_{0.1}100−x-Nb_{x} alloys.

<table>
<thead>
<tr>
<th>x</th>
<th>μ_{0}H_{t} (mT)</th>
<th>⟨D⟩ (nm)</th>
<th>b (nm)</th>
<th>δ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41</td>
<td>15</td>
<td>0.06</td>
<td>86</td>
</tr>
<tr>
<td>1</td>
<td>32</td>
<td>16</td>
<td>0.06</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>15</td>
<td>0.05</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>42</td>
<td>14</td>
<td>0.04</td>
<td>81</td>
</tr>
</tbody>
</table>