マイクロスコーブトライボシステムによるセラミックス薄膜の摩耗機構の解析

著者 堀切川 一男

URL http://hdl.handle.net/10097/41406
CCDマイクロスコープトライボシステムによるセラミックス薄膜の摩耗機構の解析
（課題番号：12650134）
平成12年度～平成14年度科学研究費補助金（基盤研究（C）（2））研究成果報告書

平成15年5月

研究代表者 堀切川 一男
（東北大学 大学院工学研究科）
研究経過

研究者：堀切川一男（東北大学大学院工学研究科 教授）

交付決定額 (配分額) (金額単位：千円)

<table>
<thead>
<tr>
<th>年度</th>
<th>直接経費</th>
<th>間接経費</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成12年度</td>
<td>1,600</td>
<td>0</td>
<td>1,600</td>
</tr>
<tr>
<td>平成13年度</td>
<td>1,100</td>
<td>0</td>
<td>1,100</td>
</tr>
<tr>
<td>平成14年度</td>
<td>1,200</td>
<td>0</td>
<td>1,200</td>
</tr>
<tr>
<td>総 計</td>
<td>3,900</td>
<td>0</td>
<td>3,900</td>
</tr>
</tbody>
</table>

研究発表

口頭発表
招待講演，堀切川一男，摩擦・摩耗から考えた界面新機能の創出，
フィラー研究会（2000.6）

基調講演，堀切川一男，酸化被膜を有する熱間圧延ロール材の摩耗機構
日本鉄鋼協会創形創質工学部会第14回トライボロジーフォーラム（2001.12.6 東京）

研究成果による工業所有権の出願・取得状況

なし
CCDマイクロスコープトライボシステム
によるセラミックス薄膜の摩擦機構の解析

[1] CCDマイクロスコープトライボシステム
による摩擦過程の連続観察
目次

1. 緒論 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1

2. 実験方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・8

3. 実験結果

3. 1 接触特性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・15

3. 2 大気中無潤滑下における摩擦・摩耗特性 ・・・・・・・・・・・20
 3. 2. 1 摩擦特性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・21
 3. 2. 2 摩耗特性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・21
 3. 2. 3 摩耗痕形状特性 ・・・・・・・・・・・・・・・・・・・・・・・25
 3. 2. 4 摩耗過程のCCDマイクロスコープ観察 ・・・・・・・31

3. 3 基油潤滑下における摩擦・摩耗特性 ・・・・・・・・・・・36
 3. 3. 1 摩擦特性 ・・・・・・・・・・・・・・・・・・・・・・・・・37
 3. 3. 2 摩耗特性 ・・・・・・・・・・・・・・・・・・・・・・・・・42
 3. 3. 3 摩耗痕形状特性 ・・・・・・・・・・・・・・・・・・・・・・・45
 3. 3. 4 摩耗過程のCCDマイクロスコープ観察 ・・・・・・・59
 3. 3. 5 摩擦界面からの気泡発生現象 ・・・・・・・・・・・67
4. 考察

4. 1 大気中無潤滑下における摩擦・摩耗特性
 4. 1. 1 比摩耗量Wsと摩耗痕形状の関係・・・・・・・・70
 4. 1. 2 比摩耗量Wsと摩耗形態の関係・・・・・・・・71

4. 2 基油潤滑下における摩擦・摩耗特性
 4. 2. 1 比摩耗量Wsと摩耗痕形状の関係・・・・・・・・72
 4. 2. 2 比摩耗量Wsと表面損傷形態の関係・・・・・・・・73
 4. 2. 3 表面損傷形態とパラメータd・Paの関係・・・・・・・74
 4. 2. 4 摩擦界面からの気泡発生現象について・・・・・・76

4. 3 最大摩擦力FmaxとストロークLの関係・・・・・・・・77

4. 4 実用的見地からの耐摩耗性評価・・・・・・・・・・・・80

5. 結論・・・・・・・・・・・・・・・・・・・・82

参考文献・・・・・・・・・・・・・・・・・・・・85

参考表・・・・・・・・・・・・・・・・・・・・87
1．緒論

近年、乗用車の各種機械部品に対して、燃費改善のために、小型軽量化の要望が高まっている。例えば、図1．1のようなオートマティック車用トランスミッション内のクラッチドラムもその1つである。これらの部材に対しては、容易に加工可能で低密度であるアルミニウム合金化への期待が高い。しかしトランスミッション内のクラッチドラムスプライン部には、図1．2に示される様な摩耗発生領域が存在する。この部分の摩耗が進行すると、図1．3に示されるプロセスによってクラッチ板が焼け、寿命に至ってしまう。従って、鋼に比べ著しく硬度が低いアルミニウム合金の耐摩耗性の検討が必要である。そのため、これまで当研究室では、各種アルミニウム合金の摩耗の基本的特性と摩耗機構の解明の研究を行っている(1)～(3)。さらに十分な耐摩耗性を得るために、図1．4のようなアルミニウム合金に対する最適表面処理法とその摩耗の基本特性の解明が望まれている。表面被覆材の摩擦においては、被膜自身の摩耗の他に被膜の剥離等の現象も生じるため、表面摩耗機構は複雑となる。従って、摩耗機構の解明手法としては、図1．5に示される様にその場観察が最も有効であると考えられる。

そこで本研究では、図1．6に示される様に、CCDマイクロスコーピングを摩擦装置に組み込んだCCDマイクロスコーピングトライボシステムを用い、大気中無潤滑、基油潤滑下の各種表面処理アルミニウム合金の微視的摩耗過程を詳細に観察し、摩耗の基本特性を明らかにするとともに表面損傷機構を解明する。
図1.1 オートマティック車のトランスミッション内部
図1.2 クラッチ板歯車によるクラッチドラムの摩耗発生領域
現在のクラッチドラム：鋼製

アルミニウム合金化の期待大
軽量化，小型化 → 低燃費化

アルミニウム合金化の問題点

低硬度に起因する摩耗大の可能性

クラッチ板の不完全な係合

係合時におけるすべりの発生

クラッチ板の発熱大

クラッチ板の焼けに至る

図1.3 クラッチドラムのアルミニウム合金化の問題点
アルミニウム合金の耐摩耗性向上の表面処理

1. アルマイト処理
2. 硬質金属被覆
3. 硬質セラミック被覆

最適表面処理、最適使用条件が不明

各種表面処理材の基本的摩耗特性、摩耗機構の解明が必要

図1.4 アルミニウム合金化の耐摩耗性向上の課題
摩耗機構解明の手法

1. 摩擦後の摩耗面観察・分析
2. 摩耗粒子の観察・分析
3. 摩耗過程のその場観察・分析 最も有効

従来のその場観察の方法

SEMトライポシステム

長所
高倍率
元素分析可能
焦点深度が深い

短所
真空下

光学顕微鏡

長所
摩擦界面の
観察可能

短所
少なくとも一方
に透明板必要
低倍率

本研究の方法

CCDマイクロスコピーシステム

長所
任意の摩擦材に対し大気中・
潤滑下での摩耗
過程の観察可能

短所
低倍率

図1．5 摩耗機構解明の手法
図1.6 本研究の目的
2. 実験方法

本実験に用いた摩擦摩耗試験装置の写真を図2.1に，CCDマイクロスコーピングシステムの写真を図2.2に，試験装置の概略を図2.3に示す。摩擦対は，上部ビン試験片と下部の往復運動するプレート試験片から構成されている。実験中の接触部をCCDマイクロスコーピングにより連続的に観察し，VTRに録画した。必要に応じて，ビデオプリンターにより写真作成を行った。また摩擦係数は，ひずみゲージを用いて測定した。次に試験片形状の概略を図2.4に，またビン，プレート試験片の材質及び硬さを図2.5に示す。さらに実験条件を図2.6に示す。実験は，大気中無潤滑下及び油潤滑下（基油）で行った。
図2.1 実験装置
図2. 2 CCDマイクロトライボシステム
図2.3 CCDマイクロスコーピュータトライポシステムの概略
図2.4 ピン及びプレート試験片形状

ピン specimen
Plate specimen

L₁ = 25 mm R = 2 mm
L₂ = 4.5mm φ = 6 mm
L₃ = 5 mm θ = 90°
ピン試験片の材質及び硬さ

<table>
<thead>
<tr>
<th>Material</th>
<th>Vickers hardness Hv, kgf/mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>S45C</td>
<td>296</td>
</tr>
</tbody>
</table>

プレート試験片の材質及び硬さ

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Coating film</th>
<th>Material</th>
<th>Film thickness t, μm</th>
<th>Knoop hardness Hk, kgf/mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC12F</td>
<td>TiN</td>
<td>132</td>
<td>4</td>
<td>2050 ≥ 2350</td>
</tr>
<tr>
<td></td>
<td>Cr</td>
<td>100</td>
<td>4</td>
<td>870 ≥ 940</td>
</tr>
<tr>
<td>ADC12T5</td>
<td>Anodic oxid</td>
<td>103</td>
<td>5〜10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

図2. 5 ピン及びプレートの材質及び硬さ
実験条件

<table>
<thead>
<tr>
<th>内容</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal load W, N</td>
<td>4.9 ~ 58.8</td>
</tr>
<tr>
<td>Sliding velocity v, mm/s</td>
<td>2</td>
</tr>
<tr>
<td>Radius of pin tip R, mm</td>
<td>2</td>
</tr>
<tr>
<td>Number of cycles N, cycle</td>
<td>1 ~ 1000</td>
</tr>
<tr>
<td>Setting stroke L₀, mm</td>
<td>9.10</td>
</tr>
<tr>
<td>Frictional condition</td>
<td>1. Dry</td>
</tr>
<tr>
<td></td>
<td>2. Lubricated(Base oil)</td>
</tr>
<tr>
<td></td>
<td>• ρ = 0.87 g/cm³</td>
</tr>
<tr>
<td></td>
<td>• ν = 5.0 mm²/s</td>
</tr>
</tbody>
</table>

図2.6 実験条件
実験結果

3.1 接触特性

Coating film

Substrate

W

Pa

d

-15-
3. 実験結果

3.1 接触特性

大気中無潤滑下における，荷重Wとみかけの接触域直径d，及びみかけの接触面積Aaの関係をそれぞれ図3.1.1，図3.1.2に示す。いずれの被覆材においても，未処理材に比べ，低荷重域（W＝4.9～19.6N）でみかけの接触域直径，みかけの接触面積ともに小さい値をとることが判る。また，図3.1.2より求めた荷重Wとみかけの接触圧力Paの関係を図3.1.3に示す。各種被覆材のみかけの接触圧力は，高荷重域（W＝29.4～58.8N）では未処理材に近い値を示しているのに対し，低荷重域（W＝4.9～19.6N）では未処理材に比べ非常に高い値を示し，荷重の減少に伴い急激に増加しているのが判る。

以上に示されるように，硬質被覆材では，低荷重域（W＝4.9～19.6N）で，みかけの接触圧力は，未処理材に比べ著しく高く，苛酷な接触状態にあるといえる。従って，硬質被覆材に対しては，このような低荷重域（高接触圧力域）での摩擦摩耗特性を十分に把握しておく必要があるといえる。
図3.1.1 荷重とみかけの接触域直径の関係
図3.1.2 荷重とみかけの接触面積の関係
図3. 1. 3 荷重とみかけの接触圧力の関係
実験結果

3.2 大気中無潤滑下の摩擦・摩耗特性

\[W = 9.8 \text{N} \]

\[N = 1 \sim 1000 \]

Coating film

Substrate
3.2 大気中無潤滑下における摩擦、摩耗特性

3.2.1 摩擦特性

大気中無潤滑下において、摩擦繰返し数N=1及びN=100における平均動摩擦係数μをそれぞれ図3.2.1及び図3.2.2に示す。TiN、Cr被覆材及びアルマイト処理材（t=5〜10, 20μm）の平均動摩擦係数の値はN=1, 100いずれにおいても、およそμk=1.5程度に安定している。これに対し、未処理材およびアルマイト処理材（t=50μm）の平均動摩擦係数は、非常に高い値を示し、N=1の場合に比べN=100の場合には、やや減少しているのが判る。

3.2.2 摩耗特性

大気中無潤滑下における未処理材及び各種被覆材の比摩耗量Wsを図3.2.3に示す。TiN、Cr被覆材及びアルマイト処理材（t=50μm）は、未処理材に比べ耐摩耗性が高く、特にアルマイト処理材（t=50μm）及びTiN被覆材の比摩耗量は未処理材に比べ1/6〜1/26程度の小さい値を示し、非常に耐摩耗性が高いことが判る。
Dry, W=9.8N, R=2mm, v=2mm/s

<table>
<thead>
<tr>
<th>Plate material</th>
<th>Friction coefficient, μ_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC12T5</td>
<td></td>
</tr>
<tr>
<td>TiN film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Cr film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Anodic oxid film on ADC12T5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$t=5\sim10\ \mu\text{m}$</td>
</tr>
<tr>
<td></td>
<td>$t=20\ \mu\text{m}$</td>
</tr>
<tr>
<td></td>
<td>$t=50\ \mu\text{m}$</td>
</tr>
</tbody>
</table>

図3.2.1 大気中無潤滑下における平均動摩擦係数 ($W=9.8N,N=1$)
Dry, W=9.8N, R=2mm, v=2mm/s

<table>
<thead>
<tr>
<th>Plate material</th>
<th>Friction coefficient, μ_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC12T5</td>
<td></td>
</tr>
<tr>
<td>TiN film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Cr film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Anodic oxid film on ADC12T5</td>
<td></td>
</tr>
<tr>
<td>t=5~10 μm</td>
<td></td>
</tr>
<tr>
<td>t=20 μm</td>
<td></td>
</tr>
<tr>
<td>t=50 μm</td>
<td></td>
</tr>
</tbody>
</table>

図3．2．2 大気中無潤滑下における平均動摩擦係数（$W=9.8N, N=100$）
乾燥下において、W=9.8N、R=2mm、v=2mm/s、N=1000のときの比摩耗量を表す。

<table>
<thead>
<tr>
<th>Plate material</th>
<th>Specific wear rate W_s, $\times 10^{-5}$ mm2/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC12T5 (without coating film)</td>
<td></td>
</tr>
<tr>
<td>TiN film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Cr film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Anodic oxid film on ADC12T5</td>
<td></td>
</tr>
<tr>
<td>$t=5~10\mu m$</td>
<td></td>
</tr>
<tr>
<td>$t=20\mu m$</td>
<td></td>
</tr>
<tr>
<td>$t=50\mu m$</td>
<td></td>
</tr>
</tbody>
</table>

※Specific wear rate W_s of pin <0 (gross transfer of plate material)
3.2.3 摩耗痕形状特性

大気中無潤滑下における、未処理材及び各種被覆材の摩耗痕幅2bの値を図3.2.4に示す。次に、摩耗痕中央部の摩擦に垂直な方向の断面における最大摩耗痕深さh_{1max}及び最大盛り上がり高さh'_{1max}を図3.2.5に示す。また、同様に摩擦方向に対する最大摩耗痕深さh_{2max}及び最大盛り上がり高さh'_{2max}を図3.2.6に示す。h_{1max}, h'_{1max}, h_{2max}, h'_{2max}ともに、TiN被覆材及びアルマイト処理材（t=50μm）は、未処理材に比べ小さな値を示している。

次に各実験におけるストロークLを図3.2.7に示す。ここでストロークLは、図中のようにみかけのストロークL'の摩耗痕両端部からaをひいた値である。従って、ストロークLは次式により補正した値とする。

\[R^2 = a^2 + (R-h^2)^2 \]
\[a^2 - 2Rh^2 + h^2 = 0 \]

ここで \(h^2 \rightarrow 0 \) とし \(h^2 = 0 \)
\[a^2 - 2Rh^2 = 0 \]
従って \(a = \sqrt{2Rh} \)

\(R = 2\text{mm} \) より \(a = 2\sqrt{h} \)

\[L = L' - 2a \]
\[= L' - 4\sqrt{h} \]

図3.2.7より未処理材に比べ、TiN被覆材及びアルマイト処理材（t=50μm）のストロークLは、大きくなっていることが判る。これらの値をまとめて表3.2.1に示す。
Dry, W=9.8N, R=2mm, v=2mm/s, N=1000

<table>
<thead>
<tr>
<th>Plate material</th>
<th>Maximum width of wear scar 2b, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC12T5</td>
<td></td>
</tr>
<tr>
<td>TiN film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Cr film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Anodic oxid film on ADC12T5</td>
<td>t=5~10 μm</td>
</tr>
<tr>
<td></td>
<td>t=20 μm</td>
</tr>
<tr>
<td></td>
<td>t=50 μm</td>
</tr>
</tbody>
</table>

図3.2.4 大気中無潤滑下における最大摩耗痕幅
Dry, W=9.8 N, R=2 mm, v=2 mm/s, N=1000

<table>
<thead>
<tr>
<th>Maximum height of side ridges of wear groove</th>
<th>Maximum depth of wear groove</th>
</tr>
</thead>
<tbody>
<tr>
<td>h'\text{max}, \mu m</td>
<td>h_1\text{max}, \mu m</td>
</tr>
<tr>
<td>400</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>200</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>0</td>
<td>500</td>
</tr>
</tbody>
</table>

- ADC12T5
- TiN film on ADC12F
- Cr film on ADC12F
- Anodic oxid film on ADC12T5
 - (t=5~10 \mu m)
 - (t=20 \mu m)
 - (t=50 \mu m)

図3.2.5 大気中無潤滑下における最大盛り上がり高さ及び最大摩耗痕深さ (W=9.8 N, N=1000)
Dry, $W=9.8\,N$, $R=2\,mm$, $v=2\,mm/s$, $N=1000$

<table>
<thead>
<tr>
<th>Maximum height of side ridges of wear groove</th>
<th>Maximum depth of wear groove</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_{2\text{max}}, \mu m$</td>
<td>$h_{2\text{max}}, \mu m$</td>
</tr>
<tr>
<td>500</td>
<td>400</td>
</tr>
<tr>
<td>ADC12T5</td>
<td></td>
</tr>
<tr>
<td>TiN film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Cr film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>{Anodic oxid film on ADC12T5 (t=5\sim10 ,\mu m)}</td>
<td></td>
</tr>
<tr>
<td>{Anodic oxid film on ADC12T5 (t=20 ,\mu m)}</td>
<td></td>
</tr>
<tr>
<td>{Anodic oxid film on ADC12T5 (t=50 ,\mu m)}</td>
<td></td>
</tr>
</tbody>
</table>

図3.2.6 大気中無潤滑下における最大盛り上がり高さ及び最大摩耗痕深さ ($W=9.8\,N, N=1000$)
Dry, W=9.8N, R=2mm, v=2mm/s, N=1000

<table>
<thead>
<tr>
<th>Plate material</th>
<th>Stroke L, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC12T5</td>
<td></td>
</tr>
<tr>
<td>TiN film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Cr film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Anodic oxid film on ADC12T5</td>
<td></td>
</tr>
<tr>
<td>t=5~10μm</td>
<td></td>
</tr>
<tr>
<td>t=20μm</td>
<td></td>
</tr>
<tr>
<td>t=50μm</td>
<td></td>
</tr>
</tbody>
</table>

図3. 2. 7 大気中無潤滑下におけるストローク (W=9.8N, N=1000)
表3. 2. 1 大気中無潤滑下における摩耗痕形状特性及び摩耗特性

Pin:S45C, R=2mm, v=2mm/s, W=9.8N, N=1000

<table>
<thead>
<tr>
<th>No.</th>
<th>Film</th>
<th>h₁ (μm)</th>
<th>h₁' (μm)</th>
<th>h₁+h₁' (μm)</th>
<th>h₂ (μm)</th>
<th>h₂' (μm)</th>
<th>h₂+h₂' (μm)</th>
<th>2b (mm)</th>
<th>L₁ (mm)</th>
<th>L (mm)</th>
<th>ωs (Plate) mm²/N</th>
<th>ωs (Pin) mm²/N</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>018</td>
<td>ADC12T5 (without coating film)</td>
<td>270</td>
<td>60</td>
<td>330</td>
<td>280</td>
<td>10</td>
<td>290</td>
<td>2.28</td>
<td>7.10</td>
<td>5.02</td>
<td>3.205×10⁻⁵</td>
<td>—</td>
<td>1000</td>
</tr>
<tr>
<td>001</td>
<td>TiN film on ADC12F</td>
<td>38</td>
<td>18</td>
<td>56</td>
<td>42</td>
<td>8</td>
<td>50</td>
<td>1.15</td>
<td>8.50</td>
<td>7.72</td>
<td>1.209×10⁻⁶</td>
<td>—</td>
<td>1000</td>
</tr>
<tr>
<td>002</td>
<td>Cr film on ADC12F</td>
<td>220</td>
<td>50</td>
<td>270</td>
<td>240</td>
<td>140</td>
<td>380</td>
<td>2.20</td>
<td>7.50</td>
<td>5.62</td>
<td>1.648×10⁻⁵</td>
<td>—</td>
<td>1000</td>
</tr>
<tr>
<td>003</td>
<td>Anodic oxid film on ADC12F</td>
<td>t=5-10 μm</td>
<td>325</td>
<td>65</td>
<td>390</td>
<td>360</td>
<td>145</td>
<td>505</td>
<td>2.50</td>
<td>7.50</td>
<td>5.22</td>
<td>4.562×10⁻⁵</td>
<td>1000</td>
</tr>
<tr>
<td>019</td>
<td></td>
<td>t=20 μm</td>
<td>450</td>
<td>70</td>
<td>520</td>
<td>440</td>
<td>70</td>
<td>510</td>
<td>2.59</td>
<td>8.00</td>
<td>5.32</td>
<td>5.754×10⁻⁵</td>
<td>1000</td>
</tr>
<tr>
<td>010</td>
<td></td>
<td>t=50 μm</td>
<td>80</td>
<td>60</td>
<td>90</td>
<td>160</td>
<td>10</td>
<td>1.42</td>
<td>8.20</td>
<td>7.07</td>
<td>5.402×10⁻⁵</td>
<td>—</td>
<td>1000</td>
</tr>
</tbody>
</table>

A - A

B - B

2b; 最大摩耗痕幅
h₁; 最大摩耗痕深さ
h₁'; 最大盛り上がり高さ

L; みかけのストローク
h₂; 最大摩耗痕深さ
h₂'; 最大盛り上がり高さ
3.2.4 摩耗過程のCCDマイクロスコープ観察

大気中無潤滑下において、CCDマイクロスコープにより観察された摩擦繰返し数Nの増加に伴う摩耗形態の変化を図3.2.9に示す。被覆材の摩耗は、基本的には、被膜の摩耗（3つの形態）と下地の摩耗（2つの形態）に分けられる。TiN被覆材は、下地の摩耗へ遷移しておらず、アルマイト処理材（t=50μm）もN=1000付近では下地の摩耗へ遷移していることが判る。

被膜の摩耗形態は、最もマイルドなPloughing、最も激しいフレーク状の摩耗粒子を発生するFlake formation、細かなパウダー状の摩耗粒子を発生するPowder formation、の3形態に分類できる。また、下地の摩耗形態は、摩擦に伴う表面の塑性流動に起因して、Shear tongueと呼ばれる薄片状の微小摩耗粒子が発生する摩耗形態である。Shear tongueの摩耗形態の中には、1回の摩擦中に摩耗粒子が発生するタイプ（Shear tongue formation in single pass sliding）と、繰り返し摩擦することによって発生するタイプ（Shear tongue formation in repeat pass sliding）の2形態が存在する。これらをまとめて、図3.2.9のようにある。また、被膜の3種類の摩耗形態の写真を図3.2.10に、下地の2種類の摩耗形態の写真を図3.2.11に示す。
乾燥状態，荷重W=9.8N，直径R=2mm，速度v=2mm/s，回転数N=1000

<table>
<thead>
<tr>
<th>Plate material</th>
<th>Number of cycles N，cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ADC12T5 (without coating film)</td>
<td></td>
</tr>
<tr>
<td>TiN film on ADC12F</td>
<td>Film</td>
</tr>
<tr>
<td>Cr film on ADC12F</td>
<td>Film</td>
</tr>
<tr>
<td>Anodic oxid film on ADC12T5</td>
<td>t=5~10 μm</td>
</tr>
<tr>
<td></td>
<td>t=10 μm</td>
</tr>
<tr>
<td></td>
<td>t=20 μm</td>
</tr>
<tr>
<td></td>
<td>t=50 μm</td>
</tr>
</tbody>
</table>

- Ploughing of coating film
- Flake formation of coating film
- Powder formation of coating film
- Wedge or Shear tongue formation of substrate in single pass sliding
- Shear tongue formation of substrate in repeat pass sliding

図3.2.8 大気中無潤滑下における摩擦線返し数の增加に伴う摩耗形態の変化
被覆材の耐摩耗性を向上させるためには、
1. 被膜の激しい摩耗（Flake formation）の発生を抑制する。
 → TiN被覆、Cr被覆
2. 十分な膜厚をもたせ、下地の摩耗への移行を抑制する。
 → アルマイト処理（t=50μm）

図3. 2. 9 大気中無潤滑下における摩耗形態の遷移過程
(a)
N=1

Ploughing

(b)
N=10

Flake formation

(c)
N=100

Powder formation

図3. 2. 10 大気中無潤滑下における、摩擦繰返し数の増加に伴う被膜の摩耗形態の遷移過程
(plate material; Anodic oxid film on ADC12 F W=9.8N, v=2mm/s, R=2mm)
Wedge or shear tongue formation in single pass sliding

Shear tongue formation in repeat pass sliding

(plate material; Anodic oxid film on ADC12F W=9.8N, v=2mm/s, R=2mm)
実験結果

3. 3 基油潤滑下の摩擦・摩耗特性

\[W = 4.9 \sim 58.8N \]

\[N = 1 \sim 1000 \]

Lubricant (Base oil)

Coating film

Substrate
3.3 基油潤滑下における摩擦・摩耗特性

3.3.1 摩擦特性

基油潤滑下、荷重W=4.9Nの摩擦特性において、摩耗線返し数N=1及びN=100における平均動摩擦係数μkの値を、それぞれ図3.3.1及び図3.3.2に示す。Cr被覆材のμkはN=1, 100いずれの場合にも、およそ0.06と未処理材よりはるかに低い値となっている。また他の試験片では、μkはN=1の場合に比べ、N=100の場合にはやや減少する傾向にあることが判る。

基油潤滑下、W=9.8Nの摩擦特性において、N=1及びN=100における平均動摩擦係数μkの値を、それぞれ図3.3.3及び図3.3.4に示す。TiN被覆材のμkはN=1, 100の場合にも、およそ0.56と未処理材より低い値をとる。W=4.9Nの場合と同様に、他の試験片では、μkはN=1の場合に比べ、N=100の場合には、やや減少する傾向にあることが判る。
Lubricated (Base oil), W=4.9N, R=2mm, v=2mm/s

<table>
<thead>
<tr>
<th>Plate material</th>
<th>Friction coefficient, μ k</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC12T5</td>
<td></td>
</tr>
<tr>
<td>TiN film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Cr film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Anodic oxid film on ADC12T5 (t=5~10 μm)</td>
<td></td>
</tr>
</tbody>
</table>

図3. 3. 1 基油潤滑下における平均動摩擦係数 ($W=4.9N, N=1$)
Lubricated (Base oil), W=4.9N, R=2mm, v=2mm/s

<table>
<thead>
<tr>
<th>Plate Material</th>
<th>Friction Coefficient, μ_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC12T5</td>
<td></td>
</tr>
<tr>
<td>TiN film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Cr film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Anodic oxid film on ADC12T5 (t=5-10 μm)</td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing friction coefficients for different materials](image)

図3. 3. 2 基油潤滑下における平均動摩擦係数 (W=4.9N, N=100)
Lubricated (Base oil), $W=9.8N$, $R=2mm$, $v=2mm/s$

<table>
<thead>
<tr>
<th>Plate material</th>
<th>Friction coefficient, μ_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC12T5</td>
<td></td>
</tr>
<tr>
<td>TiN film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Cr film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Anodic oxid film on ADC12T5</td>
<td></td>
</tr>
<tr>
<td>$t=5\sim10 \mu m$</td>
<td></td>
</tr>
<tr>
<td>$t=20 \mu m$</td>
<td></td>
</tr>
<tr>
<td>$t=50 \mu m$</td>
<td></td>
</tr>
</tbody>
</table>

図3. 3. 3 基油潤滑下における平均動摩擦係数 ($W=9.8N$, $N=1$)
Lubricated (Base oil), W=9.8N, R=2mm, v=2mm/s

<table>
<thead>
<tr>
<th>Plate material</th>
<th>Friction coefficient, μ_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC12T5</td>
<td></td>
</tr>
<tr>
<td>TiN film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Cr film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Anodic oxid film on ADC12T5</td>
<td></td>
</tr>
<tr>
<td>t=5-10 μm</td>
<td></td>
</tr>
<tr>
<td>t=20 μm</td>
<td></td>
</tr>
<tr>
<td>t=50 μm</td>
<td></td>
</tr>
</tbody>
</table>

図3．3．4 基油潤滑下における平均動摩擦係数 (W=9.8N, N=100)
3.3.2 摩耗特性

基油潤滑下，荷重W=4.9Nの場合における，未処理材及び各種被覆材のピン及びプレート試験片の比摩耗量Wsを図3.3.5に示す．TiN及びCr被覆材は，未処理材に比べ耐摩耗性が高いことが判る．但し，TiN被覆材の相手材（S45Cピン）の比摩耗量Wsは，未処理材に比べおよそ15倍の高い値を示していることが判る．

基油潤滑下，W=9.8Nの場合における，未処理材及び各種被覆材のピン及びプレート試験片の比摩耗量Wsを図3.3.6に示す．この条件下では，硬質表面処理材は，ピン及びプレート試験片の摩耗を増加させる傾向にあることが判る．但し，TiN被覆材だけは，未処理材に比べわずかに耐摩耗性が高いことが判る．
基油潤滑下におけるピン及びプレート試験片の比摩耗量（W=4.9N）

Lubricated (Base oil), W=4.9N, R=2mm, v=2mm/s, N=1000

<table>
<thead>
<tr>
<th>Plate material</th>
<th>Pin (S45C)</th>
<th>Plate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specific wear rate $W_s \times 10^{-7}$ mm2/N</td>
<td></td>
</tr>
<tr>
<td>ADC12T5 (without coating film)</td>
<td>32.0</td>
<td>4.0</td>
</tr>
<tr>
<td>TiN film on ADC12F</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Cr film on ADC12F</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>Anodic oxid film on ADC12T5 (t=5~10μm)</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

基油潤滑下、W=4.9Nの場合には、TiN、Cr被覆材の耐摩耗性は向上する。但し、TiN被覆材は相手材(S45Cピン)の摩耗を著しく増加させる。

図3.3.5 基油潤滑下におけるピン及びプレート試験片の比摩耗量（W=4.9N）
基油潤滑下におけるピン及びプレート試験片の比摩耗量（W=9.8N）

Lubricated (Base oil), W=9.8N, R=2mm, v=2mm/s, N=1000

<table>
<thead>
<tr>
<th>Plate material</th>
<th>Pin (S45C)</th>
<th>Plate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specific wear rate $W_s \times 10^{-7}$ (\text{mm}^2/\text{N})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>0</td>
</tr>
<tr>
<td>ADC12T5 (without coating film)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiN film on ADC12F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr film on ADC12F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anodic oxid film on ADC12T5</td>
<td>t=5~10 µm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>t=20 µm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>t=50 µm</td>
<td></td>
</tr>
</tbody>
</table>

基油潤滑下、W=9.8Nの場合には、硬質表面処理は、ピン及びプレートの摩耗を増加させる傾向にある。

図3. 3. 6 基油潤滑下におけるピン及びプレート試験片の比摩耗量（W=9.8N）
3.3.3 摩耗痕形状特性

基油潤滑下、荷重W=4.9Nの場合における，未処理材及び各種被覆材の摩耗痕幅2bの値を図3.3.7に示す。TiN被覆材は1.31mmと，他の試験片の3倍以上の値をとっている。

W=9.8Nの場合における，未処理材及び各種被覆材の2bの値を図3.3.8に示す。W=4.9Nの場合と逆にTiN被覆材は0.28mmと，最も低い値をとっている。

次に，基油潤滑下，荷重W=4.9Nの場合における，未処理材及び各種被覆材の摩擦に垂直な方向に対する最大摩耗痕深さh_{max}及び最大盛り上がり高さh'_{max}を図3.3.9に示す。また，摩擦方向に対する最大摩耗痕深さh_{max}及び最大盛り上がり高さh'_{max}を図3.3.10に示す。TiN被覆材は，h_{max}，h'_{max}，h_{max}，h'_{max}の値はいずれも未処理材に比べ小さな値を示している。

W=9.8Nの場合における，未処理材及び各種被覆材のh_{max}及びh'_{max}を図3.3.11に，h_{max}及びh'_{max}を図3.3.12に示す。各種被覆材のh_{max}は，未処理材に比べ小さな値になっている。一方，h'_{max}は，逆に未処理材に比べ大きな値を示している。

基油潤滑下，荷重W=4.9Nの場合における，未処理材及び各種被覆材のストローカ長を図3.3.13に示す。ここで，ストローカ長は，大気中無潤滑下と同様，みかけのストローカ長を用いて補正した値を採用している。図3.3.13より各種被覆材ともに未処理材とはほとんど変わらない値をとることが判る。

W=9.8Nの場合における，未処理材及び各種被覆材のストローカ長を図3.3.14に示す。Cr被覆材のストローカは未処理材より小さいが，他の被覆材は，未処理材とほとんど変わらない値をとることが判る。

各実験条件下で得られたこれらの摩耗痕形状の測定値を，表3.3.1～表3.3.5にまとめて示す。
Lubricated (Base oil), W=4.9N, R=2mm, v=2mm/s, N=1000

<table>
<thead>
<tr>
<th>Plate material</th>
<th>Maximum width of wear scar 2b, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC12T5</td>
<td></td>
</tr>
<tr>
<td>TiN film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Cr film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Anodic oxid film on ADC12T5 (t=5-10 μm)</td>
<td></td>
</tr>
</tbody>
</table>

図3.3.7 基油潤滑下における最大摩耗痕幅 (W=4.9N)
Lubricated (Base oil), W=9.8N, R=2mm, v=2mm/s, N=1000

<table>
<thead>
<tr>
<th>Plate material</th>
<th>Maximum width of wear scar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2b, mm</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>ADC12T5</td>
<td></td>
</tr>
<tr>
<td>TiN film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Cr film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Anodic oxid film on ADC12T5</td>
<td></td>
</tr>
<tr>
<td>t=5~10 μm</td>
<td></td>
</tr>
<tr>
<td>t=20 μm</td>
<td></td>
</tr>
<tr>
<td>t=50 μm</td>
<td></td>
</tr>
</tbody>
</table>

図3. 3. 8 基油潤滑下における最大摩耗痕幅 (W=9.8N)
Lubricated (Base oil) , W=4.9N, R=2mm, v=2mm/s, N=1000

<table>
<thead>
<tr>
<th>Maximum height of side ridges of wear groove</th>
<th>Maximum depth of wear groove</th>
</tr>
</thead>
<tbody>
<tr>
<td>h₁ max, μm</td>
<td>h₁ max, μm</td>
</tr>
<tr>
<td>16 12 8 4 0</td>
<td>0 4 8 12 16</td>
</tr>
</tbody>
</table>

- ADC12T5
- TiN film on ADC12F
- Cr film on ADC12F
- Anodic oxid film on ADC12T5 (t=5~10 μm)

図3. 3. 9 基油潤滑下における最大盛り上がり高さ及び最大摩耗痕深さ (W=4.9N, N=1000)
<table>
<thead>
<tr>
<th>Maximum height of side ridges of wear groove</th>
<th>Maximum depth of wear groove</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h'_{2\text{max}}, \mu m$</td>
<td>$h_{2\text{max}}, \mu m$</td>
</tr>
<tr>
<td>16 12 8 4 0 0</td>
<td>0 4 8 12 16</td>
</tr>
</tbody>
</table>

- ADC12T5
- TiN film on ADC12F
- Cr film on ADC12F
- Anodic oxid film on ADC12T5 ($t=5\sim10 \mu m$)

図3.3.10 基油潤滑下における最大盛り上がり高さ及び最大摩耗痕深さ（$W=4.9N, N=1000$）
Lubricated (Base oil), W=9.8N, R=2mm, v=2mm/s, N=1000

<table>
<thead>
<tr>
<th>Maximum height of side ridges of wear groove</th>
<th>Maximum depth of wear groove</th>
</tr>
</thead>
<tbody>
<tr>
<td>ĥ₁max, μm</td>
<td>ĥ₁max, μm</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

ADC12T5	
TiN film on ADC12F	
Cr film on ADC12F	
Anodic oxid film on ADC12T5	
(t=5~10 μm)	
(t=20 μm)	
(t=50 μm)	

図3. 3. 11 基油潤滑下における最大盛り上がり高さ及び最大摩耗痕深さ (W=9.8N, N=1000)
Lubricated (Base oil), $W=9.8\text{N}$, $R=2\text{mm}$, $v=2\text{mm/s}$, $N=1000$

<table>
<thead>
<tr>
<th>Maximum height of side ridges of wear groove (h_2\text{max}, \mu\text{m})</th>
<th>Maximum depth of wear groove (h_2\text{max}, \mu\text{m})</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>0</td>
<td>30</td>
</tr>
</tbody>
</table>

- **ADC12T5**
- **TiN film on ADC12F**
- **Cr film on ADC12F**
- **Anodic oxid film on ADC12T5**
 - \(t=5\text{~to~}10\text{\mu m} \)
 - \(t=20\text{\mu m} \)
 - \(t=50\text{\mu m} \)

図3. 3. 12 基油潤滑下における最大盛り上がり高さ及び最大摩耗痕深さ \(W=9.8\text{N}, N=1000 \)
Lubricated (Base oil), \(W=4.9N, \ R=2\text{mm}, \ v=2\text{mm/s}, \ N=1000 \)

<table>
<thead>
<tr>
<th>Plate material</th>
<th>Stroke L, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC12T5</td>
<td></td>
</tr>
<tr>
<td>TiN film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Cr film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Anodic oxid film on ADC12T5 (t=5~10(\mu)m)</td>
<td></td>
</tr>
</tbody>
</table>

图3．3．13 基油潤滑下におけるストローク (\(W=4.9N, N=1000 \))
Lubricated (Base oil), \(W=9.8\,N \), \(R=2\,mm \), \(v=2\,mm/s \), \(N=1000 \)

<table>
<thead>
<tr>
<th>Plate material</th>
<th>Stroke L, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC12T5</td>
<td></td>
</tr>
<tr>
<td>TiN film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Cr film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Anodic oxid film on ADC12T5</td>
<td></td>
</tr>
<tr>
<td>(t=5\sim10,\mu,m)</td>
<td></td>
</tr>
<tr>
<td>(t=20,\mu,m)</td>
<td></td>
</tr>
<tr>
<td>(t=50,\mu,m)</td>
<td></td>
</tr>
</tbody>
</table>

图3. 3. 14 基油潤滑下におけるストローク (\(W=9.8\,N, N=1000 \))
表3. 3. 1 基油潤滑下における摩耗痕形状特性及び摩耗特性（W=9.8N）

<table>
<thead>
<tr>
<th>No.</th>
<th>Plate material</th>
<th>h₁</th>
<th>h'₁</th>
<th>h₁+h'₁</th>
<th>h₂</th>
<th>h'₂</th>
<th>h₂+h'₂</th>
<th>2b</th>
<th>L'</th>
<th>L</th>
<th>ωₛ (Plate) mm²/N</th>
<th>ωₛ (Pin) mm²/N</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>009-00</td>
<td>ADC12T5 (without coating film)</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>3.5</td>
<td>0.5</td>
<td>4</td>
<td>0.43</td>
<td>9.2</td>
<td>8.95</td>
<td>2.705×10⁻⁷</td>
<td>2.555×10⁻⁷</td>
<td>1000</td>
</tr>
<tr>
<td>004-00</td>
<td>TiN film on ADC12F</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1.31</td>
<td>8.99</td>
<td>8.99</td>
<td>8.070×10⁻⁸</td>
<td>3.221×10⁻⁶</td>
<td>1000</td>
</tr>
<tr>
<td>005-0</td>
<td>Cr film on ADC12F</td>
<td>13</td>
<td>3</td>
<td>16</td>
<td>11</td>
<td>3</td>
<td>14</td>
<td>0.11</td>
<td>9.4</td>
<td>8.94</td>
<td>1.873×10⁻⁷</td>
<td>1.137×10⁻⁷</td>
<td>1000</td>
</tr>
<tr>
<td>017-5</td>
<td>Anodic oxid film on ADC12T5</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0.30</td>
<td>9.2</td>
<td>8.80</td>
<td>5.195×10⁻⁷</td>
<td>2.598×10⁻⁷</td>
<td>1000</td>
</tr>
</tbody>
</table>

2b: 最大摩耗痕幅
h₁: 最大摩耗痕深さ
h'₁: 最大盛り上がり高さ

L': みかけのストローク
h₂: 最大摩耗痕深さ
h'₂: 最大盛り上がり高さ
表3. 3. 2 基油潤滑下における摩耗痕形状特性及び摩耗特性（W=4.9N）

Pin:S45C, R=2mm, v=2mm/s, W=9.8N, N=1000

<table>
<thead>
<tr>
<th>No.</th>
<th>Film</th>
<th>h₁ (μm)</th>
<th>h₁' (μm)</th>
<th>h₂ (μm)</th>
<th>h₂' (μm)</th>
<th>h₁+h₁' (μm)</th>
<th>h₂+h₂' (μm)</th>
<th>2b (mm)</th>
<th>L₁ (mm)</th>
<th>L (mm)</th>
<th>ωₘ (Plate) mm²/N</th>
<th>ωₘ (Pin) mm²/N</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>009</td>
<td>ADC12T5 (without coating film)</td>
<td>12</td>
<td>14</td>
<td>26</td>
<td>10</td>
<td>12</td>
<td>22</td>
<td>0.67</td>
<td>9.00</td>
<td>8.56</td>
<td>1.670×10⁻⁷</td>
<td>1.484×10⁻⁸</td>
<td>1000</td>
</tr>
<tr>
<td>004</td>
<td>TiN film on ADC12F</td>
<td>20</td>
<td>4</td>
<td>24</td>
<td>12</td>
<td>16</td>
<td>28</td>
<td>0.28</td>
<td>9.25</td>
<td>8.68</td>
<td>1.572×10⁻⁷</td>
<td>2.049×10⁻⁷</td>
<td>1000</td>
</tr>
<tr>
<td>005</td>
<td>Cr film on ADC12F</td>
<td>26</td>
<td>7</td>
<td>33</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>0.76</td>
<td>8.90</td>
<td>8.26</td>
<td>8.796×10⁻⁷</td>
<td>4.613×10⁻⁸</td>
<td>1000</td>
</tr>
<tr>
<td>006</td>
<td>Anodic oxid film on ADC12T5</td>
<td>t=5-10 μm</td>
<td>20</td>
<td>4</td>
<td>24</td>
<td>20</td>
<td>5</td>
<td>23</td>
<td>0.65</td>
<td>9.25</td>
<td>8.68</td>
<td>4.898×10⁻⁷</td>
<td>1.902×10⁻⁷</td>
</tr>
<tr>
<td>007</td>
<td>t=20 μm</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>7</td>
<td>27</td>
<td>0.65</td>
<td>9.50</td>
<td>8.93</td>
<td>5.315×10⁻⁷</td>
<td>2.276×10⁻⁷</td>
<td>1000</td>
</tr>
<tr>
<td>008</td>
<td>t=50 μm</td>
<td>22</td>
<td>0</td>
<td>22</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>0.67</td>
<td>9.20</td>
<td>8.61</td>
<td>6.625×10⁻⁷</td>
<td>8.851×10⁻⁸</td>
<td>1000</td>
</tr>
</tbody>
</table>
表3.3.3 TiN被覆材の基油潤滑下における摩耗痕形状特性及び摩耗特性

Pin:S45C, R=2mm, v=2mm/s,

<table>
<thead>
<tr>
<th>No.</th>
<th>W (N)</th>
<th>W₁/₃ (N⁻¹/₃)</th>
<th>h₁ (μm)</th>
<th>h'₁ (μm)</th>
<th>h₁⁺h'₁ (μm)</th>
<th>h₂ (μm)</th>
<th>h'₂ (μm)</th>
<th>h₂⁺h'₂ (μm)</th>
<th>2b (mm)</th>
<th>L' (mm)</th>
<th>L (mm)</th>
<th>ωₛ (Plate) (mm²/N)</th>
<th>ωₛ (Pin) (mm²/N)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>004-00</td>
<td>4.9</td>
<td>1.70</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1.31</td>
<td>—</td>
<td>8.99</td>
<td>8.523 × 10⁻⁸</td>
<td>3.221 × 10⁻⁶</td>
<td>1000</td>
</tr>
<tr>
<td>004</td>
<td>9.8</td>
<td>2.14</td>
<td>20</td>
<td>4</td>
<td>24</td>
<td>12</td>
<td>16</td>
<td>28</td>
<td>0.28</td>
<td>9.25</td>
<td>8.68</td>
<td>1.572 × 10⁻⁷</td>
<td>2.049 × 10⁻⁷</td>
<td>1000</td>
</tr>
<tr>
<td>004-1</td>
<td>19.6</td>
<td>2.70</td>
<td>22</td>
<td>4</td>
<td>26</td>
<td>15</td>
<td>5</td>
<td>20</td>
<td>0.53</td>
<td>9.10</td>
<td>8.51</td>
<td>—</td>
<td>—</td>
<td>50</td>
</tr>
<tr>
<td>004-2</td>
<td>29.4</td>
<td>3.09</td>
<td>30</td>
<td>12</td>
<td>42</td>
<td>35</td>
<td>25</td>
<td>60</td>
<td>0.63</td>
<td>8.10</td>
<td>7.41</td>
<td>1.419 × 10⁻⁵</td>
<td>1.049 × 10⁻⁶</td>
<td>50</td>
</tr>
</tbody>
</table>
表3.3.4 Cr被覆材の基油潤滑下における摩耗痕形状特性及び摩耗特性

Pin:S45C, R=2mm, v=2mm/s,

<table>
<thead>
<tr>
<th>No.</th>
<th>W N</th>
<th>W^{1/3} N^{1/3}</th>
<th>h₁ μm</th>
<th>h'₁ μm</th>
<th>h₁+h'₁ μm</th>
<th>h₂ μm</th>
<th>h'₂ μm</th>
<th>h₂+h'₂ μm</th>
<th>2b mm</th>
<th>L' mm</th>
<th>L mm</th>
<th>ω's (Plate) mm²/N</th>
<th>ω's (Pin) mm²/N</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>005-0</td>
<td>4.9</td>
<td>1.70</td>
<td>13</td>
<td>3</td>
<td>16</td>
<td>11</td>
<td>3</td>
<td>14</td>
<td></td>
<td>0.11</td>
<td>9.40</td>
<td>8.94</td>
<td>1.985×10⁻⁷</td>
<td>1.137×10⁻⁷</td>
</tr>
<tr>
<td>005-01</td>
<td>9.8</td>
<td>2.14</td>
<td>17</td>
<td>10</td>
<td>27</td>
<td>14</td>
<td>13</td>
<td>27</td>
<td></td>
<td>0.45</td>
<td>8.95</td>
<td>8.43</td>
<td>0.992×10⁻⁵</td>
<td>—</td>
</tr>
<tr>
<td>005-1</td>
<td>19.6</td>
<td>2.70</td>
<td>24</td>
<td>27</td>
<td>51</td>
<td>30</td>
<td>20</td>
<td>50</td>
<td></td>
<td>0.76</td>
<td>8.70</td>
<td>8.08</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>005-2</td>
<td>29.4</td>
<td>3.09</td>
<td>30</td>
<td>35</td>
<td>65</td>
<td>35</td>
<td>30</td>
<td>65</td>
<td></td>
<td>1.02</td>
<td>7.25</td>
<td>6.56</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>005-3</td>
<td>39.2</td>
<td>3.40</td>
<td>50</td>
<td>55</td>
<td>105</td>
<td>45</td>
<td>20</td>
<td>65</td>
<td></td>
<td>1.40</td>
<td>7.65</td>
<td>6.76</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>005-4</td>
<td>49.0</td>
<td>3.66</td>
<td>50</td>
<td>60</td>
<td>120</td>
<td>50</td>
<td>60</td>
<td>110</td>
<td></td>
<td>1.37</td>
<td>6.20</td>
<td>5.31</td>
<td>2.933×10⁻⁵</td>
<td>—</td>
</tr>
</tbody>
</table>
表3．3．5 アルマイト処理材（t=5～10μm）の基油潤滑下における摩耗痕形状特性及び摩耗特性

Pin:S45C, R=2mm, v=2mm/s,

<table>
<thead>
<tr>
<th>No.</th>
<th>W</th>
<th>W₁/₃</th>
<th>h₁</th>
<th>h₁+h₁</th>
<th>h₂</th>
<th>h₂+h₂</th>
<th>2b</th>
<th>L’</th>
<th>L</th>
<th>ωₛ (Plate)</th>
<th>ωₛ (Pin)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>017-5</td>
<td>4.9</td>
<td>1.70</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0.30</td>
<td>9.20</td>
<td>8.68</td>
<td>5.463×10⁻⁷</td>
<td>2.598×10⁻⁷</td>
</tr>
<tr>
<td>006</td>
<td>9.8</td>
<td>2.14</td>
<td>20</td>
<td>4</td>
<td>24</td>
<td>20</td>
<td>5</td>
<td>0.65</td>
<td>9.25</td>
<td>8.68</td>
<td>4.898×10⁻⁷</td>
<td>1.902×10⁻⁷</td>
</tr>
<tr>
<td>017-4</td>
<td>19.6</td>
<td>2.70</td>
<td>30</td>
<td>10</td>
<td>40</td>
<td>30</td>
<td>10</td>
<td>0.97</td>
<td>8.75</td>
<td>8.05</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>017</td>
<td>29.4</td>
<td>3.09</td>
<td>50</td>
<td>20</td>
<td>70</td>
<td>30</td>
<td>10</td>
<td>1.05</td>
<td>8.50</td>
<td>7.60</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>017-1</td>
<td>39.2</td>
<td>3.40</td>
<td>60</td>
<td>50</td>
<td>110</td>
<td>50</td>
<td>15</td>
<td>1.26</td>
<td>7.20</td>
<td>6.22</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>017-2</td>
<td>49.0</td>
<td>3.66</td>
<td>70</td>
<td>35</td>
<td>105</td>
<td>60</td>
<td>40</td>
<td>1.30</td>
<td>6.35</td>
<td>5.29</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>017-3</td>
<td>58.8</td>
<td>3.89</td>
<td>85</td>
<td>45</td>
<td>130</td>
<td>90</td>
<td>40</td>
<td>1.52</td>
<td>4.55</td>
<td>3.38</td>
<td>1.139×10⁻⁵</td>
<td>—</td>
</tr>
</tbody>
</table>
3. 3. 4 摩耗過程のCCDマイクロスコピー観察

基油潤滑下において、TiN被覆材、Cr被覆材、アルマイト処理材（t=5〜10 µm）のCCDマイクロスコピーにより観察された荷重Wの変化及び摩耗繰返し数Nの増加に伴う表面損傷形態の変移をそれぞれ図3. 3. 15、図3. 3. 16、図3. 3. 17に示す。これらの図には、最初にPowder状の摩耗粒子が発生する摩耗繰返し数と、その後生じる被膜の剥離の開始する摩耗繰返し数が、2本の曲線でそれぞれ示されている。この2本の曲線によって、表面損傷形態は、荷重と摩耗繰返し数により、Negligible wear（無視できるほど非常にマイルドな摩耗）、Wear of coating film（Powder状の摩耗粒子の生じる摩耗）Spalling of coating film（被膜の剥離が生じる摩耗）の3つの領域に分けることができる。TiN被覆材のW=19.6Nの場合において、観察された表面損傷形態（Powder formation, Spalling of coating film）の写真を図3. 3. 18に、被膜剥離後の摩耗痕を図3. 3. 19に示す。図3. 3. 18,図3. 3. 19より、Powder状の摩耗粒子に比べ、被膜の剥離による摩耗粒子が非常に大きいことが判る。

表面損傷形態は、荷重により被膜の剥離が生じない場合と生じる場合に分けることができた。そこで、繰返し摩擦後に被膜の剥離の生じる臨界荷重をWc1, 1回の摩擦で被膜が剥離する臨界荷重をWc2と呼ぶことにする。各種被覆材におけるWc1とWc2を図3. 3. 20に示す。Wc1は、TiN被覆材が最も高くなっていることが判る。一方、Wc2は、アルマイト処理材（t=5〜10 µm）が最も高くなっていることが判る。

以上のことから、硬質表面処理材の表面損傷形態は、荷重及び摩耗繰返し数に伴い図3. 3. 21に示すように分類できる。
図3.3.15 基油潤滑下におけるTiN被覆材の荷重及び摩擦回数に伴う表面損傷形態の遷移
基油潤滑下におけるCr被覆材の荷重及び摩擦繰返し数に伴う表面損傷形態の遷移

図3.3.16 基油潤滑下におけるCr被覆材の荷重及び摩擦繰返し数に伴う表面損傷形態の遷移
図3.3.17 基油潤滑下におけるアルマイト処理材（t=5〜10μm）の荷重及び摩擦繰返し数に伴う表面損傷形態の遷移

基油潤滑下におけるアルマイト処理材（t=5〜10μm）の荷重及び摩擦繰返し数に伴う表面損傷形態の遷移

荷重 Wc1 の値

日常荷重 Wc2 の値

Spalling of coating film
Wc2 = 1.1 x 10^{-5} \text{mm}^2/\text{N}

Wear of coating film

Negligible wear

Plate: Anodic oxide film (t=5〜10μm)
Pin: S45C (R=2mm)
Sliding velocity: v=2mm/s
Lubricant: Base oil
Powder formation

Spalling of coating film

图3. 3. 18 基油潤滑下における摩擦繰返し数の増加に伴う表面損傷形態の遷移過程

(Lubricant; Base oil, plate material; TiN film on ADC12F, W=19.6N, v=2mm/s, R=2mm)
(a) 繰返し摩擦後の被膜の剥離
（Lubricant; Base oil, plate material; TiN film on ADC 12F, W=19.6N, v=2mm/s, R=2mm, N=44）

(b) 被膜剥離後の摩耗痕
（plate material; TiN film on ADC12F, W=19.6N, v=2mm/s, R=2mm, N=50）

図3.3.19 被膜剥離後の摩耗面観察
（Wc₁ ≤ W < Wc₂）
基油潤滑下における各種被覆材の荷重に伴う表面損傷形態の遷移

<table>
<thead>
<tr>
<th>Plate material</th>
<th>Normal load W, N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>TiN film on ADC12F</td>
<td>Wear of coating film</td>
</tr>
<tr>
<td>Cr film on ADC12F</td>
<td>WC1</td>
</tr>
<tr>
<td>Anodic oxid film on ADC12T5</td>
<td>Spalling of coating film after repeated sliding pass</td>
</tr>
</tbody>
</table>

1. 1回の摩擦で剥離する臨界荷重Wc2は、アルマイト処理材が最も高い。
2. 繰返し摩擦後に剥離する臨界荷重Wc1は、TiN被覆材が最も高い。

実用的な面からは、TiN被覆材の付着強度が最も高いといえる。

図3.3.20 基油潤滑下における各種被覆材の荷重に伴う表面損傷形態の遷移
<table>
<thead>
<tr>
<th>条件</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W \geq Wc_2$</td>
<td>$(N=1)$</td>
</tr>
<tr>
<td></td>
<td>Spalling of coating film in single pass sliding</td>
</tr>
<tr>
<td>$Wc_1 \leq W < Wc_2$</td>
<td>$(N \geq 2)$</td>
</tr>
<tr>
<td></td>
<td>Spalling of coating film in repeat pass sliding</td>
</tr>
<tr>
<td>$W < Wc_1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Powder formation of coating film</td>
</tr>
</tbody>
</table>

Wc_1 : Critical load for spalling of coating film after repeated sliding pass

Wc_2 : Critical load for spalling of coating film at initial sliding pass

図3.3.21 基油潤滑下における表面損傷形態

繰返し摩擦後、被膜の剥離を生ずる臨界荷重 Wc_1の存在が明らかとなった。

Wc_1の測定には、CCDマイクロスコープトライボシステムが有効である。
3.3.5 摩擦界面からの気泡発生現象

基油潤滑下における実験では、摩擦初期の段階から、図3.3.22に示されるような気泡の発生が見られた。TiN被覆材の荷重W=9.8Nの場合の摩擦繰返し数Nにおける1ストローク当りの気泡の発生数を図3.3.23に示す。なお、気泡の発生数は、VTRに録画した摩擦接触域の画面をスロー再生することにより測定した。また、測定された気泡径は、およそ10～100μmであった。図3.3.23より、気泡の発生は、実験開始時に一番多く、N=6以後は1ストローク当り10個前後に落ち着くことが判る。
図3.3.22 摩擦界面における気泡発生と摩擦面観察

（Lubricant; Base oil, plate material; TiN film on ADC12F, W=9.8N, v=2mm/s, R=2mm）
図3. 3. 23 摩擦界面から発生する気泡数の摩擦繰返し数に伴う変化

Plate : TiN film (t=4 μm)
Pin: 545C (R=2mm)
Normal load : W=9.8N
Sliding velocity : v=2mm/s
Lubricant : Base oil
4．考察

4．1 大気中無潤滑下における摩耗特性

4.1.1 比摩耗量Wsと摩耗痕形状の関係

大気中無潤滑下においては、図3.2.3より、TiN被覆材及びアルマイト処理材（t=50μm）の比摩耗量Wsが小さい値を示している。そこで、この2つの被覆材に関じて、図3.2.4に示す摩耗痕幅をみると、いずれの被覆材においても小さい値を示している。また、図3.2.5、図3.2.6に示す最大盛り上がり高さ及び最大摩耗痕深さに関じても、同じようなことがいえる。これは、TiN被膜及びアルマイト処理（t=50μm）の耐摩耗性が高いことを意味している。

次に、図3.2.7に示すストロークに関しては、2つの被覆材いずれにおいても設定値（L0=9.10mm）により近い値を示している。このことから、激しい摩耗を生じた他の被覆材及び未処理材では、摩耗痕端部に摩耗粒子を蓄積することにより、ストロークを制限するようになると考えられる。
4.1.2 比摩耗量Wsと摩耗形態の関係

図3.2.3より，耐摩耗性の高いといえるTiN被覆材及びアルマイト処理材（t =50μm）に関して，図3.2.9に示す摩擦繰返し数の増加に伴う摩耗形態の変化をみると，TiN被覆材では，下地の摩耗への遷移がみられない．しかも，被膜の最も激しい摩耗であるFlake formationも発生していないことが判る．従って，比摩耗量は小さな値が得られたと考えられる．これに対し，アルマイト処理材（t =50μm）では，1000回付近で下地の摩耗への遷移してはいるものの，膜厚が大きいために被膜の摩耗が長く存在しているため，比摩耗量は小さな値が得られたと考えられる．

このことより，図3.2.11に示すように，被覆材の耐摩耗性を向上させるには，次の2つが挙げられる．

1. 被膜の激しい摩耗（Flake formation）の発生を抑制する．

2. 十分な膜厚をもたせ，下地の摩耗への移行を抑制する．

本実験においては，TiN被覆材が1に，アルマイト処理材（t=50μm）が2に相当するといえる．
4. 2 基油潤滑下における摩擦・摩耗特性

4. 2. 1 比摩耗量Wsと摩耗痕形状の関係

TiN被覆材の比摩耗量は、荷重W=4.9N、9.8Nの両荷重において、未処理材の比摩耗量よりも小さな値をとる。この時の摩耗痕形状は、図3. 3. 9、図3. 3. 10よりW=4.9Nの場合摩耗痕深さが、図3. 3. 8よりW=9.8Nの場合摩耗痕幅の値が最も小さな値をとっているとが判る。W=4.9Nの場合においてTiN被覆材の摩耗痕幅が大きな値を示すのは、相手材であるS45Cピンの先端が、図3. 3. 5に示されるように激しく摩耗してしまい平坦化し接触幅が広がったためと考えられる。
4.2.2 比摩耗量Wsと表面損傷形態の関係

図3.3.5, 図3.3.6及び図3.3.20より, 繰り返し摩擦後に被膜の剝離を生じる臨界荷重Wc以上的荷重における, TiN被覆材及びCr被覆材の被摩耗量は, 未処理材の被摩耗量に比べ小さな値をとることが判る。つまり, TiN被覆材及びCr被覆材の優れた耐摩耗性を発揮させるためには, 繰り返し摩擦後に被膜の剝離を生じる臨界荷重Wc以下の荷重で使用すべきであるといえる。

一方, アルマイト処理材（t=5〜10μm）の比摩耗量は, 比膜の剝離の有無にかかわらず, 未処理材の比摩耗量より大きな値をとることが判る。さらに, 膜厚が増すほど, 比摩耗量が増加することも判る。このように, 未処理材に比べ比摩耗量の値が大きくなる要因として, アルマイトの“脆さ”が大きく影響していると考えられる。よって, アルマイト処理では, 基油潤滑中におけるマイルド摩耗のレベルにおいては耐摩耗性の向上は難しいといえる。本研究で使用したアルマイト処理材は, 封孔処理を行っておらず, 多孔質組織となっている。ミクロなボア（孔）は, 脆性破壊型摩耗のき裂元となる。したがって, 通常耐食性を向上させる目的で行われる封孔処理（表4.2.1参照）を行えば, アルマイト処理材の耐摩耗性向上も期待できると考えられる。
表4.2.1 陽極酸化被膜の封孔方法

<table>
<thead>
<tr>
<th></th>
<th>処理方法</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>蒸気法</td>
</tr>
<tr>
<td>处理浴</td>
<td>加圧蒸気</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>—</td>
</tr>
<tr>
<td>温度(℃)</td>
<td>2〜5kg/cm²</td>
</tr>
<tr>
<td>時間(min)</td>
<td>15〜30</td>
</tr>
<tr>
<td>特長</td>
<td>耐食性最良</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.2.3 表面損傷形態とパラメータd・Paの関係

図3.3.15〜図3.3.17より、繰返し摩擦後に被膜の剥離を生じる臨界荷重Wc1と、1回の摩擦で被膜の剥離の生じる臨界荷重Wc2の存在が明らかとなった。また、図3.3.20より、Wc1はTiN被覆材が、Wc2はアルマイト処理材がそれぞれ最も高い値をとることから、Wc1とWc2が対応していないことが判った。

従来、被膜の付着強度の評価には、1回の摩擦で被膜の剥離が生じる臨界荷重（本実験におけるWc2）を用いている。この評価法によると、本実験結果では、アルマイト処理材の付着強度が最も高いことになる。

しかし、被覆材を実際に使用する際の問題点として、繰返し摩擦後の被膜の剥離が考えられる。よって、被膜の付着強度は、本実験における繰返し摩擦後に被膜の剥離を生じる臨界荷重Wc1を用いて評価すべきである。したがって、本実験結果では、TiN被覆材の付着強度が最も高いことになる。

このような、繰返し摩擦後に被膜の剥離を生じる臨界荷重Wc1の測定には、摩擦面を直接観察することのできるCCDマイクロスコープトライポシステムが最も有効であるといえる。

一方、被膜の剥離には、接触域直径と接触圧力が大きく影響すると考えられている。そこで、本実験において、大気中無潤滑下で測定したみかけの接触域直径dとみかけの接触圧力Paを用いて、被膜の剥離に影響すると考えられるパラメータd・Paを導入した。各種被覆材の荷重とパラメータd・Paの関係を図4.2.1に示す。図中には、各種被覆材の、1回の摩擦で被膜の剥離を生じる臨界荷重Wc2が示されている。図4.2.1より、各種被覆材のWc2でのd・Paの値は、いずれも10⁵N/m以上になることが判る。このことから、硬質被覆材において、パラメータd・Paが10⁵N/m以上の値をとるとき、1回の摩擦で被膜の剥離を生じるとといえる。
図4.2.1 荷重とパラメータd・Paの関係

硬質被覆材において、d・Pa＞10^5 N/mでは、1回の摩擦で被膜の剥離が生ずる。
4. 2.4 摩擦界面からの気泡発生現象について

気泡の発生は、いずれの実験においても摩擦初期の段階から見られた。同時に、黒色の微細なパウダー状の粒子が、数多く浮遊あるいはプレート試験片上に付着しているのが見られた。この黒色の粒子は、図3.3.22に示されるように、洗浄前の摩擦面の観察では、摩耗痕の確認が難しいほど多数存在していたが、洗浄後の観察では、ほとんど存在していないことが判る。このことから、黒色の粒子の摩擦面への付着強度は弱いと考えられる。

現在、気泡や黒色の粒子の成分は不明であるが、もしも、気泡を水素、黑色の粒子を炭素と考えると、摩擦により、潤滑油としてもちいた基油（C_xH_y）に、次のような化学反応が生じることも十分考えられる。

\[
\begin{align*}
C_xH_y (\text{基油}) + M (\text{金属表面}) & \rightarrow C_xH_y \cdot H\cdot Y_1 + X_1C + Y_1H \\
& \rightarrow C_xH_y \cdot H\cdot Y_1 (\text{劣化基油}) + X_1C (\text{黒色粒子}) + \frac{Y_2}{2}H_2 (\text{気泡}) \\
& + (Y_1-Y_2)H (\text{金属表面に吸着，基油に溶存})
\end{align*}
\]

潤滑油が本研究の様な摩擦発熱の著しく少ない低すべり速度、高接触圧力下の摩擦により上記のような化学反応を生じているとすれば、潤滑油は摩擦により絶えず劣化してゆくといえる。この詳細な機構解明のためには、今後、気泡及び黒色の粒子の成分分析が必要である。もしも、本考察の様な潤滑油の摩擦化学反応による劣化が起こるとすれば、CCDマイクロスコープは、この様な劣化過程の連続観察にも十分利用可能であるといえる。
4.3 最大摩擦力FmaxとストロークLについて

最大摩擦力FmaxとストロークLの値を図4.3.1に示す。図4.3.1から、Fmaxが約40N以下の場合はストロークLの値は設定値の9.10mmに近い値を示すことが判る。しかし、最大摩擦力Fmaxが40N以上になると、摩擦力が増すにつれてストロークLは減少していく傾向にあることが判る。この結果は、昨年の卒業研究の結果と同様な傾向を示している。また、Fmax=40Nという値は、今回使用した実験装置の剛性、初期設定ストローク、荷重などの実験条件により大きく変化すると考えられる。しかし、一般の機械の往復摺動に対しても定性的にはこの様な傾向があると考えられる。
②中高の授業交流による実践研究
授業交流に関する研究は実践が必要であると考え、県教委の許可を得て、平成11年6〜7月の約1ヶ月半にわたって軽米高等学校と軽米中学校（中高で数学）、および晴山中学校（中は英語、高は数学）との間で授業交流を行った。中学校と高等学校という「垣根」をはずし、「無理をしなくても出来るところからやろう」という意識のもとに研究に取りかかった。
以上のようなる研究の成果を、平成11年10月に『岩手県中高一貫教育軽米地域実践研究報告書』としてまとめ、教員の「中高一貫教育についてもっと知りたい、もう1年やってみたい」という前向きな思いとともに、県教委に提出した。
＜岩手県中高一貫教育推進校としての指定（平成12年度）＞
前年度までの研究を受け、実践的な研究と理論的・実践的・研究の2つの側面から軽米地域における中高一貫教育導入の可能性に関する研究が深められた。
①実践的な研究
「教員交流の在り方」に関してさらに研究を深めるために、前年度までは2つの中学校との間で行われていた授業交流および参観授業を地域内の中学校5校へと拡大した。また、「部活動・特別活動における中高の連携の在り方」に関する研究として、部活動の交流、文化祭での交流を行った。
②理論的な研究
理論的な側面に関しては、「教育課程の在り方」「進路指導の在り方」「地域に根ざした学習の在り方」「入学者の決定方法」「研究組織の在り方」等について研究を行った。
そして、以上のような研究を通じ、自信を得るとともに、軽米地域の中高一貫教育の導入は可能であるという結論に達したのである。
そこで、平成13年1月に、軽米町民への説明会を行い、2月には岩手県教育委員会定期会議において、平成13年度より軽米地域に「地域連携型中高一貫教育」を導入することが決定し、さらに3月には、岩手県教育委員会と軽米町教育委員会との間で導入に関して正式に調印が行われた。
＜地域連携型中高一貫教育校としてのスタート（平成13年度）＞
平成13年4月1日より地域連携型中高一貫教育校としての実質的な歩みがスタートした。4月23日には、軽米町教育長を会長とする「軽米地域中高一貫教育協議会」を設立し、第1回の会議が開催された。

ウ軽米地域における中高一貫教育のねらい
軽米地域では、「地域の子どもは地域で育てる」をスローガンに、次のような3つの柱を中心とする中高一貫教育のねらいを設定している。
①人間としての「在り方生き方」指導の充実を図る。
1）人間としての「在り方生き方」の基礎・基本を大切にし、将来の進路選択を視野に
4.4 実用的見地からの耐摩耗性の評価

大気中無潤滑下、基油潤滑下の摩擦データをもとに、各試験片の耐摩耗性の相対評価をまとめると、表4.4.1のようになる。大気中無潤滑下のシビアな摩耗においては、TiN被覆材が最も耐摩耗性が高く、次いでアルマイト処理材（t=50μm）、Cr被覆材の順となる。基油潤滑下においては、TiN被覆材は耐摩耗性が高いが、相手材への攻撃性も高いことが判る。
表4.4.1 各試験片の耐摩耗性の相対評価

<table>
<thead>
<tr>
<th>ビン</th>
<th>S45C (R=2mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADC12T5</td>
</tr>
<tr>
<td></td>
<td>(被膜なし)</td>
</tr>
<tr>
<td>プレート</td>
<td></td>
</tr>
<tr>
<td>大気中無潤滑下</td>
<td>△</td>
</tr>
<tr>
<td>の耐摩耗性</td>
<td>(荷重9.8N)</td>
</tr>
<tr>
<td>10^{-6}＜Ws [mm²/N]＜10^{-4}</td>
<td></td>
</tr>
<tr>
<td>シビア摩耗</td>
<td></td>
</tr>
<tr>
<td>基油潤滑下の摩耗</td>
<td></td>
</tr>
<tr>
<td>低荷重4.9N</td>
<td>△</td>
</tr>
<tr>
<td>プレートの耐摩耗性</td>
<td></td>
</tr>
<tr>
<td>10^{-8}＜Ws [mm²/N]＜10^{-6}</td>
<td></td>
</tr>
<tr>
<td>マイルド摩耗</td>
<td>△</td>
</tr>
<tr>
<td>高荷重9.8N</td>
<td>○</td>
</tr>
<tr>
<td>相手材の耐摩耗性</td>
<td></td>
</tr>
</tbody>
</table>
5. 結論

大気中無潤滑下及び基油潤滑下において、CCDマイクロスコープトライポジシ
テムを用いて各種表面処理アルミニウム合金の摩耗実験を行い、次の結論を得た。

結論
(1) 硬質被覆材の接触特性

硬質被覆材のみかけの接触圧力は、低荷重域
(W=4.9〜19.6N) では未処理材に比べ、著しく
高くなる。

<table>
<thead>
<tr>
<th>图表</th>
<th>表示内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC12T5 (without coating film)</td>
<td></td>
</tr>
<tr>
<td>TiN film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Cr film on ADC12F</td>
<td></td>
</tr>
<tr>
<td>Anodic oxid film on ADC12T5 (t=5〜10 μm)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normal load W, N</th>
<th>Apparent contact pressure (P_{\text{a}}), MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>800</td>
</tr>
<tr>
<td>10</td>
<td>600</td>
</tr>
<tr>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>30</td>
<td>200</td>
</tr>
<tr>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>70</td>
<td>0</td>
</tr>
</tbody>
</table>

图示内容说明：
- ADC12T5 (without coating film)
- TiN film on ADC12F
- Cr film on ADC12F
- Anodic oxid film on ADC12T5 (t=5〜10 μm)
結論

(2) 大気中無潤滑下の摩耗特性及び微視的摩耗形態

・TiN, Cr被覆材及びアルマイト処理材（t=50μm）は、未処理材に比べ耐摩耗性が高い。
・硬質被覆材の微視的摩耗形態は、摩擦繰返し数の増加に伴い次のようにより遷移する。
(3) 基油潤滑下の摩耗特性及び微視的表面損傷形態

- $W \leq Wc_1$ では、TiN被覆材及びCr被覆材が未処理材に比べ耐摩耗性が高い。
- 微視的表面損傷形態は、荷重及び摩擦繰返し数に伴い次のように遷移する。

<table>
<thead>
<tr>
<th>$W \geq Wc_2$</th>
<th>(N=1)</th>
<th>Spalling of coating film in single pass sliding</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Wc_1 \leq W < Wc_2$</td>
<td>(N≥2)</td>
<td>Spalling of coating film in repeat pass sliding</td>
</tr>
<tr>
<td>$W < Wc_1$</td>
<td></td>
<td>Powder formation of coating film</td>
</tr>
</tbody>
</table>

Wc_1 の測定には、CCDマイクロスコープ トライポシステムが有効である。
参考文献

（1）堀切川・小谷野・高橋・加藤・宇田川：トライポロジー会議
（盛岡1992.10）773.

（2）堀切川・小谷野・麻生・加藤・高橋：トライポロジー会議予稿集
（名古屋1993.11）299.

（3）堀切川・小谷野・加藤・麻生・高橋：トライポロジー会議予稿集
（名古屋1993.11）303.

（4）アルミニウム ハンドブック（第4版），社団法人 軽金属協会
（1990）157
CCD マイクロスコープトライボシステムによるセラミックス薄膜の摩耗機構の解析

[2] マイクロスコープトライボシステムによる硬質被膜材の摩耗過程の連続観察

参考文献
目次

1．緒 論
 1.1 本研究の位置付け .. 1
 1.2 摩耗理論体系化のための「摩耗形態図」に関する従来の研究 3
 1.3 本研究の目的 ... 14

2．実験方法
 2.1 実験装置及び実験手順 16
 2.2 試験片 ... 20
 2.3 実験条件 ... 23

3．実験結果
 3.1 摩擦特性 ... 25
 3.2 摩耗特性 ... 29
 3.3 摩耗過程のCCDマイクロスコーブ観察 33

4．考 察
 4.1 硬さ比の摩擦特性に及ぼす影響 39
 4.2 硬さ比の摩耗特性に及ぼす影響 42
 4.3 硬さ比の摩耗形態に及ぼす影響 46
 4.4 摩耗形態の遷移機構について 49

5．結 論 ... 55

参考文献 ... 59
1. 緒論
1.1 本研究の位置付け
近年、鉄鋼材料の熱間における圧延ロールの負荷は、年々厳しくなってきている。そこで現在、図1.1に示される様に、省エネルギー・品質・生産性の鍵を握るロール材の耐摩耗寿命延長が強く望まれている。ロール材の耐久性の向上を図るためには、基本的な摩擦摩耗の挙動を究明することが非常に重要である。しかし、ロール材の表面損傷は、酸化被膜の成長と摩耗による材料除去が混在した複雑な現象であり、さらに、加熱冷却の熱サイクルを受けるため、表面の熱応力の影響も大きくなる。このように熱間における摩擦摩耗は極めて複雑な現象であり、影響因子も多い。したがって、いくつかの因子の影響を取り除いたシンプルな条件下で、摩擦摩耗の基本特性と機構解明を進めることが第一段階として必要であると考えられる。

以上のような背景を踏まえ、本研究では、常温大気中無潤滑下において、酸化被膜を有した圧延ロール材の摩耗過程を直接・連続的に観察しながら摩擦実験を行い、微視的摩擦機構及び摩擦摩耗特性の解明を行う。
図1.1 熱間圧延ロール材の摩耗機構
解明の必要性
1.2 摩耗理論体系化のための「摩耗形状図」に関する従来の研究

最近、複雑且つ多様な摩耗現象を系統的に解明し、摩耗理論を体系化していくための新しい試みとして「摩耗形状図」の研究が開始され始めてきた。摩耗形状図とは、いかなる条件のもとで、いかなる摩耗形状が生ずるかを統一的に表わす図であり、任意の2つの摩擦材料、使用条件、環境から、複雑かつ多様な摩耗現象を予測することができる。

これまで提案された金属、セラミックス材料に関する主な摩耗形状図の研究を表1.1に示し、摩耗形状図をそれぞれ図1.2～図1.8に示す。

図1.2はHokkirigawaら(1),(2)が提案し、くさび型突起と金属平面のすべり摩擦において金属平面のアプレシブ摩耗の発生領域を表わす摩耗形状図である。縦軸は、突起の頂角θであり、横軸は突起の硬さH1と平面の硬さH2の比(r=H2/H1)である。図中の曲線より下の領域は、金属平面より硬いにもかかわらず硬突起が塑性変形する領域である。曲線より上の領域は、突起が塑性変形を起こさずに食い込み相手平面に明瞭な引っかかり傷を形成する領域、いわゆるアプレシブ摩耗の発生する領域である。

図1.3はHokkirigawaら(3),(4)が提案した、半球状硬突起のすべり摩擦によって生じる金属の3種類の摩耗形状の発生領域を表わす摩耗形状図である。縦軸は、接触の過酷さを表わす食い込み度Dp（突起の曲率半径、荷重、硬さの関数として表わされる無次元数）であり、くさび型突起の場合は接触角（attack angle）に置き換えることができる(3),(4)。横軸は潤滑状態を表わす接触界面のせん断強度f（無次元数）である。もしも、fが一定の場合には、摩耗形状及び摩耗の程度はDpによって変化する。

図1.4は無潤滑下における摩耗係数K及び摩耗形状のDpによる変化を示したものである(5)。縦軸は摩耗の過酷さを表わす摩耗係数K（摩耗体積、硬さ、荷重、すべり距離の関数として表わされる無次元数）であり、横軸は接触の過酷さを表わす食い込み度Dpである。

図1.5はLim,Ashby(6)が提案した大気中無潤滑下における鉄の摩耗形状図である。縦軸は、無次元圧力（荷重、見かけの接触面積、硬さの関数として与えられる関数）を示す。
無次元数）であり，横軸は無次元速度 \(\bar{v} \) (すべり速度，接触半径，温度伝導率の関数として与えられる無次元数）である。図1.5では摩擦面の酸化や溶融を伴わないので摩耗を一括して，塑性変形が支配的な摩耗と呼び，具体的な摩耗形態の分類と領域わけがなされていないこと，高温酸化摩耗は考慮されているが低すべり速度でみられる低温酸化摩耗は考慮されていないことなどの課題が残されているが，幅広い荷重すべり速度条件のもとで生ずる鋼の摩耗形態を広く理解する上で非常に有効である。

図1.6と図1.7は，それぞれAntoniouら \(^{(7)}\) Liuら \(^{(8)}\) が提案した大気中無潤滑下におけるアルミニウム合金の摩耗形態図である。縦軸，横軸には図1.5と同様の因子を用いている。しかしアルミニウム合金の摩耗形態自体が現在のところ明確でなく，研究者によって異なるため，これらの図の有効性はまだ確認されていない。

図1.8は堀川ら \(^{(9)}\), \(^{(10)}\), \(^{(11)}\) が提案したセラミックスの摩耗形態図である。図1.8（a）の縦軸は無次元数 \(S_c = (P_0 \cdot R_{\text{max}}^{1/2}) / K_{\text{IC}} \) であり，巨視的な接触の苛酷さを表している。横軸は摩擦係数 \(\mu \) である。この図により，Flake formation（大規模なあらさ破壊型摩耗）と Powder formation or Ploughing（小規模なあらさ破壊型摩耗，あるいは掘り起こし型摩耗）の分類が可能である。なお，Flake formation の発生条件は次式で表される。

\[
S_c \left(= \frac{P_0 \cdot R_{\text{max}}^{1/2}}{K_{\text{IC}}} \right) \geq 7 \left(1 + 10 \mu \right) \quad (1.1)
\]

但し，
- \(P_0 \) ：ベルツ最大接触圧力
- \(R_{\text{max}} \) ：最大あらさ
- \(K_{\text{IC}} \) ：破壊じん性

図1.8（b）の縦軸は，無次元数 \(S_c^* = (Hv \cdot R_{\text{max}}^{1/2}) / K_{\text{IC}} \) であり微視的な接触の苛酷さを表している。横軸は摩耗係数 \(\mu \) である。この図より，Powder formation（小規模なあらさ破壊型摩耗）と Ploughing の分類が可能である。なお，Powder formation の発生条件は次式で表わされる。
\[Sc \left(= \frac{H_v \cdot R_{\text{max}}^{1/2}}{K_I} \right) \geq \frac{5}{1 + 10 \mu} \quad (1.2) \]

但し，\(H_v \)：ビッカース硬さ
\(R_{\text{max}} \)：最大あらさ
\(K_I \)：破壊じん性

図1.8によって、見かけの接触圧力、あるいは真実接触圧力と摩擦応力の作用によって生じるセラミックスの2種類のせん性破壊型の苛酷な摩耗形態の発生領域を知ることができる。
<table>
<thead>
<tr>
<th>研究者,（発表年）</th>
<th>材料（摩擦形態）</th>
<th>摩耗形態</th>
<th>摩耗形態図の両面に用いられたパラメータ</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.Kayaba,K.Kato and K.Hokkirigawa（1983） (1)</td>
<td>金属（くさび型軸突起と軸面のすべり摩擦）</td>
<td>・軸平面の塑性変形（いわゆるアプレシブ摩耗）</td>
<td>(1) 突起頂角：θ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・硬突起の塑性変形</td>
<td>(2) 突起頂角：θ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H1：突起の硬さ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H3：平面の硬さ</td>
</tr>
<tr>
<td>K.Kato and K.Hokkirigawa（1985） (4)</td>
<td>金属（半球状剛体突起によるすべり摩擦）</td>
<td>・切削型摩耗</td>
<td>(1) 食い込み度：Dp（無次元）</td>
</tr>
<tr>
<td>K.Kokkirigawa and K.Kato(1988) (3)</td>
<td></td>
<td>・ウェッジ形成摩耗</td>
<td>(2) すべり速度：v=vrn/a（無次元）</td>
</tr>
<tr>
<td>塚切川, 加藤（1991） (5)</td>
<td></td>
<td>・焼き起こし型摩耗</td>
<td>たとえDp=h/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=（Hv*2W）/2,（R²Hv/2W）¹/²</td>
</tr>
<tr>
<td>S.C.Lim and M.'Ashby (1987) (6)</td>
<td>鋼（ビン・ディスクすべり摩擦 大気中無潤滑）</td>
<td>・非常にマイルドな摩耗</td>
<td>(1) 接触圧力：F=Fa/AnHs（無次元）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・塑性変形が支配的な摩耗</td>
<td>(2) すべり速度：v=vrn/a（無次元）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・マイド酸化摩耗</td>
<td>F:荷重</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・シビア酸化摩耗</td>
<td>An:見かけの接触面積</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・溶融摩耗</td>
<td>v:すべり速度</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・焼き付け</td>
<td>Hs:室温における硬さ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a:温度伝達率</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>re:ビンの半径</td>
</tr>
<tr>
<td>R.Antoniou and C.Subramanian(1988) (7)</td>
<td>アルミニウム合金（ビン・リング・ビン・ディスクすべり摩擦 大気中無潤滑）</td>
<td>・微小摩耗粒子形成型摩耗</td>
<td>(1) 接触圧力：F=Fa/AnHs（無次元）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・圧縮された微小摩耗粒子のデラメーション</td>
<td>(2) すべり速度：v=vrn/a（無次元）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・変形したアルミニウムのデラメーション</td>
<td>F:荷重</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・大規模な移着による摩耗</td>
<td>An:見かけの接触面積</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・溶融摩耗</td>
<td>v:すべり速度</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hs:室温における硬さ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a:温度伝達率</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>re:ビンの半径</td>
</tr>
<tr>
<td>塚切川, 加藤（1989） (9)</td>
<td>アルミニウム合金（ビン・リングすべり摩擦）</td>
<td>・微小摩耗粒子形成型摩耗</td>
<td>(1) 接触圧力：F=Fa/AnHs（無次元）</td>
</tr>
<tr>
<td>K.Hokkorigawa(1991) (10)</td>
<td></td>
<td>・圧縮された微小摩耗粒子のデラメーション</td>
<td>(2) すべり速度：v=vrn/a（無次元）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・変形したアルミニウムのデラメーション</td>
<td>F:荷重</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・大規模な移着による摩耗</td>
<td>An:見かけの接触面積</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・溶融摩耗</td>
<td>v:すべり速度</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hs:室温における硬さ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a:温度伝達率</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>re:ビンの半径</td>
</tr>
<tr>
<td>塚切川, 加藤（1990） (11)</td>
<td>セラミックス（すべり摩擦，転がり摩擦）</td>
<td>・プレーキ形成型摩耗（大規模な脆性破壊型摩耗）</td>
<td>(1) S*＝Hv*Rmax/Kic（無次元）</td>
</tr>
<tr>
<td>K.Hokkorigawa(1991) (10)</td>
<td></td>
<td>・プレーキ形成型摩耗</td>
<td>(2) 接触係数：μ（無次元）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・焼き起こし型摩耗</td>
<td>Rmax:ヘルツ最大接触圧力</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kic:破壊靭性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lmax:最大あらさ</td>
</tr>
</tbody>
</table>

表1.1 これまで提案された主な摩耗形態図に関する研究
（金属材料，セラミックス材料）
図1.2 アプレシブ摩耗の発生領域を表わす摩耗形態図
図1.3 半球状硬突起のすべり摩擦における金属の摩耗形状図
図1.4 食い込み度と摩耗係数、摩耗形態との関係
図1.5 大気中無潤滑下における鋼の摩耗形態図
(a) 微小摩擦粒子形成型摩擦
(b) 压縮された微小摩擦粒子のデラミネーション
(c) 変形したアルミニウムのデラミネーション
(d) 溶融摩擦
(e) 大規模な移着による摩擦

図1.6 Antoniouによるアルミニウム合金の摩擦形態図
図1.7 Liuらによるアルミニウム合金の摩擦形態図
図1.8 セラミックスの摩耗形態図
1.3 本研究の目的

本研究の目的では、図1.9で示される様に、CCDマイクロスコープを摩擦装置に組み込んだCCDマイクロスコープトライポシステムを用い、酸化被膜を有する代表的な4種類の圧延ロール材における酸化被膜の微視的摩耗のメカニズムを明らかにし、さらに、巨視的摩耗特性と微視的摩耗形態との関係について検討することを目的とする。
目的

酸化被膜を有する代表的な4種類の圧延ロール材

・アダマイト
・ニッケルグレン鋳鉄
・高クロム鋳鉄
・高速度工具鋼

CCDマイクロスコープトライボシステムを用いた摩耗過程の連続観察

酸化被膜の微視的摩耗のメカニズムの解明

巨視的摩擦摩耗特性と微視的摩耗形態との関係について検討

図1.9 本研究の目的
2. 実験方法

2.1 実験装置及び実験手順

本実験に用いた摩擦摩耗試験装置の写真を図2.1に、CCDマイクロスコープの写真を図2.2に、CCDマイクロスコープトライポシステム（12）の概略を図2.3に示す。摩擦対は、上部固定ボール試験片と下部の往復運動するプレート試験片から構成されている。ボール、プレート試験片はいずれもアセトン中で5分間×2回の超音波洗浄を施し、実験に供された。また、背面よりファイバーライトを当てることによりCCDカメラでの観察を可能にした。よって、実験中の接触部はCCDマイクロスコープにより連続的に観察し、VTRに録画した。必要に応じて、ビデオプリントナーにより写真作成を行い、摩擦係数は、ひずみゲージを用いて測定した。

実験後、触針式表面あらさ計を用いてプレート試験片の断面曲線を測定し、これをもとに比摩耗量Wsを算出した。

なお、比摩耗量Wsは、次式で定義される。

\[Ws = \frac{V}{W \cdot L} \text{[mm}^2/\text{N}] \] (2.1)

ここで、V：摩耗体積 [mm\(^3\)]
W：垂直荷重 [N]
L：すペリ距離 [mm]

また、ボール試験片については、実験前後の重量差から比摩耗量を算出した。
図2.1 実験装置
図2.2 CCDマイクロスコープトライボシステム
図2.3 CCDマイクロスコープトライポシステムの概略
2.2 試験片

本来圧延とは、2つの回転するロール間を通して成形する方法であり、組織を精密にし均質な材料が得られ、しかも生産性がよい加工方法である。しかし、ロール面の接触弧内では、非常に複雑な摩耗形態をとる。更に、接触弧内のロール面は、板巻込みにより急速に昇温し、出側付近で最高温度に達する。そして、温度上昇により変形抵抗が低下するようになり、その傾向が大きくなると接触弧内のロール面は局所的な塑性変形を起こし、塑性流動を伴う肌あれ摩耗・損傷につながる。また、ロール面はすべり・転がりなどの摩擦を受けると同時に加熱冷却の熱サイクルと熱応力、圧延による圧縮応力と水冷時の表層収縮による引張応力の繰返しにより酸化被膜が生成し、一般に5〜10μmの厚さを有するのである。一方、板側は加工発熱を伴いながらもロールに熱を奪われ、板表面の温度は低下し板面の変形抵抗は増大する。

したがって本研究では、図2.4に示すような圧延のモデル実験により酸化被膜が成長した圧延ロール材の一部（形状は図2.3参照）を試験片として用いた。

次に、試験片の材質、硬度及び最大あらさを表2.1に示す。いずれの試験片においても酸化被膜生成温度600℃の試験片の方が700℃よりも硬くなっている。
図2.4 酸化被膜の生成条件

○ 試験時間 7分（約5000回転）
○ 試験後 空冷
表2.1 試験片の材質、硬さ及び最大あらさ

試験片の材質、硬さ及び最大あらさ

(a) ボール試験片

<table>
<thead>
<tr>
<th>Material</th>
<th>Vickers hardness (Hv, kgf/mm²)</th>
<th>Maximum roughness (Rmax, μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUJ-2</td>
<td>766</td>
<td>0.1</td>
</tr>
</tbody>
</table>

(b) プレート試験片

<table>
<thead>
<tr>
<th>Material</th>
<th>Oxidizing temperature (°C)</th>
<th>Vickers hardness of substrate (Hv, kgf/mm²)</th>
<th>Maximum roughness (Rmax, μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adamite (cast steel)</td>
<td>600°C</td>
<td>456</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>700°C</td>
<td>371</td>
<td></td>
</tr>
<tr>
<td>Nickel grain cast iron</td>
<td>600°C</td>
<td>701</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>700°C</td>
<td>649</td>
<td></td>
</tr>
<tr>
<td>High chromium cast iron</td>
<td>600°C</td>
<td>713</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>700°C</td>
<td>478</td>
<td></td>
</tr>
<tr>
<td>High-speed tool steel</td>
<td>600°C</td>
<td>847</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>700°C</td>
<td>599</td>
<td></td>
</tr>
</tbody>
</table>
2.3 実験条件

実験条件を表2.2に示す。実験は全て常温大気中無潤滑下で行った。本研究では、摩擦実験と摩耗実験の異なる2種類の実験を行った。摩擦実験は荷重Wを0.98N、摩擦繰返し数Nを1000、摩耗実験は荷重Wを9.8N、摩擦繰返し数Nを100とした。
表2.2 実験条件

<table>
<thead>
<tr>
<th></th>
<th>0.98</th>
<th>9.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal load W,N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of cycles</td>
<td>1000</td>
<td>100</td>
</tr>
<tr>
<td>Sliding velocity v,mm/s</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Setting stroke L,mm</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Frictional condition</td>
<td>Unlubricated in the air, 20±3℃</td>
<td></td>
</tr>
</tbody>
</table>
3. 実験結果

3.1 摩擦特性

大気中無潤滑下，垂直荷重0.98Nにおける摩擦繰返し数Nの増加に伴う摩擦係数μの変化を図3.1に示す。図3.1より4種類の圧延ロール材いずれにおいても，摩擦繰返し数が約100までの間に摩擦係数は急激に増加し，やがてμ=0.6～0.8程度の一定値に落ち着くことが判る。

次に，摩擦繰返し数N=100及びN=1000における摩擦係数をそれぞれ図3.2及び図3.3に示す。N=100における摩擦係数は酸化被膜生成温度700℃よりも600℃が全ての材質においてμ=0.5前後と相対的に低い値をとっている。これに対しN=1000の摩擦係数は，N=100に比べると全体的にμ=0.7前後の高い値にまで増加していることが判る。
摩擦繰返し数の増加に伴う摩擦係数の変化

(a) 酸化被膜生成温度600℃の試験片の場合

(b) 酸化被膜生成温度700℃の試験片の場合

摩擦繰返し数が約100までの間に急激に増加

その後、μ = 0.6～0.8程度の一定値に落ち着く

図3.1 摩擦繰返し数の増加に伴う摩擦係数の変化
Dry Ball specimen (R=1mm), W=0.98N, v=2mm/s, N=100

<table>
<thead>
<tr>
<th>Material</th>
<th>Oxidizing temperature</th>
<th>Friction coefficient</th>
<th>(\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adamite (cast steel)</td>
<td>600 °C</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>700 °C</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Nickel grain cast iron</td>
<td>600 °C</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>700 °C</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>High chromium cast iron</td>
<td>600 °C</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>700 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-speed tool steel</td>
<td>600 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>700 °C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図3.2 摩擦繰返し数N=100における摩擦係数
Dry, Ball specimen (R=1mm), W=0.98N, v=2mm/s, N=1000

<table>
<thead>
<tr>
<th>Material</th>
<th>Oxidizing temperature</th>
<th>Friction coefficient μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adamite (cast steel)</td>
<td>600 °C</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>700 °C</td>
<td>0.7</td>
</tr>
<tr>
<td>Nickel grain cast iron</td>
<td>600 °C</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>700 °C</td>
<td>0.7</td>
</tr>
<tr>
<td>High chromium cast iron</td>
<td>600 °C</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>700 °C</td>
<td>0.7</td>
</tr>
<tr>
<td>High-speed tool steel</td>
<td>600 °C</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>700 °C</td>
<td>0.7</td>
</tr>
</tbody>
</table>

図3.3 摩擦繰返し数N=1000における摩擦係数
3.2 摩耗特性

荷重W=9.8Nの場合における、各種プレート試験片の比摩耗量Wsを図3.4にまとめて示す。図3.4より、酸化被膜生成温度600℃の場合は、いずれも酸化被膜生成温度700℃の場合よりも低い比摩耗量を示すことが判る。また、酸化被膜生成温度600℃の高クロム鋼鉄、ニッケルグレン鋼鉄、高速度工具鋼は7×10⁴ [mm²/N]以下の極めて低い比摩耗量を示している。これに対して、酸化被膜生成温度700℃の4種類の試験片は、7×10⁻⁷ [mm²/N]以上の高い比摩耗量を示すことが判る。これらの中ではニッケルグレン鋼鉄、高クロム鋼鉄が相対的に低い比摩耗量を示している。また、比摩耗量が最も高い酸化被膜生成温度700℃のアダマイトと、最も低い酸化被膜生成温度600℃の高速度工具鋼では、約100倍の大きな差が生じていることが判る。

次に、実験後の摩耗面の最大あらさRmaxを表3.1に示す。極めて低い被摩耗量を示した酸化被膜生成温度600℃のニッケルグレン鋼鉄、高クロム鋼鉄、高速度工具鋼の3つの試験片は、0.3 μm以下と実験前と同等あるいはそれ以下と非常に小さくなっていることが判る。これに対して、その他の試験片は3 μm以上と非常に大きくなっている。

次に、ボール試験片の比摩耗量Wsを図3.5にまとめて示す。図3.5より、相手材が酸化被膜生成温度700℃の高クロム鋼鉄の場合は、ボール試験片の比摩耗量は8.6×10⁻⁷ [mm²/N]と高い値を示す。また、最も高い比摩耗量を示した酸化被膜生成温度700℃のアダマイトとの摩擦においては、ボール試験片の比摩耗量は10⁻⁸ [mm²/N]以下の極めて低い値を示していることが判る。
乾燥ボール試験片；SUJ-2（R=1mm）、W=9.8N、v=2mm/s、N=1〜100

<table>
<thead>
<tr>
<th>材料</th>
<th>氧化温度</th>
<th>特定摩耗率 $W_s \times 10^{-7} \text{mm}^2/N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>アダミット（キャスト鋼）</td>
<td>600℃</td>
<td>5 10 15 20 25 30</td>
</tr>
<tr>
<td></td>
<td>700℃</td>
<td></td>
</tr>
<tr>
<td>ニッケルグレインキャスト鉄</td>
<td>600℃</td>
<td>5 10 15 20 25 30</td>
</tr>
<tr>
<td></td>
<td>700℃</td>
<td></td>
</tr>
<tr>
<td>高クロムキャスト鉄</td>
<td>600℃</td>
<td>5 10 15 20 25 30</td>
</tr>
<tr>
<td></td>
<td>700℃</td>
<td></td>
</tr>
<tr>
<td>高速度工具鋼</td>
<td>600℃</td>
<td>5 10 15 20 25 30</td>
</tr>
<tr>
<td></td>
<td>700℃</td>
<td></td>
</tr>
</tbody>
</table>

○ 酸化被膜生成温度600℃
 ○ ニッケルグレイン鋼
 ○ 高クロム鋼
 ○ 高速度工具鋼
 ➞ $7 \times 10^{-8} \text{mm}^2/N$以下の極めて低い比摩耗量

○ 酸化被膜生成温度700℃ ➞ すべて、$7 \times 10^{-7} \text{mm}^2/N$以上の高い比摩耗量
 ○ ニッケルグレイン鋼
 ○ 高クロム鋼
 ➞ 相対的に低い比摩耗量

図3.4 プレート試験片の比摩耗量
表3.1 摩耗痕の最大あらさ

Dry, Ball specimen; SUJ-2 (R=1mm), W=9.8N, v=2mm/s, N=100

<table>
<thead>
<tr>
<th>Material</th>
<th>Oxidizing temp.</th>
<th>Maximum roughness $R_{\text{max}}, \mu m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adamite (cast steel)</td>
<td>600</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>3.5</td>
</tr>
<tr>
<td>Nickel grain cast iron</td>
<td>600</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>3.0</td>
</tr>
<tr>
<td>High chromium cast iron</td>
<td>600</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>3.3</td>
</tr>
<tr>
<td>High-speed tool steel</td>
<td>600</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Dry, Ball specimen; SUJ-2 (R=1mm), W=9.8N, v=2mm/s, N=1~100

<table>
<thead>
<tr>
<th>Plate specimen</th>
<th>Specific wear rate of ball specimen Ws, $\times 10^{-7}$ mm2/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Oxidizing temperature</td>
</tr>
<tr>
<td>Adamite (cast steel)</td>
<td>600 °C</td>
</tr>
<tr>
<td></td>
<td>700 °C</td>
</tr>
<tr>
<td>Nickel grain cast iron</td>
<td>600 °C</td>
</tr>
<tr>
<td></td>
<td>700 °C</td>
</tr>
<tr>
<td>High chromium cast iron</td>
<td>600 °C</td>
</tr>
<tr>
<td></td>
<td>700 °C</td>
</tr>
<tr>
<td>High-speed tool steel</td>
<td>600 °C</td>
</tr>
<tr>
<td></td>
<td>700 °C</td>
</tr>
</tbody>
</table>

図3.5 ボール試験片の比摩耗量
3.3 摩耗過程の CCD マイクロスコープ観察

荷重 W = 9.8 Nにおいて、CCD マイクロスコープにより観察された摩擦繰返し数の増加に伴う摩耗変形の変化を図 3.6 に示す。酸化被膜を有する圧延ロール材の摩耗は、基本的に被膜の摩耗（2つの形態）と下地の摩耗に分けられる。被膜の摩耗は、細かなパウダー状の摩耗粒子を発生する Powder formation、フレーク状の摩耗粒子を発生する Flake formation の 2 形態であり、下地の摩耗は、摩擦に伴う金属表面の塑性活動に起因して起こる Shear tongue である。ここでは、図 3.4 で最も低い摩耗量を示した酸化被膜生成温度 600 ℃のニッケルグレクン鉄鉱、高クロム鉄鉱、高速度工具鋼の 3つの試験片では、被膜の各形状の摩耗である Powder formation のみが生じていることが判る。しかし、その他の試験片では繰返し摩擦中に被膜のシビアな摩耗である Flake formation を経験し、場合によっては下地の摩耗にまで遷移することが判る。

次に、これらの摩耗形態の観察写真、実験後の摩耗面の観察写真及び、摩擦方向に垂直な方向の摩耗痕形状を測定して測定した結果を図 3.7, 3.8, 3.10 に示す。図 3.7 は酸化被膜生成温度 600 ℃の高速度工具鋼の場合である。細かパウダー状の摩耗粒子を発生する Powder formation が生じ、実験後の摩耗面にもパウダー状の摩耗粒子を確認することができる。また、実験後の摩耗面は非常に滑らかであることが判る。

次に、図 3.8 は酸化被膜生成温度 700 ℃のニッケルグレクン鉄鉱の場合である。フレーク状の摩耗粒子を発生する Flake formation を生じている。この場合、実験後の摩耗面は非常に荒れていることが判る。そこで、1 回の摩擦中におけるフレーク状摩耗粒子の生成過程の連続写真を示したのが図 3.9 である。摩擦過程は a → d の順である。フレーク状の摩耗粒子がしだいに成長していき最後に大きな塊となっていのが判る。図 3.9 より、Flake formation は非常に厳しい摩耗であることが判る。

次に、図 3.10 は酸化被膜生成温度 600 ℃のアダマイトの場合である。Powder formation 及び、Flake formation を経験した後、下地の摩耗である Shear tongue を生じている。また、実験後の摩耗痕形状には金属の塑性活動によって生じる両脇の盛り上がりを生じていることが判る。
Dry, Ball specimen; SUJ-2 (R=1mm), W=9.8N, v=2mm/s, N=1~100

<table>
<thead>
<tr>
<th>Plate specimen</th>
<th>Number of cycles N, cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Oxidizing temperature</td>
</tr>
<tr>
<td>Adamite (cast steel)</td>
<td>600℃</td>
</tr>
<tr>
<td></td>
<td>700℃</td>
</tr>
<tr>
<td>Nickel grain cast iron</td>
<td>600℃</td>
</tr>
<tr>
<td></td>
<td>700℃</td>
</tr>
<tr>
<td>High chromium cast iron</td>
<td>600℃</td>
</tr>
<tr>
<td></td>
<td>700℃</td>
</tr>
<tr>
<td>High-speed tool steel</td>
<td>600℃</td>
</tr>
<tr>
<td></td>
<td>700℃</td>
</tr>
</tbody>
</table>

- Ploughing or Powder formation
- Flake formation
- Shear tongue formation or Ploughing (Wear of substrate)

図3.6 摩擦繰り返し数の増加に伴う
摩耗形態の変化
(a) Contact point (N=97)

(b) Wear scar (N=100)

(c) Profile of wear scar perpendicular to the sliding direction

(Powder formation (N=1-100)
(Lubricant; Dry, Ball; SUJ-2 (R=1mm), W=9.8N, v=2mm/s)
(a) Contact point (N=97)

(b) Wear scar (N=100)

(c) Profile of wear scar perpendicular to the sliding direction

(摩耗形態: Powder formation (N=1~5) → Flake formation (N=6~19) → Powder formation (N=20~100))

(Lubricant; Dry, Ball; SUJ-2 (R=1mm), W=9.8N, v=2mm/s)
図3.9 ニッケルグレン鉄鉱（700℃）のフレーク状摩耗粒子の生成過程（N=9）

（Lubricant; Dry, Plate; Nickel grain cast iron（700℃）, Ball; SUJ-2 (R=1mm), W=9.8N, v=2mm/s）
(a) Contact point (N=93)

(b) Wear scar (N=100)

(c) Profile of wear scar perpendicular to the sliding direction

(摩耗形態: Powder formation (N=1～15) → Flake formation (N=16～23)
→ Wear of substrate (N=24～100)
(Lubricant; Dry, Ball; SUJ-2 (R=1mm), W=9.8N, v=2mm/s)
4. 考察

4.1 硬さ比の摩擦特性に及ぼす影響

図3.1に示す摩擦繰返し数Nの増加に伴う摩擦係数μの変化において、摩擦開始時において摩擦係数が低く摩擦繰返し数100までの間において摩擦係数が急激に増加するのは、実験前のアセトンによる超音波洗浄にもかかわらず、油脂などの汚染膜が洗い流されず残存するか、又は洗浄後、新たに固体表面において雰囲気中の酸素や水蒸気分子が吸着したために、潤滑された様な状態になったためと考えられる。

次に、摩擦繰返し数N=100及びN=1000における各プレート試験片とボール試験片の硬さ比（r=Hplate/Hball）と摩擦係数の関係を図4.1及び図4.2に示す。N=100においては、硬さ比の増加と共に摩擦係数は減少する傾向が見られるが、実験点はかなりばらついていることが判る。また、酸化被膜生成温度600℃よりも700℃の試験片の方が高い摩擦係数を示している。これに対しN=1000においては、摩擦係数はいずれも0.7程度の高い値となっており、硬さ比の影響はあまりみられない。
図4.1 摩擦繰返し数N=100における硬さ比と摩擦係数との関係
図4.2 摩擦回数N=1000における硬さ比と摩擦係数との関係
4.2 硬さ比の摩耗特性に及ぼす影響

硬さ比 rとプレート試験片の比摩耗量Wsの関係を図4.3に示す。図4.3より、硬さ比が大きい程比摩耗量は低くなる傾向があり、プレート試験片の硬さがボール試験片と同等あるいはそれ以上の硬さの場合には比摩耗量は極めて低くなると言える。次に、硬さ比rと実験後の摩耗面最大あらさRmaxの関係を図4.4に示す。図4.4より、硬さ比が大きい程摩耗面最大あらさは小さくなり、プレート試験片の硬さがボール試験片と同等あるいはそれ以上の硬さの場合には非常に小さくなるといい、比摩耗量の場合と同様の傾向を示していることが判る。以上より、硬さ比を大きくすることにより比摩耗量、摩耗面の最大あらさは小さくなり、プレート試験片の硬さがボール試験片と同等あるいはそれ以上の硬さの場合においては、比摩耗量、摩耗面最大あらさの両方とも極めて小さくなると言える。

次に、硬さ比rとボール試験片の比摩耗量Ws（あるいは摩耗係数K）の関係を図4.4に示す。硬さ比が小さい程比摩耗量は小さくなる傾向を示しており、プレート試験片とは逆の傾向であることが判る。以上より、硬さ比が小さい場合はプレート試験片の摩耗は大きくなり、硬さ比が大きい場合はボール試験片の摩耗が大きくなる傾向があると言える。
図4.3 硬さ比とプレート試験片の比摩耗量の関係
図4.4 硬さ比と摩耗痕の最大あらさとの関係
図4.5 硬さ比とボール試験片の比摩耗量、摩耗係数との関係
4.3 硬さ比の摩耗形態に及ぼす影響

図3.6に示した摩擦繰返し数の増加に伴う摩耗形態の遷移を、プレート試験片の硬さ順に表わしたものを図4.6に示す。図4.6より、硬さが小さい試験片ではシビアな摩耗であるFlake formationを経験し、場合によっては下地の摩耗にまで遷移することが判る。これに対して、硬さの大きい試験片では、マイルドな摩耗であるPowder formationのみにとどまっている。よって、比摩耗量同様、摩耗形態の変化にも硬さが大きく影響していると言える。次に、摩耗形態、摩耗係数、硬さ比及び摩耗面の最大あらさの関係を図4.7に示す。ここで縦軸に摩耗係数を用いたのは、摩耗係数の値により摩耗の過程を客観的に知ることができるからである。

図中Aで囲まれた比較的硬さ比の小さい実験点では、被膜のシビアな摩耗であるFlake formationが生じ、摩耗係数は大きくなっていることが判る。この場合、摩耗面の最大あらさは、いずれも3μm以上と大きくなっている。これに対して、図中Bで囲まれた比較的硬さ比の大きい領域の実験点では、被膜のマイルドな摩耗であるPowder formationのみで、Flake formationを生じず摩耗係数は小さくなっていることが判る。またこの場合、摩耗面の最大あらさはいずれも0.3μm以下と非常に小さくなっている。以上より、硬さ比を大きくすることにより被膜のシビアな摩耗であるFlake formationを抑えることができ、摩擦の程度（摩耗係数）を極めて小さくすることができると言える。
摩擦繰返し数の増加に伴う摩耗形態の変化（硬さ順）

Dry, Ball specimen; SUJ-2(R=1mm), W=9.8N, v=2mm/s, N=1~100

<table>
<thead>
<tr>
<th>Material</th>
<th>Oxidizing temperature</th>
<th>Vickers hardness, Hv, kgf/mm²</th>
<th>Number of cycles N, cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adamite (cast steel)</td>
<td>700 °C</td>
<td>371</td>
<td>10</td>
</tr>
<tr>
<td>Adamite (cast steel)</td>
<td>600 °C</td>
<td>456</td>
<td>10</td>
</tr>
<tr>
<td>High chromium cast iron</td>
<td>700 °C</td>
<td>478</td>
<td>10</td>
</tr>
<tr>
<td>High-speed tool steel</td>
<td>700 °C</td>
<td>599</td>
<td>10</td>
</tr>
<tr>
<td>Nickel grain cast iron</td>
<td>700 °C</td>
<td>649</td>
<td>10</td>
</tr>
<tr>
<td>Nickel grain cast iron</td>
<td>600 °C</td>
<td>701</td>
<td>10</td>
</tr>
<tr>
<td>High chromium cast iron</td>
<td>600 °C</td>
<td>713</td>
<td>10</td>
</tr>
<tr>
<td>High-speed tool steel</td>
<td>600 °C</td>
<td>847</td>
<td>10</td>
</tr>
</tbody>
</table>

- Ploughing or Powder formation
- Flake formation
- Shear tongue formation or Ploughing (Wear of substrate)

低硬度の試験片ほどFlake formationを経験または下地の摩耗にまで遷移する。

図4.6 摩擦繰返し数の増加に伴う摩耗形態の変化（硬さ順）
図4.7 硬さ比とプレート試験片の摩耗係数の関係
4.4 摩耗形態の遷移機構について

4.3節より、圧延ロール材の耐摩耗性向上のためには、被膜のシビアな摩耗であるFlake formationの発生を抑える必要があることが判った。また図4.7より、硬さ比の増加に伴ってFlake formationの発生が抑えられ、硬さ比がFlake formation発生の重要な因子であることが判った。そこで、Flake formationの発生機構を図1.8に示した破切川のセラミックスの摩耗形態図を用いて説明する。まず、硬さ比が摩耗形態に及ぼす影響について考えてみる。この硬さ比は、プレート試験片・ボール試験片のいずれが塑性変形するか、またその程度を定める因子である。そこで、まず図4.7における各実験点の接触圧力を求める。

弾性接触における球と平面の最大ヘルツ接触圧力は次式で表わせる。

\[
P_{\text{max}} = \left(\frac{3}{2\pi} \right) \left(\frac{3}{4} \right)^{\frac{2}{3}} \frac{E^*}{3} \left(\frac{W}{R^2} \right)^{\frac{1}{3}}
\]

ただし

\[
E^* = \left(\frac{1-v_1^2}{E_1} + \frac{1-v_2^2}{E_2} \right)
\]

\[E_1, E_2: \text{球及び平板のヤング率}
\]

\[\nu_1, \nu_2: \text{球及び平板のポアソン比}
\]

式（4.1）を用いて、本実験における最大ヘルツ接触圧力を計算してみる。

\[W=9.8N, R=1mm, E_1=E_2=210GPa, \nu_1=\nu_2=0.3\]を式（4.1）に代入すると、

\[P_{\text{max}}=299.4 \text{[kgf/mm}^2]\]

一方、最大せん断応力kとピッカース硬さHvには、一般に次式の関係がある（13）。

\[k=Hv/6\]

静的接触においては、接触状態は次のように\(P_{\text{max}}/k\)を用いて分類できる（14）（15）。

(i) \(P_{\text{max}}/k<3\)のとき：弾性接触
(ii) \(3<P_{\text{max}}/k<9\)のとき：弾塑性接触
(iii) Pmax/k > 9のとき：塑性接触（この場合平均接触圧力=Hvとなる）

摩擦接触下においては、摩擦係数が大きくなる程弾塑性及び塑性接触の開始圧力は小さくなる。μ=0.6の時には、接触状態は次の様になると考えられる(14)(17)。

(i) Pmax/k < 1.5のとき：弾性接触
(ii) 1.5 < Pmax/k < 4.5のとき：弾塑性接触
(iii) Pmax/k > 4.5のとき：塑性接触（この場合平均接触圧力=Hv/2となる）

上記分類をもとに、ボール及び各種圧延ロール材のPmax/kの値及び接触形態を表4.1にまとめて示す。表4.1より、摩擦係数μが0.6になると静的接触で弾性接触であったものも弾塑性接触に変化していることが判る。一方、酸化被膜生成温度700℃のアダマイトの場合は、摩擦係数μが0.6になると弾塑性接触から塑性接触に変化していることが判る。弾塑性接触あるいは塑性接触下では、被膜と下地の界面に塑性域が生じ、残留応力が発生すると考えられる。そのため被膜に残留応力と接触応力の作用下で新たなき裂が発生し、もしくは予め潜在するき裂が伝ばし、その結果最大あらさRmaxが大きくなると考えられる。以上により、硬さ比の小さい場合の接触状態は、摩擦係数が大きくなるとPmax/kの値が大きくなり、塑性域の大きい弾塑性接触または塑性接触となるために、最大あらさは大きくなると考えられる。これに対して、硬さ比の大きい場合は、Pmax/kの値が小さくなり、塑性域の小さい弾塑性接触であるために最大あらさは、硬さ比が小さい場合程大きくならないと考えられる。

次に、図1.8に示した摩耗形態図において実験で得られた結果を組み込んだものを図4.8に示す。硬さ比の小さい場合、最大あらさRmaxは大きくなるためにSc値も大きくなる。ゆえに、摩擦繰返し数の増加に伴い、摩擦係数が増加するとPowder formationからFlake formationへ遷移し、その後、摩擦を繰返すと厳しい摩耗により接触圧力が低下するためSc値も低下し、再びPowder formationに遷移すると考えられる。これに対して、硬さ比の大きい場合は、最大あらさRmaxは小さくなるためSc値も小さくなる。ゆえに、摩擦繰り返し数の増加に伴い摩擦係数が増加しても終始マイルドな摩耗であるPowder formationのみにとどまると考えられる。
次に、Powder formation 及び Flake formation を経験した後、下地の摩耗に遷移した場合について、図1.3に示した金属の摩耗形態図を用いて考えてみる。図1.3に示した摩耗形態図に本実験の結果を図中に組み込んだものを図4.9に示す。下地の摩耗が進行すると接触の過酷さを表わす食込み度Dpの値は小さくなるため、摩耗の過酷さを表わす摩耗係数Kの値は小さくなる。また、摩耗形態はShear tongueが支配的であることが判る。これは、CCDマイクロスコープによる観察結果（図3.6, 図3.10）とも一致している。したがって、下地の摩耗を抑制するためには、硬さを大きくする等によりDp値を下げればよいと言える。このように、酸化被膜を有する圧延ロール材の摩耗形態の遷移は、Scとμを用いたセラミックスの摩耗形態図と、Dpとfを用いた金属の摩耗形態図をもとに説明することができる。以上より、圧延ロール材の耐摩耗性向上のためには、より硬い下地と破壊靭性の高い酸化被膜（あるいはセラミックス被膜）を有する材料を選ぶか、良好な潤滑剤を用いて摩擦係数を抑えるなどの工夫を行い、被膜の激しい摩耗であるFlake formationの発生を抑える必要があると言える。
表4.1 各種圧延ロール材のP_{max}/kの値及び接触形態

<table>
<thead>
<tr>
<th>Material</th>
<th>Oxidizing temp. $^\circ$C</th>
<th>H_v kgf/mm²</th>
<th>k kgf/mm²</th>
<th>P_{max}/k kgf/mm²</th>
<th>Classification of contact*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUJ-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>766</td>
<td>128</td>
<td>2.34</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E.P</td>
</tr>
<tr>
<td>Plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adamite (cast steel)</td>
<td>600</td>
<td>456</td>
<td>76</td>
<td>3.94</td>
<td>E.P</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>371</td>
<td>61.8</td>
<td>4.84</td>
<td>E.P</td>
</tr>
<tr>
<td>Nickel grain cast iron</td>
<td>600</td>
<td>701</td>
<td>117</td>
<td>2.56</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>649</td>
<td>108</td>
<td>2.77</td>
<td>E.P</td>
</tr>
<tr>
<td>High chromium cast iron</td>
<td>600</td>
<td>713</td>
<td>119</td>
<td>2.52</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>478</td>
<td>79.7</td>
<td>3.76</td>
<td>E.P</td>
</tr>
<tr>
<td>High-speed tool steel</td>
<td>600</td>
<td>847</td>
<td>141</td>
<td>2.12</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>599</td>
<td>100</td>
<td>2.99</td>
<td>E.P</td>
</tr>
</tbody>
</table>

* E: Elastic contact
E.P: Elastic - plastic contact
P: Plastic contact
図4.8 セラミックスの摩耗形態図を用いた
摩耗形態の遷移機構の説明
図4.9 金属の摩耗形態図を用いた摩耗形態の遷移機構の説明
5. 結論

常温大気中無潤滑下において、CCDマイクロスコープトライポシステムを用いて、表面に酸化被膜を成長させた各種圧延ロール材の摩擦摩耗実験を行い、次の（1）～（3）の結論を得た。
結論 1

摩擦係数は、摩擦繰返し数の増加に伴い急激に増加し、やがて、μ = 0.6〜0.8程度の一定値に落ち着く。

酸化被膜生成温度700℃の試験片の場合
結論 2

酸化被膜生成温度600℃
→ ニッケルグレン鍛鉄，高クロム鍛鉄
高速度工具鋼

酸化被膜生成温度700℃
→ ニッケルグレン鍛鉄，高クロム鍛鉄
→ 低い比摩耗量

Dry, Ball specimen; SUJ-2 (R=1mm), W=9.8N, v=2mm/s, N=1~100

<table>
<thead>
<tr>
<th>Plate specimen</th>
<th>Oxidizing temperature.</th>
<th>Specific wear rate of plate specimen Ws, × 10⁻⁷ mm²/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adamite (cast steel)</td>
<td>600 ℃, 700 ℃</td>
<td></td>
</tr>
<tr>
<td>Nickel grain cast iron</td>
<td>600 ℃, 700 ℃</td>
<td></td>
</tr>
<tr>
<td>High chromium cast iron</td>
<td>600 ℃, 700 ℃</td>
<td></td>
</tr>
<tr>
<td>High-speed tool steel</td>
<td>600 ℃, 700 ℃</td>
<td></td>
</tr>
</tbody>
</table>
プレート試験片とボール試験片の硬さ比の小さいものは、Flake formationが生じ、硬さ比の大きいものは、Powder formationのみ生じる。
参考文献

5) 堀切川, 加藤：トライポロジー会議予稿集 (福岡1991.11) 529.
9) 堀切川, 加藤：日本潤滑学会第33期春季研究発表会予稿集 (1989) 9.
12) 堀切川一男他：日本トライポロジー学会会議予稿集 (全沢1994.10) 633.