脳血管障害例に対する新しい音声訓練法 〓ウエイトノイズ法の提案 〓

<table>
<thead>
<tr>
<th>著者</th>
<th>高橋 信雄</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位授与機関</td>
<td>東北大学教育学部</td>
</tr>
<tr>
<td>学位授与番号</td>
<td>東北大学教育学部 11301号</td>
</tr>
<tr>
<td>ホームページ</td>
<td>http://hdl.handle.net/10097/63873</td>
</tr>
</tbody>
</table>
平成 27 年度

博士論文

脳血管障害例に対する新しい音声訓練法
—ウエイトノイズ法の提案—

高橋信雄
脳血管障害例に対する新しい音声訓練法
—ウエイトノイズ法の提案—

東北大学大学院教育情報学教育部

B3FD1003 高橋信雄

平成 28 年 1 月
目次

第 1 章 序論 ・・・・・・・・・・・・・・・・・・・・・・・ 3
 1．研究の背景 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5
 1) 腦血管障害後の音声障害に対する従来の訓練法の問題点 ・・・・・・・・・・・ 5
 2) 問題解決の糸口 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6
 2．新しい音声訓練法の模索 ・・・・・・・・・・・・・・・・・・・・・・・・ 9
 3．本研究の目的 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 14
 4．本論文の構成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 15
 5．各章の対応論文 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 17

第 2 章 新しい音声訓練法・ウエイトノイズ法の臨床適用 ・・・・・・・・・・・・ 20
 1．対象 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 20
 2．手続き ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 22
 3．評価の枠組み ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 25

第 3 章．ウエイトノイズ法の有効性の概観 ・・・・・・・・・・・・ 26
 1．従来の訓練法阻害因子への対応状況 ・・・・・・・・・・・・・・・・・・・ 27
 2．音声の改善状況 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 29

第 4 章．症例検討 I ・・・・・・・・・・・・・・・・・・・・・・・ 31
 －運動機能障害と高次脳機能障害のため、従来の訓練方法の適用が困難であった事例－
 1．はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 33
 2．方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 33
 3．結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 37
 4．考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 39
第 5 章．症例検討 II ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 41

－運動機能障害と発声時の易疲労性のため、従来の訓練方法の適用が困難であった事例－
1. はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 43
2. 方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 43
3. 結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 48
4. 考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 52

第 6 章．発展的研究 －CD 教材を用いた手続き－ ・・・ 54
1. はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 55
2. 方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 55
3. 結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 60
4. 考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 62

第 7 章．まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 64
1. ウエイトノイズ法の有効性・・・・・・・・・・・・・・・・・・・・・・・ 64
2. 今後の課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 67

補論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 68

－神経難病例への適用－
1. はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 68
2. 方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 70
3. 結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 73
4. 考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 75

引用文献・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 76

添付資料・・・・・・・・・・・・・・・・・・・・DVD（音声・動画）
第1章 序論

概要

言語聴覚療法のテキストでは、脳血管障害後の声量低下、気息性・無力性声質を呈する音声障害に対してはプッシング法、硬起声発声、努力発声要求などの声門閉鎖促進訓練が推奨されている。しかし、これらの訓練法を臨床において用いようとすると、実際には適用が困難な場合が多く認められた。いずれの訓練法でも、脳血管障害でみられる多発運動機能障害や高次脳機能障害、精神機能の低下、意欲低下、易疲労性などが訓練適用の阻害因子になっていると考えられた。この問題を解決するために、ロンパール効果を利用した音声訓練法であるマスキング法を改良し、新しい音声訓練法、ウエイトノイズ法を開発した。ロンパール効果とは、ノイズを聴覚的に負荷すると声量が増大する現象である。マスキング法は機能性失声症に対する訓練法で、聴覚マスキングが成立した状態で患者に発声を行わせる。90 dB SPL（音圧レベル、sound pressure level）のホワイトノイズを両耳に負荷するため不快感が大きく、一定時間の訓練を長期に継続する脳血管障害例の臨床では、マスキング法の適用は困難である。

本研究の目的は、脳血管障害後に声量低下、気息性・無力性声質を呈する音声障害例を対象に、新しい訓練方法・ウエイトノイズ法の臨床適用を行い、その有効性について検討することである。（図1-1）
第1章 序論

研究の対象: 脳血管後の声量低下、気息性・無力性声質を呈する音声障害に対する訓練法

図1-1 第1章の構造
1. 研究の背景

1) 脳血管障害後の音声障害に対する従来の訓練法の問題点

脳血管障害例では音声に異常をきたすことがあり、その病変部位により特徴的な音声症状を呈することが知られている。言語聴覚士のための主要なテキストを参照すると、上位運動ニューロン系の障害では筋緊張の亢進が観察され、音声所見としては努力性嗄声がみられ、下位運動ニューロン系の障害では筋緊張の低下が観察され、音声所見としては気息性・無力性嗄声、声帯物がみられるのが一般的であると記されている。一方で、上位運動ニューロン系の障害でも気息性・無力性声質を呈する症例があることが指摘されている。

訓練方法については、一般に上位運動ニューロン系の障害による音声障害に対してはあくび・ため息法、軟起声発声などの、リラクセーションを意図した訓練が適当で、下位運動ニューロン系の障害による音声障害に対してはプッシング法、硬起声発声、努力発声要求などの、声門閉鎖促進訓練が適当とされている。しかし、上位運動ニューロン障害であっても、気息性・無力性声質を呈する症例に対しては声門閉鎖促進訓練が行われるべきとされている。

しかし脳血管障害の臨床において、声帯低下、気息性・無力性声質を呈する症例に対し声門閉鎖促進訓練を適用しようとすると、実際には適用が困難な場合が多く認められた。以下に、それぞれのアプローチの概要と訓練適用の阻害因子について述べる。

i) プッシング法

プッシング法は、Froeschels らにより初めて報告された声門閉鎖促進訓練で、喉頭麻痺に起因する声門閉鎖不全を対象としている。プッシング法では、上肢に力を入れると声帯が内転する生理的機序を利用する。Yamaguchi らの報告によるプッシング法を用いた音声訓練プログラムには、押し運動と声門閉鎖動作を同時に行い声量の増大を図るプロセスが含まれている。押し運動として Yamaguchi らは、身体の前で両手を組んで左右に引く、身体の前で両掌を合わせて左右から押す、座っている椅子の座面の縁をつかんで上に引く、頭に手をあてて頭と手を互いに反対方向に押す、という 4 種の方法を示している。しかし、筆者が臨床で経験した脳血管障害例は、片麻痺などの運動機能障害、感覚障害、体幹のバランス障害等を呈することが多く、それらの症例ではプッシング法の適用が困難であった。

ii) 硬起声発声

硬起声発声の訓練については、軽く息を吸って息を止め声門閉鎖を確認し、勢いよく発声を行うという手法が言語聴覚士のためのテキストに紹介されている。しかし脳血
管障害例では高次脳機能障害や精神機能の低下を呈することがあり、そうした症例では訓練の手続きへの対応が十分得られないことが多く、また上位運動ニューロン障害例では過度の喉詰め発声を誘発しやすい傾向があり、適用が困難な場合が多く認められた。

iii）努力発声要求を中心とする方法

努力発声要求を中心とする方法では、パーキンソン病に伴う音声障害に対するアプローチである Lee Silverman Voice Treatment (以下 LSVT) が良く知られている。LSVT は呼吸、発声、構音など発話に関わる多くの機能を改善させる方法とされており、Rami ら 7-12 により数多くの報告がなされている。また、de Swart13 らは、Pitch Limiting Voice Treatment (PLVT) を提案している。努力発声を基本としている点は LSVT と共通しているが、LSVT では訓練時に声の基本周波数上昇や喉頭の筋緊張亢進が認められることがある、それらを抑制するために発声訓練時に声の基本周波数をコントロールすることを推奨している。しかしながら、脳血管障害例では易疲労性を呈することが多く、十分な量の訓練を行えないことがあった。また意欲の低下を呈する症例では努力発声を要求されても声量、声質に変化がみられない場合が多く認められた。

以上のように、脳血管障害でみられることの多い運動機能障害や高次脳機能障害、精神機能の低下、意欲低下、易疲労性などが訓練適用の阻害因子となり、声門閉鎖促進訓練の適用が困難になっていると考えられた。

2）問題解決の糸口

機能性失声例に対する訓練法として、文献にマスキング法が紹介されていることがある 14-18。マスキング法の手続きは文献により若干異なっているが、おおよそ次のようになる約することができる。「患者が会話や音読をしている最中に、突然マスキングノイズを聞かせる。患者はマスキングされた状態の方が良好な音声を出せることが多い。その音声を録音し、患者にフィードバックすること。」

マスキング法は、ノイズを聴覚的に負荷すると声量が増大する現象、ロンバール効果 (Lombard effect) 19,20 を利用した音声訓練とされる。（図 1-2）ロンバール効果は、1911年に Lombard によって初めて報告された。今日ではロンバール効果は、声量が増大する現象だけでなく、声の基本周波数が上昇する現象も含むものとされていることが多い。（添付 DVD の音声 1-1 参照）

ロンバール効果の発現要因は、今日でも解明されたとはいえない状況と考えられる。兼竹 21 によれば、被験者が持続発声を行っている最中に突然クリック音を聞かせると、喉頭の筋電図に短潜時の電位変化が生じ、この筋活動亢進により声の基本周波数が上昇する。兼竹はこの現象を一種の声門閉鎖反射と考察している。この現象はロンバール効果の発現機序と関係している可能性があると思われる。また、大脳皮質の関与を示唆する
ロンバール効果とは発話している最中に、ノイズを聴覚的に負荷すると声量が増大する現象。

図1-2 ロンバール効果

発話している最中に、ノイズを聴覚的に負荷すると声量が増大する現象。

被験者に「エー」と持続発声させ、開始から約2秒後からノイズを両耳に約2秒間負荷。
ノイズは75㏈のウエイトノイズ。
オージオメータ使用。

発話している最中に、ノイズを聴覚的に負荷すると声量が増大する現象。

ロンバール効果の発現機序については、
聴覚喉頭反射
心理的な要因
など諸説あり。
研究報告も多く、これまで聴覚フィードバックを重視する説、コミュニケーション効果を重視する説、発達、学習的要因が関係していることを示唆する報告、また喉頭全摘出術後の食道発声においてもロンバール効果がみられるという報告もある。

マスキング法の臨床適用に関しては、Lombard のヒステリー性失声の症例、Boone & McFarlane の、声帯結節の治療後に一旦音声を回復した後、インフルエンザにて失声となった症例の報告がある。Adams らは、ノイズを負荷した状態ではパーキンソン病患者の声量が増大すると報告し、コミュニケーション場面においてマスキングノイズの使用が有効であると示唆している。

マスキング法は、脳血管障害に起因する気息性、無力性声質および声量低下の治療に有効とされており、音声治療、言語療法のテキスト等に紹介されていることもあるが、筆者らが検索した限りでは脳血管障害例での症例報告はなく、マスキング法は脳血管障害後の声帯障害のリハビリテーションで用いられる主要な技法として認知されるには至っていないように思われる。その要因の一つには、マスキングノイズとして用いられる 90dB SPL のホワイトノイズの両耳負荷が、強い不快感を伴うことが挙げられる。（添付 DVD の音声 1-2 参照）マスキング法では聴覚マスキングを意図するため、ノイズの音量は十分なマスキング効果が得られるよう設定される。そのためノイズの音量が大きく、長時間の負荷は苦痛となる。

前述の Boone & McFarlane の報告した、声帯結節の治療後に一旦音声を回復した後、インフルエンザにて失声となった 9 歳女児の症例は、マスキング法による 3 回のセッションの後音声の異常が消失している。この症例では、2 分程度の文章朗読の最中に 90dB SPL のマスキングノイズを 5 秒から 10 秒程度断続的に負荷しており、長時間でかつ持続的なノイズ負荷はしていない。つまりマスキング法は短時間かつ短期間の音声治療で用いられるべき方法で、即効性は期待できるが持続的な適応は困難な方法であると考えられる。脳血管障害のように一定時間の訓練を長期にわたって実施することが求められる場合には、マスキング法の適用は困難と考察される。

しかしながら、ノイズを聴覚的に負荷しロンバール効果を生じさせるという手続きは、従来の音声訓練で生じることの多かった問題を解決する糸口になりうると考えられた。従来の訓練法適用の阻害因子に対し、ロンバール効果を利用した訓練手続きは以下のような利点を持つと推察された。

- 運動機能障害：四肢や体幹の筋緊張を要求する手続きを含まず、ヘッドホンの装着のみで訓練が行える。
- 高次脳機能障害および精神機能の低下：複雑な訓練手続きの理解が不要である。復唱や音読など、患者に可能な課題を設定することができる。
- 意欲低下および易疲労性：努力発声を要求することなく音声の改善が得られる。
2. 新しい音声訓練法の模索–マスキング法改良の試み

筆者はマスキング法の長所を生かした新しい音声訓練法を模索するため、訓練中の不快感が小さいノイズを検討することとした。ロンパール効果による声量増大とノイズの性質との関係については、数多くの研究報告がなされている。声量増大の効果を、ノイズの強さ 30-32）、ノイズの周波数帯域 30）、ノイズが負荷された状態での受聴明瞭度 33）などとの関係で論じた報告が多数存在する。文献的考察から本訓練法に適したノイズを選択するということも興味深く、それによって有効なノイズが得られる可能性は否定できない。しかし、これらの研究の多くは、ホワイトノイズを音響フィルターで加工するなど、精度の高い実験的手法によってなされている。臨床で用いられるノイズは、臨床家が容易に利用できるものであることが望ましいと考えられたため、筆者はオージオメーター（AA-61B、リオン製）から得られるもう一種類の広帯域雑音、ウエイトノイズを検討した。（添付 DVD の音声1-3参照）

ウエイトノイズは、語音聴力検査のマスキングノイズとして、また検査音の上昇とともに狭帯域雑音の周波数帯域をシフトしていく技術が開発される以前、自記オージオメトリのマスキングノイズとして用いられた。単位は dB で、数値は概ね実効マスキングレベルに一致している。ホワイトノイズが全周波数帯域においてエネルギー値がフラットであるのに対し（図1-3）、ウエイトノイズは 500Hz 以下にエネルギー値のピークがある。（図1-4）

![スペクトル図](図1-3.png)

縦軸はエネルギー値 (dB)、横軸は周波数 (Hz)

図1-3 ホワイトノイズのスペクトル
2名の言語聴覚士を被験者とし、ホワイトノイズ、ウエイトノイズを負荷し発話を行ったところ、55dB程度のウエイトノイズを用いると、90 dB SPLのホワイトノイズよりも小さな不快感で同程度のロンバール効果が得られた。図1-5に自然な状態およびノイズを負荷した状態での音声波形を示す。声量増大の効果については、55 dBのウエイ
トノイズおよび 90 dB SPL のホワイトノイズを負荷すると、ともに自然な状態よりも声量が増大し、かつ声量増大的程度には両ノイズ間で明らかな差が認められていないと考えられた。また不快感については、2 名の被験者とも明らかに 55 dB のウエイトノイズの方が 90 dB SPL のホワイトノイズよりも不快感が小さいと感じた。ちなみに、正常聴力を持つ 20 代から 50 代の男女 20 人を被験者として、90dB SPL のホワイトノイズと 55dB のウエイトノイズを聴かせ、不快感の大きさを比較させたところ、すべての被験者において 55dB のウエイトノイズの方がより不快感が小さいとの感想を得た。図 1-6 に、90dB SPL のホワイトノイズと 55dB のウエイトノイズの波形を示す。振幅から、

90dB SPL のホワイトノイズの方が音圧が強いことがわかる。この音圧の違いは、不快感の大きさに関係している可能性があると思われる。

このような、55 dB のウエイトノイズを負荷すると、マスキング法よりも小さな不快感でロンバール効果を利用した音声訓練を行うことができる可能性があると考えられた。

筆者は、ウエイトノイズを利用した新しい訓練法を臨床において試みることとした。同時に、同じオージオメータから得られる 11 種の狭帯域雑音も対象とし、不快感と声量増大の程度についてさらに検討してみた。2 人の言語聴覚士を被験者とし、聴覚印象により検討したところ、125Hz および 250Hz の狭帯域雑音でもウエイトノイズと同様

11
度の不快感で、同程度のロンバール効果が得られた。このような結果が得られた原因は不明だが、これらのノイズを用いてもウエイトノイズと同様の訓練が可能と考えられた（補足参照）。しかし、すでに数例の患者においてウエイトノイズを用いて臨床適用を模索し始めていたため、条件を統一する目的で本研究では基本的にはウエイトノイズを負荷して音声訓練を行うこととした。このような経緯から、筆者はウエイトノイズを利用した新しい音声訓練法をウエイトノイズ法と命名した。

ここで、マスキング法とウエイトノイズ法におけるノイズ負荷の目的の違いについて述べておきたい。（表 1-1）マスキング法では、ノイズの負荷は聴覚マスキングを成立させることを目的としており、いわゆる「ことばの鎖」におけるフィードバックの輪を遮断することを意図していると考えられる。つまりマスキング法による訓練では、患者には自分の音声は全く聞こえていない。一方ウエイトノイズ法においては、ノイズの負荷はロンバール効果を得ることを目的としており、聴覚マスキングを成立させることを目的としたものではない。つまりウエイトノイズ法による訓練では、患者には自分の音声が聞こえている場合がある。むしろウエイトノイズ法においては、他の多くの音声訓練法と同様、患者が自分の音声を同時にフィードバックできることが望ましいと考える。

筆者の経験では、ウエイトノイズの音量が45dB以下であれば、多くの場合患者は自分の音声を同時にフィードバックすることが可能であった。同時にフィードバックが困難な場合には、喉頭を手で触れる、患者の音声を録音して聞かせるなどのフィードバックを行うのが有効と考えられた。

（補足）
本研究の開始から数年後、新たに購入した新しいオージオメータから出力されるスピーチノイズについても同様の検討を行った。スピーチノイズは、2000年のオージオメータの JIS 規格改正で語音聴力検査用のマスキングノイズとして規定されたノイズである。検討の結果、ウエイトノイズと同様、ロンバール効果を利用した訓練に使用可能と考えられた。
なお、この新しいオージオメータにはウエイトノイズの出力機能は搭載されていない。この件については第6章で述べる。
図 1-7 ことばの鎖
（藤田郁代：言語とコミュニケーション．言語聴覚障害学概論，
医学書院，東京，8．2010 より 一部改変）
3. 本研究の目的

これまで述べてきたように、脳血管障害後に声量低下、気息性・無力性声質を呈する音声障害例に対しては、テキスト等で推奨されているプッシング法、硬起声発声、努力発声要求などの声門開鎖促進訓練の適用が困難な場合が多く認められた。いずれの訓練法でも、脳血管障害でみられることの多い運動機能障害や高次脳機能障害、精神機能の低下、意欲低下、易疲労性などが訓練適用の阻害因子になっていると考えられた。筆者はこの問題を解決するために、ロンバール効果を利用した音声訓練法であるマスキング法を改良し、新しい音声訓練法、ウエイトノイズ法を開発した。

本研究は、脳血管障害による声量低下、気息性・無力性声質を呈する音声障害例において、ウエイトノイズ法の臨床適用を行い、その有効性を確認することを目的とする。
4. 本論文の構成

各章の相互関係を図 1-8 に示す。

図 1-8 各章の相互関係
第1章は序論として、脳血管障害後に声量低下、気息性・無力性声質を呈する音声障害例に対する既存の訓練方法の問題点を提示し、その問題を解決するためにロンバール効果を用いる新しい音声訓練法・ウエイトノイズ法を開発した経緯について述べた。そして本研究の目的を、ウエイトノイズ法を臨床適用し、その有効性を確認することとした。

第2章では、ウエイトノイズ法の臨床適用の手続き、すなわち本方法適用の対象、訓練の手続き、評価の枠組みについて論じる。

第3～5章では、ウエイトノイズ法の有効性について検討する。第3章では、対象とした全症例について音声改善の有無、従来の訓練法の阻害因子への対応状況について論じ、本方法の有効性について概観する。次に、従来の訓練法の適用が困難であった2つの事例に関する症例検討を行う。第4章、症例検討Iでは、運動機能障害と高次脳機能障害が訓練の阻害因子となっていた失声例について論じる。第5章、症例検討IIでは、運動機能障害と発声時易疲労性が訓練の阻害因子となっていた一側性喉頭麻痺例について論じる。2つの事例を通じ、脳血管障害例に随伴することの多い障害が従来の訓練法適用の阻害因子となっている状況、ウエイトノイズ法の適用により阻害因子にどのように対処することができたのかを具体的に論じ、本訓練法の有効性について考察する。

第6章では、臨床適用の結果見出された問題点を解決し、それまでウエイトノイズ法を適用できなかった患者に訓練の機会を提供できるようにする試みについて論じる。

第7章はまとめとして、ウエイトノイズ法の有効性について総括する。本法導入により新たに訓練の機会を提供できた症例、訓練効果、患者の訓練意欲の増大などの効果について述べる。さらに、本方法が確立した音声訓練法として認知されるための要件について考察する。

補論では、神経難病例に対しウエイトノイズ法を適用した応用的研究について論じる。神経難病例は脳血管障害例と同様の障害を随伴することが多く、従来の音声訓練法の適用が困難な場合が多く認められる。ここでは、進行性核上性麻痺例に関する症例検討を行う。
5．各章の対応論文

各章の対応論文は以下の通りである。

第1章 序論

第2章 新しい訓練法・ウエイトノイズ法の臨床適用

第3章 ウエイトノイズ法の有効性の概観

第4章 症例検討Ⅰ

第5章 症例検討Ⅱ

第6章 発展的研究 －CD教材を用いた手続き－

高橋信雄，久永欣哉，佐々木結花，高野智恵子：脳血管障害後の音声障害に対するベッドサイドでの訓練．リハビリテーション科学，2016．（印刷中）

第7章 まとめ

高橋信雄，佐々木結花，高橋博達，ほか：脳血管障害による音声障害に対するロンパール効果を利用した音声治療．音声言語医学，43：280-289，2002．

高橋信雄，佐々木結花，高野智恵子，ほか：脳血管障害による音声障害に対するロンパール効果を利用した新しいアプローチ．医療，60(5)：298-304，2006．

高橋信雄，佐々木結花，高橋博達，ほか：運動機能障害及び高次脳機能障害を持つ失声例に対するウエイトノイズ法の適用．音声言語医学，45：23-29，2004．

高橋信雄，佐々木結花，高野智恵子，ほか：運動機能障害を伴う一側性喉頭麻痺例に対するウエイトノイズ法の適用．音声言語医学，46：119-125，2005．

補論

久永欣哉，高橋信雄：パーキンソン病のリハビリテーション．Jpn Rehabil Med，49；738-745，2012．

高橋信雄，久永欣哉，佐々木結花，ほか：進行性核上麻痺による失声例に対するウエイトノイズ法の適応－ロンパール効果を用いた発声訓練－．リハビリテーション科学，10-11(1)：41-48，2015．

注

i）虚血または出血により脳の一部が永続的もしくは一過性に障害された状態、および脳血管に原発性の病理学的変化をきたした状態の総称．（飯島節：脳血管障害．神経内科学テキスト改訂第3版（江藤文夫，飯島節），南江堂，東京，145，2012．）

ii）声質の異常は、いわゆるがらがらした声の粗雑性、息漏れのあるかすれた声である気息性、弱々しい声の無力性、喉をつめたきばった声である努力性という内容で評価する．（小池三奈子：音声障害・発声発語障害学．言語聴覚士テキスト第2版（廣瀬肇ほか），医歯薬出版，東京，350，2011．）

iii）音響学では、音の強さなど桁数の大きな量をそのまま表現することを避けて、あらかじめ決めた基準値に対してどれほど大きなレベルにあるかを対数で表現する．基準音圧を20μPaと決めたデシベル表示を音圧レベル（sound pressure level）という．
単位はdBで、dB SPLとも表す。（今泉敏：信号としての音波．言語聴覚士のための音響学（今泉敏）、医歯薬出版, 東京, 17-18, 2007.）（粕谷英樹：音響学．言語聴覚士テキスト第2版（廣瀬ほか）、医歯薬出版, 東京, 196, 2011.）

iv）運動ニューロンには、前頭葉運動皮質を中心とした大脳皮質に細胞体を持つ上位運動ニューロンと、脊髄前角に細胞体を持ち直接筋を支配する下位運動ニューロンがある。（日下博文：運動ニューロン疾患．神経内科学テキスト改訂第3版（江藤文夫, 飯島節）、南江堂, 東京, 199, 2012.）

v）パーキンソン病は中脳に病変のある変性疾患であり、神経メラトニンとドパミンの代謝系に障害が認められ、ドパミンの補充療法が行われる。（江藤文夫：神経・筋疾患とリハビリテーション．神経内科学テキスト改訂第3版（江藤文夫, 飯島節）、南江堂, 東京, 5-6, 2012.）

vi）機能性失声症は喉頭に器質的な異常が認められず、心因性失声症またはヒステリー性失声症ともよばれる。（石毛美代子：機能的音声障害・音声障害．発声発語障害学（藤田郁代ほか）、医学書院, 東京, 28, 2010.）

vii）食道発声は、下咽頭にある空気を上部食道に取り込み、それを逆流させる際に咽頭食道接合部（食道入口部）を振動させて発話する方法である。（小池美奈子：無喉頭音声の種類と特徴・音声障害．発声発語障害学（藤田郁代ほか）、医学書院, 東京, 28, 2010.）

viii）声帯結節は声帯膜様部中央に限局性に生じる無茎性の小隆起であり、非腫瘍性の腫瘤である。声帯振動に伴う機械的刺激により声帯の粘膜固有層浅層に肥厚性変化をきたしたもの。（石毛美代子：器質的音声障害・音声障害．発声発語障害学（藤田郁代ほか）、医学書院, 東京, 20, 2010.）
第2章 新しい音声訓練法・ウエイトノイズ法の臨床適用

概要

本章では新しい音声訓練法・ウエイトノイズ法の臨床適用に関して述べる。対象は、気息性、無力性声質および声量低下を呈する脳血管障害例52症例で、運動機能障害や高次脳機能障害、精神機能の低下、意欲低下、易疲労性などが阻害因子となり、従来の声門閉鎖促進訓練の適用が困難な症例であった。次に、ウエイトノイズ法の手続きについて具体的に論じる。最後に、音声の評価の枠組みについて述べる。（図2-1）

1. 対象

M病院にて、気息性、無力性声質および声量低下を呈する脳血管障害例52症例に対して、ウエイトノイズ法を適用した。これらの症例はいずれも、運動機能障害や高次脳機能障害、精神機能の低下、意欲低下、易疲労性などが阻害因子となり、従来の声門閉鎖促進訓練の適用が困難な症例であった。

この52例には以下の条件に該当する症例は含まれていない。

①発声の強い粗雑性、努力性声質を呈する
発声の強い粗雑性、努力性声質を呈する音声障害例に対しては、声門閉鎖促進訓練ではなく、リラクセーション、すなわち喉頭の緊張を緩める訓練が適切とされており、本方法の対象外とするべきと考えられた。しかし、発声の強いタイプとは異なる粗雑性声質を呈する場合、例えば梨状窩に貯留物があるなどの原因で低周波数帯域の雑音がある場合、声の基本周波数が低下している場合、粗雑性声質が麻痺側声帯の不規則な振動に起因している場合などは、本方法の適用対象とした。

②喉頭に一側性喉頭麻痺以外の器質的疾患が認められる
声帯ポリープなどの他の器質的異常が認められる場合は、それらに対する耳鼻咽喉科的治療が優先されるべきと考えられる。また両側性喉頭麻痺の場合には、訓練により両側声帯位の固定位置が正中位に移動し、呼吸障害を引き起こす可能性があるため、本方法の適用対象外とした。
③音声障害発症以前に声の濫用が認められる

声の濫用が認められる症例に対しては、まず声の安静指導が必要となるため、本方法の適用対象外とした。

④聴覚障害が認められる

難聴のためロンパール効果が得られない場合には、本方法の適用対象外とした。

2. 手続き

1）事前の検査

i）喉頭内視鏡検査

喉頭内視鏡検査を行い、喉頭所見を得る。（写真2-1）一側性喉頭麻痺以外の器質的疾患が認められた場合には、訓練対象外とする。喉頭内視鏡検査は訓練終了時にも行い、訓練結果に関する生理学的裏付けを得る。

しかし、認知機能の低下を呈する症例では喉頭内視鏡検査を行うことに同意が得られなかったり、検査中にファイバースコープの挿入に強く抵抗したりし、検査が実施できない場合がある。そうした場合には、訓練の可否について主治医の判断を求め、訓練実施の条件についても主治医から詳細な指導を受けるなどし、訓練が必要な患者に訓練が提供できるよう努める。

写真2-1 喉頭内視鏡による検査
ii）聴力検査
聴力検査を行い、訓練の支障となる水準の聴力閾値の上昇が認められた場合には訓練対象外とする。

2）訓練の手続き

i）負荷するノイズの種類と音量
主として55dB程度を上限とするウエイトノイズを用いた。音声障害の改善につれて、ノイズの音量を徐々に下げてゆき、最終的にはノイズのない状態で良好な音声が得られることを目標とした。
本研究ではほとんどの患者の訓練でウエイトノイズを使用したが、第1章で述べたとおり、125Hzもしくは250Hzの狭帯域雑音、スピーチノイズを用いることも可能である。臨床適用においては、訓練開始時にこれらのノイズを患者に聞かせ、不快感について患者の意見を聴取し、特に希望が無ければウエイトノイズを用いた。本研究では、1例のみ250Hzの狭帯域雑音を使用し訓練を実施した。

ii）訓練課題
ヘッドホンレシーバーを用いて患者の両耳にノイズを負荷しながら、復唱や音読などを行わせる。訓練場面の様子を写真2-2に示す。
咳をすることができない症例では、ノイズを負荷して咳をする練習から開始する。音声障害が軽度の場合は、短文レベルから開始する。音声障害の改善につれて、長いテキストへと課題を変えていく。原則的には、長いテキストで有響成分を一貫して保持可能となってからノイズ音量の操作を行う。しかし、言語認知機能の低下がみられる症例では長いテキストに移行することが困難な場合があり、そうした場合には症例が対応可能な長さのテキストを用いる。訓練の流れを図2-2に示す。

iii）訓練時間と頻度
1回15〜20分程度の訓練を週4回から5回行った。

![図2-2 訓練の流れ](image)
3．評価の枠組み

訓練開始時および訓練終了時の会話音声を録音し、声質を GRBAS 尺度 に、声量を独自に考案した 8 段階の尺度を用いて比較検討した。これらの聴覚印象評価は、三人の言語聴覚士が合議制で行った。また、より客観的な指標として、復唱等の音声を録音し音響分析を行った。音声の録音は防音室にて行った。口唇から 20cm にマイクロフォンを設置し、DAT(SONY DTC-ZA5ES)に記録した。音響分析には、Windows 対応のソフト(Arcadia AcousticCore version 2.08、NYY-AT 音声工房 Pro v2.0)を使用した。

GRBAS 尺度は、聴覚印象による声質の評価尺度である。声質の異常（嗄声）の総合的な重症度を G、ガラガラした印象を与える粗糙性の程度を R、息漏れしてカサカサした印象を与える気息性の程度を B、弱々しい印象を与える無力性の程度を A、力んで気張っている印象を与える努力性の程度を S の 5 つの尺度で表す。これら 5 つの尺度のそれぞれについて、0（正常）、1（軽度）、2（中等度）、3（重度）の 4 段階評価を行う。

声量の評価には、福迫らの提案による麻痺性（運動障害性）構音障害評価表の 5 段階尺度が存在するが、訓練の流れの諸段階に対応した尺度の必要を感じ、表 2-1 に示す 8 段階尺度を用いた。音声障害の重度の症例では声量のみではなく、発話に有響成分がどの程度含まれるかも評価した。有響成分が含まれない失声の症例は、「咳が可能」「咳ができない」の 2 段階に分類した。失声の症例には随時に咳が可能な症例とそうでない症例があり、これらの症例では声門閉鎖機能に差異が存在すると考えられ、内容の異なる訓練が適用される必要があると考えられたためである。

<table>
<thead>
<tr>
<th>表 2-1 声量に関する 8 段階尺度</th>
</tr>
</thead>
<tbody>
<tr>
<td>段階</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>
第3章 ウエイトノイズ法の有効性の概観

概要

本章では、まず従来の訓練法の阻害因子への対応状況について述べる。これまで訓練の提供が困難だった症例を訓練対象とすることができたと考えられた。しかし、上肢の運動機能障害がある症例では、ヘッドホン着脱で介助を要した。また、車椅子が安定しないなどの理由で訓練室に来室できない症例には、訓練が行えなかった。高次脳機能障害等については、症状が重度の症例では訓練課題への対応が困難な場合があった。次に、音声の改善状況について概要を説明する。52例中48例において音声の何らかの改善が認められた。従来の訓練方法と同様、自然回復の要因を排除することは困難と考えられ、この改善はウエイトノイズ法による訓練のみに起因するとは断定できないと考えられた。(図3-1)

図3-1 第3章の構造
１．従来の訓練法の阻害因子への対応状況

ウェイトノイズ法を適用することにより、従来の音声訓練法の適用が困難であった症例に対し、訓練の機会を提供することができたと考えられた。従来の訓練法の阻害因子となっていた症状に対し、ウェイトノイズ法の手続きがどのように有効であったのかを以下に論ずる。

1）運動機能障害
ウェイトノイズ法は、プッシング法のように筋緊張を要求する手続きを含んでいないため、運動機能障害を伴う症例も訓練課題に対応することができた。また、復唱課題や音読課題は体位に関係なく可能であるため、車いす座位やリクライニング車いす上での半臥位での訓練が可能であった。

しかし、臨床適用においていくつかの問題点が認められた。第一に、ヘッドホンレシーバの操作に介助を要する場合が多かったことがあげられる。毎日複数の患者がヘッドホンレシーバを使用するため、各症例は訓練開始時にヘッドホンレシーバのヘッドレストの長さを調節する必要があったが、片麻痺のある症例ではその操作が困難であった。また、ヘッドホンレシーバはワイヤーの弾性を利用してレシーバを頭部に密着させる構造になっているため、片麻痺のある症例では片手でヘッドホンレシーバを装着することが困難な場合が多かった。さらに、レシーバの中央部を耳孔の位置に正確に対応させることは非常に困難であった。運動機能障害のある症例の多くでは、言語聴覚士がヘッドレストの長さの調節および着脱を介助することが多かった。

第二に、音声訓練が処方された症例が何らかの理由で訓練室までの移動ができない場合、訓練の機会を提供することができなかった点があげられる。車いす座位不安定、眩暈、腰痛などが原因で車いす座位が困難である場合にはベッド上での訓練が望まれるが、M病院のオージオメーターはコンパクトタイプの機種ではなく、ベッドサイド移動が困難であった。こうした症例に対しては従来の音声訓練法をベッドサイドで試み、適用が困難な場合にはやむを得ず一時経過観察とし、訓練室への移動が可能となってからウェイトノイズ法による訓練を適用した。

2）高次脳機能障害、精神機能の低下
ウェイトノイズ法は複雑な訓練の手続きを含んでおらず、復唱、音読、自由会話など、症例に可能な発話を課題とすることができるため、多くの症例において訓練に対応が得られた。しかし、以下の症状が重度の場合には訓練適用が困難であった。

ⅰ）失語症
失語症のある症例でも、未分化化の発声により離れたところにいる他者に緊急事態の発生を知らせることが有用な場合があり、音声機能の改善はADL（日常生活動作・活動、activity of daily living）の向上に寄与すると考えられる。

失語症のある症例では、復唱や音読などの課題を残存機能の範囲内で設定することが可能な場合があった。しかし聽覚的障害の障害が重度の症例では、課題の手続きの理解が困難な場合があった。また、発話の障害が重度で自由会話、音読、復唱がいずれも不可能な症例は、訓練の対象外となった。

ii）認知症

認知症が認められる症例でも、復唱や音読などの課題を残存機能の範囲内で設定することが可能な場合があった。しかし、症例に音声障害の自覚がなく訓練の必要性が理解されない場合には、訓練を実施することに同意が得られないことがあった。また、ヘッドホンレシーバー装着に応じても復唱や音読を行わない、ヘッドホンレシーバーを自ら外してしまうなど、課題の手続きに対応が得られないことがあった。症例の中には、訓練開始直後には課題への対応行動が得られていたが、時間の経過とともに無反応となり、徐々に対応状況が不良となる症例もあった。

iii）発動性の低下

ウエイトノイズ法は症例に大きな努力を要求しないが、発動性の低下が重度の症例では復唱、音読を促しても対応行動が得られないことがあった。症例の音声症状や訓練の目的などを繰り返し説明し、復唱や音読を励行しても、課題への対応が得られない場合があった。

3）意欲の低下

ウエイトノイズ法では努力発声の必要がないため、意欲の低下を呈する症例でも訓練課題に対応しやすいと考えられた。また、ノイズを負荷すると即座に声質の改善、声量の増大が得られるため、症例に自身の音声をフィードバックすると驚きと喜びを感じ、障害の克服に意欲的に取り組む姿勢を呈する症例が存在した。そうした症例では、ロバール効果を利用した手続きがQOL（quality of life）の向上にも寄与していると考えられた。また、訓練の初期の段階から言語聴覚士に対する信頼感を持つことができたと考えられる症例も存在した。

しかし意欲の低下が著しい症例では、訓練の実施に同意が得られないことや訓練課題への対応が得られないことがあった。

4）易疲労性

ウエイトノイズ法はロバール効果を利用するため、症例に努力発声を要求すること
なく声量増大が得られる。そのため発声時に疲労しやすい症例でも、努力発声を要求する訓練方法に比して、訓練の導入、継続が容易であったと考えられた。ウェイトノイズ法による音声訓練中に疲労を訴えた症例に対しては、頻回に休憩を挿入する、短時間の訓練を頻回に実施するなどの配慮が有効であった。

2. 音声の改善状況

脳血管障害全52例について、音声の改善状況の概要を示す。表3-1に、症例のプロフィール、訓練期間、最長発声持続時間、音声の改善の有無を示した。音声の改善の有無は、会話音声の聴覚印象評価、音響分析による評価において、何らかの改善が見られた場合に「+」とした。

52例中48例において音声の何らかの改善が認められた。
従来の訓練方法と同様、自然回復の要因を排除することは困難で、この改善がウェイトノイズ法による訓練のみに起因するとは断定できないと考えられる。
なお症例 No.3の訓練では、症例が希望したため250Hzの狭帯域雑音を使用した。No.1、No.12については、それぞれ第4章、第5章の症例検討で取り上げる。
表3-1 症例のプロフィール、訓練期間、最長発声持続時間、音声の改善の有無

<table>
<thead>
<tr>
<th>No.</th>
<th>性別</th>
<th>年齢</th>
<th>診断名</th>
<th>訓練期間</th>
<th>最長発声持続時間</th>
<th>音声の改善</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>男</td>
<td>46</td>
<td>くも膜下出血</td>
<td>150</td>
<td>50</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>男</td>
<td>52</td>
<td>失神発作</td>
<td>60</td>
<td>6.4</td>
<td>10.5</td>
</tr>
<tr>
<td>3</td>
<td>男</td>
<td>72</td>
<td>多発性脳梗塞</td>
<td>77</td>
<td>0.0</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>男</td>
<td>72</td>
<td>腦圧上昇</td>
<td>155</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>女</td>
<td>70</td>
<td>腦挫傷後</td>
<td>50</td>
<td>7.2</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>女</td>
<td>70</td>
<td>脳損傷</td>
<td>37</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>7</td>
<td>女</td>
<td>70</td>
<td>脳関節症</td>
<td>110</td>
<td>7.5</td>
<td>126</td>
</tr>
<tr>
<td>8</td>
<td>女</td>
<td>73</td>
<td>脳挫傷</td>
<td>71</td>
<td>0.0</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>女</td>
<td>78</td>
<td>多発性脳梗塞</td>
<td>8</td>
<td>12.1</td>
<td>14.7</td>
</tr>
<tr>
<td>10</td>
<td>男</td>
<td>64</td>
<td>右脳発血</td>
<td>32</td>
<td>3.8</td>
<td>40</td>
</tr>
<tr>
<td>11</td>
<td>男</td>
<td>49</td>
<td>左脳発血</td>
<td>179</td>
<td>18.5</td>
<td>132</td>
</tr>
<tr>
<td>12</td>
<td>男</td>
<td>68</td>
<td>脳挫傷後</td>
<td>146</td>
<td>5.0</td>
<td>8.2</td>
</tr>
<tr>
<td>13</td>
<td>女</td>
<td>55</td>
<td>外傷性脳挫傷</td>
<td>35</td>
<td>7.0</td>
<td>10.0</td>
</tr>
<tr>
<td>14</td>
<td>女</td>
<td>62</td>
<td>脳挫傷後</td>
<td>83</td>
<td>0.0</td>
<td>4.0</td>
</tr>
<tr>
<td>15</td>
<td>男</td>
<td>48</td>
<td>脳挫傷後</td>
<td>21</td>
<td>25.0</td>
<td>18.0</td>
</tr>
<tr>
<td>16</td>
<td>女</td>
<td>48</td>
<td>多発性脳梗塞</td>
<td>15</td>
<td>14.0</td>
<td>14.5</td>
</tr>
<tr>
<td>17</td>
<td>女</td>
<td>76</td>
<td>くも膜下出血</td>
<td>80</td>
<td>0.7</td>
<td>7.5</td>
</tr>
<tr>
<td>18</td>
<td>女</td>
<td>66</td>
<td>脳損傷</td>
<td>109</td>
<td>1.8</td>
<td>9.6</td>
</tr>
<tr>
<td>19</td>
<td>女</td>
<td>73</td>
<td>多発性脳梗塞</td>
<td>41</td>
<td>4.0</td>
<td>6.0</td>
</tr>
<tr>
<td>20</td>
<td>男</td>
<td>66</td>
<td>脳挫傷後</td>
<td>36</td>
<td>5.5</td>
<td>8.0</td>
</tr>
<tr>
<td>21</td>
<td>男</td>
<td>81</td>
<td>左脳発血</td>
<td>39</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>22</td>
<td>男</td>
<td>74</td>
<td>多発性脳梗塞</td>
<td>89</td>
<td>0.2</td>
<td>10.0</td>
</tr>
<tr>
<td>23</td>
<td>男</td>
<td>68</td>
<td>多発性脳梗塞</td>
<td>11</td>
<td>17.0</td>
<td>25.5</td>
</tr>
<tr>
<td>24</td>
<td>男</td>
<td>74</td>
<td>脳挫傷後</td>
<td>94</td>
<td>2.0</td>
<td>3.5</td>
</tr>
<tr>
<td>25</td>
<td>女</td>
<td>57</td>
<td>電気原発症</td>
<td>24</td>
<td>4.5</td>
<td>8.0</td>
</tr>
<tr>
<td>26</td>
<td>女</td>
<td>54</td>
<td>脳発血</td>
<td>67</td>
<td>3.0</td>
<td>6.1</td>
</tr>
<tr>
<td>27</td>
<td>男</td>
<td>65</td>
<td>右脳発血</td>
<td>76</td>
<td>3.1</td>
<td>1.3</td>
</tr>
<tr>
<td>28</td>
<td>男</td>
<td>56</td>
<td>右脳発血</td>
<td>93</td>
<td>5.0</td>
<td>23.3</td>
</tr>
<tr>
<td>29</td>
<td>男</td>
<td>74</td>
<td>脳圧上昇</td>
<td>113</td>
<td>3.0</td>
<td>5.4</td>
</tr>
<tr>
<td>30</td>
<td>男</td>
<td>76</td>
<td>多発性脳梗塞</td>
<td>17</td>
<td>12.0</td>
<td>18.2</td>
</tr>
<tr>
<td>31</td>
<td>女</td>
<td>76</td>
<td>脳発血</td>
<td>110</td>
<td>1.8</td>
<td>9.6</td>
</tr>
<tr>
<td>32</td>
<td>男</td>
<td>56</td>
<td>脳発血</td>
<td>77</td>
<td>17.5</td>
<td>9.0</td>
</tr>
<tr>
<td>33</td>
<td>男</td>
<td>43</td>
<td>右脳発血</td>
<td>27</td>
<td>30.0</td>
<td>30.0</td>
</tr>
<tr>
<td>34</td>
<td>男</td>
<td>42</td>
<td>脳挫傷後</td>
<td>84</td>
<td>20.0</td>
<td>13.0</td>
</tr>
<tr>
<td>35</td>
<td>男</td>
<td>67</td>
<td>脳発血</td>
<td>41</td>
<td>4.5</td>
<td>21.3</td>
</tr>
<tr>
<td>36</td>
<td>男</td>
<td>82</td>
<td>脳原発症</td>
<td>24</td>
<td>1.2</td>
<td>3.0</td>
</tr>
<tr>
<td>37</td>
<td>男</td>
<td>71</td>
<td>右脳発血</td>
<td>25</td>
<td>2.5</td>
<td>6.9</td>
</tr>
<tr>
<td>38</td>
<td>男</td>
<td>70</td>
<td>左脳発血</td>
<td>40</td>
<td>14.6</td>
<td>16.6</td>
</tr>
<tr>
<td>39</td>
<td>男</td>
<td>82</td>
<td>左脳発血</td>
<td>29</td>
<td>7.2</td>
<td>7.6</td>
</tr>
<tr>
<td>40</td>
<td>男</td>
<td>66</td>
<td>多発性脳梗塞</td>
<td>21</td>
<td>6.7</td>
<td>10.2</td>
</tr>
<tr>
<td>41</td>
<td>男</td>
<td>62</td>
<td>左脳発血</td>
<td>25</td>
<td>5.5</td>
<td>6.5</td>
</tr>
<tr>
<td>42</td>
<td>女</td>
<td>70</td>
<td>多発性脳梗塞</td>
<td>70</td>
<td>6.5</td>
<td>9.4</td>
</tr>
<tr>
<td>43</td>
<td>男</td>
<td>67</td>
<td>多発性脳梗塞</td>
<td>65</td>
<td>3.3</td>
<td>6.8</td>
</tr>
<tr>
<td>44</td>
<td>男</td>
<td>65</td>
<td>脳原発症</td>
<td>22</td>
<td>3.0</td>
<td>11.9</td>
</tr>
<tr>
<td>45</td>
<td>女</td>
<td>65</td>
<td>脳発血</td>
<td>27</td>
<td>14.5</td>
<td>22.5</td>
</tr>
<tr>
<td>46</td>
<td>男</td>
<td>68</td>
<td>脳発血</td>
<td>29</td>
<td>0.7</td>
<td>10.0</td>
</tr>
<tr>
<td>47</td>
<td>男</td>
<td>60</td>
<td>脳発血</td>
<td>27</td>
<td>17.4</td>
<td>27.5</td>
</tr>
<tr>
<td>48</td>
<td>男</td>
<td>51</td>
<td>脳発血</td>
<td>71</td>
<td>5.5</td>
<td>17.5</td>
</tr>
<tr>
<td>49</td>
<td>男</td>
<td>70</td>
<td>脳圧上昇</td>
<td>57</td>
<td>11.5</td>
<td>15.0</td>
</tr>
<tr>
<td>50</td>
<td>男</td>
<td>20</td>
<td>脳発血</td>
<td>90</td>
<td>16.5</td>
<td>27.0</td>
</tr>
<tr>
<td>51</td>
<td>女</td>
<td>67</td>
<td>多発性脳梗塞</td>
<td>37</td>
<td>3.2</td>
<td>4.2</td>
</tr>
<tr>
<td>52</td>
<td>女</td>
<td>66</td>
<td>多発性脳梗塞</td>
<td>97</td>
<td>2.0</td>
<td>3.1</td>
</tr>
</tbody>
</table>
第4章 症例検討I

－運動機能障害と高次脳機能障害のため、従来の訓練方法の適用が困難であった事例－

概要

本章では、運動機能障害と高次脳機能障害のため、従来の訓練方法の適用が困難であった失声例を取り上げる。症例は48歳男性で、診断名はくも膜下出血であった。重度の左片麻痺などの運動機能障害のため、プッシング法の適用は困難であった。重度の高次脳機能障害、意欲の低下のため、努力を要する課題には対応行動がえられず、努力発声を要求しても発声状態のまま発話した。しかし、55 dBのウエイトノイズを負荷して短文音読を試みると、有声発声が得られた。発症から3.5ヵ月の時点でウエイトノイズ法による音声訓練を開始し、4ヵ月間継続した。声質、声量の改善が認められた。本症例は発声訓練開始まで失声のまま3.5ヵ月が経過しており、初回評価時にノイズを負荷した状態で発症後初めての有声発話が得られ、その後音声の改善が始まった。ゆえに本症例の改善には訓練効果の要素が含まれているとの印象を得ている。

ウエイトノイズ法は、運動機能障害、高次脳機能障害を呈する本症例にも適用が可能であった。本方法では音声を改善させるための大きな努力を要求されないため、患者は訓練課題に対応しやすいと考えられた。（図4-1）
問題の存在
その解決法の探求
ウエイトノイズ法の開発
研究の目的：その有効性の評価
評価
有効性の検討
第3章: ウエイトノイズ法の有効性の概観
第4章: 症例検討Ⅰ
運動機能障害と高次脳機能障害のある事例
第5章: 症例検討Ⅱ
第2章
臨床適用の手続き
第6章
発展的研究
新たな手続き上の問題 → その解決策
第7章
まとめ
補論
神経難病例への適用
図4-1 第4章の構造
１．はじめに

くも膜下出血注ⅰは、脳動脈瘤の破綻によるものが最も多いことが知られている。また、前交通動脈瘤からのくも膜下出血では、精神症状、無動、無言、無為などの臨床症状が認められるとされている。急性期治療においては再出血、脳血管攣縮注ⅱなどの合併症予防が目標とされるが、くも膜下出血患者の約30％で脳血管攣縮を生じ、そのほとんどは脳動脈瘤破裂によるくも膜下出血例であるとされている42。

前交通動脈瘤破裂によるくも膜下出血およびその後の脳血管攣縮により失声を呈した症例に、ウエイトノイズ法を適用した。本症例は重度の運動機能障害、広範な高次脳機能障害を合併していたため、従来の訓練方法の適用が困難であった。訓練経過を報告し、同法の有効性について検討する。

２．方法

1）症例のプロフィール（表3-1のNo.1の症例）
症例:48歳、男性。教育歴は16年（大学卒）。右利き。発症時は金融機関の管理職であった。
診断:前交通動脈瘤破裂によるくも膜下出血後遺症。病巣は右前頭葉の広範な領域と左前頭葉内側に及んだ。発症から3ヵ月のMRI画像を写真4-1に示す。

写真4-1 本症例の発症から3ヵ月のMRI画像
既往歴：特記すべき事項はみられなかった。

現病歴：突然の頭痛にてくも膜下出血を発症し、前交通動脈動脈瘤クリッピング術を施行した。手術後経過は順調で意識障害、運動機能障害等はみられなかったが、発症6日後に脳血管攣縮による左片麻痺、意識障害が出現した。手術を合併し、両側 VP シャント術を施行した。発症から3.5ヵ月後に、M病院リハビリテーション科に転院となった。

神経学的所見：重度の左片麻痺、感覚障害、患側に倒れていくプッシャー兆候がみられ、体幹バランスは不良であった。

神経心理学的所見：転院時の意識は日本式昏睡尺度にて2（見当識障害がある）から3（自分の名前、生年月日が言えない）のレベルであった。見当識障害、病態失認、左側性空間無視、運動維持困難が認められた。ウェクスター成知能検査（WAIS-R）では言語性 IQ86、動作性 IQ52、全検査 IQ68であった。言語性検査の数唱では順唱が5桁、逆唱が4桁まで可能で、明らかな注意障害はないと考えられた。リバーミード記憶機能検査は無得点で、重度の記憶障害があると評価された。ウィスコンシンカードソーティングテストでは最後まで殆ど同じカテゴリーによる分類を行い、カテゴリー数は0で、保続と遂行機能障害が認められた。検査や訓練場面では課題に対して反応が得られない場面が多く、逐一課題への対応行動を促せばならなかった。また日常生活動作も同じく逐一促しが必要であったことから、意欲や発動性の低下が疑われた。

言語症状：嚥下障害が認められず、失声状態ながら有響性の咳が認められたことから、初診の段階では本症例の音声障害は機能性発声障害の可能性があると考えられた。運動障害性構音障害に関しては、福迫らの提案による麻痺性（運動障害性）構音障害評価表を用いて会話及び oral diadochokinesis（パタカ）の音声を評価したところ、音声障害以外の要因による異常は認められなかった。失語症はみられず、失声状態ながら流暢かつ明瞭な発話にて意思伝達が可能であった。コミュニケーション場面では、会話の文脈に対応しない発話や作話がみられた。

喉頭所見：本症例では喉頭内視鏡検査の実施に同意が得られず、喉頭所見を得ることができなかった。

ADL：日常生活は、食事以外全介助状態であった。セルフケアを自発的に行うことが困難で、日常生活動作の殆ど全てにおいて促しが必要であった。逐一声がけや促しが必要であった。食事はセッティングがなされれば独力での摂取が可能であったが、長時間を要した。排泄は失禁状態で、いわゆるおむついじりによる手指や衣類の汚染も頻繁にみられた。

音声訓練への対応状況：プッシング法の適用は、左片麻痺その他の運動機能障害のため困難であった。条件を工夫し可能な方法でプッシング法を試みても充分な押し運動が得られず、音声に変化はみられなかった。硬起声発声および努力発声を要求しても有響成分を含む音声は得られず、失声状態のまま課題に応じた。55dBのウェイトノイズを
負荷して短文音読を行うと、有響成分を含む気息性、無力性の強い音声が得られた。（添付 DVD の動画 4-1 参照）

2）訓練開始時の音声評価
声質の評価：G(3)B(0)A(3)S(0)と評価された。
声量の評価：段階 6 の「失声状態・咳は可能」に当たると評価された。
音響分析による評価：図 4-2 に本症例の訓練開始時の音声サンプル「木曜日の天気」のサウンドスペクトログラムを示す。左は自然な状態での音声で、努力発声を要求しても有響成分が全く得られなかった。右は55dB のノイズを負荷した状態での音声で、有響成分が含まれていた。

図 4-2 本症例の訓練開始時のサウンドスペクトログラム
音声サンプル「木曜日の天気」

3）訓練方法
本症例の訓練は、55 dB のノイズを負荷した短文音読課題から開始した。音声の改善に従いノイズの音量を下げ、最終的にはノイズを負荷せずに音読訓練を行った。発声訓練は 1 回につき 15 分程度とし、週 4 回から 5 回行った。訓練開始から終了に至るまで、車椅子座位にて訓練を行った。
4) 訓練経過

初回：55dBのウエイトノイズを負荷して短文の音読を開始した。ノイズを負荷した状態では有響成分が一貫して得られるが、ノイズを負荷しない状態では有響成分は全く得られなかった。

1週：初回と同じ条件で音読課題を行った。ノイズを負荷しての訓練の直後にノイズを負荷せずに短文音読を試みたところ、ごく短時間ながら有響成分を含む音声が得られた。日常会話は失声状態のままであった。

2週：初回と同じ条件で音読課題を行った。訓練場面では、音読、会話ともノイズを負荷しない状態で有響成分を含む音声がしばしば得られるようになった。日常会話でも初めて有響成分を含む音声が得られた。

3週：訓練場面で音読、会話ともノイズの無い状態で有響成分をほぼ維持できるようになったが、気息性、無力性声質が顕著に認められた。音声機能に改善がみられるため、訓練開始時に45dBのウエイトノイズを1、2分負荷して短文音読を行い、その後は概ねノイズを除去して短文音読を行うよう手続きを変更した。日常会話でも有響成分を含む音声が何度か得られた。

1ヵ月：3週目と同じ条件で課題を行った。訓練場面では変化はみられなかった。日常会話では有響成分を含む音声がしばしば得られるようになったが、気息性、無力性が強く感じられた。

1.5ヵ月：3週目と同じ条件で課題を行った。訓練場面では変化はみられなかった。日常会話では促せば有響成分を含む音声が得られるようになった。

2ヵ月：訓練開始時に負荷するノイズの音量を、概ね35dBとした。訓練場面では音量、声質に改善傾向がみられた。日常会話では有響成分を含む音声が概ね保たれるようになり、音声の気息性、無力性に改善傾向がみられた。

2.5ヵ月：2ヵ月目と同じ条件で短文音読を行った。訓練場面ではノイズを負荷しない状態でしばしば正常範囲の音声が得られた。日常会話ではほとんど常に有響成分を含む音声が保たれるようになり、音声の無力性に改善傾向がみられたが、気息性には変化はみられなかった。

3.5ヵ月：2ヵ月目と同じ条件で訓練を行った。訓練場面では、音読、会話ともノイズを負荷しない状態で正常範囲の音声が得られるようになった。ノイズを全く負荷せずに訓練を開始した場合でも、同様に良好な音声が得られた。日常会話では気息性に改善傾向がみられ、異常所見は概ね軽度の気息性のみとなった。まれに失声状態となる場合もみられたが、促せばすぐに有声発話となった。

4ヵ月：ノイズを全く負荷せずに訓練を開始することが多くなった。日常会話ではしばしば軽度の気息性嗄声となったが、促せば正常範囲の音声が得られるようになった。退院に伴い、訓練を終了した。
3．結果

1) 訓練終了時の音声評価（添付 DVD の動画 4-2 参照）

声質の評価：図 4-3 に評価結果を示す。G(1)R(0)B(1)A(0)S(0) で、訓練開始時に比して著明な改善がみられたと考えられる。

図 4-3 本症例の GRBAS 尺度による声質の評価結果

訓練開始時 訓練終了時

声量の評価：図 4-4 に会話を中心とした音声の評価結果を示す。段階 1 の「十分な声量・異常所見残存」に当たると評価された。著明な改善がみられたと考えられる。

図 4-4 本症例の 8段階尺度による声量の評価結果

訓練開始時 訓練終了時

0:正常
1:十分な声量・異常所見残存
2:常に有声発話・声量若干低下
3:常に有声発話・声量低下
4:概ね有響成分含まれる
5:しばしば有響成分含まれる
6:失声状態・咳は可能
7:失声状態・咳ができない
音響分析による評価：図 4-5 に本症例の音声サンプル「木曜日の天気」のサウンドスペクトログラムを示す。左が訓練開始時、右が訓練終了時の音声で、ともにノイズを負荷しない状態での音声であった。訓練開始時は失声状態であったが、終了時の音声は有響成分を含んでおり、声量は正常範囲と考えられた。

その他：終了時評価において最長発声持続時間（maximum phonation time：以下 MPT）の計測も試みたが、呼気が十分残っているにもかかわらず 2～3 秒で持続発声をやめてしまうため、MPT に関する有効なデータは得られなかった。

2）訓練終了時の ADL

高次脳機能障害が残存し、日常生活において多くの介助を要するレベルであった。食事は長時間を要し、促しを要した。車いす座位は安定していたが、移動には介助を要した。
4. 考察

訓練開始時には前述のように、本症例の音声障害は機能性発声障害の可能性があると推測された。しかし、廣瀬4によれば、声の濫用などの不適切な発声の結果生じたものでなければ、機能性失声例の多くは長期の訓練は必要としない。本症例は正常な声量を回復するまでに4ヵ月の訓練期間を要しており、また訓練終了時に日常会話において気息性声質が残存したことから、本症例の音声障害には軽度の声門閉鎖不全が関与していた可能性があると考察された。

ウエイトノイズ法は運動機能障害、高次脳機能障害を呈する本症例にも適用が可能であった。訓練の手続きが簡易で、音声を改善させるための大きな努力を要求されなかったため、患者は訓練課題に対応しやすかったと考えられた。

本症例では、日常生活場面よりも訓練場面で音声の改善が早くみられ、訓練場面の音声の方が常に良好であった。その理由としては、本症例の心的構えが訓練場面と日常生活場面では異なっており、訓練場面ではある程度の努力発声がなされていた可能性があると考えられる。また、病棟での生活場面ではスタッフや家族が距離的に接近した状態でコミュニケーションを図ろうと配慮することが多かったため、日常生活場面での意思伝達は失声状態で可能であったことも一因と考えられる。

本症例は発声訓練開始まで失声のまま3.5ヵ月が経過しており、初回評価時にノイズを負荷した状態で発症後初めての有声発話が得られ、その後音声の改善が始まっている。ゆえに筆者は、本症例の改善には訓練効果の要素が含まれているとの印象を得ている。

注
i) くも膜下出血では、脳動脈瘤の破裂によるものが多い。外科的治療としては、再出血を予防するための動脈瘤のクリッピングやラッピングを行う。（飯島節:くも膜下出血.神経内科学テキスト改訂第3版(江藤文夫, 飯島節), 南江堂, 東京, 153-157, 2012.）

ii) 脳血管収縮は脳動脈瘤破裂によるくも膜下出血に多くみられる。徐々に意識レベルの低下が起こり、同時に局所神経症候が出現する。（飯島節:くも膜下出血.神経内科学テキスト改訂第3版(江藤文夫, 飯島節), 南江堂, 東京, 156-157, 2012.）

iii) 脳室と腹腔をチューブでつないで脳脊髄液を排出し脳圧亢進を改善する手術で、脳室腹腔短絡術ともいう。（植村健一:脳神経外科と言語障害. 言語聴覚療法の医学的基礎（医療言語聴覚士資格制度推進協議会講習会実務委員会編）, 協同医書出版, 東京, 272, 1990.）

iv) 意識レベルの評価に用いられる尺度で、意識レベルを覚醒反応から3群に大別し、さらに認知反応から9段階に分けて評価する。（山口晴保:意識障害. 神経内科学テキスト改訂第3版(江藤文夫, 飯島節), 南江堂, 東京, 156-157, 2012.）
ウィスコンシンカードソーティングテストは色、形、数の異なるカードを検者の分類基準に従っていずれかの属性に分類する検査で、注意やセットの維持・転換の検出に鋭敏とされる前頭葉機能検査である。（関啓子：高次脳機能障害学．言語聴覚士テキスト第２版（廣瀬肇ほか），医歯薬出版，東京，276-277，2011.）

oral diadochokinesis は交互運動課題で、構音動作を連続して行わせることによって構音器官の運動を見る。[pataka]などの音列を5秒間できるだけ早く連続して反復するように指示し、回数や音の誤り、強さ、周期性などを評価する。（長谷川賢一：検査と評価・運動障害性構音障害．発声発語障害学（藤田郁代ほか），医学書院，東京，205，2010.）

サウンドスペクトラグラムは、短時間フーリエ分析を利用して、音声信号に含まれる周波数成分の強弱をディスプレイに図として可視化したもの。横軸は時間、縦軸は周波数で、音声信号に含まれる周波数成分の強弱は白黒の濃淡、あるいは色の違いで表される。（粕谷英樹：音声の音響分析．言語聴覚士テキスト第２版（廣瀬肇ほか），医歯薬出版，東京，200，2011.）
第5章 症例検討Ⅱ
－運動機能障害と発声時の易疲労性のため、従来の訓練方法の適用が困難であった事例－

概要
本章では運動機能障害と発声時の易疲労性のため、従来の訓練方法の適用が困難であった一側性喉頭麻痺例を取り上げる。症例は68歳男性で診断名は小脳脳幹梗塞後遺症であった。左上下肢・体幹の失調および右上下肢の麻痺があり、ブッシング法の適用は困難であった。発声時の疲労が顕著で、努力発声の持続が困難であった。しかし、55dBのウエイトノイズを負荷して短文音読を試みたところ、努力発声を行わなくとも有声発声の増加と声量の増大が認められた。本症例は発声時の疲労から日常場面でほとんど発声が無かったが、一側性喉頭麻痺では長期の沈黙は喉頭の筋群の委縮を招くことから禁忌とされており、少しでも早い訓練の開始が必要な状況であった。発症から3カ月の時点でウエイトノイズ法による音声訓練を開始し、5カ月間継続した。声量、声質の改善が認められた。喉頭内視鏡検査では、声門閉鎖の改善が確認された。

本症例では訓練開始までの3ヶ月間に音声の改善が全く見られておらず、従来の訓練法の導入も困難であった。また、訓練開始後1週間から日常会話の音声に改善が認められるようになった。このことから本症例においては、ウエイトノイズ法によるアプローチが音声の改善を促進した可能性があると思われた。

ウエイトノイズ法では患者に過度な努力を強いることなく、無理なく訓練を導入し継続することができたと考えられた。さらにノイズを負荷するとすぐに声量、声質の改善が得られたため、患者の訓練意欲を引き出すことができたと思われた。（図5-1）
1. はじめに

一般に一侧性喉頭麻痺では日常会話が励行されるが、重度の声門閉鎖不全を呈する症例では疲労のため会話の量が少なくなる場合がある。そうした症例には、発声訓練の場を提供することが重要と考えられる。しかし、運動機能障害、顕著な易疲労性を伴う症例では従来の声門閉鎖促進訓練の適用が困難なことがある。

一侧性喉頭麻痺例に対しては、麻痺側の声帯位の移動および固定を行う音声外科手術が行われることがある。音声外科的処置以前の発声訓練の有効性について、Heuerらは一侧性喉頭麻痺患者の60％以上で術前の発声訓練により音声の改善がみられ、手術が不要となったと報告している。従来の訓練法の適用が困難な一侧性喉頭麻痺例にも、発声訓練の場を提供することが望ましいと考えられる。

従来の訓練方法の適用が非常に困難であった一侧性喉頭麻痺および運動機能障害を呈する小脳脳幹梗塞例に対し、ウエイトノイズ法を適用した。その訓練経過を報告し、同法の有効性について検討する。

2. 方法

1）症例のプロフィール（表3-1のNo.12の症例）

症例：68歳、男性。右利き。教育歴は16年（大学卒）。職業は専門学校の経営者兼講師であった。

診断：小脳脳幹梗塞後遺症。写真5-1に入院時のMRI画像を示す。小脳から脳幹部
にかけて梗塞巣を認めた。
既往歴：特記事項はなし。
現病歴：眩暈、構音障害にて小脳網幹梗塞を発症し、保存的治療を行った。発症後まもなく左上下肢の失調、右上下肢の麻痺が出現した。全身状態が不良であったため、発症から2ヶ月間リハビリテーションをほとんど行わず、運動機能障害に廃用性の要素も加わった。音声障害がみられ、発声時の疲労のため家族その他との会話はほとんどなく、音声の改善もみられなかった。摂食嚥下障害が認められ、液状物においても固形物においても誤嚥が見られ、嘔吐も認められたことから、経口摂取は行わなかった。発症から2ヶ月で当院リハビリテーション科に転院となった。専門学校の講師職への復帰を目標にリハビリテーションを行うこととなった。
神経学的所見：左上下肢の失調、体幹失調、右上下肢麻痺（軽度）等の運動機能障害、左半身知覚過敏、眼振や複視等の眼球運動障害がみられた。重度の音声障害が認められた。MRI画像及び喉頭内視鏡検査の結果から、疑核を含む領域の損傷に起因する一侧性喉頭麻痺と考えられた。
言語症状：音声障害および軽度の運動障害性構音障害を認めた。運動障害性構音障害に関しては、福迫らの提案による麻痺性（運動障害性）構音障害評価表を用いて会話の聴覚印象評価を行ったところ、音声障害以外の要因による異常は認めなかったが、oral diadochokinesis（パタカ）では不完全な声道閉鎖及び音節持続時間の崩れを軽度に認めた。音声障害に関しては、発話開始後間もなく話声位の低下、声量の低下が認められ、発話の後半では有響成分が失われることが多かった。呼気段落は2〜3秒程度に短縮していた。他院耳鼻科受診の結果、まずは音声訓練を行い、その後必要があれば音声外科的処置を行う方針となった。
喉頭所見：写真5-2に訓練開始時の喉頭内視鏡検査結果を示した。一侧性喉頭麻痺

写真5-2 本症例の訓練開始時の喉頭内視鏡検査結
以外の器質的異常はみられなかった。麻痺側声帯の固定位置は副正中位で、可動性は認められなかった。麻痺側披裂軟骨の可動性も認められなかった。発声時の声帯レベルに明らかな左右差は認められなかった。健側では仮声帯の内転がみられたが、声帯の明らかな運動機能障害は認められなかった。しばしば麻痺側声帯に不規則な振動が生じているのが確認され、この現象が音声に強い粗雑性をもたらしていると考えられた。

ADL：摂食嚥下障害がみられたが、摂食訓練時の食事動作は自立していた。それ以外の日常生活動作は概ね介助を要した。座位の保持が困難であった。移動は車椅子を使用した。

音声訓練への対応状況：プッシング法は運動機能障害のため対応が困難であった。硬起声発声、努力発声の要求は、易疲労性のため訓練場面での持続的な適用は不可能と考えられた。55 dBのウェイトノイズを負荷して短文音読を行うと、努力発声を行わずに有声発声の増加と声量の増大が得られた。

2) 訓練開始時の音声評価
声質の評価：G(3)R(3)B(3)A(3)S(2)と評価された。
声量の評価：会話音声に概ね有響成分が含まれていたが、発話の後半は失声状態となることが多く、段階4「概ね有響成分含まれる」に当たると評価された。
音響分析による評価：図5-2に訓練開始時の音声の音響分析結果を示した。音声サンプル「木曜日の天気」のサウンドスペクトログラム（図5-2-1）では、左はノイズを負
荷しない自然な状態での音声で、有響成分に乏しくエネルギーの小さい音声であった。右は 55dB のウェイトノイズを両耳に負荷した状態での音声で、声量の増大がみとめられた。会話音声のサウンドスペクトログラム（図 5-2-2）では全体に声量が小さく、特に発話の後半で有響成分を含まない音節が多く見られた。（添付 DVD の音声 5-1 参照）持続発声「エー」の分析（図 5-2-3）では、発声を開始してまもなく声の基本周波数が低下する現象がみられた。声量が小さく、MPT も 5 秒と短縮していた。

図 5-2-2 本症例の訓練開始時のサウンドスペクトログラム
会話音声「自分では割合に良い声だと思ってましたですよね」

図 5-2-3 本症例の訓練開始時の持続発声「エー」の分析

（下のグラフは声の基本周波数曲線。MPT は 5 秒）
3) 訓練方法

55dB のウエイトノイズを負荷して訓練を開始した。開始時には 3〜4 語から成る短文の音読を行ったが、1 カ月後症例より、「教職復帰を目指すが講義の場面に近い条件で訓練を行いたい」と希望が出された。短文音読は抑揚、文の長さ、インフォルマンス等が講義とは異なると考えられたため、1 カ月目からは症例の希望を取り入れ、教室で行っていた講義を訓練場面で模擬的に行わせることとした。ノイズの音量を徐々に下げ、最終的にはノイズを除去した。発声訓練は 1 回につき 15 分程度とし、週 4 回から 5 回行った。ウエイトノイズはオージオメータ AA-61B（リオン製）から得られるものを用いた。

4) 訓練経過

1 週：発症から 3 カ月の時点で音声訓練を開始した。55dB のウエイトノイズを負荷して短文の復唱を行った。訓練中は軽い努力発声を要求し、声の基本周波数を維持することを心がけるよう教示した。ノイズを負荷すると声量が増大し、声の基本周波数の維持が容易になる傾向がみられた。易疲労性が顕著だったため、訓練は 2〜3 分ごとに休憩を挿入しながら施行した。

4 週：訓練場面では声質、声量に変化はみられなかったが、日常生活会話では声質、声量は変化はみられなかった。日常生活会話では声質、声量の改善傾向はみられず、周囲の人から「声が良くなってきた」と言われるようにになったとの情報が患者本人から寄せられた。

1.5 ケ月：呼吸器内視鏡検査を施行した（写真 5-3）。初回と比較すると声門閉

写真 5-3 本症例の 1.5 カ月時の喉頭内視鏡検査結果
47
鎖に改善傾向が認められた。麻痺側声帯に明らかな可動性は認められなかった。麻痺側
披裂軟骨に可動性が認められたが、可動範囲はきわめて限定されていた。
2.5ヶ月：訓練場面では声質、声量の改善はみられなかったが、日常会話では努力性
声質に改善傾向が認められた。訓練場面で負荷するウエイトノイズの音量を35dBとし
た。
3.5ヶ月：ノイズを除去し、努力発声にて訓練を行うこととした。訓練場面、日常会
話場面とも声質、声量の改善傾向が認められた。
4ヶ月：訓練場面、日常会話場面ともに努力発声を行うと正常範囲に近い音声が得られ
るようになったが、努力発声を継続すると徐々に粗糙性、気息性、努力性声質が増悪す
る傾向がみられた。努力発声をやめるとこれらの症状は軽快するので、訓練場面、日常
会話場面とも、努力発声を行わない音声による発話を持続するよう指導した。
5ヶ月：家庭で自主訓練が行えるよう環境調整を行い、退院となった。日常会話では
音声の努力性は改善したが、粗糙性、気息性、無力性は残存した。

3．結果

1）訓練終了時の音声評価
声質の評価：図5-3にGRBAS尺度による評価結果を示した。訓練終了時の評価は
G(2)R(1)B(1)A(2)S(0)で、訓練開始時に比して改善がみられた。

図5-3 本症例のGRBAS尺度による声質の評価結果

0～3の4段階
正常は0
G：総合的な重症度
R：粗糙性
B：気息性
A：無力性
S：努力性
声量の評価：図5-4に声量の8段階尺度による評価結果を示した。改善がみられたと考えられる。

<table>
<thead>
<tr>
<th>訓練開始時</th>
<th>訓練終了時</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:正常</td>
<td>0:正常</td>
</tr>
<tr>
<td>1:十分な声量・異常所見残存</td>
<td>1:十分な声量・異常所見残存</td>
</tr>
<tr>
<td>2:常に有声発話・声量若干低下</td>
<td>2:常に有声発話・声量若干低下</td>
</tr>
<tr>
<td>3:常に有声発話・声量低下</td>
<td>3:常に有声発話・声量低下</td>
</tr>
<tr>
<td>4:概ね有響成分含まれる</td>
<td>4:概ね有響成分含まれる</td>
</tr>
<tr>
<td>5:しばしば有響成分含まれる</td>
<td>5:しばしば有響成分含まれる</td>
</tr>
<tr>
<td>7:失声状態・咳ができない</td>
<td>7:失声状態・咳ができない</td>
</tr>
</tbody>
</table>

図5-4 本症例の8段階尺度による声量の評価結果

音響分析による評価：図5-5に訓練終了時の音声の音響分析結果を示した。音声サンプル「木曜日の天気」（図5-5-1）および会話音声のサウンドスペクトログラム（図5-5-2）では、すべての音節に有響成分が認められた。（添付DVDの音声5-2参照）持続発

図5-5-1 本症例のサウンドスペクトログラム
音声サンプル「木曜日の天気」
声「エー」の分析（図 5-5-3）では MPT は 8 秒に延長したが、正常値と比較すると未だ明らかに短縮しており日常生活に支障ある水準にとどまった。訓練開始時と比較すると声量が大きくなり、声の基本周波数の維持が可能となった。

図 5-5-2 本症例の訓練終了時のサウンドスペクトログラム
会話音声「まあ、果して実現するかどうかは家へ帰って見ないとまたね」

図 5-5-3 本症例の訓練終了時の持続発声「エー」の分析

（下のグラフは声の基本周波数曲線。MPT は 8 秒）
2) 訓練終了時の喉頭所見
写真 5-4 に 3 回目の喉頭内視鏡検査の結果を示した。声門閉鎖に改善傾向が認められ
た。麻痺側声帯に可動性が認められたが、可動範囲はきわめて限定されていた。披裂軟
骨の可動範囲に拡大傾向が認められたが、可動範囲は依然著明に縮小していた。健側仮
声帯の過内転に改善傾向がみとめられた。

写真 5-4 本症例の訓練終了時時の喉頭内視鏡検査結果

3) その他
他院耳鼻科受診の結果、音声の明らかな改善が認められたため、音声外科的処置は行
わない方針となった。

4) 訓練終了時の ADL
摂食嚥下機能の改善が見られ、常食の摂取が可能となった。座位の保持が可能となっ
た。右上下肢の麻痺はごく軽度まで改善したが、失調症状の改善が見られずバランス能
力を低下が残存したため、移動は車椅子を使用した。
4. 考察

神経核損傷による一側性喉頭麻痺への対応は、反回神経麻痺によるものに準ずるとされる。反回神経麻痺例の音声障害に対しては、通常は声門閉鎖促進訓練が適用されるが、本症例ではプッシュング法の適用は運動機能障害のため困難で、硬起声発声、努力発声を要求する方法は易疲労性のため初期の段階では導入が困難であった。ウェイトノイズ法では患者に過度な努力を強いることなく、無理なく訓練を導入し継続することができたと考えられる。さらにノイズを負荷するとすぐに声量、声質の改善が得られたため、患者の訓練意欲を引き出すことができたと思われる。

訓練効果の検討に際しては、本方法でも他のアプローチと同様、自然回復等の要因を排除することは困難と考えられる。しかしながら、本症例では訓練開始までの3ヶ月間に音声の改善が全く見られておらず、訓練開始後1週間から日常会話の音声に改善が認められるようになった。このことから本症例においては、ウェイトノイズ法によるアプローチが音声障害の改善を促進した可能性があると思われる。本症例では、訓練開始時には麻痺側声帯の可動性が全く認められなかったが、3回目の喉頭内視鏡検査ではわずかながら可動性の回復が認められた。この改善が訓練によるものであるか否かについては不明である。

粗糙性、努力性声質を伴う過緊張性音声障害を呈する症例では、ノイズの負荷により粗糙性、努力性の増悪がみとめられることがあり、本方法の適用は不適切と思われる。本症例の音声には粗糙性が認められたが、喉頭内視鏡検査の結果、健側仮声帯の過内転がみられるものの、粗糙性は概ね麻痺側声帯の不規則な振動に起因していた。また声帯ポリープ注2などの器質的異常が認められないことが確認されたため、本訓練方法適用を試みた。粗糙性がみられる症例に対する本方法の適用に関しては、粗糙性の原因を検討し、一側性喉頭麻痺以外の器質的異常や喉頭の過緊張状態が認められないことを確認した上で慎重に行うことが必要と考えられる。

ところで、プッシュング法や努力発声を要求する訓練方法については仮声帯の過内転を誘発する危険性が指摘されており、リラクゼーションの重視、訓練時間や回数の制限、喉頭内視鏡検査等での観察などが必要とされている。筆者は本症例の喉頭内視鏡検査の際、ノイズを負荷した状態で短文を復唱させ、仮声帯の過内転が誘発されるかどうかを観察した。その結果、ロンバール効果が認められているときでも仮声帯の明らかな過内転は認められなかった。また写真5-4に示したとおり、3回目の喉頭内視鏡検査では訓練開始時に比べて健側仮声帯の過内転に改善傾向が認められた。これらのことから、ウェイトノイズ法は仮声帯の過内転を誘発しない穏やかな声門閉鎖促進訓練法であると推察された。
注

ⅰ）疑核は延髄網様体尾部に存在する神経核である。迷走神経運動枝である反回神経は疑核より発し、喉頭にいたる。（土師知行：発声の仕組みと声の障害・音声障害．発声発語障害学（藤田郁代ほか）, 医学書院, 東京, 10, 2010.）

ⅱ）声帯ポリープは声帯膜部中央に好発する非腫瘍性の腫瘤で、一側の声帯に生じることが多い。（石毛美代子：器質的音声障害・音声障害．発声発語障害学（藤田郁代ほか）, 医学書院, 東京, 19, 2010.）
第6章 発展的研究 －CD教材を用いた手続き－

概要

これまでの手続きではオージオメータの使用が不可欠であったため、訓練を実施できる場所はオージオメータを設置している防音室に限定されていた。そのため、防音室への移動が困難な症例には、音声訓練の機会を提供できなかった。訓練対象外となる症例を減らすため、CD (compact disk) を用いたウエイトノイズ法の教材作成を試みた。本章では、CD教材の作成方法を提案し、CD教材を用いたウエイトノイズ法の有効性に関する症例検討を行った。発症後早期からベッド上での訓練を行ったことにより、訓練意欲の向上、セラピストへの信頼感の醸成などの効果があったと考えられた。また、CD教材の導入により訓練場所の制約が解消され、自宅での自主訓練も可能となった。

図6-1 第6章の構成
1. はじめに

これまで述べてきたウエイトノイズ法の手続きでは、オージオメータの使用が不可欠であったため、訓練を実施できる場所はオージオメータを設置している防音室に限定されていた。そのため、訓練場所への移動が困難な場合には音声訓練の機会を提供できなかった。

この問題点を解決する試みとして、筆者ら CD 教材の作成を試みた。コンピューター ソフトを用いてテキスト音読の音声とノイズを交互に接続し、復唱課題音声を編集した。その音声を CD-R (compact disk-recordable) に録音し、市販の CD プレーヤーおよび ヘッドホンにて患者に聞かせた。本章では、CD 教材の作成方法を提案する。また、ベッド上で音声訓練を開始することになった音声障害例について症例検討を行い、CD 教材を用いたウエイトノイズ法の有効性について考察する。

2. 方法

1) 症例のプロフィール（本症例はこれまで論じた 52 例には含まれていない）

症例: 60 歳、男性。右利き。会社員。
診断: 左基底核部および右前大脳動脈領域の脳梗塞。訓練開始時の MRI 画像 (フレア強調画像) を写真 6-1 に示す。

写真 6-1 本症例の訓練開始時の MRI 画像
既往歴：高血圧症、高脂血症、糖尿病にて加療中であった。4年前の交通事故の後遺症による腰痛が認められた。

現病歴：右上肢脱力にて発症、他院脳神経外科に入院した。左基底核部に小梗塞を認めた。発症から2日後、M病院脳外科に転院。この時点では右片麻痺はごく軽度で言語症状は認められず、保存的治療を行った。発症から3日後に右上下肢の増悪および構音障害、左上下肢の違和感を訴えた。精査の結果、新たに右前大脳動脈領域の梗塞巣出現を認めた。発症から13日後には言語聴覚療法を開始した。

神経学的所見：軽度の右上下肢の麻痺による運動機能障害、音声障害が認められた。

神経心理学的所見：訓練開始時のMini-Mental State Examinationは22/30であった。標準失語症検査（SLTA）とウェクスター成人知能検査（WAIS-Ⅲ）を基に一定の改善が得られた訓練開始から1ヵ月で実施した。SLTAでは軽度の成績低下が認められた。

WAIS-Ⅲは言語性IQ62、動作性IQ68、全検査IQ62であった。

言語症状：音声障害がみられ、生活場面ではスムーズに意思伝達できない場面がみられた。発話速度の軽度の低下がみられたが、構音の明瞭性は保たれており、静粛性の確保された部屋では発話明瞭度は1：すべてわかる。喉頭内視鏡検査にて異常は認められないが、実施できなかった。嘔下障害が認められないこと、随意的な発声がある程度可能であること、病前に関する情報および前医からの情報などから、音声症状は今回の脳血管疾患に起因する軽度の声門閉鎖不全と判断され、主治医から音声訓練が処方された。なお、訓練により両側声帯の固定位置が正中に移動し呼吸障害を引き起こすことのないよう、カンファレンスにて本症例の訓練では常にリラクセーションを図り、声質や呼吸状態に特に留意することが確認された。また、訓練方法としてプッシング法、硬起発声、努力発声を要求するアプローチ等は除外された。座位が安定していないこと、眩暈の訴えがあること、座位時に腰痛の訴えがあることから、ベッドサイドで音声訓練を開始するよう主治医から指示があった。

ADL：基本動作はおおむね中程度の介助を要するレベルであった。移動は車いす介助レベルで、体幹が左に傾いていく傾向がみられた。食事はセッティングを用いるが、ベッド上座位でフォークを使用し自立していた。食形態は通常の固形食で、糖尿病治療食をほぼ100％摂取していた。整容・更衣は軽介助を要する状況であった。日常生活場面の観察では、認知機能の低下が疑われる行動がみられた。

音声訓練への対応状況：55dBのウェイトノイズを負荷して短文復唱を行うと、声量の増大と気息性、無力性声質の改善が認められた。

2) 訓練開始時の評価（本症例の評価は第2章で述べた枠組みに則って行った）
声質の評価：G(2)R(0)B(2)A(3)S(0)と評価された。
声量の評価：段階4の「おおむね有響成分含まれる」に当たると評価された。
音響分析による評価: 図6-2に本症例の音声サンプル「木曜日の天気」のサウンドスペクトログラムを示す。訓練開始時には、有響成分が含まれない音節が認められた。添付DVDの音声6-1参照）MPTは1.5秒であった。またoral diadochokinesis（パタカ）では、5秒間に2回の吸気が挿入され、産生された18音節のうち10音節で声帯振動が得られなかった。声域の最高位は196Hz、最低位は125Hzであった。

![サウンドスペクトログラムの図](image)

図6-2 本症例のサウンドスペクトログラム
音声サンプル「木曜日の天気」

3) 訓練方法

i）CD教材の作成（図6-3）
①テキストとなる単語や短文を選びリストを作成する。
②リストを音読した音声をPCに取り込み、wavファイルで保存する。ファイルの属性を音楽CDの値、すなわち標本化周波数44.1kHz、量子化ビット数16ビット、チャンネル数2（ステレオ）とする。（本研究では言語聴覚士がリストの音読を行った。）
③CD再生時の音量を適切なレベルにするため、音響分析ソフト（Arcadia Acoustic Core version 8）を用い、音声ファイルのパワー適正化を行う。ファイル中の絶対値最大の標本値が16ビットで表現できる最大値である32767（負なら-32768）となるように、各標本値を一定倍する。（図6-3-a）
④音響分析ソフトを用い、音声ファイルを各単語や短文などの課題項目ごとに分割し、各々保存する。（図6-3-b）
⑤オージオメータ（Rion AA-61B）から得られるノイズをPCに取り込み、wavファイルで保存する。ファイルの属性は音楽CDの値とする。ファイル中の絶対値最大の標本値がテキストの80％程度となるように各標本値を一定倍し、ノイズのパワー
適正化を行う（補足参照）。ノイズの持続時間は、対象者がテキストの復唱に要する時間より若干長くする。ノイズの前後に0.5秒程度のブランクを挿入する。 (図6-3-c)

⑥音声ファイル編集ソフト（サウンドファイル操作ユーティリティ WAV Tools）を用い、テキストの音声ファイルとノイズの音声ファイルを交互に接続し、一つの音声ファイルに編集する。（図6-3-d）（添付 DVDの音声6-2参照）

⑦編集された音声ファイルをCD-Rに焼き付ける。

（補足）
本方法で作成した教材 CD を再生する際、ノイズの音量を変化させようとすると、必然的にテキスト音声の音量も変化する。そのため、ウェイトノイズを使用した場合を例
にとると、最大値である 55 dBで负荷される時にテキスト音声のラウドネスが大きすぎず、一方最小値である 35 dBの時でもテキスト音声が十分に聞き取れる音量で再生されなくてはならない。ノイズの最大標本値をさまざまな設定して教材作成を試行した結果、ノイズの最大標本値をテキスト音声の 80%程度とすると両条件が満たされることがわかった。

ii）訓練の手続き

ベッド上仰臥位、またはベッド上で上半身を約 30 度ギャジアップした体位にて訓練を開始した。

2 文節短文の復唱課題およびウェイトノイズを録音した CD 教材、市販の CD プレーヤーおよびヘッドホンを使用して復唱課題を患者に呈示した。それ以外の手続きは、これまでのウェイトノイズ法の手続きに則った。課題音声の再生音量は、オージオメータから出力されるノイズと CD プレーヤーから出力されるノイズを開き比べ、オージオメータの出力値にラウドネスが概ね対応するよう CD プレーヤーの音量つまみにマーキングを行って対応した。ノイズの音量は、訓練終了まで約 55 dBであった。

4）訓練経過

初回：CD 教材を使用し、ウェイトノイズ法による 2 文節文の復唱課題を開始した。ベッド上半坐位では多動傾向が認められ、課題に対応が得られない場面が多くみられたが、仰床した状態では課題にスムーズな対応が得られた。注意の集中が妨げられないよう配慮する必要があると考えられた。ノイズを負荷すると有声発声が概ね一貫して得られた。努力性、粗雑性声質の出現は見られなかった。呼吸状態の明らかな変化は認められなかった。

1 週：午前、午後各 1 回 20 分程度の訓練を実施した。初回と同じ手続きで復唱課題を行った。仰床した状態で訓練を行い、課題への対応状況はおおむね良好であった。訓練場面、会話場面とも、音声の明らか変化はみられなかった。

2 週：同条件で復唱課題を継続。離床を促していくとの病棟の方針から、午後の訓練はしばしば車いす座位での訓練となった。課題への対応状況、音声の状況に明らか変化は認められなかった。

3 週：同条件で訓練を継続した。課題への対応状況が良好なときは一貫して有声発声が得られるようになり、十分な声量が得られた。

1 カ月：車いす座位が可能となり、ベッド上での訓練は終了することとなった。訓練室で 2 語文の復唱訓練を継続した。課題への対応状況に改善がみられ、無反応となる場面は認められなくなった。課題場面では十分な声量が得られるようになった。会話場面では有声発声が維持されるようになり、聴覚印象的にお声質、声量の改善が感じられ、初回評価時に認められた発話速度低下は消失した。
2 カ月：課題への対応状況良好。課題場面での音声には特に変化は見られなかった。会話場面では聴覚印象的に声質、声量のさらなる改善がみられ、軽度の無力性声質、軽度の声量低下が残存している状況と考えられた。音声訓練の頻度を1日に1回とした。
3.5 カ月：復唱課題の文を3文節文とした。会話場面での音声に明らかな変化は見られなかった。
4.5 カ月：退院に伴い、訓練終了となった。会話場面では意思伝達に支障のない音声が聞かれることがあり、聴覚印象的には軽度の無力性声質、軽度の声量低下が感じられる状況であった。

3．結果

1）1カ月時（ベッド上の訓練終了時）の音声評価
声質の評価：図6-4にGRBAS尺度による評価結果を示した。G(1)R(0)B(0)A(2)S(0)と評価された。初回時に比して改善が認められたが、異常所見は残存していた。

![GRBAS尺度による評価結果](図6-4)

声量の評価：図6-5に声量の8段階尺度による評価結果を示した。段階3の「常に有声発話・声量低下」に当たると評価され、改善が認められた。

音響分析による評価：音声サンプル「木曜日の天気」の分析では、初回時に比して声量の改善が認められ、すべての音節で有響成分が得られた。（図6-2参照）MPTは8.3秒で、改善が認められた。oral diadochokinesis（バタカ）では、吸気挿入がみられなく
なり、産生された27音節すべてで声帯振動が得られた。声域の最高位は283Hz、最低位は125Hzであった。

2) 訓練終了時の音声評価
声質の評価：G(1)R(0)B(0)A(1)S(0)と評価された。1ヵ月後に比較して改善が認められ、異常所見は残存した。（図6-4参照）
声量の評価：段階2の「常に有声発話・声量若干低下」に当たると評価され、改善が認められた。（図6-5参照）
音響分析による評価：音声サンプル「木曜日の天気」の分析では、前回評価時に比較して声量の改善が認められた。（図6-2参照）MPTは19.8秒で、正常範囲であった。oral diadochokinesis（パタカ）では、吸気挿入はなく、産生された30音節すべてで声帯振動が得られた。声域の最高位は352Hz、最低位は125Hzであった。

3) 訓練終了時のADL
基本動作はおおむね自立レベルとなった。座位保持が可能となり、移動は車いすにて自立となった。食事動作も車いすにて自立となった。食形態は通常の糖尿病治療食で、問題なく摂取可能であった。

4) その他
訓練終了時には喉頭内視鏡検査の実施には同意が得られなかった。
考察

本症例に対し、早期からベッド上で訓練の機会を提供することができたことから、CD教材を用いたウェイトノイズ法の有効性が認められたと考えられる。また、ロンバール効果により即座に良好な音声が得られ、本症例は驚きと喜びを感じ、その後の訓練に対する意欲の向上がみられたと考察された。このことは、その後のリハビリテーション全体に対する意欲にも影響し、加えて早期に言語聴覚士に対する信頼感が得られたとの印象を受けた。

しかしながら音声症状の改善については、発症後13日で音声訓練を開始しており自然回復の要因を除外することは困難で、改善が訓練効果によるものと断定することはできないと考えられた。

CD教材を作成することにより、小型のCDプレーヤーとヘッドホンを持参できれば、どのような場所でも訓練実施が可能となった。さらに、退院後の自主訓練や外来患者の自宅での訓練にウェイトノイズ法を採用することができるようになったと考えられた。

言語聴覚士が直接関与できない条件で訓練を実施するには、CDを再生する際の音量を前もって的確に設定する必要がある。そのためには、可能であれば患者が自宅で使用するCDプレーヤーとヘッドホンを持参させ、出力つまみにマークをして、常に適切な出力音量が得られるよう配慮すべきと考えられた。これが困難な場合には、患者が適切な再生音量の設定が難しく行えるよう、訓練場面で練習を行う必要がある。また、患者が退院後にウェイトノイズ法による音声訓練を長期間継続する場合には、音声の評価と訓練条件の再検討、設定した訓練条件が順守されているかの確認を定期的に行う必要があると考えられた。加えて、前述のように上肢の運動機能障害のある症例では、ヘッドホン装着が困難なことが多いため、イヤホンの使用等を検討する必要があると考えられた。

CD教材から出力されるウェイトノイズは音声編集を経ており、音声呈示の際には市販のCDプレーヤーとヘッドホンが用いられる。オージオメータから出力されるウェイトノイズと比較すると、若干の音色の変化が認められた。しかし前述のとおり、ウェイトノイズ法におけるノイズの負荷はロンバール効果を得るための手段であり、ウェイトノイズ以外のノイズを使用することも可能である。本症例の訓練では、ロンバール効果が得られ、かつ患者が過度の不快感を訴えない音量の設定が可能であったので、ノイズの音色の変化は支障とならなかった。

ところで現在のオージオメータは、ノイズを左右両チャンネルに同時に出力することが可能な機種が多い。また第1章ですでに示したように、現在のオージオメータの多くにはウェイトノイズの出力機能が搭載されていない。2000年のJIS規格の改正により、語音聴力検査用のマスキングノイズとして加重不規則雑音、いわゆるスピーチノイズが
規定され、それまで用いられていたホワイトノイズ、ウエイトノイズは規定から除外された。ウエイトノイズは2000年の改正後、純音聴力検査用のマスキングノイズとしJIS規格に残っていたが、2011年の改正により純音聴力検査用のマスキングノイズとしては狭帯域雑音のみが規定されたため、ウエイトノイズはオージオメータのJIS規格から完全に除外された。そのため、ウエイトノイズは臨床の言語聴覚士が臨床で用いることが困難な場合が多く、ウエイトノイズ法の普及の障害となっている。
しかしながら、前述のようにウエイトノイズ法は狭帯域雑音やスピーチノイズを用いることも可能である。そうしたノイズを用いてCD教材作成を行うことで、臨床の多くの言語聴覚士が本方法を試みることが可能になると考えられた。
第7章 まとめ

概要

ウエイトノイズ法の有効性を、訓練対象の拡大、訓練効果という観点から総括する。 UWエイトノイズ法を導入することにより、従来の訓練方法の適用が困難であった症例に対し、訓練の機会を新たに提供できたと考えられた。また、自然回復等の要因の排除は困難だが、音声症状の改善に訓練効果が含まれていると推測される症例が認められた。次に、臨床適用の過程で得られたその他のメリットについて言及する。さらに、本方法が確立した音声訓練法とみなされるために必要な課題について検討する。ボンパール効果、ウエイトノイズ法で音声の改善が得られる機序などの生理学的裏付け、評価の枠組みの厳密化が重要と考えられた。（図7-1）

1. ウエイトノイズ法の有効性

1) 訓練対象の拡大

ウエイトノイズ法を導入することにより、従来の訓練方法の適用が困難であった以下症例に対し、訓練の機会を新たに提供できたと考えられた。

①運動機能障害を呈する症例

適用対象とした脳血管障害例はいずれも運動機能障害を呈していたが、ウエイトノイズ法の手続きでは四肢および体幹の筋緊張を要求することなく、ヘッドホンを着用することができれば体位にかかわらず訓練を実施することができた。さらにCD教材を使用すれば、ベッド上での訓練も可能となった。しかし、上肢に運動機能障害がある症例では、訓練開始時および終了時のヘッドホン着脱で介助が必要な場合があり、自主訓練の実施においてはイヤホンを使用するなどの工夫を要すると考えられた。

②高次脳機能障害、精神機能の低下を呈する症例

高次脳機能障害および精神機能の低下を呈する症例のうち、復唱または言語が可能な症例では訓練を実施することができた。失語症を呈する症例においては、症例が対応できる音読・復唱課題を設定することで音声訓練が可能となった例があった。しかし認知症のある症例のうち、音声症状の自覚がない症例、訓練の趣旨の理解が得られない症例では、訓練中にヘッドホンを自ら外してしまい課題への対応を中断してしまう場合があ
第1章 序論

問題の存在

その解決法の探求

研究の目的:その有効性の評価

評価

第2章 臨床適用の手続き

第3章:ウエイトノイズ法の有効性の概観

第6章 発展的研究

新たな手続き上の問題 → その解決策

第4章:症例検討 I

第5章:症例検討 II

第7章 まとめ

ウエイトノイズ法の有効性

・訓練対象の拡大

・訓練効果

・その他のメリット

今後の課題

確立された訓練法と
認知されるための要件

＋

補論

神経難病例
への適用

図 7-1 第7章の構成
った。その際は、音声症状や訓練の目的について繰り返し説明した。また発動性の低下が著しく復唱課題、音読課題に対応が得られない症例では、口頭で逐一課題への対応を促す必要があり、また訓練を実施することが困難な場合があった。

③意欲低下を呈する症例
ウエイトノイズ法では努力発声の必要がないため、意欲の低下を呈する症例でも訓練課題に対応が得られやすかったと考えられた。またノイズを負荷すると即座に声量、声質の改善が得られることが多いため、症例の中には驚きと喜びを感じ、その後の訓練に対する意欲が向上する場合があった。

しかし意欲の低下が著しい症例、認知症を合併する症例では、訓練開始直後に課題対応が良好であったにもかかわらず徐々に対応不良となり、徐々に声量が低下していく場合があった。こうした場合には、努力発声を励行する必要があった。

④発声時に易疲労性のある症例
ウエイトノイズ法では患者に努力発声を要求しないため、易疲労性のある症例でも無理なく訓練を導入し継続することができたと推察された。短時間の訓練を複数回行うなど、訓練場面の設定の仕方を工夫することで、易疲労性の顕著な症例にも訓練を実施できる可能性があると考えられた。

以上のように、ウエイトノイズ法の導入により音声訓練の対象者を拡大することができたという点において、ウエイトノイズ法の有効性が認められたと考えられる。

2) 訓練効果
ウエイトノイズ法を臨床適用した結果、従来の訓練法の適用が困難であった多くの症例で音声の改善が得られた。他の訓練方法と同様に、自然回復等の要因の排除は困難で、これらの改善が訓練効果であると断定することはできないと考えられたが、症例検討で取り上げた2症例のように、音声症状の改善に訓練効果が含まれていると推測される症例があった。

3) その他のメリット
ウエイトノイズ法では即座に音声の改善が得られるため、多くの患者において訓練意欲の増大、担当言語聴覚士に対する信頼感の醸成、QOLの向上が得られたと考えられた。

また、CD教材を作成することにより以下のようなメリットがもたらされたと考えられた。
・家庭での自主訓練で、ウエイトノイズ法による訓練を行うことが可能となった。
オージオメータの規格の問題でウエイトノイズ法による訓練を行えなかった臨床の言語聴覚士が、本方法の適用を試みることが可能となった。

2. 今後の課題

ロンパール効果の発現機序、およびウエイトノイズ法で音声の改善が得られる機序、ウエイトノイズが訓練に適している理由が現状では不明である。確立した音声訓練法とみなされるためには、こうした生理学的裏付けが重要と考えられる。

また本研究の音声評価の枠組みには、さらなる厳密さが求められるべきと考えられる。特に喉頭内視鏡による厳密な所見、空気力学的な音声評価、声質、声量に関する定量的評価が重要と考えられる。これらの所見の欠如は、本研究を行った医療機関に耳鼻科が開設されておらず、耳鼻科専門医がいないことが第一の原因である。訓練効果を裏付ける指標を得ることが、ウエイトノイズ法が広く認知され、適用されていくために重要と考えられる。
補論 —神経難病例への適用—

概要

脳血管障害例の音声訓練における阻害因子は、神経難病例の音声訓練においても同様に阻害因子となることがある。本章では、声量低下、気息性・無力性声質を呈する進行性核上性麻痺（progressive supranuclear palsy：以下 PSP）の症例について検討し、神経難病例に対するウエイトノイズ法の応用について考察する。ウエイトノイズ法は運動機能障害を呈する症例にも適用可能であった。また、PSP が進行性であること、訓練期間中に投薬条件が変化したことから、改善は訓練効果によるものと考えられた。しかし改善は一時的で、症状の進行とともに音声機能は増悪していくと考えられた。本症例にとって、ウエイトノイズ法は訓練に対する負担感が小さく、容易に訓練を継続することができたと考えられた。（図 補-1）

1. はじめに

脳血管障害例に随伴することの多い運動機能障害や高次脳機能障害は、神経難病例においても認められることがある。神経難病例の中にも音声障害を呈する症例が多く、神経難病例の音声訓練においてもこれらの障害が従来の訓練方法適用の阻害因子となる。筆者は、PSP で生じる気息性、無力性声質および声量低下に対するウエイトノイズ法の適用を試みた。

PSP は、「锥体外路系の変性疾患で、初期には気息性声質や声量低下などのパーキンソニズムを呈し、進行すると仮性球麻痹症状を呈する」とされている。したがって、PSP で生じる音声障害のリハビリテーションについては、初期の症状には努力発声による訓練が効果的であり、病状が進行し痙攣が強まってくるとリラクセーションを基本とした訓練が適切で、臨床ではそれぞれの患者の症状によって適切と考えられる訓練方法が選択されていると推察される。

パーキンソニズムの音声訓練法としては、一般に LSVT が知られているが、第 1 章で述べた通り、パーキンソニズムの患者の音声においてもロンパール効果がみられるとの報告があり（Adams ら 29）、パーキンソニズムの患者の音声障害に対してもウエイトノイズ法が効果的である可能性があると考えられた。筆者は先の研究報告 38において、約 3 週間のウエイトノイズ法による音声訓練で声量、声域、最長発声持続時間の改善があげられた症例について言及した。

また、痙攣性の強いタイプの音声障害に対してはリラクセーションを中心とするアプ
第1章 序論
問題の存在
その解決法の探求
ウエイトノイズ法の開発
研究の目的:その有効性の評価
評価
第2章 臨床適用の手続き
第3章:ウエイトノイズ法の有効性の概観
第4章:症例検討Ⅰ
第5章:症例検討Ⅱ
第6章 発展的研究
新たな手続き上の問題 → その解決策
第7章 まとめ
神経難病の音声訓練でも脳血管障害と同様の阻害因子が存在
補論
ウエイトノイズ法の神経難病例への適用
症例検討
進行性核上性麻痹例
図 補-1 補論の構成
ローチが用いられ、それらはテキスト等にも紹介されている（白坂 49、廣瀬 49 他）。しかし、第 1 章で述べた通り、仮性球麻痺でも気息性・無力性声質を呈する症例があり、そうした症例に対しては声門閉鎖促進訓練が行われるべきとされている。

筆者は PSP による失声例に対しウェイトノイズ法を適用したので、以下に報告する。

2. 方法

1) 症例のプロフィール

症例：54 歳、男性。教育歴 16 年（大学卒）。右利き。会社員。パソコンを使用し事務を担当（入院時には休職中）。

診断：訓練期間中はパーキンソン病と診断されていたが、その後臨床症状から進行性核上性麻痺と診断。

既往歴：特記すべき事項は認められなかった。

現病歴：初回評価の 8 年前に手指振戦、動作緩慢、筋剛直にて発症。抗パーキンソン薬に反応性が認められた。4 年前に両眼瞼痙攣が出現し徐々に開瞼障害となり、3 年前から生活上大きな支障をきたした。2 年前から構音障害、音声障害が認められ、症状は緩徐に進行していた。抗パーキンソン薬の投与条件は、訓練開始 9 ヶ月前から訓練終了までの期間に変更はなく、脳神経外科的処置は無かった。

神経学的評価：入院時は Hoehn-Yahr stage の III と評価された。姿勢反射障害、開瞼障害のため歩行障害が認められた。

神経心理学的評価：意識清明。失語症、その他の高次脳機能障害は認められなかった。ウェクスラー成人知能検査（WAIS-R）で、言語性 IQ114、動作性 IQ92、全検査 IQ105 だが、検査場面での行動観察から検査成績には開瞼障害が影響していると考えられた。Mini-Mental State Examination の成績は 30/30 であった。書字では小字症がみられた。

言語症状：日常会話で失声状態であったが、喉は可能であった。課題場面では努力発声によりしばしば有声発話が得られたが、声量が徐々に低下した。抑揚に乏しい傾向がみられた。発話明瞭度は 2：ときどきわからないことばがある。会話では子音の歪み、oral diadochokinesis（パタカ）では声道閉鎖が徐々に不良となっていく傾向がみられた。

発話速度の亢進はみられなかった。

喉頭所見：明らかな異常は認められなかった。

ADL：日常生活は概ね自立のレベルであったが、開瞼障害のため介助を要する場面が認められた。

音声訓練への対応状況：プッシング法を試みると、聴覚印象上若干の声量の増大、声
質の改善が確認されたが、姿勢反射障害を呈する本症例には対応に困難があり、さらに、数回の押し運動で疲労を訴えたため、十分な量の訓練を行えないと推測された。努力発声では、疲労のため十分な量の発声訓練を行うことは困難であった。一方、55dB のウェイトノイズを負荷した状態では声質および声量の明らかな改善が確認され、一定時間復唱課題を継続しても疲労感は小さかった。そのため、ウェイトノイズ法を採用することとした。

2）訓練開始時の音声評価（本症例の評価は第 2 章で述べた枠組みに則って行った）
声質の評価：G(3)R(0)B(3)A(3)S(0)であった。
声量の評価：段階 6 の「失声状態・咳は可能」と評価された。
音響分析による評価：図 補-2 に訓練開始時の音声サンプル「木曜日の天気」のサウンドスペクトログラムを示した。左はノイズを負荷せずに努力発声を行った音声で、右は 55dB のウェイトノイズを負荷した状態での音声であった。努力発声では最初と最後の音節には有響成分が含まれていなかったが、ノイズを負荷するとすべての音節に有響成分が含まれ、努力発声の場合よりも声量が増大した。MPT は 9.6 秒であった。訓練開始時の声域の最高位は 197Hz、最低位は 137Hz、話声位が 160Hz であった。
3）訓練方法
オージオメータから得られる55dBのウェイトノイズを両耳に負荷し、3文節程度の短文復唱を行った。ノイズの音量は、訓練終了まで一定であった。訓練は1回につき15分程度とし、週4回から5回行った。

4）訓練経過
1週：ノイズを負荷すると一貫して有響成分を含む音声が得られた。日常会話では有響成分が概ね保たれるようになった。この状態が3週まで続いた。

2週：訓練場面では明らかな変化はみられなかったが、会話では有響成分がかすかに含まれる程度の気息性の強い音声が聴かれるようになり、失声となる場合もみられた（この状態が1.5ヵ月まで続いた）。

1ヵ月：訓練場面では明らかな変化はみられなかった。日常会話の音声は有響成分がしばしばみられる状態で、1週目より不良であった。

1.5ヵ月：訓練場面では明らかな変化はみられなかった。日常会話の音声で有響成分が常に保たれるようになり、2ヵ月までゆるやかな回復が続いた。

2ヵ月：訓練場面では明らかな変化はみられなかった。日常会話の音声で気息性声質が増悪し、失声となる場合もみられた。

2.5ヵ月：訓練場面では明らかな変化は見られなかったが、日常会話では再び有響成分が常に保たれるようになった。

3ヵ月：訓練場面、日常会話場面とも、これまでで最も良好な音声となった。3ヵ月時評価の数日後に気息性、無力性声質が強まり、湿性の粗雑性も認められるようになっただけ、有声発話は一貫して保たれていた。

3.5ヵ月：明らかな変化がみられず、退院となった。
3. 結果

1) 音声の評価

声質の評価：1ヵ月時は G(2)R(0)B(2)A(3)S(0)、3ヵ月時は G(1)R(0)B(1)A(2)S(0)、終了時は G(1)R(1)B(2)A(2)S(0)であった。3ヵ月時の声質が最も良好で、終了時には湿性の粗稜性声質が認められるようになり、気息性声質も増悪した。（図 補-3）

声量の評価：1ヵ月時は段階 4 の「概ね有響成分含まれる」、3ヵ月時は段階 3 の「常に有声発話・声量若干低下」、終了時は段階 4 の「概ね有響成分含まれる」に当たると評価された。3ヵ月時の声量が最も良好で、終了時は3ヵ月時に比して声量低下が認められた。（図 補-4）
音響分析による評価：音声サンプル「木曜日の天気」では、図 補-5 に示すとおり、3ヵ月時の音声で音声包絡の振幅が最も大きく、声量が最も良好であった。（添付 DVD の音声 補-1 参照）

MPT は、1ヵ月時は 5.6 秒、3ヵ月時は 12.7 秒、終了時は 7.5 秒であった。3ヵ月時が最も良好で、終了時には 3ヵ月時に比して短縮が認められた。声域および話声位は、明らかな変化はみられなかった。

2）構音の評価
1ヵ月時から終了時まで、発話明瞭度は 2：時々わからないことばがある、で変化は見られなかった。音声以外の要因による異常所見も同様で、子音の誤りで評価点が 1 で変化はみられなかった。

3）その他
訓練終了時の喉頭内視鏡検査は、症例の同意が得られず実施できなかった。
4. 考察

抗パーキンソン薬の音声への影響に関しては研究報告により評価結果が異なっているようにみえるが、音声訓練法の有効性を検討する際には訓練期間中の投薬条件は不変であることが望ましいと考えられる。本症例では訓練開始の9ヵ月前から訓練終了まで投薬条件の変更がなかった。さらに、PSPが進行性の疾患であることを考慮すると、本症例で得られた音声の改善は訓練による効果と考えられた。

本症例の音声は3ヵ月時に最も良好で、その後は時評価までに湿性の粗雑性声質が現出した。これは嚥下機能の低下により痰の貯留が生じてきた可能性を示唆する。訓練開始前、本症例の会話音声は失声状態であり、リハビリテーションを施行しなければ有声発声を回復することは困難であったと考えられた。訓練開始から、音声の改善は一時的であった。しかし、音声の改善が一時的であることもあり、そのことがリハビリテーション施行の価値を減じるものではないと考えられた。訓練開始時、本症例の会話音声は失声状態であり、リハビリテーションを施行しなければ有声発声を回復することは困難であったと考えられた。進行性疾患の患者にとって、有声発話の回復は、それが一時的なものであったとしても、QOLの向上につながる場合があると考えられた。また、本方法の適用は、音声機能の低下が発話数の減少を招き、発話数の減少が更なる音声機能の低下を来すという悪循環を断つ手段となりうると察せられた。

脳血管障害例ではノイズを負荷しない状態で良好な音声が得られることを訓練目標としていたが、音声の改善につれて負荷するノイズの音量を徐々に下げていった。本症例では訓練開始時の目標は音声の改善であったが、異常所見の増悪が認められた時期からは音声機能の維持が訓練目標となった。このように、神経難病の音声訓練ではウエイトノイズ法は有効と考えられるが、疾患が進行性であるため訓練による改善は一時的であり、今後原疾患が進行していく過程でさらに異常所見が増悪すると推測された。しかしながら、音声の改善が一時的であることもあり、そのことがリハビリテーション施行の価値を減じるものではないと考えられた。訓練開始時、本症例の会話音声は失声状態であり、リハビリテーションを施行しなければ有声発声を回復することは困難であったと考えられた。進行性疾患の患者にとって、有声発話の回復は、それが一時的なものであったとしても、QOLの向上につながる場合があると考えられた。また、本方法の適用は、音声機能の低下が発話数の減少を招き、発話数の減少が更なる音声機能の低下を来すという悪循環を断つ手段となりうると察せられた。

脳血管障害例ではノイズを負荷しない状態で良好な音声が得られることが訓練目標としていたため、音声の改善につれて負荷するノイズの音量を徐々に下げていった。本症例では訓練開始時の目標は音声の改善であったが、異常所見の増悪が認められた時期からは音声機能の維持が訓練目標となった。このように、神経難病の音声訓練では脳血管障害例とは異なり、訓練目標が音声機能の改善から維持へと移り変わることを念頭に置いて訓練プログラムが必要と考えられる。本症例においては、ノイズの音量は訓練終了まで55dBのままであったが、退院後の自主訓練においても大きなロナルーパー効果が得られ55dBのノイズを負荷して訓練を継続することが望ましいと考えられた。さらに今後予想される異常所見の増悪に対応し、復唱のテキストを短文レベルからより短いものへと変化させ、症例が対応できる難易度の課題を常に設定しておいていくことも重要と考えられた。図補-1に、神経難病に適切と考えられる訓練の流れを示した。

本症例の音声は、しばしば異常所見の増悪を呈しながら徐々に改善していった。脳血管障害例を対象とした筆者らの先行研究では、訓練開始後は概ね一貫して改善傾向が認められていたが、音声改善の過程が異なる点が見受けられた。現在ではその原因は不明であるが、PSPが進行性疾患であることが関係している可能性があると考えられた。

本症例では、ウエイトノイズ法の適用により有響成分を含む音声が容易に得られ、本
症例の訓練意欲を高めたと考えられた。また、本方法は訓練に対する負担感が小さく、容易に訓練を継続することができたと考えられた。

音声訓練では、喉頭の過度の筋緊張亢進による粗雑性、努力性声質の増悪やピッチ上昇は避けるべきとされている。ロンパール効果は声量の増大だけでなくピッチの上昇も含むものとみなされており、本症例においても訓練時にピッチの上昇が認められた。しかし、本症例の訓練場面では音声に努力性、粗雑性声質の出現は認められず、会話場面においても訓練終了時に認められた粗雑性声質は痰の貯留による湿性の粗雑性であり、問題視すべき喉頭の筋緊張亢進はみられなかったと考えられた。ウエイトノイズ法は、喉頭の過度の筋緊張を誘発しない穏やかなパワーアップ法であると推察された。また、粗雑性、努力性声質が出現する、ピッチの上昇が著しいなど、音声に悪影響が懸念され

図 補-6 神経難病に適切と考えられる訓練の流れ

改善目的
咳
単音の発声（短→長）
単語の音読・復唱（2音節→長）
文の音読・復唱（短→長）

維持目的
（機能低下への対応）
文の音読・復唱（長→短）
単語の音読・復唱（長→2音節）
単音の発声（長→短）

改善目的 維持目的
維持目的
（機能低下への対応）
55dBのウエイトノイズを負荷
る場合には、ノイズの音量を低めに設定するなどの措置が可能と考えられた。

ところで、PSP には他疾患との鑑別が困難な症例があるとされている。Williamsらは、PSP の約 1/3 を占めるパーキンソン病と鑑別が困難な下位グループでは、従来 PSP の臨床症状とされていた諸症状による診断が困難であったと報告している。本研究で対象とした症例においても鑑別の信頼性の問題は存在していると考えられ、今後は訓練対象となる症例数を増やしての検討が必要であろう。

神経難病例は、初期の段階では精査や薬物コントロールなどを目的とした短期入院が多く、音声のリハビリテーションは家庭での自主訓練を中心に計画することが必要となる。家庭での訓練継続にあたっては、その方法が簡易で大きな努力を要しないよう配慮することが望ましいと考えられる。CD教材を用いたウエイトノイズ法の適用が、退院後の訓練継続を促進する可能性があると推察された。

なお、筆者は、筋強直性ジストロフィー例の音声訓練にもウエイトノイズ法を適用しており、今後は多様な神経難病例に対するウエイトノイズ法の有効性を報告して行きたいと考えている。
本研究はM病院において、同院臨床研究部の研究活動の一環として行われた研究をまとめたものです。

本研究を始めるにあたり、研究テーマとしての可能性を示唆し、激励をくださいました永渕正昭先生に深謝いたします。永渕先生は筆者の学生時代の指導教官で、卒業後も不肖の弟子を見捨てず、ご支援くださった恩師です。永渕先生の励ましが無かったら、本研究はスタートしていなかったかもしれません。

本研究を進めるにあたりは、M病院臨床研究部長で同院研究倫理審査委員長の久永欣哉先生の温かいご支援が欠かせませんでした。筆者がM病院在職中は無論、退職した後も応援して下され、その結果はじめて本論文が存在しております。ご高配に感謝を捧げます。

また、筆者を信じて言語訓練に通い続けてくださった患者様方に感謝申し上げます。筆者の同院在職中に苦労を共にしてくれた言語聴覚士の佐々木結花先生、高野智恵子先生に心より感謝を捧げます。佐々木先生はウェイトノイズ法の模索の段階から親身に相談に乗って下され、ご協力くださいました。論文執筆のために両先生にご迷惑をおかけしたときも温かくお見守り下され、論文に目を通すなどして親身のご協力をいただきました。両先生には、筆者が同院在職した後も本研究が進展するようにと様々なご配慮をいただき、協力を惜しむことなく支えて下さいました。ありがとうございました。

また、現東北大学病院嚥下センター長のリハビリテーション科医師、高橋博達先生には、M病院在職中にわたるの再三の求めに応じて喉頭内視鏡検査を行って下され、感謝に堪えません。耳鼻咽喉科のない同院で本研究が成立したのは、高橋先生のご尽力の賜物です。

本研究をまとめのあたりにあたり、指導教官で東北大学大学院教育情報学研究部・教育部教授の渡部信一先生、准教授の佐藤克美先生には、3年にわたる苦渋かく厳しいご指導を下さいました。漠としてあいまいな筆者の思考に明確な形と筋道を与えてくださった両先生の知性と忍耐がなければ、こうして研究を形につき得ることは不可能でした。両先生のご高配に対し、筆者は適切な感謝の言葉を見出すことができません。渡部先生は、筆者にとってはM病院言語療法室の偉大な先輩でもあります。その大先輩のご指導をいただくことができた幸福には、何と感謝してよいかわかりません。博士課程後期の入学を希望し渡部先生の研究室に赴いてから今日を思い返すと、まさに感無量です。また、両先生が率いていらっしゃるゼミの先輩方、同僚の皆さんには、筆者のわかりにくいプレゼンテーションに耐え、辛抱強くアドバイスを提供し続けてくださりました。特に薄井洋子さんには、ゼミのスケジュールの伝達や事務的なご指示、博士論文執筆の先輩として貴重な情報をいただき、大学院生活を支えて下さいました。ありがとうございました。また、お忙しい中を審査で審査を担当して下さった東北大学大学院教育情報学研究部教授の熊井正之先生に深謝申し上げます。
引用文献

1) 小池三奈子: 音声障害・発声発語障害学. 言語聴覚士テキスト第2版 (廣瀬肇ほか), 医歯薬出版, 東京, 351-353, 2011.
3) 小林範子: 音声訓練の方法・音声障害. 発声発語障害学 (藤田郁代ほか) , 医学書院, 東京, 77-84, 2010.
2003.
31) Charlip, W.S. and Burk, K.W.: Effects of noise on selected speech parameters. J.
32) Brown, W. and Brandt, J.: Effects of auditory masking on vocal intensity and
intraoral air pressure during sentence production. J. acoust. Soc. Am., 49: 1903-
33) Sharon, F. G., Gerald, M. S. and Herbert, L. P.: The influence of selected masking
34) 高橋信雄, 佐々木結花, 高野智恵子ほか: 脳血管障害による音声障害に対するロン
35) 高橋信雄, 佐々木結花, 高野智恵子ほか: 脳血管障害による音声障害に対するロン
36) 高橋信雄, 佐々木結花, 高橋博達, ほか: 運動機能障害及び高次脳機能障害を持つ
37) 高橋信雄, 佐々木結花, 高野智恵子, ほか: 運動機能障害を伴う一側性喉頭麻痹例
38) 久永欣哉, 高橋信雄: パーキンソン病のリハビリテーション. Jpn Rehabil Med,
39) 高橋信雄, 久永欣哉, 佐々木結花, ほか: 運動機能障害の進行性核上麻痺による失声例に対するウ
エイトノイズ法の適用—ローバール効果を利用した発声訓練—. リハビリテーション
40) 藤田郁代, 熊倉勇美: GRBAS尺度による評価. 音声障害. 発声発語障害学 (藤田
41) 廣瀬肇: 聴覚印象評価. 運動障害性構音障害学 (廣瀬 肇, 柴田貞雄, 白坂康俊),
42) 飯島節: ぐも膜下出血. 神経内科学テキスト改訂第3版 (江藤文夫, 飯島節), 南江堂,
43) 廣瀬肇: 機能性失声障害・音声障害の治療. 音声障害の臨床 (廣瀬肇), インテルナ
出版, 東京, 98-100, 1998.
44) Heuer, R.J., Sataloff, R.T., Emerich, K. et al: Unilateral Recurrent Laryngeal
Nerve Paralysis: The Importance of “Preoperative” Voice Therapy. J Voice, 11:
45) 松平登志正: JIS オージオメータの改正について. Audiology Japan, 52; 39-46,
2009.
46) 日本規格協会: 聴覚検査機器－第1部: 純音オージオメータ. JIS T 1201-1, 12,
2011.
47) 川又敏男: パーキンソン病の類縁疾患. 神経内科学テキスト改訂第3版 (江藤文夫,
飯島節), 南江堂, 東京, 185-186, 2012.
48) 白坂康俊：治療とリハビリテーション．言語聴覚士のための運動障害性構音障害学（廣瀬肇，柴田貞雄，白坂康俊），医歯薬出版，東京，283，2001．
49) 廣瀬肇：音声治療の実際・音声障害の治療．音声障害の臨床（廣瀬肇），インテルナ出版，東京，129-131，1998．
Abstract

New Voice Treatment for Voice Disorders Associated with Cerebrovascular Disease
—Weighted Noise Voice Treatment and its Effectiveness—

This study assessed a new voice treatment method (Weighted Noise Voice Treatment: WNVT) for voice deficits associated with cerebrovascular disease. In general voice treatments for improving glottal closure, pushing excise, hard glottal attack and making efforts to speak louder, are recommended in voice therapy for the voice disorder with decreased vocal intensity and breathy and asthenic vocal quality after cerebrovascular disease. In many case, however, it is difficult for clinicians to apply those treatment methods to patients. Possibly motor disorders, cognitive disorders, dementia, hypobulia and exhaustion, which accompany cerebrovascular diseases very often, prevent the patients to undergo those treatments.

Weighted Noise Voice Treatment, which is a new voice treatment using the Lombard effect (subjects increase vocal intensity when speaking in the presence of noises), was developed. Weighted Noise Voice Treatment requires patients to repeat speaking tasks (reading aloud and repetition) while binaurally listening to a continuous weighted noise, which is among wide-banded noises output from audiometer, to improve vocal intensity and quality. In developing this new method the procedure of masking method, which uses the Lombard effect as well, was revised. In masking method a continuous 90-dB white noise brings about auditory masking. Since it also brings about much uncomfortableness which make it difficult for patients to undergo the treatment for a time and repeatedly, it is difficult for clinicians to apply masking method in the voice therapy for the patients with cerebrovascular diseases. When 55-dB weighted noise was applied patients exhibited increased vocal intensity because of the Lombard effect and could undergo speaking tasks without much uncomfortableness since 55-dB weighted noise was less uncomfortable than 90-dB SPL white noise.

The purpose of this study was to apply Weighted Noise Voice Treatment to patients in voice therapy and to document the effectiveness of the treatment.

Weighted Noise Voice Treatment was applied to 52 cerebrovascular disease patients, who had difficulty in undergoing usual voice treatments for improving glottal closure. 48 patients exhibited improved vocal condition. And, here, 2 case studies are reported. The aphonic patient (case 1) with motor and cognitive disorders, which
made it impossible for him to undergo usual voice trainings, was able to receive Weighted Noise Voice Treatment since the procedure of the treatment was not complicated nor it did not require patients much effort to improve the vocal condition. The dysphonic patient with unilateral vocal fold paralysis (case 2) was with motor disorders, which prevented him from undergoing usual voice trainings, and with exhaustion, which made it difficult to make continuous efforts to speak louder. The case 2 was able to receive Weighted Noise Voice Treatment since the treatment did not require patients much effort to introduce and continue the voice training. These 2 reports suggested that Weighted Noise Voice Treatment is effective for improving vocal intensity and quality in patients with cerebrovascular disease.

Applying the new treatment made it possible for the patients with motor disorders, cognitive disorders, dementia, hypobulia and exhaustion to receive vocal trainings. Patients with motor disorders are able to receive trainings with headphones no matter how are the postures. Patients even with cognitive disorders and dementia are able to undergo the treatment if they can repeat or read aloud. Patients with decreased motivation and exhaustion are able to undergo the treatment because they are not require to make much effort to speak louder.

Since the vocal intensity and quality of patients get better immediately, many of them possibly get willing to receive trainings, have more trust in speech therapists and improve their own QOL.

Patients are able to undergo the treatment introducing task CDs on which repetition tasks and the noise are recorded when lying or half-lying in bed and training themselves at home.

Patients with degenerative neuropathy have the same difficulties as cerebrovascular disease when they receive usual voice treatments. Weighted Noise Voice Treatment was applied for four months to an aphonic patient with progressive supranuclear palsy (PSP) The case exhibited improved vocal conditions in three months and worse vocal conditions in the last month. Weighted Noise Voice Treatment was discussed to be effective to improve the voice deficits since PSP was progressive and the medication was stable during the four months, though worse vocal conditions were expected according to the progression of PSP. However, this report suggests that the improvement brings about better QOL even when that is not permanent.