シロイヌナズナのシラクサホタルアミノ酸遺伝子の機能解析

<table>
<thead>
<tr>
<th>著者</th>
<th>鄭 明淑</th>
</tr>
</thead>
<tbody>
<tr>
<td>号</td>
<td>□</td>
</tr>
<tr>
<td>学位授与機関</td>
<td>Tohoku University</td>
</tr>
<tr>
<td>学位授与番号</td>
<td>生博第1号</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10097/62499</td>
</tr>
</tbody>
</table>
 Zheng Ming Shu

氏名（本籍地） 鄭 明 淑

学位の種類 博士（生命科学）

学位記番号 生博第3号

学位授与年月日 平成16年3月25日

学位授与の要件 学位規則第4条第1項該当

研究科、専攻 東北大学大学院生命科学研究科

（博士課程）分子生命科学専攻

論文題目 シロイヌナズナ（Arabidopsis thaliana）NHL10遺伝子の機能解析

博士論文審査委員 （主査）教授 草野友延

教授 亀谷壽昭

教授 高橋秀幸
植物の病原菌に対する抵抗性は一般的に非常に高い特異性を示しており、またこの特異性は植物側の R 遺伝子産物と病原菌側の非病原性遺伝子産物間の認識に依存する。抵抗性 R 遺伝子を介したシグナル経路には下流に複数の鍵となる遺伝子が存在するが、シロイヌナズナの NDR1 遺伝子もその 1 つである。この遺伝子に欠損をもつ植物はカビや細菌に罹病性となる。NDR1 遺伝子の産物は、病原菌に対する過敏感応答時に誘導されるタバコの HIN1 遺伝子の産物 (HIN1) と構造類似性を持っており、こうした一群の遺伝子は NDR1/HIN1-like (NHL) 遺伝子と呼ばれている。

シロイヌナズナには NHL 遺伝子が 45 個あり、分子系統解析により 4 クラスに分類された（図 1-2)。本研究ではまずシロイヌナズナの NHL メンバーのうち HIN1 と相同性が最も高い 9 つの遺伝子を選び、NDR1 遺伝子と共に種々の条件下での発現解析を行い、このうち特徴的な発現パターンを示した NHL10 遺伝子の発現制御機構および機能を解析した。

第 1 章では、組織特異性の解析から NHL10 遺伝子は老化葉特異的に発現する遺伝子であり（図 1-4）、CMV (cucumber mosaic virus) 感染による HR 時の発現解析から、NHL10 遺伝子は HR 特異的に発現が誘導されることが明らかになった（図 1-5)。また細胞外からスペルミン (Spm) を与えた時、NHL10 遺伝子の発現レベルが増加した（図 1-6）。このように NHL10 遺伝子の発現パターンは非常にタバコの HIN1 と似ており、また NHL10 のアミノ酸配列は HIN1 と最も高い相同性を示していることからシロイヌナズナの NHL10 遺伝子はタバコ HIN1 のオルソローグであると考えられた。

図 1-2. シロイヌナズナ NHL 遺伝子群の分子系統樹
データ・マイニングによりシロイヌナズナに見出した 45 種の NHL 遺伝子は、NHL1 (At3g11660), NHL2 (At3g11650), NHL3 (At5g06320), NHL4 (At1g54540), NHL5 (At1g61760), NHL6 (At1g65690), NHL7a (At1g08140), NHL7b (At1g23950), NHL8 (At1g32340), NHL9 (At2g35460), NHL10 (At2g35980), NHL11 (At2g35970), NHL12 (At2g35960), NHL13 (At2g27080), NHL14 (At2g27260), NHL15 (At2g01080), NHL16 (At3g20610), NHL17 (At3g44220), NHL18 (At3g52470), NHL19 (At4g01410), NHL20 (At4g26490), NHL21 (At4g05220), NHL22 (At4g09590), NHL23 (At5g06330), NHL24 (At5g22850), NHL25 (At5g1890), NHL29 (At1g17550), NHL30 (At1g17620), NHL31 (At1g64440), NHL32 (At1g64450), NHL33 (At1g01460), NHL34 (At1g13050), NHL35 (At1g70040), NHL36 (At3g46300), NHL37 (At3g24660), NHL38 (At3g20590), NHL39 (At3g52400), NHL40 (At3g26350), NHL41 (MOB24.18, chromosome 3), NHL42 (At4g01110), NHL43 (At5g56050), NHL44 (At5g45300) 及び NDR1 (At3g20600) である。タバコ HIN1 (NtHIN1) は黒いボックスで示し、本研究で解析に用いた 10 種の遺伝子は四角で囲った。
SA、JAおよびETシグナル欠損変異株を用いた老化、HRおよびSpm処理時のNHL10遺伝子の発現解析から、HRおよびSpm処理時のNHL10遺伝子の発現にはこれらのシグナル経路が関与しないが、老化におけるNHL10遺伝子の発現には部分的にSAシグナル経路が関与していることを示した。

第2章ではGFPタギング法を用いてNHL10やNHL2そしてNDR1遺伝子産物の細胞内局在性を検討した。NHL2とNHL10は明らかに葉緑体に局在しているのが観察された（図2-2）。GFP融合NDR1蛋白質はソラマメ孔辺細胞の葉緑体にGFP蛍光が検出できたことからNDR1も葉緑体に局在する可能性が高いと考えられるものの、細胞の表層部分でも蛍光が見られる事から細胞膜に局在することも考えられた。

第3章ではGUSレポーター遺伝子の開始コドンの上流に長さの異なる4種のNHL10遺伝子プロモーター領域をもつ形質転換植物を作出し、NHL10遺伝子のプロモーター解析を
行った。NHL10 遺伝子のプロモーター領域を-198bpまで削っても老化、HR 及びSpm処理によりGUS活性が検出されるが、-93bpまで削るとGUSシグナルが検出されないことから、この-198bpから-93bpまでの106bpDNA断片に老化、HR及びSpm処理によるNHL10 遺伝子の発現に関与するシス配列があると考えられた。

第4章ではNHL10 遺伝子の生体内の機能の解析を行った。NHL10 遺伝子をセンス鎖で過剰発現させた植物では明らかにCMVの増殖が遅れ、しかもその遅れはNHL10 遺伝子の発現に依存していることから（図4-5）、NHL10 遺伝子はCMV抵抗性に関与していることが明らかになった。NHL10 遺伝子を過剰発現させた植物は、通常の成長や発育及び老化過程で見かけ上、野生株と違いが見られなかった。NHL10 遺伝子を過剰発現させた植物は、
光合成に関与している RBCS 遺伝子の発現パターン及び老化マーカー遺伝子の発現パターンにおいても野生株に比べて変化がないことから NHL10 遺伝子の老化過程における役割はまだ不明である。しかし暗処理で誘導される老化でチオールプロテアーゼをコードする SAG12 遺伝子の発現が、野生株に比べてほぼ1日も遅れることを見い出した（図 4-6）。この発見が、老化における NHL10 遺伝子の役割を明らかにするための端緒と成る事を期待したい。

以上、本論文では10種の NHL 遺伝子の発現パターンの解析から NHL10 遺伝子に着目し、その発現制御、プロモーター解析及び遺伝子産物の細胞内での局在部位と機能につき解析を行った。その結果、NHL10 遺伝子が CMV に対する抵抗性に寄与することを初めて明らかにした。また NHL10 遺伝子は老化誘導性 SAG12 遺伝子の発現を抑制する事を示し、老化過程における機能解明への途を開いた。
論文審査結果の要旨

鄭明淑さんは本学大学院農学研究科で修士号を取得後、生命科学研究科の後期課程に編入学してきた。本学後期課程では、下に述べる NHL 遺伝子の機能解明を目的とした。植物の病原菌抵抗性は植物側の R 遺伝子と病原菌側の非病原性遺伝子産物間の認識に依存する。抵抗性 R 遺伝子を介したシグナル経路には下流に複数の鍵となる遺伝子が存在するが、シロイヌナズナの NDR1（non race specific disease resistance）遺伝子をその 1 つである。この遺伝子に欠損をもつ植物はカビや細菌に罹病性となる。NDR1 遺伝子の産物は、病原菌に対する過敏応答（HR, hypersensitive response）時に誘導されるタバコの HIN1 遺伝子の産物（HIN1）と構造類似性を持っており、こうした一群の遺伝子は NDR1/HIN1-like(NHL) 遺伝子と呼ばれれている。鄭明淑さんはシロイヌナズナが 45 個の NHL 遺伝子を持つ事、そしてそれらが分子系統解析により 4 クラスに分類される事を示した。彼女は、このうちタバコ HIN1 と同様性が最も高い 9 遺伝子を選び、NDR1 遺伝子と共に種々の条件下での発現解析を行った。この 10 種の NHL 遺伝子のうち老化葉で高発現し、キュウリモザイクウイルス (CMV) に対する過敏性反応時、およびポリアミンの 1 種のスペルミンによって特徴的に発現する NHL10 遺伝子の発現制御、プロモーター解析及び遺伝子産物の細胞内での局在部位と機能につき解析を行い、いくつかの新たな知見を得た。特筆すべきは、NHL10 遺伝子が CMV に対する抵抗性に寄与することを初めて明らかにしたことである。また NHL10 遺伝子を過剰発現した植物を用いて、NHL10 が老化誘導性 SAG12 遺伝子の発現を抑制する事を示し、老化過程における機能解明への途を開いた。

本研究の一部は Planta に印刷中であり、2 報目は Plant Cell Physiol. に受理された。学位論文の第 3 章と第 4 章はそれぞれ投稿準備中である。こうした事実は、彼女が自立して研究活動を行うに必要な高度の研究能力と学識を有することを示している。したがって、鄭明淑さん 提出の論文は、博士（生命科学）の博士論文として合格と認める。