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 Abstract  : The ratio of P to S wave corner frequency is investigated applying an 
objective technique of simultaneous inversion of source parameters and Q values on the 
observed spectra. Data used are the direct P and SH wave pulses of small earthquakes 
which occurred on the upper seismic plane in the northeastern part of Honshu, Japan. 
Focal depths of the earthquakes are about 50 km and epicentral distances to the station are 
about 15 km, so that P and S waves emerge to the station at nearly right angle as isolated 
pulses. The inversion method employed in the analysis, which assumes only the functional 
form of source spectrum and frequency dependence of Q value, separates the source and 
attenuation terms of observed spectra without any further presumptions. Q values are 
found almost constant, around 420 for P wave and 600 for S wave within the frequency 
band from 3 to 42 Hz, showing only a slight increase as frequency increases. The value of 
Q for S wave is about 1.4 times larger than that for P wave throughout the band. 

   It is shown that P wave corner frequencies are systematically larger than S wave 
corners. The average ratio is obtained as 1.32, and deviation from the average is small. 
In spite of varieties in amplitudes and in corner frequencies, the shapes of P wave spectra, 
as well as those of S wave spectra, are almost identical for all the earthquakes, though the 
avarage shape of P wave spectra is found different from that of S wave spectra. P wave 
source spectra decay in high frequencies  as  P.', while SH wave spectra decay  as  f'.7. The 
ratio 1.32 of P to SH wave conrer frequency, and the difference in high frequency decay 
rate between P and SH waves, suggest circular sources with rupture velocity close to S 
wave velocity.

1. Introduction.

   The difference of pulse widths in the time domain, or the difference of corner 

frequencies in the frequency domain, between P and S waves is an important problem in 

theoretical and observational seismology. This problem has come to be argued in detail 

through the series of thoeretical studies on seismic source (Ben-Menahem,  1962  ;  Has-

kell,  1964  ; Hirasawa and Stauder,  1965  ; Savage,  1966a  ; Brune,  1970  ; Trifunac,  1972  ; 

Mernar et al.,  1973  ; Sato and Hirasawa,  1973  ; Madariaga,  1976  ; Masuda  at al., 1977). 

Along with theoretical works, observational approach to the problem has also been 

developed extensively. Hanks and Wyss (1972) made spectral analyses of three large, 

shallow earthquakes, and their measurements showed that P wave corners are higher 

than S wave corners. Molnar and Wyss (1972) also showed higher corner frequencies of 

P wave spectra than those of S wave spectra for large shallow earthquakes in the 

Tonga-Kermadec region. Trifunac (1972) and Molnar et  al. (1973) analysed many of the 

aftershocks of the 1971 San Fernando, California earthquake. The corner frequency
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shift was also observed for most of the aftershocks, the ratios of P to S wave corners 

being as much as about a factor of 3 for some of the earthquakes. Masuda and Takagi 

(1978) found that corner frequencies of P waves are 1.4 times higher on the average than 
those of S waves for small earthquakes at focal depths of 30 km to 50 km in the 

northeastern part of Honshu, Japan. Fletcher (1980) observed P wave corner fre-

quencies 1.7 times higher than S wave corner frequencies for Oroville, California 
aftershocks. Many of observations have shown longer pulse widths, or lower corner 

frequencies, of S waves than of P waves for small to large earthquakes. There were, 

however, a few reports that P wave corner frequency is not higher than S wave corner 

frequency. Bakun et  al. (1976) showed higher corner frequencies of S wave spectra for 

small earthquakes in central California. No systematical shift between P and S wave 

corners were reported for small earthquakes in the Geysers geothermal area in  Califor-

nia (Peppin and Bufe, 1980). Hanks (1981) reviewed the observations of corner fre-

quency shift to discuss its potential for discrimination of seismic sources. 
   As reviewed above, P wave corner frequency is higher than S wave corner frequency 

for the majority of earthquakes despite the region, size, and depth of earthquakes. The 

corner frequency shift has been accepted as an observational fact. This stimulated 

theoretical derivations associated explicitely with corner frequency shift (Savage, 1972, 

 1974  ; Molnar et  al.,  1973  ; Dahlen, 1974), and consequently established a refined view-

point as for interpretation of corner frequency (Savage, 1974 ; Silver, 1983). There are, 
nevertheless, still a few problems left to be discussed with regard to corner frequency 

measurement as well as to interpretation of corner frequency shift. The problems in 

previous measurements of corner frequency are namely the quality of wave form data, 
separation of attenuation effects from the spectra, and method of measuring corners of 

the spectra. Each of them is reviewed in some detail in the followings. 

   First, the quality of wave form data in the literature is reexamined from a viewpoint 

of distortion of observed pulses. Some of the previous works analysed shallow local 

earthquakes whose epicentral distances to stations were long compared with focal depths 

(e.g., Thatcher and Hanks,  1973  ; Fletcher,  1980  ; Peppin and Bufe,  1980  ; McGarr et  al., 
 1981  ; Scherbaum and Stoll, 1983). The first arrivals are considered likely to be head 

waves or diving waves which travelled a long horizontal distance. In these cases, there 

are mainly two problems in analysing the P or S wave pulse. Firstly, the spectral 

characterictic of observed pulse is sensitive to the velocity structure around horizontal 

boundary of discontinuity along the path. A detailed structure around the boundary is 

not always obtained, therefore, it is not an easy task to adequately correct for propaga-

tion effect. Secondly, the tail of P or S wave pulse is mostly buried in wave trains of 

large amplitude later phases due to reflections or scatterings. Inevitably a time window 

includes not only P or S wave pulse but also other later arrivals. The reflected or 

scattered waves generally have different source effect and experience different propaga-

tion effect from the first arrival of P or S wave pulse. The spectrum calculated for a 

wave train is a mixture of many phases with different spectra. It is thus difficult to 

purely extract the spectral property of P or S wave pulse. The pulse to be analysed is
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direct P or S wave pulse isolated from multiple later phases, for which it is possible to 

unambiguously deduce source spectrum of radiated pulse on the focal sphere. It is 

necessary to investigate corner frequency shift for isolated P and S wave pulses free 

from contaminations by later phases. 

   Second, some problems in correcting for attenuation effects are described. Obser-

ved displacement spectra are the product of source term and attenuation effect. For a 

medium where the attenuation factor Q is almost independent of frequency, high fre-

quency components of spectrum are more effectively attenuated than low frequency 
components, which distorts the amplitude spectrum. The corner frequency measure-

ments are thus influenced by the manner in which corrections for attenuation effects are 

made. In some cases, corrections for attenuation have been made by simply assuming 

Q values (e.g., Fletcher,  1980  ; Bungum et  al., 1982). Other studies have made correc-
tions by applying Q values obtained in independent works of the concerned area (e.g., 

Thatcher and Hanks,  1973  ; Marion and Long, 1980). In these cases, however, the value 

used in the analysis is not the very value of Q along a particular path from earthquake. 

Moreover, Q values are not always obtained for both P and S waves, but the value of 

Q for P or S wave is calculated from the value of the other assuming the ratio of Q value 
for P to S wave (e.g., Marion and Long, 1980). The ration of Q value for P to S wave 

is not yet solved in the frequency band appropriate for spectral study of small earth-

quakes. The attenuation effect is serious in an analysis of small earthquake even for a 
short hypocentral distance, since to frequency band of spectrum ranges to fairly high 

frequencies. Inadequate correction may lead to a large error in estimate of corner 

frequency, and may thus lead to considerably erroneous estimate of the corner frequency 

ratio. 

   Finally, the most important point which relates to errors in corner frequency is, as 

a matter of course, the method to pick up the position of corner of amplitude spectrum. 

Conventional methods of estimating the corner have been owing to visul fitting of a 

model spectrum to the observed one. A familiar technique of picking up the corner is 

to fit two segments of straight lines respectively to low and to high frequency regions of 

the bilogarithmic plot of spectra (Hanks and Wyss,  1972  ; Thatcher and Hanks,  1973  ; 

McGarr et  al.,  1981  ; Scherbaum and Stoll,  1983  ; Hasegawa, 1983). The corner fre-

quency is defined as the intersection of the two segments. Another model spectrum is 
a Brune's spectrum of simple form (Spottiswoode and McGarr,  1975  ; Marion and Long, 

1980), though the high frequency fall-off may have been left misfit. Those procedures of 

determining corner frequency by visual measurement, being not based on a mathematical 

standard, are quite subjective and dependent on individual complexities of spectra. It is 

difficult to estimate the certainty of measurements on a universal standpoint. The 

ambiguity of estimates arises from measurement procedure itself, and thus a definite 

conclusion cannot be drawn on quantitative arguments of corner frequency. This is a 

reason why the previous discussion was restricted on only qualitatively which of P or S 

wave corner frequency is higher, but was not extended on quantitatively what amount P 

or S wave corner frequency is higher than the other.
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   In the present study, corner frequencies of P and SH wave pulses are measured 

under an ideal condition where each of the problems descrived above is removed. The 

method employed here, an objective technique of simultaneous inversion of source 

parameters and Q values (Masuda and Suzuki, 1982), separates the effect of inelastic 
attenuation from the observed spectra, and thus exposes the average shapes of source 

spectra of P and S waves. Corner frequencies of P and S waves and their certainties 

are estimated on the same basis for all of the earthquakes, and high frequency decay 

rates of source spectra are obtained as well. Based on accurate measurements, the 

difference of spectral characteristics between P and S waves and its implications are 

discussed in relation to source theory. 

2. Data 

   The microearthquake observation network of Tohoku University has been locating 

small earthquakes in shallow parts of the crust and along the two intermediate depth 

seismic planes in and around the northeastern part of Honshu, Japan, as well as in the 

southern part of Hokkaido (Umino and Hasegawa, 1982 ; Umino et al., 1984). The 

precise location routine have revealed several spots of small dimensions where seismic 
activities are constantly high. Among these, the one which is located a slightly off the 

Pacific coast of the Iwate Prefecture and at the depth of about 50 km on the upper 

seismic plane is selected for the present study of investigating the corner frequency shift. 

The station MYK of the microearthquake observation network of Tohoku University is 

located at short distances from the high activity spot of earthquakes studied in the 

present study.  Fig.  1 plots the station MYK to show relative location to the 
hypocenters. 

   A temporal observation was carried out during a period from December 1978 to 

Feburuary 1980. Several tens of earthquakes occurred in the high activity spot during 

the period of temporal observation. P wave pulses of 34 earthquakes, and S wave 

pulses of 14 earthquakes were available. S wave motions of 20 earthquakes were 
unfortunately out of scale. The simultaneous inversion method proposed by Masuda 

and Suzuki (1982) and employed here requires a number of earthquakes not too small for 

an accurate estimation of source parameters and Q value. Numerical tests of the 

method indicate that a number about 10 of earthquakes is quite sufficient (Masuda and 

Suzuki, 1982). It is preferable, however, to include as many of earthquakes as possible 

for a good result. Thus P wave pulses of all 34 earthquakes, and S wave pulses of 14 

earthquakes are analysed. 

   Hypocenters and magnitudes of the earthquakes are determined by the Observation 

Center for Earthquake Prediction, Tohoku University. Hypocentral parameters of the 

earthquakes are given in Table 1. The magnitudes of earthquakes, which are deter-

mined according to the total duration of signal, range from 0.9 to 3.3. The earthquakes 

are located at depths between 43 and 53 km, mostly around 47 to 49 km, on the upper 

seismic plane. The epicentral distances to MYK are about 14 km for most of the 

earthquakes, and are less than 25 km at most. Travel times of P and S waves from
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Fig. 1 A map and a cross-section showing the location of station MYK and the 

   hypocenters of earthquakes analysed in this study. Projected in the cross-section 
   is the seismicity within the strip shown in the map. The earthquakes occurred 

   within a small volume which is located 15 km northeast of MYK and 50 km deep. 

   Cross-section of microearthquake hypocenters is after Umino and Hasegawa 

   (1982).
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these earthquakes to MYK are about 7.2 to 8.1 seconds and about 12.6 to 13.6 seconds, 

respectively. Since the station MYK is located at short epicental disatance compared 

with focal depth of the earthquakes, the focal depth is quite well constrained as well as 

the epicentral location. The location errors are estimated as less than 3 km in all of the 

three coordinates. 

   The focal mechanisms of small earthquakes along the intermediate depth seismic 

planes were studied by Umino and Hasegawa (1982) and Umino et al. (1984). The 

composite mechanisms of earthquakes which occurred at depths around 50 km on the 

upper seismic plane were obtained in these studies, though there was no single  earth. 

quake for which the focal mechanism was determined. The mechanism solution shows
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Table 1. List
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a reverse faulting for these earthquakes. One of the P wave nodal planes has a strike 

of 120 to 160 degrees west of north, a dip angle of 20 to 40 degrees, and slip angle of 60 

to 120 degrees counterclockwise from the strike. Faulting on this plane is consistent 

with the subducting motion of the Pacific plate, so that this plane is reasonably regarded 

as the fault plane. This is the typical solution for earthquakes which occur at depths
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around 50 km on the upper seismic plane and along the Pacific coast of the northeastern 

Honshu, Japan. The radiation pattern coefficients are calculated as 0.5 to 0.9 at MYK 

both for P and SH waves, so that good signal to noise ratios are obtained both for P and 

SH wave pulses. 

   During the temporal observation, an electro-magnetic seismometer with three 

components were installed in a deep tunnel where the ground noise level is quite low. 

The natural frequency of pendulum is 4.5 Hz, which is suitable for high corner fre-

quencies expected for the earthquakes. Two horizontal components, polarized to 
north-south and east-west disrections, have smaller magnification than vertical compo-

nent by a factor of 5, expecting larger signal amplitudes for S waves. Seismic signals 

were picked up by the  seismometer, A/D converted, and delayed for about 3 seconds 

through a digital memory. The resolution of A/D converter was 8 bit, and sampling 

rate was 700 Hz. Signals were then D/A converted, and finally were recorded on an 

FM data recorder. The overall frequency response of the observation system is flat to 

the ground velocity between 6 and 70 Hz. The temporal observation yielded seismic 

records for a frequency band from 3 to 70 Hz, wide enough for spectral study of small 

earthquakes. Typical seismgrams on three components are given in Fig. 2.  Inpulsive 

arrivals of isolated P and S wave pulses are obvious in the figure. Seismograms of 

other earthquakes are more or less of the same characteristic with those shown in the 

    1980  AUG.3 06:23  h=49km  M=1.8 

    U-D

 P  S

 N  -  S

 E  -  W

                     10 sec 

Fig. 2 Three-component seismogram showing impulsive arrivals of isolated P and S 
   waves from a magnitude 1.8 earthquake at the depth of 49 km. The 

   magnification gains of horizontal components are 5 times less than that of vertical 
    component.
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figure. Direct P and S wave pulses from these earthquakes arrive at the station MYK 
with nearly vertical emergent angle, so that they are isolated from later arrivals and not 

comtaminated by scattered waves. This is a very preferable situation to the study of 
corner frequency shift. 

   In this study, P wave pulses on vertical component, and SH wave pulses synthesized 

by appropriate rotation of the two horizontal components are analysed. Smoothed 

spectra of pulses are estimated from outputs of 1-pole Butterworth-type band-pass 
filters at 10 frequencies equally spaced in logarithmic scale from 3.2 to 42 Hz. The 

quality factor of filter is chosen as 10. The maximum peak to peak amplitude is 
measured within 0.5 seconds from the onset of P or S wave pulse, and is used to evaluate 
Fourier spectrum. The effective pass band of filter, though it is proportional to center 

frequency, is narrow enough that Fourier amplitudes of input signal are regarded as 
constant within the pass band. Thus, the output amplitude of filter is practically related 

only to Fourier spectral component at the center frequency of filter. 
   It is unfortunately not straightforward, however, to convert filter outputs to Fourier 

spectral components, since the relationship between amplitudes of filter output and 
Fourier components depends on both amplitude and phase characteristics of input signal. 

At low frequencies, where amplitude spectrum of seismic signal is  flat and phase of 
spectrum is regarded as constant within the pass band of filter, the following equation is 

valid to evaluate Fourier spectral amplitude from filter  output  ;  

1 v(fa)I=  gmax/  2  (1)  27rfolQf 

 g,„„ is the maximum peak to peak amplitude of filter output.  f, is the center frequency, 
and  Qf the quality factor of band-pass filter. At high frequencies beyond the corner of 
spectrum, however, phase of spectrum changes by large amount within the linear range 

of pass band of filter though amplitude of spectrum may remain nearly constant. In this 
case, an alternative equation relates filter output to Fourier amplitude  as  ; 

 F(f.)1= gmax/ 2  (2)                                   V2irf
0/ Qfrd 7 

where  rd is the duration for which filter output retains an amplitude close to its 
maximum. Derivation of equations (1) and (2) is given in Appendix. Relationships 
between filter outputs and Fourier spectra were discussed in detail in Masuda (1982). 

Following Masuda (1982), Fourier spectrum is approximated at low frequencies by the 
value according to equation (2) until it gives a smaller value than due to equation  (2). 

At higher frequencies, the relation (2) is used to evaluate Fourier spectrum from filter 
outputs. Saito and Masuda (1981) also evaluted spectra in a similar manner. 

   The estimated Fourier components of seismometer outputs  1  17(M  I are then correct-

ed for instrument response and free surface effect. The correction for free surface 
effect on P wave pulses are made according to emergent angle of the ray calculated for 

the same velocity structure as used in locating hypocenters by the Observation Center for 
Earthquake Prediction, Tohoku University. The effect of free surface on SH wave is
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in shape despite varieties in low frequency

merely to double the amplitudes. Displacement spectra I 1-1--(f0)1 of P and SH waves are 
thus obtained, and are plotted in Fig. 3(a) and Fig. 3(b), respectively. From these spec-
tra, low frequency amplitude, corner frequency, high frequency decay rate, and Q value 

are derived by means of simultaneous inversion technique proposed by Masuda and 
Suzuki (1982). 

3. Method of analysis 

   The present study used the inversion method developed by Masuda and Suzuki (1982) 
which extracts source parameters and Q value simultaneously from amplitude spectra of 

local earthquakes in a small volume. Their method is briefly reviewed in the followings. 
Observed displacement spectrum consists of a source term and a term due to inelastic 

attenuation, and is written as, 

 u(f)I=I  us(f)1 exp  n-ftrIQ  ),  (3) 

where I  us(f)  f  )1 is the source spectrum, tr the travel time, and Q is the inelatic attenuation 

factor. Displacement amplitude spectrum I  (f  )1 at the source is assumed to be of the 
form, 

                  us(f)I=, (4  ) 

where  uo is the low frequency amplitude, and  Jr, the corner frequency. y determines 

high frequency fall-off, and a is a positive constant according to which the behaviour of
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Fig. 4 Functional forms of source spectrum expressed in equation (4) for various 
   values of a with y fixed at 2. Solid curve is for a  =10, short dashed for  a= 4, and 

   long dashed for  a  =2. The curve for  a  =2 is identical to the source model by 
   Brune (1970). A choice of a around 4 to 10 provides a good approximation of the 

   smoothed shape of most of the source models proposed by Sato and Hirasawa 
   (1973), Madariage (1976), and Masuda et  al. (1977).

spectrum near the corner varies. Some typical shapes of spectrum expressed as equa-

tion  (4) are shown in Fig. 4 for various values of a and a fixed value of  y=2. It is seen 

that the corner of spectrum is sharper, but that the shapes of spectrum are not distin-

guishable for larger values of a. Most of theoretical spectra are represented by equa-
tion  (4) with appropriate values of  7 and a, though the assumed form has only two 

degrees of freedom regarding the shape of spectrum, while the shape of theoretical 

spectra of various medels may be more complicated. The model proposed by Brune 

(1970) is identical with the case 7---= 2 and  a  =  2. Smoothed amplitude spectra given by 
Sato and Hirasawa (1973), Madariaga (1976), and Masuda et al. (1977) are approximated 

by equation (4) with  y=2 and  a=4 to 10. It is thus quite reasonable but is not a strong 

ristriction to the analysis to assume the shape of source spectrum as expressed in 

equation  (4  ). The value of Q in equation (3) may be dependent on frequency, and is 

assumed to be proportional to some power of frequency, 

                                                (5) 

as is suggested in many studies of coda waves (Aki and Chouet,  1975  ; Rautian and 

Khalturin,  1978  ; Sato,  1986  ; Butler et al.,  1987  ; Matsumoto, 1987). 

   The model spectrum (3) with source term (4) and frequency dependent Q (5) is 

compared with the observed spectrum. P and SH wave data are separately analysed. 

Since the hypocenters are concentrated in a small volume and ray paths from earth-

quakes to the station MYK are almost identical, all earthquakes share the same effect
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by inelastic attenuation. Therefore, the values of q and n in equation  (5) are common 

for each set of P or S wave spectra. As the spectral shapes of all earthquakes are 

similar for each of P or SH wave (Fig. 3), common values of  y and a in equation  (4) are 

also applied to all of the earthquakes for each of P or SH wave spectra. Unknown 

parameters in each of P or S wave analysis are thus low frequency amplitude  a, and 
corner frequency  fc of each earthquake, parameters of spectral shapes y and a and 

parameters of inelastic attenuation q and n common for all the earthquakes. 
   The errors in observed spectra are supposed to enter as some fraction of spectral 

amplitudes, but not as absolute magnitudes. Thus the least squares inversion searches 

the solution parameters which minimize the sum of squared residuals in logarithmic 

quantities at all frequencies and for all earthquakes. Since the  normal equations for 

parameters are not linear, tentative solutions are initially necessary to find adjustments 
for parameters. Initial values of the parameters y and a are put as 2.0 and 5.0 both in 

P and SH wave analyses. Initial guesses of low frequency amplitudes and corner 

frequencies are given by visual measurements from each spectrum. The values of q and 

n for P and SH waves are both initially chosen as 500 and 0.5 referring to the results by 

Umino and Hasegawa (1984) and Matsumoto (1987). The damped least squares  tech-

nique is employed to obtain stable solutions to nonlinear inversion problems. In this 

study, damping constants are 0.1 for all parameters but a parameters a, for which heavier 

damping is applied with a constant equal to 1.0. This is because only a poor resolution 

is expected with regard to parameter a for spectra with sharp corners. The solutions

Table 2. Results of inversion

frequency dependent Q

P wave analysis S wave analysis

initial data variance 

final data variance 
minimum of  tto  (cm-sec) 

maximum of  uo  (cm-sec) 
minimum of J", (Hz) 

maximum of  fc (Hz) 

value of y 
value of a 

value of q 

value of n

   1.067 

  0.037 

 1.6x10-8 

 3.0x10-6 

    5.9 

   29.4 

 2.06±0.18 

 11.2±4.9 

 360±110 

 0.050±0.091

   0.845 

   0.019 

 1.5x10-7 

 2.7x10' 

   12.9 

   20.3 

 1.74±0.32 

 4.30±1.89 

 420±230 

 0.114±0.182

constant Q

P wave analysis S wave analysis

final data variance 

value of y 

value of a 

value of Q

 0.037 

 1.98±0.13 

 11.3+5.1 

 420+30

  0.019 

 1.63  +  0.22 

4.30±2.12 

 610±  120
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are improved through iterative steps until data variance no more decreases. 

4. Results 

   The final solutions are obtained at the sixth iteration step in each of P or SH wave 

analysis. The results are listed in Table 2 and Table 3. Data variances are reduced 

                           Table 3. List of source parameters

no date time  uo (P)  (P)  a (S)  (S)

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34

1978 12 31 

1979 1 1 

1979 1 5 

1979 2 9 

1979 3 1 

1979 3 4 

1979 3 4 

1979 3 20 

1979 4 11 

1979  4  12 

1979 4 12 

1979 4 18 

1979 4 30 

1979 5 2 

1979 5 11 

1979 6 4 

1979 6 11 

1979 6 25 

1979 6 27 

1979 7 8 

1979 7 8 

1979 7 8 

1979 7 12 

1979 7 19 

1979 7 25 

1979 7 29 

1979 7 30 

1979 8 1 

1979 8 1 

1979 8 3 

1979 8 5 

1979 8 10 

1979 8 25 

1979 8 26

 6  :  04 

 5  :  58 

 7  :  21 

 17  :  19 

 0  :  10 

 8  :  29 

 11  :  06 

 7  :  30 

 2  :  56 

 4  :  19 

 4  :  19 

 15  :  14 

 0  :  49 

 19  :  36 

 13  :  00 

 16  :  26 

 0  :  34 

 8  :  14 

 5  :  21 

 9  :  16 

 10  :  50 

 16  :  51 

 2  :  26 

 4  :  09 

 2  :  28 

 2  :  05 

 6  :  14 

 1  :  03 

 17  :  53 

 6  :  23 

 3  :  50 

 4  :  52 

 4  :  04 

 12  :  00

2.25 E-07 

8.28  E-07 

1.17 E-07 

1.72 E-07 

5.61 E-08 

6.33 E-07 

6.15 E-08 

1.07 E-06 

3.02 E-06 

3.92 E-07 

1.42 E-06 

1.07  E-07 

2.02 E-07 

2.24  E-07 

1.12 E-06 

1.61 E-07 

1.80 E-07 

1.75 E-07 

4.37 E-08 

1.33 E-07 

2.44 E-06 

1.56 E-08 

4.62 E-08 

3.60 E-08 

6.24  E-08 

1.53 E-06 

7.79 E-07 

2.00 E-06 

1.90 E-08 

1.04 E-07 

3.71  E-08 

5.81 E-08 

1.24 E-07 

1.18 E-06

20.4 

17.2 

21.9 

15.7 

24.2 

21.9 

19.6 

8.9 

11.4 

18.3 

15.5 

22.8 

21.3 

19.4 

18.8 

16.3 

15.6 

19.9 

21.8 

17.9 

5.9 

29.4 

16.9 

 20.1 

21.0 

17.2 

12.5 

14.2 

 20.1 

21.1 

25.8 

 29.1 

 26.1 

15.5

1.31 E-06 

8.05 E-07 

3.28 E-07 

2.55 E-07 

2.72 E-07 

6.61 E-07 

2.69 E-06 

2.46  E-06 

3.42 E-07 

2.41 E-07 

1.50  E-07 

5.69 E-07 

2.73  E-07 

4.43  E-07

15.6 

14.4 

17.1 

18.2 

17.5 

13.0 

16.5 

12.9 

14.4 

16.9 

14.7 

17.9 

20.1 

20.3

 Tto (P) and  re, (S) 
f, (P)  and  fe(S):

 

: low frequency amplitude of P and S wave in cm-sec,  respectively  ; 

corner frequency of P and S wave in Hz, respectively.
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from 1.067 to 0.037 in the P wave analysis, and from 0.845 to 0.019 in the SH wave 

analysis. In order to examine the stability of solutions, numbers of inversion procedures 

are carried out with different damping constants and from different initial values of 

parameters. It is found that almost the same final solutions and data variance are 
attained in all runs of inversion for each of P or S wave analysis. It has also been shown 

in Masuda and Suzuki (1982) that final solutions are independent of initial guesses of 

solution parameters, and that damping constants have no influence on values of final 

solutions but only on convergence speed of solutions. 

   The source parameters, low frequency amplitude and corner frequency of spectrum, 

are accurately estimated within a few percent of errors for both P and SH waves. The 

relationships between low frequency amplitude and corner frequency are shown in Fig. 

5(a) for P waves and Fig. 5(b) for SH waves, respectively. Low frequency amplitudes 

of spectra range from  1.6  X  10-8 to  3.0  X  10-6  cm-sec for P wave, and from  1.5  x  10-7 to 

 2.7  x  10-6 cm-sec for SH waves. Corner frequencies of P waves are obtained as 5.9 Hz at 

lowest and as 29 Hz at highest for all of 34 earthquakes. For 14 earthquakes for which 

P and SH waves are analysed,  p wave corner frequencies range from 15.7 to 29.1 Hz, 

and SH wave corner frequencies from 12.9 to 20.3 Hz. It is seen in the figure that corner 

frequencies do not decrease so much as low frequency amplitudes increase. The low 

frequency amplitude is inversely proportional to the sixth to tenth power of corner 

frequency both of P and SH waves. The relationship between low frequency amplitude 

and corner frequency is different from the one established for large earthquakes. 

Similar relationships are found for small earthquakes in many regions (e.g., Masuda and 

Takagi,  1978  ; Masuda and Suzuki,  1982  ; Hasegawa, 1983) 

   A comparison is made between low frequency amplitudes and duration magnitudes
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Fig. 5 Low frequency amplitude versus corner frequency for (a) P waves and (b) SH 
   waves. The corner frequency shift is obvious in these figures.
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Fig, 6 Low frequency amplitude of spectrum versus magnitude for (a) P waves and 

   (b) SH waves. Magnitudes of earthquakes are determined according to the total 
   duration of signal. Data show a linear correlation between magnitude and 

   logarithm of low frequency amplitude. The regression line is indicated in the 

   figure of each of P and SH wave data.

of the earthquakes for a check of reliability of solutions. Fig. 6(a) shows the relation for 

P wave data, and Fig. 6(b) for SH wave data. Small symbols in P wave data diagram 

represent the earthquakes for which no SH wave data are present. The regression lines 

of magnitude against logarithm of low frequency amplitude are also shown in the figures. 

The slope is found to be 1.0 for P wave data, while for SH wave data a smaller value 

of 0.7 is obtained. Since the number of SH wave data is not sufficient to derive a definite 

relationship between magnitude and low frequency amplitude, the same slope 1.0 as for 

P wave data seem to equally well explain the relationship for SH wave data. Similar 

values of slope have been obtained for earthquakes in many regions (Masuda and 

Takagi,  1978  ; Peppin and Bufe,  1980  ; Bungum et al.,  1982  ; Hasegawa,  1983  ; Scher-

baum and Stoll, 1983). The scatter of data from regression line is small enough to 

assure that logarithm of low frequency amplitude is proportional to duration magnitude
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7 Relationship between low frequency amplitudes of P and SH wave spectra. 

The average ratio is obtained as 0.19. Scatter of the data is as small as a factor 

 of  2.

of earthquake. The total duration of signal is generally considered not sensitive to such 

effects as geometrical spreading, inelastic attenuation along the path, structure at the 

source and at station site, radiation pattern, so that duration magnitude is a good 

measure of relative magnitude of earthquake. Thus it is concluded that the technique 

used in this study was successful in consistently estimating low frequency amplitudes of 

spectra. 

   Another check is made for the consistency of relative estimates of low frequency 

amplitudes of P and SH wave spectra. Fig. 7 compares low frequency amplitudes of P 

and SH wave sepctra for 14 earthquakes. The average ratio of low frequency  ampli-

tude of P to SH waves is about 0.19. The ratio of P to S wave velocity is about 1.7 to 

1.8 around the crust and upper most mantle. Since low frequency amplitude ratio of P 

to SH wave spectra is inversely proportional to the cube of the velocity ratio, the 

amplitude ratio of 0.19 obtained for the earthquakes implies that the radiation pattern 

coefficients of P and SH waves are nearly identical. This is in good agreement with 

composite mechanism solutions for the earthquakes. The scatter of data from straight 

line with slope 1 shown in the figure is only less than a factor of 2 or so, which again 

suggests that the inversion method consistently determines low frequency amplitudes of 

P and SH wave spectra for all the earthquakes. 

   Fig. 5 shows that the relationships between low frequency amplitude and corner 

frequency of P and SH waves are almost identical for earthquakes for which both P and 

SH wave data are present. It is also seen in Fig. 5 that corner frequencies of P waves 

are systematically higher than those of SH waves. A graphical measurement from the 

figure may give the average ratio of P to SH wave corner frequencies of about 1.3. Fig.
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Fig. 8 Comparison of corner frequencies between P and SH waves . The ratio of P 
   wave to SH wave corner frequency is always greater than 1 but smaller than 2. 

   The average ratio is 1.32, and deviation from the average is small .

8 illuminates a direct comparison of corner frequencies between P and SH waves for 

each of 14 earthquakes. Solid lines with slope 1 and 0.5 indicate ratios of P to  SH wave 

corner frequency equal to 1 and 2, respectively. The ratio is always greater than unity , 
and is less than 1.8 for these earthquakes. The average ratio is obtained as 1.32, which 
is indicated by a straight line in the figure . Scatter of each value of ratio from the 
average is fairly small. 

   Other source parameters, y and a which determines the shape of spectra, are 

obtained as  2.06+0.18 and  11.2+4.9 for P wave spectra, and  1.74+0.32 and  4.30+1.89 for 

 SH wave spectra, respectively. Fig. 9(a) shows P wave source displacement spectra of 

34 earthquakes, and Fig. 9(b) shows SH wave source displacement spectra of 14  earth-

quakes. In these figures, spectral amplitude normalized by the low frequency amplitude 
is plotted against frequency normalized by the corner  frequency of each earthquake . 
The average spectral shape may be depicted in the figure . Similarity of all spectral 
shapes is quite good for each of P or S wave data set. Both P and  SH wave spectra 

have flat low frequency amplitudes and sharp corners. The values of a are obtained 

different between P and SH wave spectra. The resolution of parameter a, however, is 

poor, as is expected for a large value of a, and any value of a between 4 and 11 seems 
to fit P wave spectra. The high frequency decay rate  y, on the contrary , is determined 
accurately enough to distinguish average shapes of P and  SH wave spectra . 

   In Fig. 10, Q values obtained for P and SH waves are plotted against frequency . 
The values of q and n are  360+110 and  0.050+0.091 for P waves, and  420+230 and 

 0.114±0.182 for SH waves, respectively. Vertical bars on the curves represent estima-

tion errors of Q values at frequencies for which displacement spectra are measured .
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Fig. 10 Q values estimated for P and SH waves under the assumption of being 
   frequency dependent as expressed in equation (5). Vertical bars indicate the 

   probable errors in Q values at frequencies for which spectral measurements of the 
   pulses were made. A circle and bar on each curve represent the comparative 

   value of Q and its confidence limit as obtained under constant Q assumption.
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Though the inversion procedure started with strongly frequency dependent Q values, the 

results show almost constant Q values both for P and SH waves. The Q value for P 

wave is about 380 at 3.2 Hz, and is 430 at 42 Hz. The Q value for  SH wave is slightly 

more dependent on frequency.  It takes a value of 480 at 3.2 Hz, and it slowly increases 

to a value of 640 at 42 Hz. 

   The solutions under constant Q constraint are also attempted from the same initial 

values and with the same damping constants to test the significance of frequency 

dependent model of Q. The results are listed in Table 3. The final data variances are 

0.037 and 0.019 for P and  SH wave data, respectively. These are quite the same with 

0.037 and 0.019 in the case of frequency dependent Q. The values of constant Q are 

found to be  420+30 for P wave and  610+120 for  SH wave, which are also plotted with 

error bars in Fig. 10 at frequencies where the curves for frequency dependent Q take the 

same values.  High frequency decay rates  7 are obtained as  1.98+0.13 and  1.63+0.22, 

and values of a are  11.3+5.1 and  4.30+2.12 for P and SH waves, respectively. These 

parameters of spectral shape are similar to those obtained for the case of frequency 
dependent Q. Low frequency amplitudes and corner frequencies are also estimated as 

the same values as in the case of frequency dependent Q. All these mean that the data 

do not necessarily indicate frequency dependence of Q for P nor for  SH waves. 

5. Discussion 

   There have been  difficulty in quantitative arguments about corner frequency shift. 

One of the reasons for difficulty is the lack of accuracy in measurements of corner 

frequencies, which arises from poor quality of data, inadequate correction for inelastic 

attenuation, and subjective technique to pick up corner frequencies. The present study 

provides a reliable result  of corner frequency shift. The quality of data used in the 
analysis is quite good, and an objective inversion technique is employed to separate 

inelastic attenuation effect from spectra and to estimate corner frequencies of all 

earthquakes based on a universal standard. The corner frequencies of P and S waves 

are estimated accurately enough not only to show that P wave corners are higher than 

S wave corners but also to indicate that the average ratio is about 1.3 for the earth-

quakes. The inversion method also reveals the difference of high frequency  fall-off 
between P and S waves. 

   The inversion technique used in the present study simultaneously determines Q value 

and source parameters, therefore the trade-off between Q value and high frequency fall-

off must be carefully investigated. A check on the trade-off between Q value and high 

frequency fall-off may be done simply by examining the shapes of source spectra 

deduced from the observed ones by correction for inelastic attenuation. Since the 

source spectra have flat low frequency amplitudes, sharp corners, and definite high 

frequency fall-off, and the shapes of source spectra of all earthquakes are identical in 

spite of varieties of corner frequencies (Fig. 9), it is concluded that the attenuation effect 

is adequately removed from the observed spectra. 

   Another check on the trade-off is made by comparison of Q values with those
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obtained in other studies. Umino and Hasegawa (1984) studied the three-dimensional 

structure of inelastic attenuation for S wave in the northeastern part of Honshu , Japan. 
Their results show that apparent Q value for S wave along the path of the present study 

is 500 to 600. Matsumoto (1987) also obtained Q structure in the northeastern part of 

Honshu, Japan, by analysing S wave codas. The value of Q was estimated as 400 at 12 

Hz and as 710 at 24 Hz. Those values of Q from the previous studies in the northeastern 

part of Honshu are in good agreement with the present result of  Q-600 for S wave, 
though Q value in Matsumoto (1987) shows a strong dependence on frequency. The 

difference of behaviour of Q values against frequency may be due to the difference of 

path effects between direct S waves and coda waves. As discussed above, it is conclud-
ed that there is no trade-off between Q value and high frequency fall-off, and thus nor 

between Q value and corner frequency. 

   The Q value for P wave obtained in the present study is lower than that for S wave. 

The ratio of Q value for P wave to that of S wave is about 0.72. Anderson et al. (1965) 

obtained the ratio in the mantle of 2.25 for periods longer than 50 seconds using surface 

wave data. This ratio has widely been accepted and has been used in analyses of body 

waves at high frequencies (e.g., Umino and Hasegawa, 1984). Recently, lower Q values 

for P wave than those for S wave have been obtained in analyses of small earthquakes 

and at high frequencies (Aki and Chouet,  1975  ; Rautian et  al.,  1978  ; Frankel,  1982  ; 

Butler et al., 1987). There are many mechanisms likely to be responsible for attenuation 

of body waves (Jackson and Anderson, 1970) in each of frequency band from short to long 

periods. It is not known which mechanism is actually dominant in a particular band of 
frequency. The theoretical works by Savage (1966b) and Walsh (1966) predicted lower 

Q values of P waves than those of S waves, the ratio being from 0.3 to 0.6. which may 

be comparable with the ratio obtained here. This implies that S wave corner fre-

quencies were correctly estimated, but not were underestimated. The ratio of P to S 
wave corner frequency is, therefore, considered reliable. 

   The ratio of P to S wave corner frequencies, together with the difference of high 

frequency fall-off between P and S waves, may place good constraints to admissible 

source models for earthquakes. A number of theoretical source models which have ever 

been proposed seem to be classified into two categories. One of them is represented by 

a long rectangular fault model with constant slip known as Haskell type model (Ben-

Menahem,  1962  ; Haskell,  1964  ; Hirasawa and Stauder, 1964), and the other by an 

equidimensional or circular fault model (Savage,  1966a  ; Brune,  1970  ;  Hanks and Wyss, 

 1972  ; Trifunac,  1972  ; Sato and Hirasawa,  1973  ; Madariaga,  1976  ; Masuda et  al., 1977). 

Theoretical studies have first been concentrated on searching explicit expressions of 

radiation fields in a closed form. The fault geometry, therefore, was mainly rectangu-

lar, and slip was assumed constant on the fault. As Hirasawa and Stauder (1965) 

 poinoed out, long fault models radiate S waves with narrower pulse widths than those of 
P waves to some particular directions. In other directions, S wave pulses may be 

broader than P wave pulses, but still the ratios are too small compared with most of the 

observed ratios. The theoretical predictions from long rectangular fault models seem
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unfavourable to the majority of observations. 

   Savage (1966a), on the other hand, showed that longer S wave pulses are radiated 

from an elliptical or a circular fault, which is in favour of observations. Brune (1970) 

made a definite discussion on the corner of S wave displacement spectrum in relation to 

spatial extent of seismic source. Hanks and Wyss (1972) gave a relation between P 

wave corner frequency and source dimension by a simple  relpacement of S wave velocity 

with P wave velocity in Brune's relation. Thus the ratio of P to S wave corner 

frequency was presupposed to be 1.7. Trifunac (1972) followed the same way which 

Brune (1970) took in arguing the properties of S wave spectra, and derived a compatible 

relation between P wave corner frequency and source dimension. The ratio of P to S 

wave corner frequency was 1.46, which is different from the value assumed by Hanks and 

Wyss (1972), but is still greater than unity. Sato and Hirasawa (1973) discussed the 

corner frequency shift on the basis of a circular crack model of seismic source. P wave 

corner frequencies of their model were found always larger than S wave corners, though 

the ratios were dependent on directions of ray relative to the normal to fault. The 

models by Madariaga (1976) and by Masuda et al. (1977) were based on dynamical 

solutions to stress drops on fault surfaces. These models, as well as of Sato and 

Hirasawa (1973), prodicted the average ratio of P wave corner freqeuncy to S wave 

corner frequency as being 1.4 through 1.6. Compared with the model by Brune (1970), 

models by Sato and Hirasawa (1973), Madariaga (1976), and Masuda et  al. (1977), which 

are in a sense based on more mathematical derivations, produce more complicated 

spectral shape near the corner. 

   It seemed that many observations of corner frequency shift preferred equidimen-

sional or circular fault models to long rectangular fault models. Savage (1972), however, 

calculated far-field displacement spactra of P and S waves due to bilateral faulting on 

a rectangular surface to show that S wave corner frequencies are higher than P wave 

corner frequencies. Dahlen (1974) extended the theory to a general kinematic model of 

spontaneous nucleation of rupture with smooth healing, and reached a similar result of 

higher S wave conrer frequency predicted by Savage (1972). The corner frequency 

analytically derived in Savage (1972) and Dahlen (1974) was defined as the frequency at 

which low and high frequency asymptotic trends intersect. According to the theory 

developed by Dahlen (1974), any source with smooth healing of fault motion must have 

higher corner frequency of S wave than that of P wave. This implies that corner 

frequency measurements in many of observations were incorrectly made by picking up 

wrong corners, or that measured corner frequencies were other corners than those 

defined as in Savage (1972) and in Dahlen (1974). The accurate estimation of corner 

frequency shift in the present study clearly indicates that the former is not likely. 

Savage (1974) also suggested that the latter is the case. It was shown in Savage (1974) 

that the spectrum has an intermediate frequency trend as well as high frequency 

asymptotic trend according to directions of radiation and to rupture velocity. It can be 

the case in an actual measurement that the second corner due to intermediate frequency 

trend would be taken as the corner due to high frequency trend, since freqeuncy band
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might not be wide enough to recognize high frequency asymptotic trend. 

   The high freqeuncy trend termed and obtained in the present study is, in this sense, 

the intermediate freqeuncy trend, and corner frequencies obtained here are the corners 

due to this intermediate freqeuncy trend. The corner frequency as determined by 

graphycal measurement in the literature (Molnar et al.,  1973  ; Sato and Hirasawa,  1973  ; 
Madariaga,  1976  ; Masuda et  al., 1977) also corresponds to the corner due to intermedi-

ate frequency trend rather than due to high frequency trend. Silver (1983) showed that 

the corner due to intermediate frequency trend matches better to the effective pulse 

width, which is closely related to temporal and spatial extent of seismic source. Silver 

(1983) also showed that the ratio of P to S wave corner frequency in those models is 
larger at larger angles to the fault  normal and for the higher rupture velocity. The 

minimum ratio is 1.0 in the direction parallel to fault normal, and the maximum is about 

1.4 through L6 in the direction perpendicular to fault normal for rupture velocity close 

to S wave velocity. The ratio of about 1.3 observed at the station location on the focal 

sphere suggests that possible sources responsible for the earthquakes analysed here are 

circular sources with rupture velocity close to S wave velocity. A unilateral rupture 

model would not account for the observed ratio, since the ratio predicted by the model 

is less than 1.2 (Savege,  1973  ; Silver, 1983). As shown in Sato and Hirasawa (1973), 

Madariaga (1976), and Masuda et  al. (1977), the high frequency decay rate of S wave 

spectrum is more gradual than that of P wave spectrum for the rupture velocity close 

to S wave velocity. The difference of high frequency fall-off between P and S waves 

is, therefore, consistent with the model suggested by corner frequency ratio. A precise 

estimation of corner frequencies of P and S wave make it possible to estimate dynamical 

properties of seismic source as well as spatial extents of source. The high frequency 
fall-off of spectrum is also important for the study of source dynamics, though it was not 

always positively included in the previous studies.

6. Conclusions 

   By applying the objective inversion method developed by Masuda and Suzuki (1982), 

corner frequencies are accurately estimated for 34 P wave spectra and 14 SH wave 

spectra of small earthquakes. Although the observed spectra are the product of the 

source term and attenuation effect, the method successfully separates these two terms to 

expose the source spectra. The present study demonstrates that the inversion method 

used here is a strong tool for the studies of both source process and attenuation of seismic 

waves. The most important results are summarized in the  followings  : 

   (1) P wave corner frequencies are systematically higher than SH wave corner 
frequencies, the average ratio being about 1.3. 

   (2) High frequency fall-off of P wave  spectrum,  f''', is faster than that of SH wave 
spectrum,  f17. 

   (3) The two results described above suggest that circular sources with rupture 
velocity close to S wave velocity are the case for the earthquakes studied here. 

   (4) Q values are nearly independent of frequency both for P and for S waves
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throughout the frequency band between 3.2 to 42 Hz. 

600, slightly higher than 430 for P wave.

The Q value for S wave is about
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Appendix 

    The characteristic of band-pass filter at frequency f is expressed as, 

        1                     -6(
.1)== 1+ iQ 

f(fl fo— fol f ),  (A  1  ) 

 fo is the center frequency of pass band, and  Qf the quality factor of filter. If both 
amplitude and phase of input spectrum are almost constant within the effective pass band 
of filter, the output of filter is written as, 

 g(t)=1F(L)10(t). (A2) 

where  NM is Fourier amplitute spectrum of input signal at frequency  fo. The impulse 
response of filter  0(t) takes its maximum at  t  =0 and is given by, 

 0(t=0)=27rfoNf• (A3) 

Thus the following expression is  valid  : 

 OM=  gmaxi2 (A4)  271-101Qf 

for maximum peak to peak amplitude of filter output  gmax and Fourier spectral compo-

nent of frequeny  fa. Equation (A4) is identical to equation (1) in section 2. If phase of 
spectrum changes by large amount, though amplitude of spectrum remains nearly 

constant, within a pass band of filter, the power of filter output is related to the power 
of input signal as, 

 f  (f  )12  df  F(f0)12  I  #(f  )12 df. (A5) 
The integral in the right hand side of equation (A5) is the power of impulse response of 

filter, and is calculated as, 

 f  I  --(f)12  df=gfolQf. (A6) 
The power of filter output may be approximately estimated as, 

                               rd(gmaxl 2)2                                                 (A7)                     1 g(tdt= 
                                2 

where  rd is the duration for which filter output retains an amplitude close to its 
maximum. From equations (A5) through (A7), an alternative relation is written as, 

             if(fo)i= v2ggfmadx/Q2
f z_d , (A8 ) 

which is identical to equation (2) in section 2. 

   Masuda (1982) compared the spectra of P wave pulses of local earthquakes evaluat-
ed from filter outputs according to respective relations (A4) and (A8) with Fourier 

spectrum calculated by FFT algorithm. It is shown that at low frequencies where both 
amplitude and phase of spectrum are considered constant , spectral amplitude evaluated
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from relation (A4) well represents amplitude of Fourier spectrum, while at high fre-

quencies beyond a corner where phase of spectrum is no longer regarded as constant, 
amplitude according to equation (A8) fits better to Fourier spectrum than that due to 

equation  (A4).


