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 Abstract  : The transient electromagnetic (TEM) method provides one of the most 
efficient techniques applicable to delineating deep resistivity structure in continuous  perma-
frost  area. The TEM sounding was carried out in order to investigate a subsurface 
resistivity structure of deep permafrost at alas and pingo in Neleger, Siberia, where 
permafrost is continuous. The upper resistive layer with resistivity of more than 1,000 

 ohm-m, which corresponds to an ice-rich permafrost layer with approximately 50-75  m 
thick, was revealed at the alas and pingo sites. Below the resistive layer thick conductive 
intermediate layer can be seen with the thickness of more than 150 m, which suggests 
unfrozen layer, talik. The resistive layer with resistivity of more than 100  ohm-m was 
observed again, which indicates permafrost. The lower boundary of this layer may 
represent the permafrost base. The permafrost base was estimated more than 400 m in 
depth, which agrees with the permafrost depth around this area. Considering the esti-
mated  geo-electric structure at the alas and pingo, a model of permafrost formation 
process was proposed. Deep sounding for vertical resistivity distribution up to the perma-
frost base may provide a useful tool for reconstructing the history of permafrost  aggrada-
tions.

1. Introduction 

   From a geological perspective, permafrost is formed as a result of the interplay 

between a cold environment and both past and present geologic events. Under a global 

warming trend, permafrost formed during the last ice age would be thermally unstable, 

and the area of permafrost would begin to retreat. Therefore, an understanding of the 

permafrost distribution and its structure is needed to help estimate the overall effects of 

global warming past. 
   Geophysical approaches have been widely utilized to provide information on perma-

frost properties or distribution (Scott et al., 1990). The application of geophysical 

methods to permafrost areas is based on changes of the physical properties of earth 

materials associated with the freezing of incorporated water, and formation of varying 

amounts of ground ice. Specifically, electrical resistivity values drastically increase 

when soil water freezes. A geo-electrical method continues to be used to study a 

number of permafrost problems. The transient electromagnetic (TEM) method pro-

vides one of the most efficient techniques applicable to delineating deep resistivity
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structure in continuous permafrost area. 

   The TEM sounding was carried out to supply basic information to interpret perma-

frost development in continuous permafrost area of Siberia . This paper introduces the 

TEM method and its relationship to permafrost, following by an overview of the 

permafrost conditions and geology of the study site. The measurement configurations 

and source moments are discussed in order to estimate the permafrost base. Finally, the 

implications for the history of permafrost are discussed, comparing the permafrost 

resistivity structure and its formation process.

2. Geological characteristics around study site 

   The observation was carried out in Neleger located 25 km northwest from Yakutsk 

shown in Figure 1. The mean annual air temperature and the annual precipitation in 

Yakutsk are approximately  —10°C and 247 mm, respectively (French, 1996). The area 

has continuous permafrost with the thickness greater than 100 m (Ivanov , 1984). The 
permafrost on the western side of the Lena River is thicker than that on the eastern side. 
There are two fluvial terraces on the western side of the Lena River. The permafrost
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Fig. 1. Location map of study area (modified from  Ivanov, 1984). Numbers in closed 

   circles are permafrost thickness in meters (after Wada et  al., 2000).
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thickness is around 200-300 m at the lower terrace, and  400-500 m at the upper terrace. 

Neleger is on the upper terrace, where alas are widely distributed. 

   Surrounding the study site is in the Yakutsk-Kangalassky coalfield and is character-

ized by named the Viluysky Syncline estimated by deep borings and geophysical sound-

ings  (Ignatchenko, 1961). On the eastern side of the Lena River Quaternary deposit has 

an extensive distribution. On the western side, there can be seen a variety of rock types, 

from Quaternary to lower Jurassic. Thick Jurassic terrigenous deposit around the study 

site is widely distributed with the thickness of more than 1,000 m and thicken northward 

markedly. In the south of this area, around Pokrovks, there exists Pre-/Cambrian 

carbonate rocks. Generally speaking, there is, however, little information about deep 

structure of permafrost. 

   According to resistivity distribution ranges of water-bearing rocks by Keller (1966), 

geo-electrical properties for Mesozoic terrestrial deposit indicate relatively conductive 
conditions. It may be inferred that resistivities around the study site are stable low at 

unfrozen temperature up to nearly 1,000 m in depth. Variation of resistivity will be 

associated with the amount of clay and salt or thermal condition in permafrost layer.

3. TEM method

   The surface TEM method has been used for the detection of permafrost and for 

defining its spatial distribution and its vertical distribution (Rozenberg et  al  1985  ; 

Harada et  al.,  2000 Wada et al., 2000). Todd and Dallimore (1998) conducted deep 

soundings to investigate permafrost distribution up to several hundred meters below the 

ground surface in the Mackenzie River delta of Canada. 
   The TEM sounding is performed by laying a large loop of wire on the ground and 

driving current through it. A small receiver coil is used to measure the magnetic 

transient response. When current flows through the loop, a magnetic field is produced 

which penetrates the earth. When the current is turned off, this field begins to collapse 

and secondary currents are induced in the earth near the loop. The secondary currents 

diffuse outward from the loop and to progressively greater depth. This eddy current 

flows away from the transmitter loop like a smoke ring. Currents move through 

resistive earth quickly and linger in conductive zones. Transient magnetic field caused 

by the eddy current is measured by a coil sensor on the surface ground and is converted 

to apparent resistivity values. 

   With the aid of inversion programs we can estimate a picture of the earth resistivity 

as a function of depth. In this study, equivalence analysis was also performed to 

estimate uncertainties in the inversion results, varying the unknown parameters in a 

user-specified  fit-error limit. Equivalence analysis indicates the allowable range of each 

of the model parameter.
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Table 1

Site

Alas

Pingo

Sounding mode

Central induction 
In/out loop

Central induction 

In loop

Loop size 
 (m)

 100  x  100 

200  x  200

 160  x  160

Max. source moment 
     (Am2)

115,000 

264,000

253,440

4. Field operation 

   In this study, the transient data were recorded by PROTEM (D) system of Geonics 

Ltd., Canada. In order to collect transient data with a very wide dynamic range , two 
transmitters (called EM-47 and EM-57) were used. We used two kinds of receiver coils, 

high and low frequency types, to observe each transient data for EM-47 and EM-57 . 
High frequency receiver coil was used for data collection in the time range from 0.006813 
to 6.979 ms after shutting off the transmitted current using  EM-47  ; low frequency coil 

was used in the range from 0.08813 to 76.69 ms using EM-57 . 
   TEM soundings were conducted at two sites in  Neleger  ; alas and pingo sites. The 

alas site has an area approximately 300  x 400  m accompanied with the ground subsidence 

of about 2 m. The pingo, which is located in the alas, is about 60 m in diameter and 5 

m in height. 

   A central induction measurement configuration (measurement at the center of the 

loop) was used at two sites. The measurements were performed by using the transmit-

ter loop of 100  x 100 m and  200  x 200 m loops at the alas site, and 160  x 160 m loop at the 

pingo site (Table 1).

5. Resistivity structure 

   In this paper, we show the results estimated by one-dimensional inversion using the 

TEM sounding data by central induction measurement. Figure 2 shows the apparent 

resistivity data and inverted multi-layered resistivity models of the alas and pingo sites . 
Figure 2a is the result by using the transmitter  loop of 100  X 100 m at the alas site . 
Shallow resistive layer had a resistivity of more than 1,000  ohm-m, which corresponds to 

an ice-rich permafrost. Thick conductive intermediate layer can be seen with the 

thickness of more than 150 m. The resistivity values of the fifth layer increase at the 

depth of more than 200  m. Although the bottom layer seems to represent a frozen layer, 

a definite conclusion must be reserved. High quality data up to 8 ms after shutting off 

the current were collected in this measurement, however, the source moment, which is a 

product of loop area and current (Table 1), may be not adequate to obtain deep structure 
information on the permafrost base estimation by using a 100 x 100 m loop . In order to 
delineate deeper resistivity structure, we enlarged the source moment two times by using
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2. Apparent resistivity curves and  estimated  resistivity  structures  of  the alas 
and pingo sites. Results at  alas site using transmitter  loop of (a) 100 x 100 m and 
(b) 200 x 200 m. The  resistivities of the first and second layers and the thickness 
of the first layer obtained in (a) were used for the calculation of (b). (c) Results 
obtained at the top of pingo (after Wada et  al., 2000).



106 KOICHIRO HARADA, KAZUSHIGE WADA AND MASAMI FUKUDA

a 200 x 200 m loop. Since the larger source moment was generated by enlarging  loop 

size two times, the late time transient response was obtained up to more than 20 ms 

shown in Figure 2b. Inversion was done, fixing parameters of the first and second layers 

obtained from the previous processing, because the late time response contains mainly 

deeper resistivity information. In the late time response, clear decrease of apparent 

resistivity can be seen. Inverted resistivity structure detects the upper boundary of 

conductive base, which may suggest the permafrost base. 

   Figure 2c is a result of the pingo located in the alas area mentioned above . Using 
a large  loop of 160 x 160 m, transient data from early time to late time were observed. 

General features of estimated resistivity structure is very similar to that of the alas site 

in spite of only slight differences in thickness of the resistive second  layer  ; the thickness 

obtained at the pingo site is greater than that of the alas site. The lower boundary of 

the fifth layer, with the resistivity value of about 100 ohm-m , may represent the perma-
frost base with the depth of around 400 m, which agrees with the permafrost depth 

reported by Ivanov (1984) (Figure 1).

6. Reliability of data 

   In order to make clear the reliability of late time data observed at the pingo, we 

checked confidence limits of measured data measuring data five times. Figure 3 shows 

the transformed apparent resistivity curves. The confidence limits of 95% of observed 

data are indicated by vertical bars. The latest measurement time range in which low 

noise data is obtained reaches nearly 20 ms. Obvious decrease of resistivity curves can
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be seen in the late time ranging from around 6 to 20 ms. Such a decrease of apparent 

resistivity, which suggest the permafrost base, was revealed only by using large source 

moment over 250,000  Am'.

7. Permafrost formation process 

   The estimated resistivity structure at the alas and pingo sites is characterized by a 

conductive layer, approximately 150-200 m thick, in contact with resistive layers at its
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upper and lower  boundaries  ; the upper ice-rich permafrost layer was usually about  50-

75 m thick and the lower permafrost layer was more than 150 m in thickness. According 

to Fedorov (1971) in the author's discussion of the presence of talik, which is defined as 

an unfrozen layer among permafrost, at Magan near Yakutsk, it can be concluded that 

this conductive layer represents talik. 

   Based on the relationship between permafrost formation process and resistivity 

structure, the TEM results at the alas and pingo sites provide evidence of the sequential 

change of permafrost. Figure 4 shows a model of the formation process of the present 

resistivity structure. This model comprises three stages. The first stage occurred in 

the ice age. In this stage, the ground surface was exposed to the cold environment and 

thick permafrost was formed (Figure 4a). The resistivity value was high. At the 

second stage, changes in surface heating, due to forest fire or climatic change, caused the 

thawing the sub-surface frozen ground, followed by alas formation (Figure 4b). The age 

of the formation of alas around Yakutsk is estimated to be 8,000-6,000 years B.P. from 

radiocarbon dating analysis (Fukuda et  al., 1997). After the formation of alas land 

depression, ground water filled the alas and a thermokarst lake was formed. As the 

mean temperature of the lake bottom is about  2°C in Arctic Canada (Mackay, 1973), the 

upper part of the permafrost layer under the lake thawed, and the resistivity value of the 

upper layer decreased. At the third stage, the lake water disappeared either by infilling 

with alas deposit or by draining to a lower alas level, whereupon the ground temperature 

decreased and began to freeze downward again (Figure 4c). The resistivity value of the 

upper layer increased. This process may form the present resistivity structure.

8. Conclusions 

   We have completed the TEM survey to investigate deep resistivity structure at two 

sites of Neleger in Siberia. Our results are summarized as follows. 

   1) The permafrost base was estimated more than 400 m in depth by using increase 

the source moment. The upper ice-rich permafrost layer with approximately  50-75 m 

thick was revealed. Below the resistive layer thick conductive intermediate zone with 

the thickness of more than 150 m was estimated, which suggest unfrozen layer, talik. 

   2) Considering the estimated geo-electric structure, a model of permafrost  forma-

tion process was proposed. The vertical resistivity distribution pattern provides a 

useful tool for reconstructing the history of permafrost aggradation.
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