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Foreword

These notes contain the material that was used for a one week minicourse given by the author during the summer of
2015 in Tohoku University, in Sendai. The author would like to thank very much the organizers of the mini-course, and
especially Reika Fukuizumi, Jun Masamune and Shigeru Sakaguchi for their very kind hospitality and the opportunity
they gave him to come to Japan.

The course is devoted to graduate students and young researchers who will find, in a whole, the basic concepts of
multiscale analysis and homogenization mathematical techniques in the context of periodic homogenization. The six
chapters of these notes are of increasing difficulty and, each one corresponds to one day of the course.

The author would also like to thank warmly Radoslaw Wojciechowski, Toshiaki Yachimura and Lorenzo Cavallina
for their very careful proofreading of the original manuscript and the many suggestions they gave to improve the
presentation.

Notation

The reader is supposed to be familiar with the classical notions and notation of functional analysis. As a matter of
fact, we will make frequent use the following classical notions. As usual, � denotes a regular open set of Rd.

. Lebesgue spaces:
We will use the classical Lebesgue spaces for 1 � p < þ1

Lpð�Þ ¼ f measurable on � such that

Z
�

jf ðxÞjp dx < þ1
� �

:

When endowed with the norm

kfkLp ¼
Z

�

jf ðxÞjp dx
� �1

p

;

Lpð�Þ is a Banach space. For p ¼ 2, L2ð�Þ is a Hilbert space with the scalar product

ð f ; gÞL2 ¼
Z

�

f ðxÞgðxÞ dx:

We will also use

L1ð�Þ ¼ f f measurable on � such that jf ðxÞj � C a:e:g

which is a Banach space when equipped with the norm

k fkL1 ¼ inffC such that k f ðxÞj � C a.e. in �g:

. Distributions:
The standard language of distributions will sometimes be used. In particular we use the notation Dð�Þ for the
space of infinitely differentiable functions with compact support in � and D0ð�Þ for its dual, i.e. the space of
distributions. Convergence in the sense of distributions (i.e. weak convergence) is also supposed to be known.

. Sobolev spaces:
Throughout these notes, we frequently use, � being a bounded regular domain of Rd, the notation Hkð�Þ for the
Sobolev space of degree k 2 N defined by

Hkð�Þ ¼
�
u 2 L2ð�Þ such that

@j�ju

@�1x1 � � � @�d xd
2 L2ð�Þ;

8� ¼ ð�1; � � � ; �dÞ s.t. j�j � k

�
:

It is well known that Hkð�Þ is a Hilbert space when endowed with the norm (and the associated scalar product)

kukHkð�Þ ¼
X
j�j�k

@j�ju

@�1x1 � � � @�d xd

����
����

2

L2ð�Þ

 !1=2

:

We also use the notation
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jujHkð�Þ ¼
X
j�j¼k

@j�ju

@�1x1 � � � @�d xd

����
����

2

L2ð�Þ

 !1=2

for the semi-norm in Hkð�Þ.
We also use, especially for boundary value problems, H1

0ð�Þ as the closure of Dð�Þ under the H1-norm.
. Hilbert spaces:

Classical Hilbert theory, especially for L2ð�Þ, H1ð�Þ and H1
0ð�Þ (but not only) will be frequently used. In

particular, the reader should be familiar with the classical theory for Hilbert spaces, in particular Riesz’s Theorem
and Lax-Milgram Theorem. All Hilbert spaces in these notes are separable and bounded sets are weakly compact
(compact for the weak convergence).

. Spaces of periodic functions:
The classical notation for a space of periodic functions consists in using a ] subscript. In particular, for Y ¼
ð0; 1Þd, C0

]ðYÞ (resp. Ck
]ðYÞ) is the set of continuous (resp. Ck) and Y-periodic functions on Rd. Similarly, H1

] ðYÞ
designates the space of H1

locðR
dÞ functions that are Y periodic, etc.

. We will also make use of the notations ., & to indicate an inequality up to a constant. For instance ku"k . kv"k
means ku"k � Ckv"k where the constant C is independent of ".

1. Formal Asymptotic Homogenization

1.1 Introduction

Homogenization is a technical word that aims at giving a proper description of materials that are composed of several
constituents, intimately mixed together. Indeed, when one considers a mixture of materials, e.g. a composite, it is
expected that the new material will benefit from properties that each of its constituent only partly possess. The
applications of such materials are numerous. Foam and wools are very classically used for thermic and acoustic
insulation. Composed of fibers in the air or bubbles of air inside a rubber matrix, they only partly reproduce the
behavior of their constituents. Other examples are given by the so-called ‘‘spring magnets’’ which are composed of hard
and soft magnets mixed together, porous media which are a solid matrix with microchannels in which a fluid may flow
or multilayer materials.

In these notes, we only consider the case of periodic homogenization for which the microstructure is periodic.
Although quite restrictive at first sight, this already applies to layered materials (periodic in 1D) or tissues (2D).
Moreover, the mathematical theory is very instructive. Physically, the problems may be of very different types.
Elasticity for deformable bodies, fluid for porous media, or magnetic properties might be sought. The common feature
among these models is that they are all described in terms of partial differential equations (PDE), the coefficients of
which vary from one constituent to another, in a periodic way.

Homogenization theory is a way of seeking the averaged properties of the material from the ones of its constituents
and the periodic structure as the period tends to 0. This is a limiting process, which has very common features with
weak convergence, or averaging procedures. The goal is to obtain, at the limit, a homogeneous model with
homogenized coefficients that depend on the coefficients of the constituents. As we shall see, though, the procedure
may not be that easy, since in some cases, the model equation may change type.

1.2 The classical setting

To start with we consider the simplest problem of temperature diffusion inside a body � � Rd. The equation reads

�divðAðxÞruÞðxÞ ¼ f ðxÞ in �;

u ¼ 0 on @�:

�

Here, f is the source of heat inside the material while the tensor A 2Md�dðRÞ (the space of d � d real matrices)
stands for the diffusion coefficients. Calling " the length of the periodic structure and Y ¼ ð0; 1Þd the unit cell that is
assumed to be periodically reproduced, the presence of different materials inside Y is modeled by a matrix AðyÞ that
depends on y 2 Y . By periodicity, it is easy to extend A to Rd, and furthermore Aðx"Þ will represent the diffusion
coefficients inside the " periodic material. Taking this into account and denoting by u" the solution on the periodically
microstructured material, we transform the preceding problem into

�div A
x

"

� �
ru"

� �
ðxÞ ¼ f ðxÞ in �;

u" ¼ 0 on @�:

8<
: ð1:1Þ

The main question for the homogenization procedure consists in finding possible limit(s) u0 to the sequence ðu"Þ">0

and identifying the problem(s) that u0 solves.
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Notice that under classical assumptions on the tensor A, namely the existence of 0 < c < C such that

8� 2 Rd; cj�j2 � ðA�; �Þ � Cj�j2; ð1:2Þ

and the fact that f 2 L2ð�Þ, the problem (1.1) possesses a unique solution u" 2 H1
0ð�Þ that furthermore satisfiesZ

�

A
x

"

� �
ru";ru"

� �
dx ¼

Z
�

f ðxÞu"ðxÞ dx

� k fkL2ku"kL2

� CPk fkL2kru"kL2

where CP stands for the Poincaré constant of �. Using the coerciveness assumption (1.2), one easily deduces

kru"kL2 �
CP

c
k fkL2

. k fkL2

and therefore the sequence ðu"Þ">0 is uniformly bounded in H1
0ð�Þ.

As an example we consider the problem in 1D

� A
x

"

� �
u0"

� �0
ðxÞ ¼ 1 on ð0; 1Þ;

u"ð0Þ ¼ u"ð1Þ ¼ 0;

8<
: ð1:3Þ

where AðyÞ ¼ 1þ 0:8 sinð2�yÞ. The solution u", computed with a finite element code is plotted in Fig. 1.1 for three
values of ".

1.3 Multiscale expansion

The multiscale expansion method is a heuristic that finds the correct behavior of the sequence ðu"Þ">0. It consists of
assuming the multiscale expansion

u"ðxÞ ¼ u0ðx; x="Þ þ "u1ðx; x="Þ þ "2u2ðx; x="Þ þ � � � ; ð1:4Þ

where uiðx; yÞ are assumed to be periodic in the y 2 Y variable, plugging this ansatz into the equation, and equating all
terms of the same orders in powers of ". Notice that each term of the expansion depends on both the slow variable x and
the fast variable y ¼ x=". Notice also that when computing gradients on uiðx; x="Þ one obtains

Fig. 1.1. The solution to the boundary value problem (1.3) computed for f ¼ 1 and three values " ¼ 0:01 (left), " ¼ 0:005 (middle)
and " ¼ 0:00025 (right). It shows an oscillation that decays with " at a frequency that increases with ". The graph of A is shown
in red.
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r½uiðx; x="Þ� ¼ ðrxuiÞðx; x="Þ þ
1

"
ðryuiÞðx; x="Þ:

Therefore the expansion (1.4) leads to the following equations
. Order "�2:

� divyðAðyÞryu0ðx; yÞÞ ¼ 0; ð1:5Þ

. Order "�1:

� divyðAðyÞðrxu0 þryu1ÞÞðx; yÞ � divxðAðyÞryu0Þðx; yÞ ¼ 0; ð1:6Þ

. Order "0:

� divxðAðyÞðrxu0 þryu1ÞÞ � divyðAðyÞðrxu1 þryu2ÞÞ ¼ f ðxÞ; ð1:7Þ

Remark 1.1. Notice that in deriving the preceding equations we have assumed that they were valid for any y 2 Y and
not only for y ¼ x=".

We now proceed step by step to solve the preceding system of equations.
. Order "�2: Multiplying the Eq. (1.5) by u0 and integrating by parts over Y leads toZ

Y

ðAðyÞryu0;ryu0Þðx; yÞ dy ¼ 0

which, in view of the uniform coerciveness of A (1.2), leads to ryu0ðx; yÞ ¼ 0 and the fact that

u0ðx; yÞ ¼ u0ðxÞ

does not depend on the y variable.
. Order "�1: Since u0 does not depend on y, the Eq. (1.6) simplifies to

� divyðAðyÞðrxu0 þ ryu1ÞÞðx; yÞ ¼ 0: ð1:8Þ

We take the x variable as a parameter, and notice that rxu0ðxÞ ¼
Pd

i¼1
@u0

@xi
ðxÞei where ei is the i-th basis vector of

R
d . We also call !iðyÞ 2 H1

] ðYÞ the (unique up to an additive constant) solution to

� divyðAðyÞry!iÞÞðyÞ ¼ divyðAðyÞeiÞ ð1:9Þ

and deduce by linearity that

u1ðx; yÞ ¼
Xd
i¼1

@u0

@xi
ðxÞ!iðyÞ: ð1:10Þ

. Order "0: We remark that, up to now, we have not been able to solve the problem, but we have rather found a
constraint that u0 needs to solve and expressed u1 in terms of u0. It seems hopeless that this new equation will
close the system since a new variable, namely u2 has been introduced. We will see that actually we will cancel the
unknown u2 and that only a closed system remains. Namely, integrating1 Eq. (1.7) over y 2 Y and making use of
the periodicity of u1 and u2 leads to

� divx

Z
Y

ðAðyÞðrxu0 þ ryu1ÞÞðx; yÞ dy ¼
Z
Y

f ðxÞ dy ¼ f ðxÞ: ð1:11Þ

The unknown u2 has disappeared, and we are left with another equation coupling u0 and u1, that we can solve.
Indeed, using (1.10), we infer

ryu1ðx; yÞ ¼
Xd
i¼1

@u0

@xi
ðxÞry!iðyÞ;

and (1.11) becomes

� divx

Z
Y

AðyÞ rxu0 þ
Xd
i¼1

@u0

@xi
ðxÞry!iðyÞ

 ! !
ðx; yÞ dy ¼ f ðxÞ: ð1:12Þ

This latter equation may be rewritten as

� divxðAeffrxu0Þ ¼ f ðxÞ; ð1:13Þ

1Actually, for this equation to have a solution in u2, the right-hand side needs to be null averaged. Therefore, we not only made u2 disappear, but we

write a necessary and sufficient condition for this equation to have a solution u2. This is sometimes called in this context the ‘‘Fredholm’s

alternative’’ although actually this is only a particular case of this much more general concept. See Exercise 1.3 for more details about this.
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where the effective diffusion tensor Aeff is explicitly given by

Aeff; jk ¼
Z
Y

AjkðyÞ þ
Xd
l¼1

Ajl

@!k

@yl
ðyÞ

 !
dy ð1:14Þ

It remains to find the boundary conditions that u0 needs to fulfill. Here, since we simply deal with a Dirichlet
boundary condition u" ¼ 0 on @�, the multiscale expansion gives at order "0:

u0ðx; yÞ ¼ u0ðxÞ ¼ 0 on @�:

Therefore, the limit u0 satisfies the boundary value problem

�divxðAeffrxu0Þ ¼ f ðxÞ in �;

u0 ¼ 0 on @�:

�
ð1:15Þ

Remark 1.2. Equation (1.9) permits us to solve u1 in terms of u0. It is usually called the cell problem as it holds on
the unit cell Y . Similarly, Eq. (1.11) gives the equation solved by u0 (the limiting solution in the multiscale expansion)
and is called the homogenized problem. The functions !i that appear in the cell problem (1.9) are usually called the
correctors. It is also noteworthy to remark that the problem (1.9) is of the form

�divðAðyÞry!Þ ¼ f

! is Y-periodic:

�

This latter problem possesses a unique solution up to an additive constant if and only if the compatibility conditionZ
Y

f ðyÞ dy ¼ 0

holds (see Exercise 1.3). This property, sometimes called Fredholm’s alternative was also used to hope for a solution
u2 of (1.7), although we are not interested in this solution.

Remark 1.3. In the homogenized problem, the diffusion tensor Aeff does not depend on x. It only depends on the unit
cell distribution of the diffusion tensor A (or equivalently the materials involved) and the resolution of the cell
problems.

1.4 The cell and the homogenized problems

Although not rigorous, the multiscale expansion problem enabled us to give the limit u0 of u" as " tends to 0. It is
expressed as the solution of a boundary value problem that involves the cell problem. However, a few questions remain
to be examined:

. Is the homogenized problem well-posed? Can we say something about the coerciveness of Aeff?

. Is the cell problem well-posed? In particular, the fact that the correctors !i are assumed to be Y-periodic may
create an artificial constraint.

. What do these correctors in the initial problem mean?
We will look at those questions one after the other, and actually in the reverse order. To start with, we use the formula
(1.10) that expresses u1 in terms of u0 and the correctors

u1ðx; yÞ ¼
Xd
i¼1

@u0

@xi
ðxÞ!iðyÞ;

and use it in the multiscale expression for u". We obtain

u"ðxÞ 	 u0ðxÞ þ "u1 x;
x

"

� �

	 u0ðxÞ þ "
Xd
i¼1

@u0

@xi
ðxÞ!i

x

"

� �
:

We thus see that the solution u" oscillates with an amplitude " and with a profile !i scaled by @u0

@xi
ðxÞ. This in particular

explains why in Fig. 1.1 the solution oscillates less and less where u0 has its maximum.
Let us now turn to the cell problem (1.9), that we recall hereafter:

� divyðAðyÞry!iÞðyÞ ¼ divyðAðyÞeiÞ: ð1:16Þ

The associated variational formulation of the problem is obtained by multiplying the equation by � 2 H1
] ðYÞ and

integrating by parts. We obtain
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Z
Y

ðAðyÞry!iðyÞ;ry�ðyÞÞ dy ¼ �
Z
Y

ðAðyÞei;ry�ðyÞÞ dy;

whose existence and uniqueness of the solution follows from the Lax-Milgram Theorem in the Hilbert space

V ¼  2 H1
] ðYÞ; s:t:

Z
Y

 ðyÞ dy ¼ 0

� �

using the coerciveness assumption (1.2). (See Exercises 1.2 and 1.3.) Notice that testing with � ¼ !k leads toZ
Y

ðAðyÞðei þry!iðyÞÞ;ry!kðyÞÞ dy ¼ 0; ð1:17Þ

from which we deduce that the homogenized effective tensor Aeff , defined by (1.14), satisfies

Aeff; jk ¼
Z
Y

AjkðyÞ þ
Xd
l¼1

AjlðyÞ
@!k

@yl
ðyÞ

 !
dy

¼
Z
Y

ðAðyÞek þ AðyÞry!kðyÞ; ejÞ dy

¼
Z
Y

ðAðyÞðek þ ry!kðyÞÞ; ejÞ dy

¼
Z
Y

ðAðyÞðek þ ry!kðyÞÞ; ej þ ry!jÞ dy

because of (1.17). Therefore, if � 2 Rd, then

ðAeff�; �Þ ¼
Xd
j;k¼1

Aeff; jk�j�k

¼
Z
Y

AðyÞ �þ
Xd
k¼1

�kry!kðyÞ

 !
; �þ

Xd
j¼1

�jry!j

 !
dy

& �þ
Xd
k¼1

�kry!kðyÞ

�����
�����

2

L2ðYÞ

which shows that Aeff is a positive definite matrix. Considering the homogenized problem

�divxðAeffrxu0Þ ¼ f ðxÞ in �;

u0 ¼ 0 on @�;

�
ð1:18Þ

where the homogenized tensor Aeff is given by (1.14), we obtain that the classical theory of elliptic problems applies
and that it possesses a unique solution, again thanks to the Lax-Milgram Theorem.

1.5 Exercises

Exercise 1.1. Homogenized problem in 1D.
We here consider the model problem (1.1) in 1D

� A
x

"

� �
u0"

� �0
ðxÞ ¼ f ðxÞ on ð0; 1Þ;

u"ð0Þ ¼ u"ð1Þ ¼ 0;

8<
: ð1:19Þ

where f 2 L2ð0; 1Þ and A is a 1-periodic function that satisfies

9C > c > 0; 8y 2 ð0; 1Þ; c � AðyÞ � C:

Show that the homogenized equation associated to the problem is given by

�ðAeffu
0
0Þ
0ðxÞ ¼ f ðxÞ on ð0; 1Þ;

u0ð0Þ ¼ u0ð1Þ ¼ 0;

�
ð1:20Þ

where

Aeff ¼
Z 1

0

dy

AðyÞ

� ��1

:
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Exercise 1.2. The cell problem.
Let V ¼ f 2 H1

] ðYÞ s:t:
R
Y
 ðyÞ dy ¼ 0g the Hilbert space endowed with the norm (and associated scalar product)

k kV ¼
Z
Y

jry ðyÞj2 dy
� �1

2

:

Show, using the Lax-Milgram Theorem, that the variational formulation of the cell problem

Find !i 2 V such that 8� 2 V ;Z
Y

ðAðyÞry!iðyÞ;ry�ðyÞÞ dy ¼ �
Z
Y

ðAðyÞei;ry�ðyÞÞ dy;

where A satisfies the coerciveness assumption (1.2) possesses a unique solution.

Exercise 1.3. Fredholm alternative.
Let V ¼ f 2 H1

] ðYÞ; s:t:
R
Y
 ðyÞ dy ¼ 0g the Hilbert space endowed with the norm (and associated scalar product)

k kV ¼
Z
Y

jry ðyÞj2 dy
� �1

2

;

and f 2 L2ðYÞ.
1. Show, using the Lax-Milgram Theorem, that the variational formulation of the cell problem

Find !i 2 V such that 8� 2 V ;
Z
Y

ðAðyÞry!iðyÞ;ry�ðyÞÞ dy ¼ �
Z
Y

ðAðyÞei;ry�ðyÞÞ dy;

where A satisfies the coerciveness assumption (1.2) possesses a unique solution.
2. Show that it is also a solution to

�divðAðyÞry!Þ ¼ f

under the necessary and sufficient condition thatZ
Y

f ðyÞ dy ¼ 0:

Exercise 1.4. Extend all the preceding multiscale analysis to the case where the diffusion tensor A depends also on
the slow variable x, namely A :¼ Aðx; yÞ.

2. Two-scale Convergence

2.1 Introduction

As we have seen in the preceding chapter, the multiscale expansion method answers questions concerning the
behavior and the limit solution of the homogenization problem. However, the method that we have developed is
unsatisfactory for two reasons:

. First, it is heuristic. We have only postulated an ansatz and somehow shown that the limit solution u0 should
satisfy the homogenized problem (1.11). At this stage, we have no clue about the fact that this ansatz is true, and
no proof about any convergence of the sequence ðu"Þ" as " tends to 0.

. The approach that we have used works in two steps. We have postulated the ansatz, and obtained the set of
equations that the limit should satisfy (the cell and homogenized problems). Then, we have proven the existence
and uniqueness of the solution to these problems. It would be more convenient to get, as a whole, the problems
and the limit.

The 2-scale convergence method is exactly intended to overcome both of these issues. As we shall see, it provides the
user with a rigorous theoretical framework that enables him or her to work out directly the problems (both the cell and
homogenized problems) and prove the convergence of the family ðu"Þ" in a suitable sense.

The following discussion is based on the theory proposed by Nguetseng [16] and further developed by Allaire [1].

2.2 Two-scale convergence

The basic notion that one needs to introduce is the following.

Definition 2.1. A sequence ðu"Þ">0 in L2ð�Þ is said to two-scale converge to a limit u0ðx; yÞ 2 L2ð�� YÞ if, for any
 ðx; yÞ 2 Dð�;C1] ðYÞÞ we have

lim
"!0

Z
�

u"ðxÞ x;
x

"

� �
dx ¼

Z
��Y

u0ðx; yÞ ðx; yÞ dx dy: ð2:1Þ
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In this case we denote the two-scale convergence by

u" � u0 two-scale as "! 0:

The main reason for introducing the two-scale convergence is the following compactness theorem (we refer the reader
to [1, 16] for the proof).

Theorem 2.1. Let ðu"Þ">0 be a sequence bounded in L2ð�Þ. There exists a subsequence ðu"n Þn2N and u0 2 L2ð�� YÞ
such that

lim
n!1

"n ¼ 0; and u"n � u0 two-scale as n!þ1:

As we shall see, the preceding compactness theorem generalizes the well known compactness theorem in L2ð�Þ
(from a bounded sequence in L2ð�Þ one can extract a subsequence that weakly converges in L2ð�Þ). This is not
surprising since the definition of two-scale convergence is written under a weak form. It is a convergence for any test
function and not convergence in norm.

2.3 Admissible functions

We will make frequent use of the fact that for  2 Dð�;C]ðYÞÞ one has

lim
"!0

Z
�

 x;
x

"

� �2

dx ¼
Z

��Y
 ðx; yÞ2 dx dy: ð2:2Þ

(See Exercise 2.2.) It is however unclear whether the regularity of  may be weakened. We therefore introduce the
following definition.

Definition 2.2. A function  that satisfies (2.2) is called admissible.

It turns out that this is a subtle notion. Indeed, for a given function  2 L2ð�� YÞ there is no reason for the function

x 7! x;
x

"

� �
to be even measurable. The complete space of admissible functions is not known much more precisely, it is however
known that any Caratheory function (continuous in one variable and measurable in the other) is admissible. Therefore,
functions in Lpð�;C]ðYÞÞ as well as L

p
] ðY ;Cð�ÞÞ are admissible. We also refer to [1] for an explicit construction of a

non admissible function which belongs to Cð�; L1
]ðYÞÞ.

2.4 Properties

The main property of two-scale convergence is the convergence of norms.

Proposition 2.1. Let ðu"Þ">0 be a sequence in L2ð�Þ that two-scale converges to u0 2 L2ð�� YÞ. Then

u" * uðxÞ ¼
Z
Y

u0ðx; yÞ dy weakly in L2ð�Þ; ð2:3Þ

lim inf
"!0

ku"kL2 
 ku0kL2ð��YÞ 
 kukL2ð�Þ: ð2:4Þ

Proof. We first remark that taking a test function  ðx; yÞ ¼  ðxÞ that does not depend on the y variable in the definition
of the two-scale convergence immediately gives (2.3). In order to prove (2.4), we consider  2 L2ð�;C]ðYÞÞ, and
expand Z

�

u"ðxÞ �  x;
x

"

� �� �2

dx ¼
Z

�

ðu"ðxÞÞ2 dx� 2

Z
�

u"ðxÞ x;
x

"

� �
dx

þ
Z

�

 x;
x

"

� �� �2

dx


 0:

Passing to the liminf, using the definition of two-scale convergence, we obtain

lim inf
"!0

Z
�

ðu"ðxÞÞ2 dx 
 2

Z
��Y

u0ðx; yÞ ðx; yÞ dx dy�
Z

��Y
 ðx; yÞ2 dx dy

since  is admissible.
Using this inequality for a sequence of smooth functions ð nÞn2N that converges to u0 in L2ð�� YÞ leads to
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lim inf
"!0

Z
�

ðu"ðxÞÞ2 dx 

Z

��Y
u0ðx; yÞ2 dx dy:

Using Cauchy-Schwarz inequality immediately leads to the second inequality in (2.4). �

As for L2 convergence, we also have the strong version of the preceding proposition.

Proposition 2.2. Let ðu"Þ">0 be a sequence in L2ð�Þ that two-scale converges to u0 2 L2ð�� YÞ and is such that

lim
"!0
ku"kL2 ¼ ku0kL2ð��YÞ: ð2:5Þ

Then, for any sequence ðv"Þ">0 in L2ð�Þ that two-scale converges to v0 2 L2ð�� YÞ, one has

u"v" *

Z
Y

u0ðx; yÞv0ðx; yÞ dy in D0ð�Þ ð2:6Þ

and if u0 2 L2ð�;C]ðYÞÞ

lim
"!0

u"ðxÞ � u0 x;
x

"

� �����
����
L2

¼ 0: ð2:7Þ

Proof. The proof follows readily the same lines as before. We take a sequence of smooth function  n 2 L2ð�;C]ðYÞÞ
that converges to u0ðx; yÞ in L2ð�� YÞ. We have with the definition of two-scale convergence and the fact that  n is
smooth

lim
"!0

Z
�

u"ðxÞ �  n x;
x

"

� �� �2

dx ¼
Z

��Y
ðu0ðx; yÞ �  nðx; yÞÞ2 dx dy

and therefore

lim
n!þ1

lim
"!0

Z
�

u"ðxÞ �  n x;
x

"

� �� �2

dx ¼ 0:

Now, for any � 2 Dð�Þ, one hasZ
�

u"ðxÞv"ðxÞ�ðxÞ dx ¼
Z

�

 n x;
x

"

� �
v"ðxÞ�ðxÞ dx

þ
Z

�

u"ðxÞ �  n x;
x

"

� �� �
v"ðxÞ�ðxÞ dx:

We now use the fact that ðv"Þ" is bounded and the preceding result to deduce, passing to the limit "! 0

lim sup
"!0

Z
�

u"ðxÞv"ðxÞ�ðxÞ dx�
Z

��Y
�ðxÞ nðx; yÞv0ðx; yÞ dx dy

����
���� � C u0 �  n

�� ��
L2ð��YÞ:

Passing now to the limit n!þ1 gives the result

lim
"!0

Z
�

u"ðxÞv"ðxÞ�ðxÞ dx ¼
Z

��Y
�ðxÞu0ðx; yÞv0ðx; yÞ dx dy;

which is nothing but (2.6). If u0 is smooth enough (this would be the case for instance if u0 2 L2ð�;C]ðYÞÞ), then one
can take  n ¼ u0 in the beginning of the proof to obtain (2.7). �

Up to now, we have given the main results about L2 bounded sequences. For sequences bounded in H1ð�Þ, the results
can be made more precise.

Theorem 2.2. Let ðu"Þ">0 be a sequence bounded in H1ð�Þ. Then there exist u0 2 H1ð�Þ and u1 2 L2ð�;H1
] ðYÞ=RÞ

such that, up to the extraction of a subsequence, one has

u" * u0 weakly in H1ð�Þ; ð2:8Þ
u"! u0 strongly in L2ð�Þ; ð2:9Þ
u" � u0 two-scale; ð2:10Þ
ru" � rxu0ðxÞ þ ryu1ðx; yÞ two-scale: ð2:11Þ

Proof. The first two statements are well-known properties of convergence in H1ð�Þ and the Rellich Theorem. We also
infer, from the boundedness of ðu"Þ">0 and ðru"Þ">0, the existence of Uðx; yÞ 2 L2ð�� YÞ and �ðx; yÞ 2 L2ð�� YÞd
such that (up to a subsequence)
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u" � U two-scale;

ru" � �ðx; yÞ two-scale:

This means that for any test functions  2 Dð�;C]ðYÞÞ and � 2 Dð�;C]ðYÞÞdZ
�

u"ðxÞ x;
x

"

� �
dx!

Z
��Y

Uðx; yÞ ðx; yÞ dx dy;Z
�

ru"ðxÞ �� x;
x

"

� �
dx!

Z
��Y

�ðx; yÞ ��ðx; yÞ dx dy:

But, an integration by parts shows that

"

Z
�

ru"ðxÞ �� x;
x

"

� �
dx ¼ �

Z
�

u"ðxÞ divy� x;
x

"

� �
þ "divx� x;

x

"

� �� �
dx;

which gives, passing to the limit "! 0

0 ¼ �
Z

��Y
Uðx; yÞdivy�ðx; yÞ dx dy;

or equivalently that Uðx; yÞ does not depend on y. Therefore Uðx; yÞ ¼ UðxÞ and u0ðxÞ ¼
R
Y
Uðx; yÞ dy ¼ UðxÞ. This

shows (2.10). In order to show (2.11), we take a test function � such that divy�ðx; yÞ ¼ 0. We getZ
�

ru"ðxÞ �� x;
x

"

� �
dx ¼ �

Z
�

u"ðxÞdivx� x;
x

"

� �
dx

which, passing to the limit, leads toZ
��Y

�ðx; yÞ ��ðx; yÞ dx dy ¼ �
Z

��Y
u0ðxÞdivx�ðx; yÞ dx dy

¼
Z

�

rxu0ðxÞ �
Z
Y

�ðx; yÞ dy
� �

dx:

Thus, for any � 2 Dð�;C1] ðYÞÞ
d such that divy� ¼ 0, one hasZ

��Y
ð�ðx; yÞ � rxu0ðxÞÞ ��ðx; yÞ dx dy ¼ 0:

This is sufficient to deduce that there exists u1 2 L2ð�;H1
] ðYÞ=RÞ such that

�ðx; yÞ ¼ rxu0ðxÞ þ ryu1ðx; yÞ

(see Exercise 2.5). �

2.5 Exercises

Exercise 2.1. Admissible functions.
1. Show that a continuous function f 2 Cð�;C]ðYÞÞ is admissible in the sense of Definition 2.2.

Hint: Since f in continuous, one has 8� > 0, 9"0 > 0 such that 8" < "0,

jx� x0j � ") k f ðx; �Þ � f ðx0; �ÞkL1ðYÞ � �:

Therefore, to within an arbitrarily small error �, one can approximate f ðx; x"Þ by f ðxi; x"Þ on the cube "ðiþ YÞ where
i 2 Zd and with xi 2 "ðiþ YÞ.

2. Show that a function  ðx; yÞ ¼ �ðxÞ�ðyÞ where � 2 L2ð�Þ and � 2 L2
]ðYÞ is admissible in the sense of

Definition 2.2.
3. Let f and g be two admissible functions. Show that

lim
"!0

Z
�

f x;
x

"

� �
g x;

x

"

� �
dx ¼

Z
��Y

f ðx; yÞgðx; yÞ dx dy:

4. Let f be an admissible function and g 2 Cð�� YÞ. Show that fg is admissible.

Exercise 2.2. Let ðu"Þ" be a sequence of functions in L2ð�Þ that L2 strongly converges to u0 2 L2ð�Þ. Show that

u" � u0 two scale:

Exercise 2.3. Let u0ðx; yÞ be an admissible function.
1. Show that u"ðxÞ ¼ u0 x; x"

� 	
two-scale converges to u0.

2. Let v" ¼ u0ðx; x
"2 Þ. Show that ðv"Þ" two-scale converges to v0ðxÞ ¼

R
Y
u0ðx; yÞ dy.

Two-scale Convergence 157



3. More generaly, show that any multiscale expansion

u"ðxÞ ¼ u0 x;
x

"

� �
þ "u1 x;

x

"

� �
þ � � � þ "nun x;

x

"

� �

where the ui are supposed to be admissible, two-scale converges to u0ðx; yÞ.

Exercise 2.4. Let ðu"Þ" a sequence that two-scale converges to u0. Show (using Proposition 2.2) that

lim
"!0

Z
�

u"ðxÞ x;
x

"

� �
dx ¼

Z
�

u0ðx; yÞ ðx; yÞ dx dy

for all test functions  that are admissible (and not only smooth).

Exercise 2.5. Orthogonal of divergence free functions.
Let

V] ¼ fu 2 L2ðY ;RdÞ such that div u ¼ 0 in the sense of D0ðYÞg:

Using the decomposition in Fourier series of a function u 2 V], show that

V?] ¼ f 2 L2ðYÞ such that 9� 2 H1
] ðYÞ,  ¼ r�g:

Exercise 2.6. Show the following proposition.

Proposition 2.3. Let ðu"Þ">0 be a sequence bounded in L2ð�Þ such that ð"ru"Þ">0 is bounded in L2ð�Þ. Show that
there exists u0ðx; yÞ 2 L2ð�� YÞ such that, up to the extraction of a subsequence, one has

u" � u0 two-scale; ð2:12Þ
"ru" � ryu0ðx; yÞ two-scale: ð2:13Þ

3. Application to Linear 2nd Order Elliptic Equations

We now turn to the homogenization of the model problem and generalize the method to classical second order
elliptic PDEs. As we shall see, the main strategy consists in the following methodology:

. find a bound in H1 for the sequence ðu"Þ";

. extract a subsequence and apply Theorem 2.2;

. identify the problems solved by u0 and u1;

. show that the whole sequence converges;

. give sufficient conditions to get the strong convergence and prove the multiscale expansion.

3.1 Homogenization of 2nd order elliptic problems

We thus consider again the problem (1.1), namely

�div A
x

"

� �
ru"ðxÞ

� �
¼ f ðxÞ in �;

u" ¼ 0 on @�;

8<
: ð3:1Þ

where � is bounded and A satisfies the uniform coerciveness assumption (1.2). Let us write the variational formulation
associated to this problem. We take a test function � 2 H1

0ð�Þ, multiply the equation by � and integrate by parts to getZ
�

A
x

"

� �
rxu"ðxÞ;rx�ðxÞ

� �
dx ¼

Z
�

f ðxÞ�ðxÞ dx: ð3:2Þ

As we have already pointed out, the sequence ðu"Þ" is uniformly bounded and one has the bound (obtained by taking
� ¼ u" in the preceding variational formulation)

ku"kH1 . k fkL2 :

Therefore, Theorem 2.2 applies and, up to the extraction of a subsequence (that we still denote by ðu"Þ" for simplicity)
one can assume that

u" * u0 weakly in H1ð�Þ;
u"! u0 strongly in L2ð�Þ;
u" � u0 two-scale;

ru" � rxu0ðxÞ þ ryu1ðx; yÞ two-scale;

where u0 2 H1
0ð�Þ and u1 2 L2ð�;H1

] ðYÞ=RÞ.
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The idea consists in taking a suitable test function in (3.2) and use the convergences above to pass to the limit.
Namely, we consider �0 2 Dð�Þ and �1 2 Dð�;C1] ðYÞ=RÞ and use the test function

�ðxÞ ¼ �0ðxÞ þ "�1 x;
x

"

� �
in (3.2).

We obtain, since rx�ðxÞ ¼ rx�0ðxÞ þ "ðrx�1Þðx; x"Þ þ ðry�1Þðx; x"Þ,Z
�

A
x

"

� �
rxu"ðxÞ;rx�0ðxÞ þ "ðrx�1Þ x;

x

"

� �
þ ðry�1Þ x;

x

"

� �� �
dx

¼
Z

�

f ðxÞ �0ðxÞ þ "�1 x;
x

"

� �� �
dx:

We now pass to the limit in each term. Let us begin with the right-hand side. Since �1 2 L1ð�� YÞ we easily have

lim
"!0

Z
�

f ðxÞ �0ðxÞ þ "�1 x;
x

"

� �� �
dx ¼

Z
�

f ðxÞ�0ðxÞ dx: ð3:3Þ

Similarly, since A 2 L1ðYÞ, and ðu"Þ" is uniformly bounded in H1ð�Þ, we have

lim
"!0

Z
�

A
x

"

� �
rxu"ðxÞ; "ðrx�1Þ x;

x

"

� �� �
dx ¼ 0: ð3:4Þ

For the first term, we writeZ
�

A
x

"

� �
rxu"ðxÞ;rx�0ðxÞ

� �
dx ¼

Z
�

rxu"ðxÞ;At x

"

� �
rx�0ðxÞ

� �
dx;

and, since the function ðx; yÞ 7! AtðyÞrx�0ðxÞ is admissible (see Exercise 2.1 of chapter 2), we obtain

lim
"!0

Z
�

A
x

"

� �
rxu"ðxÞ;rx�0ðxÞ

� �
dx

¼
Z

��Y
ðrxu0ðxÞ þ ryu1ðx; yÞ;AtðyÞrx�0ðxÞÞ dx dy

¼
Z

��Y
ðAðyÞðrxu0ðxÞ þ ryu1ðx; yÞÞ;rx�0ðxÞÞ dx dy:

The last term is handled in the same manner. IndeedZ
�

A
x

"

� �
rxu"ðxÞ; ðry�1Þ x;

x

"

� �� �
dx

¼
Z

�

rxu"ðxÞ;At x

"

� �
ðry�1Þ x;

x

"

� �� �
dx;

and

lim
"!0

Z
�

A
x

"

� �
rxu"ðxÞ; ðry�1Þ x;

x

"

� �� �
dx

¼
Z

��Y
ðrxu0ðxÞ þ ryu1ðx; yÞ;AtðyÞry�1ðx; yÞÞ dx dy

¼
Z

��Y
ðAðyÞðrxu0ðxÞ þ ryu1ðx; yÞÞ;ry�1ðx; yÞÞ dx dy

where we have made use of the fact that the function ðx; yÞ 7! AtðyÞry�1ðx; yÞ is admissible (it is, in fact, in
L2
]ðY ;Cð�ÞÞ).
Collecting together the preceding results we obtain the limiting variational formulationZ

��Y
ðAðyÞðrxu0ðxÞ þ ryu1ðx; yÞÞ;rx�0ðxÞ þ ry�1ðx; yÞÞ dx dy

¼
Z

�

f ðxÞ�0ðxÞ dx: ð3:5Þ

3.2 Existence and uniqueness

The nice thing with the method shown above is that it gives the homogenized variational formulation directly. It is
also very natural and knowing Theorem 2.2 makes very clear and intuitive what should be the expected result.
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However, some work still needs to be done, namely, recovering the cell and homogenized problem, after having proved
that the preceding formula provides us with a variational formulation that possesses a unique solution.

We first start by using a density argument to symmetrize the problem (between the unknown and the test functions).
Namely, by density, we easily see that (3.5) also holds for all �0 2 H1

0ð�Þ and all �1 2 L2ð�;H1
] ðYÞ=RÞ. We now turn to

the existence and uniqueness of the solution to the variational formulation

Find ðu0; u1Þ 2 H1
0ð�Þ � L2ð�;H1

] ðYÞ=RÞ such that 8ð�0; �1Þ 2 H1
0 ð�Þ � L2ð�;H1

] ðYÞ=RÞZ
��Y
ðAðyÞðrxu0ðxÞ þ ryu1ðx; yÞÞ;rx�0ðxÞ þ ry�1ðx; yÞÞ ¼ dx dy

Z
�

f ðxÞ�0ðxÞ dx:

Existence and uniqueness of the solution to this (homogenized) variational formulation follow now from the Lax-
Milgram Theorem. Indeed, the linear form

lðð�0; �1ÞÞ ¼
Z

�

f ðxÞ�0ðxÞ dx

satisfies

jlðð�0; �1ÞÞj � k fkL2k�0kL2

. k fkL2kr�0kL2

. k fkL2kð�0; �1ÞkH1
0
ð�Þ�L2ð�;H1

]
ðYÞ=RÞ:

Next, the bilinear form

aððu0; u1Þ; ðv0; v1ÞÞ ¼
Z

��Y
ðAðyÞðrxu0 þryu1Þ;rxv0 þ ryv1Þ dx dy

satisfies

ja
�
ðu0; u1Þ; ðv0; v1Þ

	
j

� kAkL1ðkrxu0kL2 þ kryu1kL2ð��YÞÞðkrxv0kL2 þ kryv1kL2ð��YÞÞ
� kAkL1kðu0; u1ÞkH1

0
ð�Þ�L2ð�;H1

]
ðYÞ=RÞkðv0; v1ÞkH1

0
ð�Þ�L2ð�;H1

]
ðYÞ=RÞ

and is therefore continuous in ðH1
0ð�Þ � L2ð�;H1

] ðYÞ=RÞÞ
2. It is coercive due to the coerciveness assumption (1.2)

made on A since

aððu0; u1Þ; ðu0; u1ÞÞ

¼
Z

��Y
ðAðyÞðrxu0ðxÞ þ ryu1ðx; yÞÞ;rxu0ðxÞ þ ryu1ðx; yÞÞ dx dy


 ckrxu0 þryu1k2L2ð��YÞ:

But

krxu0 þ ryu1k2L2ð��YÞ ¼
Z

��Y
krxu0ðxÞ þ ryu1ðx; yÞk2 dx dy

¼
Z

�

krxu0ðxÞk2 dxþ
Z

��Y
kryu1ðx; yÞk2 dx dy

þ 2

Z
��Y
rxu0ðxÞ � ryu1ðx; yÞ dx dy

¼ kðu0; u1Þk2H1
0
ð�Þ�L2ð�;H1

]
ðYÞ=RÞ

since

2

Z
��Y
rxu0ðxÞ � ryu1ðx; yÞ dx dy ¼ 2

Z
�

rxu0ðxÞ �
Z
Y

ryu1ðx; yÞ dy
� �

dx ¼ 0:

Eventually, we conclude, since ðu0; u1Þ are characterized by the homogenized variational formulation above, that the
whole sequence ðu"Þ" satisfies the convergences of Theorem 2.2, and not only a subsequence.

3.3 The cell and the homogenized problems

It remains to find the solution to the cell and homogenized problem that were stated in the Chapter 1 of these notes.
To this aim, we simply consider the two problems obtained by taking �0 ¼ 0 or �1 ¼ 0 respectively.

. �0 ¼ 0.
The variational formulation leads in this case to
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Z
��Y
ðAðyÞðrxu0ðxÞ þ ryu1ðx; yÞÞ;ry�1ðx; yÞÞ dx dy ¼ 0:

Taking �1 under the form �1ðx; yÞ ¼ �ðxÞ ðyÞ leads toZ
��Y

�ðxÞðAðyÞðrxu0ðxÞ þ ryu1ðx; yÞÞ;ry ðyÞÞ dx dy ¼ 0

which is the weak form of the problem

�divyðAðyÞðrxu0ðxÞ þ ryu1ðx; yÞÞÞ ¼ 0;

u1ðx; yÞ is Y-periodic:

�

This is nothing but the cell problem (1.9).
. �1 ¼ 0.

We have now Z
��Y
ðAðyÞðrxu0ðxÞ þ ryu1ðx; yÞÞ;rx�0ðxÞÞ dx dy ¼

Z
�

f ðxÞ�0ðxÞ dx

which is the weak form of the problem

�divx

Z
Y

ðAðyÞðrxu0ðxÞ þ ryu1ðx; yÞÞÞ dy
� �

¼ f in �;

u0 ¼ 0 on @�:

8<
:

And we recognize the homogenized problem.
Solving u1 in terms of u0 through the correctors !i is eventually done as before.

3.4 Exercises

Exercise 3.1. Assume that u1 is smooth. Show that

u" � u0ðxÞ � "u1 x;
x

"

� �
strongly converges to 0 in H1ð�Þ.
Hint: Show that Z

�

A
x

"

� �
rxu" � rxu0 � ryu1

� 	
;rxu" �rxu0 �ryu1

� �
dx;

tends to 0 as "! 0 by expanding the expression and pass to the limit in each term. Conclude.

Exercise 3.2. Extend all the preceding results to the case where A :¼ Aðx; yÞ is an admissible function which satisfies
the bounds (1.2).

Exercise 3.3. Linear elasticity. We now consider the model of linear elasticity

�divð	"ðu"ÞÞ ¼ f in �

which, for simplicity is supplemented with the homogeneous Dirichlet boundary conditions u" ¼ 0 on @�. Here
u" : �! R

d is the deformation vector and the Cauchy stress tensor is given by

	"ðuÞ ¼ 

x

"

� �
ruþrtu
� 	

þ �
x

"

� �
divðuÞId:

We also assume that both � and 
 satisfy (1.2). Make the homogenization process as " tends to 0. Express in particular
the cell problem and the homogenized equation.

4. Convergence of the Energy

4.1 �-convergence

This chapter is meant to give another point of view on the problem in the important case where A is assumed
furthermore to be symmetric. Indeed, the problem that we have worked on up to now can also be written as a
minimization problem, using the Dirichlet principle

ðP"Þ min
u2H1

0
ð�Þ

1

2

Z
�

A
x

"

� �
rxuðxÞ � rxuðxÞ dx�

Z
�

f ðxÞuðxÞ dx; ð4:1Þ

for which u" is the solution. It would be convenient to have a notion of convergence of minimization problems that
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would be compatible with the convergence of minimizers (here, the two-scale convergence). This is indeed the
framework given by De Giorgi �-convergence. The theory is certainly much more involved than what we present here
for the need of these lecture notes. We refer the reader to [4, 8, 9] for more information about the topic and its
application to homogenization problems, as well as the introductory text [5].

Definition 4.1. Let ðX; dÞ be a metric space. Consider for " > 0 a family of functionals

J" : X! R

a limiting functional

J0 : X! R

and the corresponding minimization problems

ðP"Þ min
u2X

J"ðuÞ; ðP0Þ min
u2X

J0ðuÞ: ð4:2Þ

We say that the family of problems ðP"Þ �ðdÞ-converges to P0 if for any u0 2 X one has
. �� lim inf: For every sequence ðu"Þ" that converges to u0 (for the metric d), one has

lim inf
"!0

J"ðu"Þ 
 J0ðu0Þ; ð4:3Þ

. �� lim sup: There exists a sequence ðu"Þ" that converges to u0 (for the metric d), such that

lim sup
"!0

J"ðu"Þ � J0ðu0Þ: ð4:4Þ

The main motivation for the introduction of this definition is the following theorem.

Theorem 4.1. Let ðX; dÞ be a metric space and a sequence of minimization problems ðP"Þ">0 that �ðdÞ-converges to
the minimization problem P0 as in (4.2). Let ðu"Þ" a sequence of solutions of the problems ðP"Þ that converges to u0 for
the metric d. Then u0 is a solution of the minimization problem P0 and

lim
"!0

J"ðu"Þ ¼ J0ðu0Þ:

Proof. Since ðu"Þ" converges to u0 for the metric d, the first assertion of �-convergence entails

J0ðu0Þ � lim inf
"!0

J"ðu"Þ:

Now let v0 2 X, and a sequence ðv"Þ" which converges to v0 such that

J0ðv0Þ 
 lim sup
"!0

J"ðv"Þ:

Such a sequence exists due to the second assertion of �-convergence. Since u" is a minimizer of J", one has

J"ðu"Þ � J"ðv"Þ:

We therefore deduce

J0ðu0Þ � lim inf
"!0

J"ðu"Þ

� lim sup
"!0

J"ðu"Þ

� lim sup
"!0

J"ðv"Þ

� J0ðv0Þ

which shows that u0 is a solution to P0. Taking v0 ¼ u0 in the preceding inequalities shows the last assertion of the
theorem. �

Remark 4.1. The �-convergence is a framework which is very well suited for the convergence of minimization
problems. Quite remarkably, the definition itself does not use any minimization property of the sequence ðu"Þ" or the
limit u0. Minimization and convergence of minimizers are thus obtained as consequences of the general properties
given in the definition.

In the definition of �-convergence, (4.4) may be replaced by an equivalent or weaker statement for which
Theorem 4.1 still holds true. We refer the interested reader to [5] for a detailed list of possible statements, but we will
make use of the following one in the sequel

For all � > 0, there exists a sequence ðu"Þ" that converges to u0 (for the metric d), such that

lim sup
"!0

J"ðu"Þ � J0ðu0Þ þ �: ð4:5Þ
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That under (4.3) and (4.5), Theorem 4.1 still holds true is left as an exercise (see Exercise 4.1).

4.2 Application to homogenization

From what we have already seen, we set, for u 2 X ¼ H1
0ð�Þ

J"ðuÞ ¼
1

2

Z
�

A
x

"

� �
rxuðxÞ � rxuðxÞ dx�

Z
�

f ðxÞuðxÞ dx ð4:6Þ

while the limiting problem involves the homogenized tensor Aeff defined by (1.14)

J0ðuÞ ¼
1

2

Z
�

AeffrxuðxÞ � rxuðxÞ dx�
Z

�

f ðxÞuðxÞ dx: ð4:7Þ

It remains to choose a metric on X. Clearly, the convergence that we proved in the preceding sections is only weak in
H1ð�Þ which is not metrizable. We therefore endow X with the (strong) L2 distance (see Remark 4.3 below).

The main goal of this Section is to show the following Theorem.

Theorem 4.2. Let J" (resp. J0) be defined by (4.6) (resp. (4.7)), and consider the associated minimization problems
P" and P0 given by (4.2). The sequence of minimization problems ðP"Þ" �ðL2Þ-converges to P0 in H1

0ð�Þ.

Proof. The proof consists in proving both properties of �-convergence. As we shall see, this sheds a new light on the
problem. We therefore decompose the proof into two steps.
�� lim inf.
Let ðu"Þ" be a sequence in H1

0ð�Þ that converges to u0 2 H1
0ð�Þ for the L2 topology. Let A ¼ lim inf"!0 J"ðu"Þ. If

A ¼ þ1, there is nothing to prove. Otherwise up to the extraction of a subsequence, we may assume furthermore that

lim
"!0

J"ðu"Þ ¼ A:

In view of (1.2) we deduce that the sequence ðu"Þ" is bounded in H1, and applying Theorem 2.2, there exists u1 2
L2ð�;H1

] Þ such that

ru" � rxu0ðxÞ þ ryu1ðx; yÞ two-scale:

We take now  ðx; yÞ 2 Dð�;C1] Þ an admissible function and expand the non-negative expressionZ
�

A
x

"

� �
rxu" �rxu0 �ry x;

x

"

� �� �
� rxu" � rxu0 � ry x;

x

"

� �� �
dx

¼
Z

�

A
x

"

� �
rxu" � rxu"

� 2

Z
�

A
x

"

� �
rxu" � rxu0 þry x;

x

"

� �� �
dx

þ
Z

�

A
x

"

� �
rxu0 þ ry x;

x

"

� �� �
� rxu0 þ ry x;

x

"

� �� �
dx:

Due to the preceding results and hypotheses, we infer

lim
"!0

Z
�

A
x

"

� �
rxu0 þry x;

x

"

� �� �
� rxu0 þry x;

x

"

� �� �
dx

¼
Z

��Y
AðyÞðrxu0ðxÞ þ ry ðx; yÞÞ � ðrxu0ðxÞ þ ry ðx; yÞÞ dx dy

and

lim
"!0

Z
�

A
x

"

� �
rxu" � rxu0 þ ry x;

x

"

� �� �
dx

¼ lim
"!0

Z
�

rxu" � At x

"

� �
rxu0 þ ry x;

x

"

� �� �
dx

¼
Z

��Y
ðrxu0 þ ryu1ðx; yÞÞ � AtðyÞðrxu0ðxÞ þ ry ðx; yÞÞ dx dy

¼
Z

��Y
AðyÞðrxu0 þ ryu1ðx; yÞÞ � ðrxu0ðxÞ þ ry ðx; yÞÞ dx dy:

Since moreover

lim
"!0

Z
�

f ðxÞu"ðxÞ dx ¼
Z

�

f ðxÞu0ðxÞ dx;

we therefore deduce
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lim inf
"!0

J"ðu"Þ



Z

��Y
AðyÞðrxu0ðxÞ þ ryu1ðx; yÞÞ � ðrxu0ðxÞ þ ry ðx; yÞÞ dx dy

�
1

2

Z
��Y

AðyÞðrxu0ðxÞ þ ry ðx; yÞÞ � ðrxu0ðxÞ þ ry ðx; yÞÞ dx dy

�
Z

�

f ðxÞu0ðxÞ dx:

Taking for  a sequence of functions that converges to u1 in L2ð�;H1
] ðYÞÞ, we obtain

lim inf
"!0

J"ðu"Þ 

1

2

Z
��Y

AðyÞðrxu0 þ ryu1Þ � ðrxu0 þ ryu1Þ dx dy

�
Z

�

f ðxÞu0ðxÞ dx:

The last part of the proof consists in remarking that the right-hand side may be bounded from below since

1

2

Z
��Y

AðyÞðrxu0 þ ryu1Þ � ðrxu0 þ ryu1Þ dx dy


 min
u12L2ð�;H1

]
Þ

1

2

Z
��Y

AðyÞðrxu0 þ ryu1Þ � ðrxu0 þryu1Þ dx dy

¼
1

2

Z
�

Aeffrxu0 � rxu0 dx:

We thus obtain

lim inf
"!0

J"ðu"Þ 

1

2

Z
�

Aeffrxu0 � rxu0 dx�
Z

�

f ðxÞu0ðxÞ dx ¼ J0ðu0Þ:

�� lim sup.
The proof for this part of �-convergence is sometimes called the construction of a recovery sequence. Indeed, it
consists for a given u0 2 H1

0ð�Þ, in finding a suitable sequence ðu"Þ" in H1
0ð�Þ that converges to u0 in L2 and such that

lim sup
"!0

J"ðu"Þ � J0ðu0Þ:

In view of the preceding results, we build from the corrector Eq. (1.9) the microscopic structure u1, and a natural
recovery sequence would be

u" ¼ u0ðxÞ þ "u1 x;
x

"

� �
:

However, since u1 may not be an admissible function, we need to complexify a little bit the argument. We take  1 an
admissible function in Dð�;C1] ðYÞÞ and consider

u" ¼ u0ðxÞ þ " 1 x;
x

"

� �
:

It is easy to check that

lim
"!0
ku" � u0kL2 ¼ 0:

Moreover, since rxu" ¼ rxu0ðxÞ þ ðry 1Þðx; x"Þ þ "ðrx 1Þðx; x"Þ we get by using the two-scale convergence results that

lim
"!0

J"ðu"Þ ¼
1

2

Z
��Y

AðyÞðrxu0 þ ry 1Þ � ðrxu0 þ ry 1Þ dx dy

�
Z

�

f ðxÞu0ðxÞ dx:

Taking now  1 that converges to u1 in L2ð�;H1
] ðYÞÞ and remarking that

J0ðu0Þ ¼
1

2

Z
��Y

AðyÞðrxu0 þryu1Þ � ðrxu0 þ ryu1Þ dx dy�
Z

�

f ðxÞu0ðxÞ dx;

leads to

8� > 0; 9ðu"Þ" in H1
0 ð�Þ s.t. lim

"!0
J"ðu"Þ � J0ðu0Þ þ �
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which is exactly (4.5) and therefore enough to get the �-convergence property. �

Remark 4.2. The proof made above used very clearly the fact that the cell problem (1.9) can be also seen as a
minimization problem. Namely for a given macroscopic u0, the microscopic structure, represented by u1 is the one that
minimizes Z

��Y
AðyÞðrxu0 þ ryu1Þ � ðrxu0 þryu1Þ dx dy:

It is indeed easily seen that (1.9) is the variational formulation associated to this minimization problem.

Remark 4.3. As we have already pointed out, the convergence only holds in the strong L2 or weak H1 senses.
Although the weak H1 topology is not metrizable, we remark that the definition of �-convergence does not need the
topology to be metrizable, but only a notion of convergence of sequences. We therefore could (and some authors do)
use the weak H1 topology instead in order to prove all the statements before.

4.3 Exercises

Exercise 4.1. Show that under assumptions (4.3) and (4.5), Theorem 4.1 still holds true.

Exercise 4.2. Show that in the case where A is symmetric, the solution u1ðx; �Þ to the cell problem (1.9) is indeed the
solution to the minimization problem

min
 2H1

]
ðYÞ

Z
Y

AðyÞðrxu0ðxÞ þ ry ðyÞÞ � ðrxu0ðxÞ þ ry ðyÞÞ dy:

Deduce that ðu0; u1Þ solve the minimization problem

min
ð�0;�1Þ2H1

0
ð�Þ�L2ð�;H1

]
ðYÞÞ

Eðð�0; �1ÞÞ

where

Eðð�0; �1ÞÞ ¼
1

2

Z
��Y

AðyÞðrx�0ðxÞ þ ry�1ðx; yÞÞ � ðrx�0ðxÞ þ ry�1ðx; yÞÞ dx dy

�
Z

�

f ðxÞ�0ðxÞ dx:

Exercise 4.3. Let Aeff be the effective diffusion tensor given by (1.14) in the case where A is symmetric. Show that
8� 2 Rd

Z
Y

A�1ðyÞ dy
� ��1

� � � � Aeff� � � �
Z
Y

AðyÞ dy
� �

� � �:

Hint: Use the minimization properties of the cell problem.

Exercise 4.4. As usual, we consider � an open bounded regular set of Rd and f 2 L2ð�Þ. Let

W : Rd � Rd ! R

be an energy density function and assume

y 7!Wðy; �Þ is Y-periodic;

� 7!Wðy; �Þ is C1 and strictly convex in Rd2

;

j�j2 . Wðy; �Þ . 1þ j�j2 uniformly in y;

@W

@�
ðy; �Þ

����
���� . 1þ j�j uniformly in y:

We also set for all u 2 H1
0ð�Þ

I"ðuÞ ¼
Z

�

W
x

"
;rxuðxÞ

� �
dx�

Z
�

f ðxÞuðxÞ dx:

1. Show that under the preceding hypotheses on W , the minimization problem

min
u2H1

0
ð�Þ

I"ðuÞ

has a unique solution that we call u".
2. Show that ðu"Þ" is bounded in H1

0ð�Þ and deduce that there exists u0 2 H1
0 ð�Þ and u1 2 L2ð�;H1

] ðYÞÞ such that, up
to a subsequence
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u" * u0 weakly in H1;

u"! u0 strongly in L2;

u" � u0 two-scale;

rxu" � rxu0ðxÞ þ ryu1ðx; yÞ two-scale:

The last part of this exercise consists in proving that I" �ðL2Þ-converges in H1
0ð�Þ to

I0ðuÞ ¼ inf
 12L2ð�;H1

]
ðYÞÞ

Z
��Y

Wðy;rxuþry ðx; yÞÞ dx dy�
Z

�

f ðxÞuðxÞ dx:

3. Using

Wð�; �Þ 
 Wð�; 
Þ þ
@W

@�
ð�; 
Þ; � � 



 �
prove that if ðv"Þ" is a sequence in H1

0ð�Þ that converges in L2 to v0 2 H1
0ð�Þ

lim inf
"!0

I"ðv"Þ 

Z

��Y
Wðy;rxv0 þ ry Þ dx dy�

Z
�

f ðxÞv0ðxÞ dx;

for some  2 L2ð�;H1
] ðYÞÞ. Deduce that

lim inf
"!0

I"ðv"Þ 
 I0ðv0Þ:

Hint: Use a sequence 
 of smooth test functions that converges to rxu0ðxÞ þ ryu1ðx; yÞ in L2ð�� YÞ.
4. Let v0 in H1

0ð�Þ, show that for all � > 0 there exists ðv"Þ" in H1
0 ð�Þ such that

v"! v0 in L2;

lim
"!0

I"ðv"Þ � I0ðv0Þ þ �:

5. Conclude.

5. Perforated Domains — Porous Media

5.1 Setting of the problem

A porous medium is a domain composed of a solid part in which a fluid (e.g. water) is able to flow inside tiny
capillaries. Porous media are usually modelled using Darcy’s law, which is usually obtained by some averaging of
Stokes flow at the microscopic scale. Indeed, the mathematical modelization of such a phenomenon typically involves a
fluid structure interaction, the fluid flowing inside the solid matrix. Due to the very small velocities of the fluid, it is
very reasonable to consider a low Reynolds number approximation, i.e. that the fluid is modelled by Stokes equations.
We also consider that on the solid part of the domain, a no-slip boundary condition is assumed for the fluid. We explain
here how the two-scale convergence process is able to recover Darcy’s law from a microscopic Stokes equation.
The pioneering works, that formally derived Darcy’s law from the microscopic Stokes equations may be found in
e.g. [11, 17] while the first rigorous proof is probably in [18]. Further extensions may be found in [2, 13].

In what follows, we denote by �" the fluid part of �. We consider that the fluid obeys Stokes equations

�"2
�u" þrp" ¼ f in �";

div u" ¼ 0 in �";

u" ¼ 0 on @�":

8><
>: ð5:1Þ

In the preceding equations, we have rescaled the viscosity 
 of the fluid by a factor of "2. As will be seen later on, this
simply comes from the fact that otherwise the velocity u" tends to 0. In other words, the velocity of the fluid is of order
"2 and needs to be rescaled in order to observe a non vanishing limit.

Existence and uniqueness of a solution ðu"; p"Þ 2 H1
0ð�";R

dÞ � L2ð�"Þ=R to (5.1) is a well known result as long as
f 2 L2ð�";R

dÞ for instance. We can therefore proceed to the homogenization, that is seeking the limits of u" and p" as
"! 0. Quite strangely, here there is no oscillating coefficients like for the diffusion problem before. Instead, here, the
domain will be considered as periodic and quickly oscillating. In particular, the domain changes with " and is not fixed
in the convergence process.

Indeed, as before, we consider a periodic structure in �. In that aim, we assume that the unit cell Y can be
decomposed as

Y ¼ Ys [ Yf ; Ys \ Yf ¼ ;;

where Ys corresponds to the solid part in the unit cell and Yf to the fluid part (see Fig. 5.1).
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Scaling down this structure by a factor of " and repeating it inside the domain, leads to a periodicly structured
domain, as depicted in Fig. 5.2, alternating solid and fluid parts. Namely, viewed from the macroscopic domain, we
define the fluid domain as

�" ¼ � n
[Nð"Þ
i¼1

Y"s;i ¼ � \
[Nð"Þ
i¼1

Y"f ;i ð5:2Þ

where each Y"f ;i (resp. Y"s;iÞ is a copy of "Yf (resp. "YsÞ. The total number of periodic cells Nð"Þ satisfies Nð"Þ ¼
j�j"�dð1þ oð1ÞÞ.

5.2 Homogenization

Compared to what we have seen before, we have here an additional difficulty that prevents us from passing to the
limit directly on the solution ðu"; p"Þ. Indeed, the functions are not defined on the same domain since the fluid domain
�" changes with the value ". It is, therefore, necessary to extend the solution u" and the pressure p" suitably before
attempting to pass to the limit.

Fig. 5.1. The unit cell of the porous medium is composed of a solid part Ys and a fluid one in which the fluid flows Yf .

Fig. 5.2. The domain � tiled by repetitions of Y scaled by a factor ".

Fig. 5.3. In 3d, it is possible to have a fluid and a solid domains that are both connected. An example is given by the periodic
structure shown on the left and made by repetitions of the unit structure to the right (from [15]).
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Since u" ¼ 0 on @�", we may extend u" by 0 inside the solid part, by setting

~u"ðxÞ ¼
u"ðxÞ if x 2 �";

0 otherwise:

�

For p" this is slightly more involved. Classically, the pressure is defined up to an additive constant, and we must
extend p" in such a way that when p" is locally constant, it is also constant (with the same constant) inside the solid
part. We therefore define for i 2 f1; � � � ;Nð"Þg

~p"ðxÞ ¼
p"ðxÞ if x 2 Y"f ;i;

1

jY"f ;ij

Z
Y"
f ;i

p" dx in Y"s;i:

8><
>:

5.3 Convergence Theorem

This section deals with the two-scale limit of the Stokes equations that we have introduced before. However, the
complete proof of the result is rather technical and certainly beyond the scope of these notes. We refer the interested
reader to [2, 13, 18] where it can be found and will give only the key ingredients and arguments. It will be therefore
possible to follow the strategy although all of the rigorous details will not be given.

Lemma 5.1. We have the estimates

k ~u"kL2 þ "kr ~u"kL2 � C; ð5:3Þ
k ~p"kL2=R � C: ð5:4Þ

Proof. We first notice that on any Y"f ;i one has due to Poincaré inequality

ku"kL2ðY"
f ;i
Þ . "kru"kL2ðY"

f ;i
Þ

from which we deduce

k ~u"kL2ðY"
i
Þ . "kr ~u"kL2ðY"

i
Þ

which by summing over all cells gives

k ~u"kL2ð�Þ . "kr ~u"kL2ð�Þ: ð5:5Þ

Now, multiplying the original Stokes equation by u" and integrating by parts over �", we obtain

"2


Z
�"

jru"j2 dx�
Z

�"

p" div u" dxþ
Z
@�"

p"u" � n d	 ¼
Z

�"

f � u" dx:

Since div u" ¼ 0 and u"j@�"
¼ 0, we get, using the extension


k"ru"k2L2ð�"Þ ¼ 
k"r ~u"k2L2ð�Þ

� k fkL2ku"kL2ð�"Þ

¼ k fkL2k ~u"kL2ð�Þ

. "k fkL2kr ~u"kL2ð�Þ

due to (5.5), from which we deduce (5.3).
The estimate for the pressure is trickier. We refer the interested reader to the original proof by Tartar [18] that was

further developed in [2, 13]. �

We are now in a position to prove the following Theorem.

Theorem 5.1. The sequence ð ~u"; ~p"Þ two-scale converges to the unique solution ðu0ðx; yÞ; pðxÞÞ of

�
�yu0 þry p1 ¼ f �rx p in �� Yf ;

divy u0ðx; yÞ ¼ 0 in �� Yf ;

divx

Z
Y

u0ðx; yÞ dy
� �

¼ 0 in �;

u0ðx; yÞ ¼ 0 in �� Ys;Z
Y

u0ðx; yÞ dy
� �

� n ¼ 0 on @�;

y 7! u0ðx; yÞ; p1ðx; yÞ is Y-periodic:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð5:6Þ

Remark 5.1. The two-scale homogenized Stokes problem is sometimes called the two-pressure Stokes system as it
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involves the macroscopic pressure p and a microscopic pressure p1 which takes into account the microscopic structure.
Eliminating the y variable will lead to Darcy’s law as we shall see below.

Proof of Theorem 5.1.
The bounds obtained in Lemma 5.1 allow us to extract a subsquence from ð ~u"Þ" (that we still denote by ð ~u"Þ") such that

~u" � u0ðx; yÞ two-scale;

"rx ~u" � ryu0ðx; yÞ two-scale:

(Notice that we have used the result of Exercise 2.6). Now, taking a smooth function  ðx; yÞ 2 Dð�;C1] ðYÞÞ which is
supported in �� Ys, we have

0 ¼
Z

�

~u"ðxÞ x;
x

"

� �
dx!

Z
��Y

u0ðx; yÞ ðx; yÞ dx dy;

from which we deduce that

u0ðx; yÞ ¼ 0 in �� Ys: ð5:7Þ

Moreover since div ~u" ¼ 0, we have

0 ¼
Z

�

div ~u" x;
x

"

� �
dx

¼ �
Z

�

~u" � ðrx þ
1

"
ry Þ x;

x

"

� �
dx:

Multiplying by " and passing to the limit "! 0 leads to

0 ¼
Z

��Y
u0ðx; yÞ � ry ðx; yÞ dx dy

which means divy u0 ¼ 0. Taking now a test function  2 H1ð�Þ which does not depend on the y variable (thus such
that divy  ¼ 0), and does not vanish on the boundary @�; we also have after integrating by parts and using ~u"j@� ¼ 0

0 ¼
Z

�

~u" � rx x;
x

"

� �
dx

which, passing to the limit leads to

divx

Z
Y

u0ðx; yÞ dy
� �

¼ 0

and Z
Y

u0ðx; yÞ dy
� �

� n ¼ 0 on @�:

As far as the pressure is concerned, the compactness theorem leads to the existence of p0 2 L2ð�� YÞ=R such that

~p" � p0 two-scale:

We take the momentum equation and multiply it by " ðx; x"Þ where  ðx; yÞ is a smooth vector valued Y-periodic
function. Integrating by parts, we get

"3


Z
�

r ~u" � rx x;
x

"

� �
dxþ "2


Z
�

r ~u" � ry x;
x

"

� �
dx

� "
Z

�

~p"divx x;
x

"

� �
dx�

Z
�

~p"divy x;
x

"

� �
dx

¼ "
Z

�

f ðxÞ �  x;
x

"

� �
dx:

Passing to the limit "! 0 gives Z
��Y

p0ðx; yÞdivy ðx; yÞ dx dy ¼ 0;

which shows that p0 does not depend on the y variable. There exists pðxÞ 2 L2ð�Þ=R such that

p0ðx; yÞ ¼ pðxÞ:

Eventually, we need to recover the homogenized problem. The strategy consists in multiplying the momentum equation
by a test function which shares the same characteristics as u0. Therefore we now take  ðx; yÞ a vector valued test
function that satisfies
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divy ðx; yÞ ¼ 0 on �� Y ;

divx

Z
Y

 ðx; yÞ dy
� �

¼ 0;Z
Y

 ðx; yÞ dy
� �

� n ¼ 0 on @�;

 ðx; yÞ ¼ 0 in �� Ys:

Multiplying the original Stokes equation by  ðx; x"Þ we get after integrating by parts:

"2


Z
�

r ~u" � rx x;
x

"

� �
dxþ "


Z
�

r ~u" � ry x;
x

"

� �
dx

�
Z

�

~p"divx x;
x

"

� �
dx�

1

"

Z
�

~p"divy x;
x

"

� �
dx

¼
Z

�

f ðxÞ �  x;
x

"

� �
dx:

Using the assumptions above, we infer

"2


Z
�

r ~u" � rx x;
x

"

� �
dxþ "


Z
�

r ~u" � ry x;
x

"

� �
dx

�
Z

�

~p"divx x;
x

"

� �
dx ¼

Z
�

f ðxÞ �  x;
x

"

� �
dx;

and we may pass to the (two-scale) limit as "! 0 to get




Z
��Y
ryu0 � ry ðx; yÞ dx dy�

Z
��Y

pðxÞdivx ðx; yÞ dx dy

¼
Z

��Y
f ðxÞ �  ðx; yÞ dx dy;

which further simplifies into




Z
��Y
ryu0ðx; yÞ � ry ðx; yÞ dx dy ¼

Z
��Y

f ðxÞ �  ðx; yÞ dx dy: ð5:8Þ

By density, the preceding variational formulation holds for any test function  in the Hilbert space

V ¼
�
 ðx; yÞ 2 L2ð�;H1

] ðYÞÞ s.t.  ðx; yÞ ¼ 0 on �� Ys; divy ðx; yÞ ¼ 0;

divx

Z
Y

 ðx; yÞ dy
� �

¼ 0;

Z
Y

 ðx; yÞ dy
� �

� n ¼ 0 on @�

�
: ð5:9Þ

The Lax-Milgram Theorem applies to prove that the variational formulation (5.8) has a unique solution in u0 2 V .
This characterizes the limit and therefore the whole sequence ð ~u"Þ" two-scale converges to u0.

Eventually, in order to recover the pressure term, we need to characterize the orthogonal (with respect to the
L2ð�� YÞ scalar product) of V . This was done in [2], where it is shown that

V?L2 ¼ frxq0ðxÞ þ ryq1ðx; yÞ where q0 2 L2ð�Þ=R; q1 2 L2ð�;L2
]ðYf Þ=Rg:

(Notice that this is a subspace of L2ð�;H�1ðYÞÞ.) We obtain as a consequence the existence of q0 2 L2ð�Þ=R and
q1 2 L2ð�;L2

]ðYf Þ=R that satisfy




Z
��Y
ryu0 � ry ðx; yÞ dx dy�

Z
��Y

pðxÞdivx ðx; yÞ dx dy

�
Z

��Y
q1ðx; yÞdivy ðx; yÞ dx dy ¼

Z
��Y

f ðxÞ �  ðx; yÞ dx dy:

This would give the existence of p ð¼ q0Þ and p1 ð¼ q1Þ in Theorem 5.1 except that we need to prove that q0 is indeed
the two-scale limit of ðp"Þ". In order to do so, we take a test function  ðx; yÞ which satisfies only divy ¼ 0 into the
momentum equation. We deduce from the calculation before that




Z
��Y
ryu0 � ry ðx; yÞ dx dy�

Z
��Y

pðxÞdivx ðx; yÞ dx dy

¼
Z

��Y
f ðxÞ �  ðx; yÞ dx dy:

This permits us to deduce that
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Z
��Y

q0ðxÞdivx ðx; yÞ dx dy ¼
Z

��Y
pðxÞdivx ðx; yÞ dx dy

or, in other words, that q0 ¼ p. �

5.4 The cell and the homogenized problem

It is also possible to proceed exactly in the same spirit as in the preceding chapters of this book, namely to identify
the cell and the homogenized problems.
Cell problem: We first remark that if we take x as a fixed parameter, ðu0; p1Þ satifies a Stokes equation on the unit cell

�
�yu0 þryp1 ¼ f �rxp for y 2 Yf ;

divyu0 ¼ 0 for y 2 Yf ;

u0 ¼ 0 on @Yf ;

y 7! u0ðx; yÞ periodic;

y 7! p1ðx; yÞ periodic:

8>>>>>><
>>>>>>:

ð5:10Þ

Therefore, introducing the correctors ð!jðyÞ; qjðyÞÞ1� j�d solutions to

�
�y!j þ ryqj ¼ ej for y 2 Yf ;
divy!j ¼ 0 for y 2 Yf ;

!j ¼ 0 on @Yf ;

y 7! !jðyÞ periodic;

y 7! qjðyÞ periodic:

8>>>>>><
>>>>>>:

ð5:11Þ

(we leave to the reader the existence and uniqueness of ð!j; qjÞ 2 H1
] ðYf Þ � L2

]ðYf Þ) we deduce that

u0ðx; yÞ ¼
Xd
j¼1

fjðxÞ �
@p

@xj
ðxÞ

� �
!jðyÞ;

p1ðx; yÞ ¼
Xd
j¼1

fjðxÞ �
@p

@xj
ðxÞ

� �
qjðyÞ:

Homogenized equation: We plug the preceding expression into the last equations of our problem

divx

Z
Y

u0ðx; yÞ dy
� �

¼ 0 in �;Z
Y

u0ðx; yÞ dy
� �

� n ¼ 0 on @�

8>>><
>>>:

ð5:12Þ

to get the homogenized problem, namely

divx
Xd
j¼1

fjðxÞ �
@p

@xj
ðxÞ

� �Z
Y

!jðyÞ dy

 !
¼ 0 in �;

Xd
j¼1

fjðxÞ �
@p

@xj
ðxÞ

� �Z
Y

!jðyÞ dy

 !
� n ¼ 0 on @�:

8>>>>><
>>>>>:

ð5:13Þ

Setting A the matrix defined by

Aij ¼
Z
Y

!jðyÞ � ei dy; ð5:14Þ

and the velocity

uðxÞ ¼
1



Að f � rx pÞ; ð5:15Þ

we get that u solves

divx uðxÞ ¼ 0 in �;

uðxÞ � n ¼ 0 on @�;

�
ð5:16Þ

which in view of (5.15) is nothing but the Darcy’s equation where the permeability tensor is given by 1

 A.
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5.5 Exercises

Exercise 5.1. We consider the Stokes problem in the domain �" described in 5.2

�
�u" þ rp" ¼ f in �";

div u" ¼ 0 in �";

u" ¼ 0 on @�";

8><
>: ð5:17Þ

where we have not scaled the viscosity by the factor "2. Make the multiscale expansion

u" ¼ u0 x;
x

"

� �
þ "u1 x;

x

"

� �
þ � � � ;

and

p" ¼ p0 x;
x

"

� �
þ "p1 x;

x

"

� �
þ � � � ;

and show that u0 ¼ u1 ¼ 0. Therefore the first non vanishing term in the equation is of order "2. This justifies rescaling
the viscosity as in (5.1).

Exercise 5.2. Show that the matrix A defined by (5.14) where the !i are given by (5.11) satisfies

Aij ¼
Z
Y

!iðyÞ � !jðyÞ dy;

and is therefore symmetric.

6. Numerical Methods in Homogenization

The aim of this section is to describe a few numerical methods that can be used to solve problems with highly
oscillating coefficients. In order to do so, we consider again the model problem

�div A
x

"

� �
ru"

� �
¼ f in �;

u" ¼ 0 on @�

8>><
>>: ð6:1Þ

where the conductivity tensor AðyÞ is Y periodic and satisfies the uniform coercivity assumption

9�; � > 0 such that 8� 2 Rd; �j�j2 � ðAðyÞ�; �Þ � �j�j2;

uniformly for all y 2 Y ¼ ð0; 1Þd and f 2 L2ð�Þ. As usual, existence and uniqueness of the solution u" to (6.1) is
classical.

At first sight, one can use the usual finite difference or finite element method to solve the problem. However, it is
clear that the method needs to catch the oscillations of the coefficients Aðx"Þ and of the solution, that is to say that we
need to provide a mesh (cartesian for FD, or simplicial for FE) whose space step h satisfies

h� ":

For very small values of " it is not realistic to mesh the domain and assemble the discretized version of (6.1).
The classical approach to solve this difficulty consists in using the homogenization theory and to solve the associated

homogenized problem. Nevertheless, what is the error that we obtain for such a numerical solution? Moreover, are
there other alternatives? We try to give answers to these questions in the following. We start by recalling the classical
error estimates that are obtained when one applies the finite element method to classical elliptic problems, and apply the
results to get an estimation of the error obtained for the numerical solution of the homogenized problem. We afterwards
explain the method of multiscale finite elements of Hou et al. [10].

6.1 Classical error estimates

The classical method to find error estimates for the finite element method is based on 2 ingredients:
. An abstract lemma (Céa’s lemma or Strang’s lemma) which links the approximation error to the interpolation

error.
. A general result which typically depends on the considered finite element which expresses the behavior of the

interpolation error depending on the mesh step h and the regularity of the exact solution.
We detail these two aspects hereafter on a model problem.
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6.1.1 The model problem

We consider in what follows the homogeneous Dirichlet problem on a bounded regular domain �. In order to
simplify the exposition, we further assume that � � R2, although most (if not all) of what we present here extends
naturally to dimension 3 or higher.

The Dirichlet problem with non constant coefficients we have in mind consists in solving

�divð!ðxÞruÞ ¼ f in �;

u ¼ 0 on @�:

8><
>: ð6:2Þ

It is well known that it has a variational formulation that reads

Find u 2 H1
0 ð�Þ such that 8v 2 H1

0ð�Þ;
Z

�

!ðxÞruðxÞ � rvðxÞ dx ¼
Z

�

f ðxÞvðxÞ dx: ð6:3Þ

We also assume that there exist � > � > 0 such that the rigidity matrix ! satisfies

8x 2 �; � Id 
 !ðxÞ 
 � Id:

Furthermore, we assume that the coefficients of ! are regular enough. For the sake of simplicity, we make the
assumption that ! 2 C1ð�Þ. Usually, the proof of the existence of a solution to (6.3) relies on the Lax-Milgram
Theorem. To be more specific, let us consider an abstract framework for the problem. Calling V ¼ H1

0ð�Þ, the
variational formulation can be written as

Find u 2 Vsuch that 8v 2 V ; aðu; vÞ ¼ lðvÞ ð6:4Þ

where a is a bilinear form on a Hilbert space V , and l a linear form defined also on V , namely

aðu; vÞ ¼
Z

�

!ðxÞruðxÞ � rvðxÞ dx;

lðvÞ ¼
Z

�

f ðxÞvðxÞ dx:

If l is continuous and a is continuous and V-coercive, it is well known that the Lax-Milgram theorem applies and there
exists a unique solution u of the problem (6.4).

A finite element approximation of (6.3) consists in building a finite dimensional subspace Vh of V and to look for a
solution of the discrete variational formulation

Find uh 2 Vh such that 8vh 2 Vh; aðuh; vhÞ ¼ lðvhÞ: ð6:5Þ

Of course, since Vh is also a Hilbert space, the Lax-Milgram Theorem still applies on Vh and (6.5) also possesses a
unique solution uh usually called the approximate solution.

6.1.2 Céa’s and Strang’s lemmas

The error between u and uh is evaluated thanks to Céa’s lemma.

Lemma 6.1 (Céa’s lemma). With the above hypotheses, one has

9C > 0 such that ku� uhkV � C inf
wh2Vh

ku�whkV : ð6:6Þ

Proof. Since a is coercive on V , there exists � > 0, such that

�ku� uhk2V � aðu� uh; u� uhÞ: ð6:7Þ

Now, since u solves (6.4) and uh solves (6.5), using v ¼ vh ¼ uh �wh as a test function leads to

aðu; uh � whÞ ¼ lðuh � whÞ ¼ aðuh; uh � whÞ;

which gives

aðu� uh; uh �whÞ ¼ 0:

Using this in (6.7) allows us to write

�ku� uhk2V � aðu� uh; u� uhÞ
¼ aðu� uh; u� uh þ uh �whÞ
¼ aðu� uh; u� whÞ
� Mku� uhkVku� whkV
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from the continuity of a. Dividing both terms by ku� uhkV gives

ku� uhkV �
M

�
ku� whkV ;

which leads to (6.6) since wh is arbitrary in Vh. �

Céa’s lemma plays a prominent role in the error estimation between the exact and approximate solutions of elliptic
problems since it links the approximation error ku� uhkV made by solving the problem on a subspace Vh � V to the
interpolation error infwh2Vh

ku� whkV . Notice that this latter does not depend on the problem, but only on the way the
exact solution u is close to Vh, or in other words, on how well u can be interpolated on Vh.

As we shall see, for the error estimation on the homogenized problem, one has to face the problem that the exact and
approximate problems are no longer the same. The approximate variational formulation becomes

Find uh 2 Vh such that 8vh 2 Vh; ahðuh; vhÞ ¼ lhðvhÞ: ð6:8Þ

In that case, there exists a natural extension of Céa’s lemma which is known as Strang’s lemma.

Lemma 6.2 (Strang’s lemma). Assume that lh is uniformly continuous on V and ah is uniformly continuous and
coercive on V then one has

ku� uhkV . inf
wh2Vh

ku�whkV þ sup
vh2Vh

jahðu; vhÞ � lhðvhÞj
kvhkV

� �
: ð6:9Þ

Proof. Since ah is uniformly coercive on V , there exists � > 0, such that

�kuh �whk2V � ahðuh �wh; uh �whÞ: ð6:10Þ

Now, since uh solves (6.8), using vh ¼ uh � wh as a test function leads to

ahðuh � wh; uh � whÞ ¼ ahðu�wh; uh �whÞ
� ðahðu; uh � whÞ � ahðuh; uh � whÞÞ
� Mku�whkVkuh � whkV
þ jahðu; uh � whÞ � lhðuh �whÞj

where we have used that ah is uniformly continuous on V . This gives, using (6.10), and dividing by kuh �whkV

kuh � whkV �
M

�
ku� whkV þ

1

�

jahðu; uh �whÞ � lhðuh � whÞj
kuh � whkV

;

which leads to

kuh � whkV �
M

�
ku�whkV þ

1

�
inf
vh2Vh

jahðu; vhÞ � lhðvhÞj
kvhkV

:

Eventually, the triangle inequality ku� uhkV � ku� whkV þ kuh � whkV leads to (6.9) by taking C ¼ maxfM� þ 1; 1
�g.
�

Compared to Céa’s lemma, Strang’s lemma measures not only the interpolation error, but also how well the
discretized problem approaches the exact one. Indeed, this latter term would vanish if one replaces ah and lh by a and l

respectively.

6.1.3 Regularity

The regularity of the solution of (6.2) is a topic outside the scope of these notes. Without entering into details, let us
just mention that, up to now, the solution that has been built has only a H1 regularity (all derivatives of u are square
integrable on �). This regularity can be enhanced depending on the regularity of the right hand side f . We just mention
the following classical regularity result.

Theorem 6.1. Assume that � is convex or smooth2. Then if f 2 Hkð�Þ, the solution u of (6.2) belongs to Hkþ2ð�Þ
and, moreover,

9Cð!;�Þ > 0 such that kukHkþ2 � Cð!;�ÞkfkHk :

We refer the interested reader to [7] where a proof is given. Notice that we have given the general regularity result
(for all k) although we mainly use in practive this result for k ¼ 0, namely

f 2 L2ð�Þ ) u 2 H2ð�Þ:

2By this we mean C1. This can be improved by lowering the regularity to Ckþ2.
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As we shall see in the next section, this regularity property plays a very important role in the error estimation for the
finite element method.

6.1.4 Interpolation error with Lagrange’s finite elements

Eventually to complete this section, we recall without proof the classical estimation of the interpolation error when
one uses the conformal finite element Pk method with polynomials of degree k 
 1 on triangular conformal meshes.

Proposition 6.1. Assume � is a bounded polyhedral domain of R2 meshed with a regular family of triangulations T h.
Take u 2 Hkþ1ð�Þ, and Vh ¼ PkðT hÞ. Then one has the estimation

8h > 0; ku� IhðuÞkHlð�Þ � Chkþ1�ljujHkþ1ð�Þ

for all l � k þ 1.

In the preceding lemma, we have called Ih : H2ð�Þ ! PkðT hÞ the interpolation operator. For the proof of this result,
we refer the reader to classical textbooks on finite elements like [3] or [6]. We nevertheless give a few hints. The main
idea is to prove the same kind of estimation on a reference simplex K̂

9C > 0;8û 2 Hkþ1ðK̂Þ; kû� IhðûÞkHkþ1ðK̂Þ � CjûjHkþ1ðK̂Þ:

(This is usually done by showing that the two norms k � kHkþ1ðK̂Þ, and j � jHkþ1ðK̂Þ þ kIhð�ÞkHkþ1ðK̂Þ are actually equivalent
on Hkþ1ðK̂Þ. Applying this to û� IhðûÞ leads to the desired inequality.) It then follows that for all l � k þ 1,

9C > 0; 8û 2 Hkþ1ðK̂Þ; kû� IhðûÞkHlðK̂Þ � CjûjHkþ1ðK̂Þ;

where the first norm is now the Hl norm. Eventually, one has to see that both terms do not scale identically. More
precisely, calling u the map defined by uðxÞ ¼ ûðhxÞ; 8x 2 K̂, one has

jû� IhðûÞjHlðhK̂Þ ¼ h1�ljû� IhðûÞjHlðK̂Þ

� Ch1�ljûjHkþ1ðK̂Þ

¼ Chkþ1�ljujHkþ1ðhK̂Þ:

Summing the obtained inequality (after having squared it) on all the simplices of the triangulation and on all 0 � l � k

leads to the desired result.

Remark 6.1. Notice that the preceding interpolation inequality leads to an estimation of the L2 norm

9C > 0;8u 2 Hkþ1ð�Þ; ku� IhðuÞkL2 � Chkþ1jujHkþ1 :

From this interpolation theory together with Céa’s (or Strang’s) lemma, one can estimate the error between the exact
and approximate solutions.

Theorem 6.2. Let f 2 Hk�1ð�Þ. Then the finite element solution uh satisfies the error estimate

ku� uhkH1 . hkkfkHk�1 :

In particular taking k ¼ 1 and P1 finite elements leads to the estimate

ku� uhkH1 . hkfkL2 :

Proof. From the regularity result, we know that u 2 Hkþ1ð�Þ. Then, using Céa’s lemma, we get

ku� uhkH1 . inf
wh2Vh

ku� whkH1

. hkjujHkþ1

. hkkfkHk�1 : �

Remark 6.2. Notice that the degree of the Lagrange finite element used is intimately linked to the regularity of the
exact solution u to the problem. Indeed, the estimation given before is useless if f =2 Hk�1. In that case, this means that
using Pk finite element is useless. For instance, if f 2 L2 but f =2 H1, then the optimal error is obtained using the P1

finite element method.

Notice that so far we have only estimated the H1 distance between the exact and approximate solutions. Although a
better estimate exists for the L2 norm for interpolation, Céa’s lemma is a priori wrong when dealing with L2 norms. We
end this section with the so-called Aubin-Nitsche’s lemma which permits us to estimate the L2 norm error between the
solution to the exact problem u and the approximate solution uh.

Lemma 6.3 (Aubin-Nitsche). Assume that u 2 Hkþ1ð�Þ. Then,
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9C > 0; ku� uhkL2 � Chkþ1jujHkþ1 :

Proof. We start by noticing that

ku� uhkL2 ¼ sup
g2L2

R
�
ðu� uhÞgdx
kgkL2

:

Now, we introduce the (unique) solution vg to the problem

Find v 2 V ; such that aðw; vgÞ ¼
Z

�

gwdx:

Notice that this is not the same problem as before since the unknown is in the right hand side of a. More precisely, it is
easily seen that vg solves

�divð!T ðxÞrvgÞ ¼ g in �;

u ¼ 0 on @�:

8><
>: ð6:11Þ

In particular, the regularity Theorem 6.1 applies and g 2 L2ð�Þ ) vg 2 H2ð�Þ and more precisely,

kvgkH2 � CkgkL2 : ð6:12Þ

Inserting w ¼ u� uh leads to Z
�

ðu� uhÞgdx ¼ aðu� uh; vgÞ

¼ aðu� uh;vg � whÞ

for all wh 2 Vh, since we know that aðu� uh;whÞ ¼ 0. But, since vg 2 V , we have (taking for instance wh ¼ IhðvgÞ),

jaðu� uh; vg � IhðvgÞÞj . ku� uhkVkvg � IhðvgÞkV
. hkþ1jujHkþ1 jvgjH2

. hkþ1jujHkþ1kgkL2 ;

in view of (6.12). Therefore we get Z
�

ðu� uhÞgdx . hkþ1jujHkþ1kgkL2 ;

and

ku� uhkL2 ¼ sup
g2L2

R
�
ðu� uhÞgdx
kgkL2

. hkþ1jujHkþ1

which proves the lemma. �

Remark 6.3. For the Aubin-Nitsche’s lemma, the hypotheses are those of Céa’s lemma. In other words, the discrete
and continuous problems should be the same. In that case, we indeed get an improvement for the approximation of the
L2 norm compared to the H1 norm. When instead we are under the hypotheses of Strang’s lemma (that is to say the
discrete and continuous problems are no longer the same), we can not rely on Aubin-Nitsche’s lemma and have no
better estimate for the L2 norm.

6.2 Application to homogenization problems

We now turn to the application of the preceding results to the homogenized model problem (6.1). We recall that
homogenization theory provides an expansion of the solution u to (6.1) as

uðxÞ ¼ u0ðxÞ þ "u1 x;
x

"

� �
þ � � �

in H1ð�Þ, where u0 solves the homogenized problem3

3For the sake of simplicity of notation, we here have denoted by �A what was called Aeff in the preceding chapters. This will prove more efficient when

we will have to compute the entries of the tensor, or more precisely of its discretized version.
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�divð �Aru0Þ ¼ f in �;

u0 ¼ 0 on @�;

8><
>: ð6:13Þ

and

8ðx; yÞ 2 �� Y ; u1ðx; yÞ ¼
X2

i¼1

@u0

@xi
ðxÞwiðyÞ

and wi are the correctors, solutions to

�divyðAðyÞðrwiðyÞ þ eiÞÞ ¼ 0 in Y ;

wi is Y-periodic;

Z
Y

wiðyÞdy ¼ 0:

8>><
>>: ð6:14Þ

The homogenized tensor �A is also given in terms of A and wi by the formula

�Ai; j ¼
Z
Y

AðyÞðei þ rwiÞ � ejdy

¼
Z
Y

AðyÞðei þ rwiÞ � ðej þ rwjÞdy:

At this level, we have two sources of error:
. The error that one makes when approximating the exact solution u by a multiscale expansion uðxÞ 	 u0ðxÞ or

uðxÞ 	 u0ðxÞ þ "u1 x; x"
� 	

or similar expansions. This error is quantified in L2 or H1 norms and is evaluated in terms
of ";

. The error that one makes when approximating the above terms (u0, u1, etc.) by their corresponding finite element
approximations. These errors are estimated again in L2 or H1 typically and depend on the mesh size h. For this part
we need to use the preceding results.

In what follows, we start with the second estimation, and turn to the first afterwards.

6.2.1 Error estimation of the finite element approximations of u0 and u1

When solving the homogenized problem for u0, one usually computes an approximate homogenized tensor �Ah by
solving the variational problem corresponding to (6.13), that is to say

Find wi 2 H1
#ðYÞ;8v 2 H1

#ðYÞ;
Z
Y

AðyÞrwi � rvdy ¼ �
Z
Y

AðyÞei � rvdy ð6:15Þ

and more precisely, its discretized version.
The theory of approximation, just stated in the previous section shows that there is an error estimation, when one

solves (6.15) on a regular family of triangulations ðT hÞh>0 and using the Pk finite elements. Namely, one has

kwi � wh;ikH1ð�Þ � ChkjwijHkþ1ð�Þ

provided that wi 2 Hkþ1ðYÞ. Since the coefficients of the tensor A are assumed to be smooth, it is easily seen that the
correctors wi are regular, in the sense that wi 2 C1ðYÞ. Using a Pk finite element method thus leads to

kwi � wh;ikH1ð�Þ � Chk:

Moreover, while computing the homogenized tensor �A, one therefore makes an error which can be estimated on each
coefficient

j �Ai; j � �Ah;i; jj ¼
Z
Y

ðAðyÞðei þ rwiÞ � ej � AðyÞðei þrwh;iÞ � ejÞdy
����

����
.

Z
Y

AðyÞðrðwi � wh;iÞÞ � ejdy
�� ��

. kwi � wh;ikH1

. hk: ð6:16Þ

Of course, for less regular coefficients AðyÞ, one gets lower order errors in the computation of A.

Remark 6.4. We stress the fact that since Y is a unit cube, it is easy to have a regular family of triangulations of Y . It
suffices to divide Y into small squares of edgelength h, and to further subdivide those small squares into triangles.

We now turn to the problem of the approximation of u0. In our finite element setting, we have to estimate the error
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between the solution to (6.13) and the corresponding approximate problem. With this aim, we write the variational
formulation of (6.13), namely, setting V ¼ H1

0ð�Þ

Find u0 2 V ;8v 2 V ;

Z
�

�Aru0ðyÞ � rvðyÞdy ¼
Z

�

f ðyÞvðyÞdy; ð6:17Þ

the discrete variational formulation becomes

Find u0;h 2 Vh;8vh 2 Vh;

Z
�

Ahru0;hðyÞ � rvhðyÞdy ¼
Z

�

f ðyÞvhðyÞdy: ð6:18Þ

and the error estimation reads as follows.

Lemma 6.4. Let ðT hÞh be a regular family of triangulations of �. Assume that there exists k 
 1 such that f 2
Hk�1ð�Þ and that we use the Pk Lagrange finite element method to compute numerically u0. Then

ku0 � u0;hkH1 . hkkfkHk�1 :

Proof. We are exactly in a position to apply Strang’s lemma. Indeed, we set

8u; v 2 V ; aðu; vÞ ¼
Z

�

�AruðyÞ � rvðyÞdy;

8uh; vh 2 Vh; ahðuh; vhÞ ¼
Z

�

�AhruhðyÞ � rvhðyÞdy;

8v 2 V ; lðvÞ ¼ lhðvÞ ¼
Z

�

f ðyÞvðyÞdy:

Then, applying Strang’s lemma, we get the estimate

ku0 � u0;hkV � C inf
wh2Vh

ku0 �whkV þ sup
vh2Vh

jahðu0; vhÞ � lhðvhÞj
kvhkV

� �
: ð6:19Þ

The first term of the right hand side follows classical interpolation estimation while for the second, we have

ahðu0; vhÞ � lhðvhÞ ¼
Z

�

�Ahru0ðyÞ � rvhðyÞdy�
Z

�

f ðyÞvhðyÞdy

¼
Z

�

ð �Ah � �AÞru0ðyÞ � rvhðyÞdy;

and therefore

jahðu0; vhÞ � lhðvhÞj � k �Ah � �Ak1ku0kVkvhkV :

Putting this in (6.19), we get

ku0 � u0;hkV � Cð inf
wh2Vh

ku0 �whkV þ k �Ah � �Ak1ku0kV Þ

� Chkku0kHkþ1

using (6.16) and the classical Pk finite element estimation. �

Remark 6.5. We stress the fact that we get a classical error estimation although we need to solve an auxiliary
problem. It is important to realize that the preceding estimate contains two terms. The first one which behaves
classically as for the usual elliptic problems and the second one which contains the estimation of the auxiliary problem.
In particular, in order to get the estimate, we have assumed that the mesh on Y that was used to solve the cell problem
has a space step h comparable to the one that is used to solve the homogenized problem. Moreover, the degree of the
finite element used is also important. It is easily seen and understandable that in order to get a higher order
convergence, one needs to use higher order finite elements not only for the homogenized problem, but also for the cell
problem, in order to get a better approximation of the homogenized tensor �A.

Remark 6.6. It is also interesting to notice that, having no equivalent of Aubin-Nitsche’s trick (because �A 6¼ �Ah), we
do not have a better estimate for the L2 norm.

It remains now to estimate the error between the solution u" to the original problem and the one built before.

6.2.2 Error analysis of the multiscale expansion

In this section we detail the results that were obtained by different authors. Most of the material exposed here can be
found in [12]. We remark that u0 can only be a good approximation of u" in L2 but certainly not in H1. Indeed, we know
from the classical theory, that u"! u0 weakly in H1 and strongly in L2. Moreover, the 2 scale homogenization gives
more information, (ðu"Þ" and ðru"Þ" being uniformly bounded in L2) namely, we know that
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u" � u0;

ru" � rxu0 þryu1:

Therefore, although ku" � u0kL2 tends to 0, we do not have that kru" �ru0kL2 tends to 0 (since ru" � ru0 2-scale
converges to ryu1). As far as the H1 norm is concerned we know that

u"ðxÞ � u0ðxÞ � "u1 x;
x

"

� �
! 0

strongly in H1. This gives another way to understand the preceding remarks, since we get

"u1 x;
x

"

� �
! 0 in L2

r "u1 x;
x

"

� �� �
¼ "rxu1 x;

x

"

� �
þ ryu1 x;

x

"

� �
*

Z
Y

ryu1ðx; yÞdy weakly in L2:

Again, although
R
Y
ryu1ðx; yÞdy ¼ 0 (since u1 is a y-periodic function) the convergence is only weak, and it is easily

seen that

r "u1 x;
x

"

� �� �����
����
L2

! kryu1ðx; yÞkL2ð��YÞ 6¼ 0 as "! 0:

Moreover, the preceding remarks are not quantitative. In particular, we do not know the behavior (say in terms of
powers of ") of these convergences. The theorems of this section give this behavior.

Theorem 6.3. We have

u"ðxÞ � u0ðxÞ � "u1 x;
x

"

� �����
����
H1

.

ffiffiffi
"
p
: ð6:20Þ

Corollary 6.1. We have

ku"ðxÞ � u0ðxÞkL2 . ":

Theorem 6.3 as well as Corollary 6.1 are consequences of a much more difficult and precise theorem given below.
In order to explain it, let us remark that the approximation u0ðxÞ � "u1ðx; x"Þ does not satisfy the Dirichlet boundary
conditions on @�. Indeed, there is no reason that u1 should vanish on the boundary. The idea is therefore to introduce a
corrector to the boundary condition. Namely, we introduce �" solution to

�div A
x

"

� �
r�"

� �
¼ 0 in �;

�" ¼ u1 x;
x



� �
on @�:

8>>><
>>>:

ð6:21Þ

It is now clear that

u"ðxÞ � u0ðxÞ � " u1 x;
x

"

� �
� �"ðxÞ

� �
¼ 0 on @�:

We are now in a position to state the theorem.

Theorem 6.4. Suppose that u0 2 H2. Then

u"ðxÞ � u0ðxÞ � " u1 x;
x

"

� �
� �"ðxÞ

� �����
����
H1

. "ku0kH2 :

Proof. As we shall see, the proof is rather complicated and follows several steps. We first rewrite the problem as

v" ¼ A
x

"

� �
ru";

�divðv"Þ ¼ f :

Making a (formal) multiscale expansion of the preceding equations, we get

u" ¼ u0 x;
x

"

� �
þ "u1 x;

x

"

� �
þ � � �
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v" ¼ v0 x;
x

"

� �
þ "v1 x;

x

"

� �
þ � � �

Putting these expansions in the preceding equations, and equating the terms with the same power in ", we get

AðyÞryu0 ¼ 0; ð6:22Þ
�divyv0 ¼ 0; ð6:23Þ

AðyÞðryu1 þ rxu0Þ ¼ v0; ð6:24Þ
�divyv1 � divxv0 ¼ f : ð6:25Þ

Equation (6.22) gives as usual the fact that u0 does not depend on y, while (6.23) and (6.24) together give the cell
problem. The homogenized problem is usually obtained by integrating (6.25) over the cell Y .

Guided by this computation, we thus define

v0ðx; yÞ ¼ AðyÞðrxu0ðxÞ þ ryu1ðx; yÞÞ:

Since u0 and u1 are linked by the cell problem, we know that divyv0 ¼ 0. On the other hand, we also know (since
everything depends only on the slow variable x) that divy �Aru0 ¼ 0. Therefore, divyðv0 � �Aru0Þ ¼ 0, and since we are
in dimension 2, there exists qðx; yÞ such that

v0 � �Aru0 ¼ r?y qðx; yÞ:

Here, we have denoted by r?y ¼ ð� @
@y2
; @@y1
Þ the 2D curl. It is easily seen that q is Y-periodic and depends linearly on

rxu0, so that one has the estimate

sup
y2Y
jrxqðx; yÞj .

X
i; j

@2u0

@xi@xj
ðxÞ

����
����; a:e: in �: ð6:26Þ

We now set v1ðx; yÞ ¼ r?x qðx; yÞ, and notice that

divyv1 ¼ divyr?x q

¼ �
@2q

@y1@x2

þ
@2q

@y2@x1

¼ �divxr?y q

¼ �divxðv0 � �Aru0Þ
¼ �divxv0 � f ð6:27Þ

so that we recover (6.25).
We also have (due to (6.26)) that

sup
y2Y
jv1ðx; yÞj .

X
i; j

@2u0

@xi@xj
ðxÞ

����
����; a:e: x 2 � ð6:28Þ

and from the definition of v1, divxv1ðx; yÞ ¼ 0 in �� Y .
Now, we set

z"ðxÞ ¼ u"ðxÞ � u0ðxÞ � "u1 x;
x

"

� �
;

�"ðxÞ ¼ A
x

"

� �
ru"ðxÞ � v0 x;

x

"

� �
� "v1 x;

x

"

� �
;

and we compute

A
x

"

� �
rz"ðxÞ � �"ðxÞ ¼ �A

x

"

� �
ru0ðxÞ þ ryu1 x;

x

"

� �� �

� "A
x

"

� �
rxu1 x;

x

"

� �
þ v0 x;

x

"

� �
þ "v1 x;

x

"

� �

¼ " v1 x;
x

"

� �
� A

x

"

� �
ru1 x;

x

"

� �� �
:

Using (6.28), we therefore get

A
x

"

� �
rz"ðxÞ � �"ðxÞ

����
����
L2

. "ku0kH2 ;

while
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div �"ðxÞ ¼ div A
x

"

� �
ru"ðxÞ � v0 x;

x

"

� �
� "v1 x;

x

"

� �� �

¼ � f ðxÞ � divxv0 x;
x

"

� �
� "�1divyv0 x;

x

"

� �

� " divxv1 x;
x

"

� �
� divyv1 x;

x

"

� �

¼ � f ðxÞ � divxv0 x;
x

"

� �
þ 0þ 0� divyv1 x;

x

"

� �
¼ 0 ð6:29Þ

from (6.27).
Eventually, since w" ¼ z" þ "�" 2 H1

0 ð�Þ, one hasZ
�

A
x

"

� �
rw" � rw"dx ¼

Z
�

A
x

"

� �
rðz" þ "�"Þ � rw"dx

¼
Z

�

A
x

"

� �
rz" � rw"dx

¼
Z

�

A
x

"

� �
rz" � �"

� �
� rw"dxþ

Z
�

�" � rw"dx

¼
Z

�

A
x

"

� �
rz" � �"

� �
� rw"dx

in view of (6.29), and the fact that w" 2 H1
0ð�Þ. We deduce from this that

krw"kL2 . A
x

"

� �
rz" � �"

����
����
L2

. "ku0kH2

which is the desired result. �

Proof of Corollary 6.1. We start with

u"ðxÞ � u0ðxÞ � " u1 x;
x

"

� �
� �"ðxÞ

� �����
����
H1

. "ku0kH2 ;

from which we deduce, by the Poincaré inequality, that

u"ðxÞ � u0ðxÞ � " u1 x;
x

"

� �
� �"ðxÞ

� �����
����
L2

. "ku0kH2 :

But we have

u1 x;
x

"

� �����
����
L2

. ku0kH1 ;

and (this is somehow tricky)

k�"ðxÞkL2 . u1 x;
x

"

� �����
����
L2ð@�Þ

. kru0kL2ð@�Þ . ku0kH2ð�Þ:

We deduce from this that

ku"ðxÞ � u0ðxÞkL2 . "ku0kH2

as required. �

Proof of Theorem 6.3. We show that

"kr�"ðxÞkL2 .

ffiffiffi
"
p

from which (6.20) follows immediately. But

"kr�"ðxÞkL2 . " u1 x;
x

"

� �����
����
H1=2ð@�Þ

. " u1 x;
x

"

� �����
����

1=2

L2ð@�Þ
ru1 x;

x

"

� �����
����

1=2

L2ð@�Þ

. "�
1

"

� �1=2
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where we have used interpolation for the second line and the fact that

ru1 x;
x

"

� �����
����
L2ð@�Þ

.
1

"
:

�

6.2.3 Global error

We combine here the results of both of the last sections. Namely, putting together the finite element approximation
error and the homogenization error, one proves the following theorem.

Theorem 6.5. With the preceding notation, we have

ku" � u0;hkL2 . ð"þ hÞku0kH2 :

Proof. The proof is quite obvious and simply relies on the fact that by the triangle inequality, one has

ku" � u0;hkL2 � ku" � u0kL2 þ ku0 � u0;hkL2

� ðC1"þ C2hÞku0kH2 :

The first estimation is a consequence of homogenization theory while the second one follows from Lemma 6.4. �

It is important to notice that there is no better estimation of ku0 � u0;hkL2 in contrast to the situation of Aubin-
Nitsche’s lemma. This is due to the fact that u0;h solves a problem which is only a hk approximation of the problem
solved by u0.

Turning now to the H1 norm, we have

Theorem 6.6. With the preceding notation, we have

u" � u0;h � "u1;h x;
x

"

� �����
����
H1

.

ffiffiffi
"
p
þ hk

� 	
ku0kH2 :

Proof. The proof is also a simple use of the preceding estimates. Indeed

u" � u0;h � "u1;h x;
x

"

� �����
����
H1

� u" � u0 � "u1 x;
x

"

� �����
����
H1

þ ku0 � u0;hkH1

þ " u1 x;
x

"

� �
� u1;h x;

x

"

� �����
����
H1

:

We already know that

u" � u0 � "u1 x;
x

"

� �����
����
H1

.

ffiffiffi
"
p
ku0kH2

and

ku0 � u0;hkH1 . hkku0kH2 :

Therefore it remains to estimate the last term. But since the correctors !i are uniformly bounded, it is easily seen that

" u1 x;
x

"

� �
� u1;h x;

x

"

� �����
����
L2

. "ku0 � u0;hkH1 . "hkku0kH2 :

Eventually,

" u1 x;
x

"

� �
� u1;h x;

x

"

� �����
����
H1

. ku0 � u0;hkH1 . hkku0kH2 ;

which leads to the result. �

A better approximation is obtained with the use of the boundary layer �". However, these correctors are not obvious
to compute since they involve the operator with the oscillating coefficients which probably make them seldom used in
practice. These details are outside the scope of the present notes and we refer the interested reader to [12] for more
details on this subject.

6.3 The multiscale finite element method (MFEM)

The multiscale finite element method has a wider range of application than the preceding method. In particular, it
easily applies to the case where the diffusion tensor A not only depends on the fast variable y ¼ x

" but also on the slow
variable x. The goal is still to try to catch the highly oscillating solutions (at scale ") with a mesh of size h� ", but, as
we shall see, there is no need to solve analytically the homogenized problem.
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6.3.1 Description of the method

The idea behind the multiscale finite element method is to precompute base functions that are oscillating. In the
sequel we work for simplicity with finite elements of low order k ¼ 1 but there is no intrinsic difficulty to extend the
method to higher degrees. We therefore consider a triangulation T h and the P1 base functions ð�iÞ1�i�N which are
globally continuous on T h, affine on each triangle K � T h functions and satisfy

�iðxjÞ ¼ �ij;

where ðxjÞ1� j�N are the vertices of the mesh and �ij is the Kronecker symbol. As we have already seen, solving the
discrete variational formulation with functions in the discrete space Vh ¼ vectf�ig does not lead to a good error
estimate because roughly speaking the base functions �i do not see the scale of the oscillations. The idea of the
multiscale finite element method is therefore to solve the classical variational formulation but with a different set of
base functions ð iÞ1�i�N which take into account the oscillations of the coefficients. More precisely we compute  i

such that for any triangle K � T h,

�div A
x

"

� �
r i

� �
¼ 0 in K;

 i ¼ �i on @K:

8>><
>>: ð6:30Þ

Of course it is easily seen that  ijK ¼ 0 if xi is not a vertex of K. Using the base functions ð iÞ1�i�N , we then solve the
discrete variational formulation as usual, namely, we set Wh ¼ vectf ig and solve

Find uh 2 Wh such that 8vh 2 Wh;

Z
�

A
x

"

� �
ruh � rvhdx ¼

Z
�

fvhdx: ð6:31Þ

Before turning to the error analysis, let us emphasize the numerical difficulties posed by the method from a practical
viewpoint. It should be remarked that the method is rather direct and straightforward beside two challenging tasks:

. The computation of the base functions  i on each triangle needs a finer mesh which is capable of catching the
oscillations and, therefore, whose mesh size is of order ". Although this seems difficult, these tasks are completely
independent from one triangle to another and thus the problem could be solved in parallel.

. At the end, the problem that needs to be solved has a size which is equal to N(the number of vertices in the mesh).
It is therefore reasonable.

. We also notice that, although the multiscale finite element method does not need A to be periodic in Y , the error
analysis given in the following section assumes this for simplicity.

6.3.2 Error analysis of the MFEM

The main theorem that we want to show in this section is the following.

Theorem 6.7. Let u" be the solution of the continuous problem (6.1), and uh the multiscale finite element solution
(6.31). Then one has the estimation

ku" � uhkH1 . hkfkL2 þ
"

h

� �1=2

:

Fig. 6.1. The multiscale Finite Element Method. On the mesh, one computes the base functions as oscillating solutions on a thinner
mesh.
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Before proceeding to the proof, let us remark that the first term is the classical error obtained for a finite element
method applied to a regular problem and is independent of ". However, the second term is not classical and clearly
shows that h must not be too small and in other words, non comparable to ". This is the so-called resonance
phenomenon (between h and ") in the literature.

Proof. The proof follows several steps. We first remark that it is a consequence of Céa’s lemma and the interpolation
error estimation given below. �

Lemma 6.5 (interpolation error). Let u" be the solution of the continuous problem (6.1), and uI the multiscale
interpolant of the homogenized solution u0 with the base functions  i

uIðxÞ ¼
XN
i¼1

u0ðxiÞ iðxÞ: ð6:32Þ

Then one has the estimate

ku" � uIkH1 . hkfkL2 þ
"

h

� �1=2

:

Proof. Since  i solve (6.30), we can make the multiscale expansion of  i on any triangle K of the triangulation. This
gives

 i 	  0
i þ " 

1
i � "�

1
i

where  0
i ,  1

i , and �1i are solution to

�divð �Ar 0
i Þ ¼ 0 on K ð6:33Þ

 0
i ¼ �i on @K ð6:34Þ

 1
i ¼ �

X2

j¼1

!j

@ 0
i

@xj

�div A
x

"

� �
r�1i

� �
¼ 0 on K

�1i ¼  
1
i on @K

(!j are the corrector functions defined on the unit cell Y). Notice that (6.33) and (6.34) imply that actually  0
i ¼ �i. By

linearity of (6.32), we get a similar expression for uI

uI 	 u0
I þ "u

1
I � "�

1
I

with

�divð �Aru0
I Þ ¼ 0 on K ð6:35Þ

u1
I ¼ �

X2

j¼1

!j

@u0
I

@xj

�div A
x

"

� �
r�1I

� �
¼ 0 on K

�1I ¼ u1
I on @K:

Now, we remark that u0
I is the classical affine interpolant of u0 (indeed u0

I ðxÞ ¼
PN

i¼1 u0ðxiÞ 0
i ðxÞ ¼

PN
i¼1 u0ðxiÞ�iðxÞ).

We now make use of the following lemma.

Lemma 6.6. With the above notations, we have

kuI � u0
I � "u

1
I þ "�

1
I kH1 . "kfkL2 :

Proof of Lemma 6.6. We know from the previous theory, and more precisely Theorem 6.4 that on each triangle K of
the triangulation one has

kuI � u0
I � "u

1
I þ "�

1
I kH1ðKÞ . "ku0

I kH2ðKÞ ¼ "ku0
I kH1

since u0
I solves (6.35). Squaring this inequality and summing over all the triangles K of the triangulation gives

kuI � u0
I � "u

1
I þ "�

1
I kH1 . "ku0

I kH1 . "kfkL2 :

�
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Now, we make the multiscale expansion of u"

u" 	 u0 þ "u1 � "�1

where we know (still from Theorem 6.4)

ku" � u0 � "u1 þ "�1kH1 . "ku0kH2 . "kfkL2 :

We therefore deduce that

ku" � uIkH1 . ku0 � u0
I kH1 þ "ku1 � u1

I kH1 þ "k�1 � �1I kH1 þ "kfkL2 :

It remains to estimate the three terms of the right hand side. But we already know that

ku0 � u0
I kH1 . hkfkL2

from the classical finite element theory. Next, notice that the correctors !i are regular functions that satisfy
!i 2 W1;1ðYÞ. We therefore have

"ku1 � u1
I kL2ðKÞ . "krðu0 � u0

I ÞkL2ðKÞ . "hku0kH2ðKÞ

which after summation over all the triangles leads to

"ku1 � u1
I kL2 . "krðu0 � u0

I ÞkL2 . "hku0kH2 . "hkfkL2 :

On the oher hand, one has

"krðu1 � u1
I ÞkL2ðKÞ ¼ " r

X2

j¼1

!j

@u0

@xj
�
@u0

I

@xj

� � !�����
�����
L2ðKÞ

. " sup
j

kr!jðx="ÞkL1ðKÞ
@u0

@xj
�
@u0

I

@xj

����
����
L2ðKÞ

 !

þ " sup
j

k!jðx="ÞkL1ðKÞ
@u0

@xj
�
@u0

I

@xj

����
����
H1ðKÞ

 !

. krðu0 � u0
I ÞkL2ðKÞ þ "krðu0 � u0

I ÞkH1ðKÞ:

Summing again over the triangulation gives

"krðu1 � u1
I ÞkL2 . ðhþ "Þku0kH2 . ðhþ "ÞkfkL2 :

For the last term, we use the previous estimation of the correctors �. Namely

"k�1 � �1I kH1 � "k�1kH1 þ "k�1I kH1 :

On the one hand, we know that k�1kH1 . ku1kH1=2ð@�Þ . "
�1=2, while on each triangle K, one has k�1I kH1ðKÞ .

ku1
I kH1=2ð@KÞ and from interpolation

ku1
I k

2
H1=2ð@KÞ . ku

1
I kL2ð@KÞkru1

I kL2ð@KÞ:

But, ku1
I kL2ð@KÞ . kru0

I kL2ð@KÞ . h1=2 and kru1
I kL2ð@KÞ . "

�1kru0
I kL2ð@KÞ . h1=2"�1. We therefore deduce that

"k�1I kH1 . "
X
K2�h

ðh1=2h1=2"�1Þ

 !1
2

.

ffiffiffi
"

h

r
since there are Oð1=h2Þ triangles in the mesh.

Putting all the pieces together leads to

ku" � uIkH1 . hkfkL2 þ "hkfkL2 þ ðhþ "ÞkfkL2 þ
ffiffiffi
"
p
þ

ffiffiffi
"

h

r
which is the desired result in view of "� h� 1. �

The estimate given above shows a new feature. Indeed, if h is of the order of ", then the estimate breaks down. This
phenomenon, usually called resonance implies that " must be small compared to h. Although this is clearly the goal of
the method (to catch oscillations at a much finer scale than the mesh-scale) one must pay attention to this in practice.
Many more details can be found in [10].
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6.4 Conclusion

We have presented a small tour on the estimation for finite element method for homogenization problems. Applying
the classical finite element method to the original problem is likely to fail due to the fine scale of the oscillations.
Instead one can either compute the 2-scale limit (at order 1 and "), or use the so-called multiscale finite element method
for which the base functions are recomputed on each triangle of the triangulation. The extra work leads to much better
error estimates.
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