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Rotating Waves in a Model of Delayed Feedback Optical System
with Diffraction
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We study a delayed parabolic functional differential equation on a circle that is coupled with an initial value
problem for the Schrodinger equation. Such equations arise as models of nonlinear optical systems with a time-
delayed feedback loop, when diffusion of molecular excitation and diffraction are taken into account. The goal of
this paper is to prove the existence of spatially inhomogeneous rotating-wave solutions bifurcating from
homogeneous equilibria. We pass to a rotating coordinate system and seek an inhomogeneous solution to an
ordinary functional differential equation. We find the solution in the form of a small parameter expansion and
explicitly compute the first-order coefficients. We also provide examples of parameters that satisfy the constraints
imposed throughout the analysis.
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1. Introduction

Nonlinear optics is one of the areas where self-organization occurs [1]. A typical nonlinear optical system with rich
spatio-temporal dynamics comprises a thin layer of nonlinear Kerr medium and a ring cavity (feedback loop). Phase
modulation in the nonlinear Kerr slice within an aperture Q C R? — real-valued function u(r, t) — is described by the
following parabolic equation [2]:

u(r,1) + u(r, 1) — DAu(r,t) = |App>, reQ, >0, (1.1)

augmented by boundary conditions on dQ and by an initial condition. Here, D > 0 is the diffusion coefficient; Agp is
the complex amplitude of the light field after it has passed the feedback loop. Equation (1.1) includes local coupling
caused by diffusion of molecular excitation in the nonlinear Kerr layer. Depending on the configuration of the feedback
loop, expression for the complex amplitude Arp can bring nonlocal interactions into (1.1): time delay and/or spatial
nonlocality (see [3,4]). Among the natural physical phenomena that can be taken into account in the mathematical
model are interference of the input and feedback light fields [6], and free propagation diffraction in the feedback loop
[5]. In the most general case, (1.1) is a delayed nonlinear partial functional differential equation [6].

The magnitude of nonlocalities together with the input light field intensity form an effective toolkit for controlling
the dynamics of the system, which is crucial for applications (see [7, 8]).

Whether Eq. (1.1) admits shape-preserving solutions is a matter of research. In [6], a periodic boundary value
problem for Eq. (1.1) was shown to possess rotating-wave solutions, when time delay and rotation of spatial arguments
are present. A similar equation was studied in case of Neumann boundary conditions and time delay [9]: only spatially
homogeneous rotating waves were proved to exist.

In the present paper we study a mathematical model of an optical system with a thin ring aperture, time-delay device,
interference, and diffraction. Our goal is to show that a one-dimensional periodic boundary value problem for Eq. (1.1)
on a circle admits spatially inhomogeneous rotating-wave solutions bifurcating from spatially homogeneous equilibria.
We prove the existence in a rotating coordinate system, seeking an inhomogeneous solution to an ordinary functional
differential equation. We find the solution in the form of a small parameter expansion and explicitly compute the
leading coefficients. We also provide examples of parameters that satisfy the constraints imposed throughout the
analysis.
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2. Boundary Value Problem

2.1 Problem statement
We consider a periodic boundary value problem for a nonlinear parabolic functional differential equation on a circle:

u; + u = Duy + K|1 4+ yA(x,z0; )2, u=ux,1), xe(0,2n), t>0, @1

ulx:O = u|x=2n7 ux'x:() = ux|x=271'
Equation (2.1) is an implementation of (1.1) for App = VK + yA(x, zo; €*=D)), where K > 0 is the nonlinearity
coefficient that is proportional to the input light field intensity, O < y < 1 is the interference visibility, T > 0 is the time
delay in the feedback loop, and zyp > O is the free propagation distance of the light field. Here, A(x, z; Ag) denotes the
solution to a periodic initial-boundary value problem for the linear Schrodinger equation that describes propagation of
light waves in the paraxial approximation:

A, +iAy =0,
Al = Ao(x), (2.2)
Alizo = Alizams  Axlizo = Axlizn-

For convenience, we shall introduce a linear operator B that propagates its input over the distance zy according to (2.2):

B: H(C) 5 Ay(x) = A(x, 73 Ao)|._, € H(C), Ao(x) € H3,(C). (2.3)

We now introduce the notation for functional spaces to be used in the sequel: H is the Lebesgue space L*(0, 2) of
real-valued functions with the usual inner product; H? is the Sobolev space W>2(0,27) of real-valued functions with
the following inner product and norm

21
(U, V)2 = f (v +u"V")dx,  ullpe = /{u, u)gp;
0

H%n = {u € H* : u(0) = u(2n),u'(0) = u/(27)} is a closed linear subspace of H*(©C) consisting of periodic functions.
Their complex-valued counterparts will be denoted by H(C), H*>(C), and H%n((C), respectively; complex inner products
are defined as (u, v)c = (u, v).

Lemma 2.1.
(1) The linear operator B defined by (2.3) has a complete orthogonal set of eigenfunctions {€™},.;. The
corresponding eigenvalues are A,(B) = i,
(2) It is an isometry of H(C).
(3) It is an isometry of H%n((C) if treated as B : H%U(C) — Hgﬂ((C).

Proof.
(1) Let Ag(x) = e™. The Fourier method applied to (2.2) readily gives A(x,z) = e e™%. The statement follows.

(2) Letu e H? (C) and e, = ﬁeim' According to the Parseval’s identity,

+00 +00 2

400
IBullfcy = Y [Busenduol = Y | D (tex)uc) (Bew endnc)

n=—o0 n=—00|k=—00
+00 , +00
inz 2 2 2
= Y e wednol = Y leduol” = lulje).
n=—0o0 n=—oo
(3) Lete, = mei’”‘. The proof is similar to (2). O

Boundary value problem (2.1) admits spatially homogeneous equilibria W(x, ) = W that can be found as roots of

F(W,K)=W —K(1 +2ycos W+ %) =0. (2.4)

Lemma 2.2. Suppose a pair (W,K) satisfies Eq. (2.4), and let the following nondegeneracy condition hold
1+ 2KysinW # 0. (2.5)
Then there exists a |y > 0 such that for u € (— o, o) a solution (W(w), K()) to Eq. (2.5) is defined and has the form
KW =K+p, W) =W+Win+Wop?+....
Proof. 1t follows from (2.5) that g—g, low &) # 0. The statement is then a consequence of the analytic implicit function
theorem. (]

We now bring boundary value problem (2.1) to the local form in the vicinity of a spatially homogeneous equilibrium



Rotating Waves in a Model of Delayed Feedback Optical System with Diffraction 189

W(w) by setting u(x, 1) = W(w) + v(x, 1):
v+ v = Dug — W) + K(w)|1 + ye B D2,

(2.6)
Vly=0 = Vy=0ms  Uxlx=0 = Vxly=2r-
Extracting linear in v terms we can obtain the following representation of (2.6):
Vi + v = Dvg + L(p)v(t = T) + F(u(t — T), ), 2.7
where L(u) and F(-, ) are operators of the form
Lpyw = =2yK(wlIml(y + ™")Buw], (2.8)
F(w, p) = yK(W{2Re[(y + " ")B(e" — iw — D] + y|B(e"™ — DI}. 2.9)
Lemma 2.3. Let the assumptions of Lemma 2.2 hold. Then the operator L(i) can be expanded in the vicinity of
uw=0as
L) = Lo + Ly + 1°La(w), (2.10)
where

Low = —2yKIm[(y + ¢"\Bw),
Liw = —2y{KRe[We" Bw] + Im[(y + ¢ )Bw]},
IL(wwlly < Collwlly, Yw € Hj,.

Proof. Some algebra applied to (2.8) yields
L(wyw = =2¢(K + )Iml(y + e'W“”)B(w)]
= [ = eV + pniw, " - ,tque’W + i
—2yRIm[(y + ¢")B(w)] — ZyM{KRe[WIelWB(wn + Iml(y + ¢™)Bw)])
— 2yp{Re[ W1V Bw)] + Rim[(—e™ — i, eV + " 0)B(w)]),

which proves expansion (2.10). To show that L,(u) is bounded it suffices to use inequalities

IL(wywly < CllBwly, w e H;

2>
where C = 2y{|W1| + 12(2 + ,u0|W1|)}, and recall that B is isometric according to Lemma 2.1. [l

Lemma 2.4. Let the assumptions of Lemma 2.2 hold. Then the operator F(w, ) is analytic from a neighborhood of
0,0) € H%n x R into H. The operator F and its Frechet derivatives Fy»,» vanish at the origin (0,0) for n < 2.

Proof. The formal Taylor series expansion of F(w, ) at the origin (0, 0) is

& + 1
F(w, u) = ZZ(H m) meW"(O, Ow" ™

n=0 m=0 n
Expanding ™ in its Taylor series and grouping the terms, one can show that Fy,»(0,0)w" ™ = 0 for n < 2. Hence,
the expansion can be rewritten as

F(w, M) Z Z w";/.’”(o O)w

n=2 m=

To prove the convergence of the Taylor series we derive an upper bound for the following expressions

k., n—k
[Bw"Bw" gy, w € Hz,,,

1
S — n>2 k=0,1,...,n
kl(n — k)!

The embedding theorems [10] show that
If8llie) < Collflncliglee).  Vf.g € H(C),
lw"le < G wlige,  Yw € H2.
Therefore, recalling that B is isometric, we can obtain the following bound
IBw*Bw" Iy < IBw Bw" ey < CollBwH g IBw" ey = Collw e lw" ™l < G5 lwlle.

This leads to a majorant for the Taylor series term corresponding to w":

n—1

) N C,
,!;", K +wQ2y(y + 1) + 2"y =2

1||

-1
2y + DK + 0 S 2 )Z e L

lwllze,
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which means that the Taylor series expansion of F(w, ) converges for any w € H%ﬂ and |u| < po (as W(w) is
undefined elsewhere). ([l

Direct computation gives a few Frechet derivatives:
Fuu(0,00w? = —2yK{Re[(y + ¢V)Bw?] — y|Bw|?},
Fuuw(0,0w’ = 2y {Im[(y + ¢ )Bw®] — 3yIm[BwBw]},
Fuun(0, 00w = 2y {RIm[ W™ Bw?] — Re[(y + ¢ )Bw*] + y|Bw|?}.

Hence, F(w, 1) can be represented as
1 1 1
Fw, 1) = 2 Fuu(0, 000 + 2 Fuu(0, 00" + = Fipuu (0, 00w + Fa(w, ), 2.11)
where F4(w, ) is analytic and contains terms w"u™, n > 2, n+m > 3.

2.2 Rotating coordinate system

We approach the construction of rotating-wave solutions by passing to a rotating coordinate system. To this end, we
introduce a family of rotation operators

R,f(x) = f((x+a)mod2n), aeR, feHC
and seek the solution v(x, f) in the form
v(x, 1) = R_gu(x), QeR, v eH;,. (2.12)
Lemma 2.5.
(1) Eigenfunctions of the rotation operator R, are the complex exponents {€"™},.,. The corresponding eigenvalues

are 1,(Ry) = ™.
(2) The operators B and R, commute.

Proof. Direct computation proves the statement. U
Ansatz (2.12) transforms boundary value problem (2.6) into

DV + Qv — v+ L(w)Rarv + F(Rarv, n) = 0,

v(0) = v(27w), V(0) =V(2n). (2.13)
3. Existence of Rotating Waves
3.1 Linearized operator
To pursue the study of boundary value problem (2.13) we now turn to the linear part of the equation:
Aqg H3v> DV + QU —v+ LoRorv € H, D(Aq) = Hj, . (3.1)
The H-adjoint operator of Ag is
Ay Hu>Du' —Qu —u+R_orljuc H, DY) =H;, (3.2)

with L defined as
Liu = 2yRim[(y + e~ ™)B*u].
Here, the operator B* acts according to
B* :E, ,(x) = E(x,z;E;).—g, E € Hgﬂ((C),

where E(x, z; E,) is the solution to a periodic initial-boundary value problem for the adjoint Schrodinger equation

Ez — ik, =0,

E|z=zo = EZo(x),

E|x:0 = E|x:27‘r’ EX|x:0 = EXlx:Zn'
Along with Ag we shall consider its complexification:

ASu=Aof +iAeg, (AS)'u= AL u=ALf +iALg, u=f+ige Hs (C).

Lemma 3.1. The linear operators Ag and Ag* possess a complete orthogonal in H(C) system of eigenfunctions
(™} ,.cz. The corresponding eigenvalues are
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L(AS) = —Dn® — 1 + inQ — 2yKe™ ™ {y sin(n*z9) + sin(W + n’zp)},

A . (3.3)
(A = —Dn® — 1 — inQ — 2yKe ™ {y sin(nzp) + sin(W + n’2)}.

Proof. According to Lemma 2.1 and Lemma 2.5,

B(Rqr cosnx) = ei”ZZORQT CoS nx,

B(Rqr sinnx) = einzZORQT sin nx.
Hence,

LoRqr cos nx + iLoRer sinnx = —2yKIm[(y + eiW)ei”ZZ°]ei"QTei”’“
and, thus,
Agei"x = (=Dn® — 1+ inQ — 2yKe™* Im[(y + eiW)ei"ZZO])ei”x.

The case of the adjoint operator is similar. (]

Lemma 3.2. Let the assumptions of Lemma 2.2 hold. Then dimensions of N (Ag) and N (AS*) are even.

Proof. According to (3.3), if /ln(Ag) = 0 then /l_,,(AS) = 0. So, only n = 0 can make dimensions odd. But condition
(2.5) states that

Redo(AS) = —(1 4 2yK sin W) # 0.
Hence, dimensions are always even. O
We now impose the main constraint on the parameters of the model.

Condition 3.3. Let Q2 = Q, be such that the system of equations

2yK cos(nQT){y sin(n’zo) + sin(W + n’z0)} = —Dn®> — 1,

2yK sin(nQT){y sin(n*zo) + sin(W + n’z)} = Qn
has exactly two solutions n = +n,, n, € N.
Lemma 3.4. Let Condition 3.3 hold. Then N(AG ) = N(AG") = span{e™*, ™},
Proof. According to Lemma 3.1, Condition 3.3 means that /l,,(Ag*) = 0 only for n = £n,. The statement follows. ]
Lemma 3.5. Let Condition 3.3 hold. Then R(Aq,) = N(AE*)L.

Proof. (1) We start with the R(Ag,) C N(A;‘z*)L inclusion. Let f € R(Ag,); then a function u exists in D(Agq,)
such that

Agu=f, (3.4)
and for all g € N(Ay, ) the following equality holds:
(f.8)n = (Ao u, 8)y = (u,AQ 8y =
(2) To prove the inverse inclusion we consider an element f € N(Ag*)L. We expand f into its Fourier series

f: Z fneinx, f—n :fn’ f;l* :f—n* =0

n=—0o0

and seek a solution u € D(Ag,) of (3.4) as a formal series
=y ue™. (3.5)

From (3.4) we obtain equations
un/ln(AQ*) = ﬁl,
that are uniquely solvable for n £ +£n,:

Jn
T —Dn? — 1+ inQ — 2yKe"T {ysin(nzo) + sin(W + n?z0)}’

Uy U_, = Uy.

Setting u,, = u_,, = 0, we check that the element u defined by (3.5) indeed lies in D(Ag,). Parseval’s identity
gives
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o0

I & 1
2 2 e _ 4y 2 2 2
leellz = Noellyy + Nl = =~ E (4 7)™ = > E clful” = Clifllg

n=—o00 n=—o00
with
4
Lt . <cC
|—Dn? — 1 + inQ — 2yKe"T{y sin(nzy) + sin(W + n2z0)}|?

Hence, u € H>. To show periodicity it is sufficient to note that (3.5) and its termwise derivative converge
uniformly on [0, 27].

c(n) =

O
Corollary 3.6. R(Ag,) = N(Ag,)™ .
Corollary 3.7. R(Ag,) is closed in H.

Corollary 3.8. Let P: H%n —> R(Aq,) be the projection operator. Then Agq, : J’H%n —> R(Ag,) is continuously
invertible.

3.2 Existence theorem

In Section 2 we introduced two additional parameters that led us to boundary value problem (2.13): the small
perturbation u of the nonlinearity parameter K and the rotation speed €2 of the sought rotating-wave solution. These are
now genuinely included in the following definition.

Definition 3.9. Let S = (v,Q, 1) € H3 x R x R. We call the triplet S a solution to the boundary value problem
(2.13) if S turns (2.13) into identity.

It is evident that Sy = (0, 24, 0) is a solution. We will be considering the nontrivial perturbations of .
Condition 3.10. The following inequality holds:
—2yni [KW, cos(W + niz()) + sin(W + niz()) +y sin(nizo)][ZJ/I%T{sin(W + nizo) + ysin(nizo)} — cos(n, 2, T)] # 0.

Theorem 3.11. Let the assumptions of Lemma 2.2, Condition 3.3 and Condition 3.10 hold. Then an gy > 0 exists
such that for ¢ € (—e&, &) a twice continuously differentiable with respect to ¢ branch of solutions

S. = (v(x; 8), Qi + w(e), u(e)) € Hy, x R x R
is defined. Moreover, Se—o = So.

Proof. Consider a triplet S = (v(¢), 2 + w, u), where

1
v(e) = e(p+ &), @=—=cos(nx) € N(Ag.), &€ D(Ag)NN(Ag)" . (3.6)
JT
Plugging S into (2.13) and dividing by & # 0, we can get
Ag.&+ w(¢' + &) + L(wRar(¢ + &) — LoRa,1(p + &) + tF(Rare(p + £), 1) = 0. (3.7

Subspaces N(Ag,) = span{g, ¢’} and R(Aq,) = N(AQ*)L are invariant under the operators d/dx, L(11), Lo (since ¢ and ¢
are eigenfunctions of B). Therefore, we can project (3.7) onto the kernel and range:

Ag, £+ 0E + L()Raré — LoRo. 7€ + 1PF(Rarv(e), n) = 0 € R(Ag,),
(@, d) i + (L(WRard, §) i — (LoRao, 76, Py + HF(Rarv(e), 1), ¢)y =0 € R, (3.8)
(@, )y + (L(wWRar, ¢y — (LoRa, 16, ¢y + HF(Rarv(e), n), ¢y = 0 € R.
System (3.8) is equivalent to (3.7). It produces a nonlinear operator equation
FE o) =0, (3.9)
where the operator
F:PH: xRxRxR— R(Ag,) x R xR

is twice continuously Frechet differentiable in the vicinity of (0, 0, 0, 0).
We now seek an implicit function (£, w, 1)(g) from (3.9). To this end, we compute the Frechet derivative of ¥ at the
origin (0,0, 0,0) with respect to (£, w, 1):
Agq 0 0

(LoRq,1¢'.¢)  (LiRq.1¢, )

VF=| 0 (¢, ¢
(LoRq,7¢'.¢') (LiRq.1¢.¢')

+T
0 (¢.¢)+T
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According to Corollary 3.8, the linear operator Ag, : JPH%N —> R(Aq,) is continuously invertible. Thus, the linear
operator

VF: PH;, x Rx R — (Ag) x Rx R
is continuously invertible whenever the following matrix is nondegenerate:

VF, = ( (@, 0) + T{LoRa.1¢',¢)  (LiRo.1¢, ¢))
(@.¢) + T(LoRa,7¢,¢) (LiRa.rd.¢') )

It follows from Condition 3.10 that det VFy # 0. The statement of the theorem is then a consequence of the twice
continuously Frechet differentiable implicit operator theorem [11]. 0

3.3 Expansion coefficients

In the proof of Theorem 3.11 we constructed a twice continuously differentiable triplet (&, w, n)(e). It can be
expanded in powers of ¢ as follows:

5e) = e&1 + £’ + 0(e) € PH3,,
w(e) = ewy + &0, +0(e%) € R, (3.10)
n(e) = epy + 2 pup +0(e?) € R.

We then plug expansion (3.10) into Eq. (3.7) to get the identity:

d
Ag &(e) + w(e) e (¢ + &(&)) + Lo[Ra, T+we)r (P + &(€)) — R, 1(¢p + &(¢))] + (e)LiRq, 74wer(@ + &(€))

1
+ 12 (©La(u(e)Ra, T+oer (@ + £€) + - F(Ra, r+were(@ + §(2)), u(e)) = 0. (3.11)
From (3.10) we can deduce that
Ro.T+wery = Ra,1y + w(&)TRq. 1y + 0(w(e)T) = Ra,1y + e TRq, 1y + 0(8). (3.12)

The Taylor series (2.11) of the operator F(w, t) together with (3.12) allow us to expand the nonlinear term of (3.11) in
powers of &:

F(Ro.7+u(ere(@ + £(8)), j1(8)) = &2 F2 + & F3 + &' Fy(e), (3.13)

where

1
F = 2 Fuu(0, 0)Rq,r[¢°],

1 1
F3 = Fy(0,0)Rq, 7[¢%1] + @1 TF (0, 0)Rq, 7 (9] + 3 F,3(0,0)Rq,7[¢°] + 3 F,2,(0,0)Rq,7[¢* 111,

IFse)lly < C(X), ee€X, VX E (—e&p,&).

We can now proceed with computing the first-order expansion coefficients &}, w;, and . To this end, we collect the
linear in ¢ terms in (3.11):

Ag.& = —[wi(¢' + TLoRq,.1¢') + ui1LiRo.1¢ + F>l. (3.14)

By virtue of Corollary 3.6, Eq. (3.14) has a solution if and only if the right hand side is orthogonal to N(Ag, ); if a
solution &, € JPH%N exists, it is unique.

By definition, F; € span{l, cos(2n,x), sin(2n,x)} and is orthogonal to N(AB*) as a consequence. We, thus, get the
following solvability condition:

(01(¢' + TLoRq,7¢') + 11 LiR, 70, #)yy = 0,
(01(¢" + TLoRq.7¢") + 11 LiRa. 70, ¢ )y =

This is a system of two linear equations; its matrix coincides with V¥ from Theorem 3.11, which is nondegenerate
according to Condition 3.10. Therefore, Eq. (3.14) has a solution if and only if

w; =0, u; =0. (3.15)
The solution & € $H3_ can be sought in the form
& = co + c. cos(2nyx) 4 ¢ sin(2n,.x).

This leads to the following expression:
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Eigenvalues on the complex plane
15 T T T T T

n=+-3

Imaginary

10 [

L i i | |
-12 -10 -8 -6 -4 -2 0
Real

-15

Fig. 1. Eigenvalues A4,(Aq,) plotted for n € [—12,12]. The parameters are n, = 3, Q, = 0.96191, W =2.3562, K =4.7124,
y = 0.70711, D = 0.074009, T = 0.72577, and zy = 0.087266.

do a 21X
Sl= +Re|:7RQ* el *}$
Ao(Ag,) Ao, (Ag,) !

which is well defined due to Condition 3.3. Here,

1 . . 1 . N
ag = 7 yKcosW, a, = 7 yK[y(cos(4niz0) — 1) 4+ cos(W + 4niz0)].
T T

To find second-order coefficients, we shall update expansion (3.12) of Rgr using (3.15):
Ro.T+o@ery = Ra,1y + 02 TRo, 1Y + 0(£%).

We can now collect the 2 terms in (3.11):

Ag.& = —[wy(¢' + TLoRq,7¢') + 12LiRa,1¢ + F3]. (3.16)
Equation (3.16) has a solution if and only if w, and u, satisfy the following system of linear equations:

(02(¢" + TLoRq,7¢) + 2LiRa, 176, d)y = —(F3, @)y,

(02(¢" + TLoRq,7¢') + p2liRa, 179, ')y = —(F3, ¢ ).
The matrix V¥ is nondegenerate, so w, and p, can be found. To find the unique &,, one can solve

Ag & = —PF;.

4. Examples of Parameters

Below we present a few examples of parameters that satisfy the conditions of Lemma 2.2, Condition 3.3, and
Condition 3.10.



Rotating Waves in a Model of Delayed Feedback Optical System with Diffraction

Eigenvalues on the complex plane

Imaginary
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195

Fig. 2. Eigenvalues 1,(Aq,) plotted for n € [—18,18]. The parameters are n, =4, Q, = 0.16094, W =1.5708, K = 0.92703,
y = 0.83333, D = 0.007190, T = 4.0667, and zy = 0.098175.

e To show that =4n, is the unique pair of roots in Condition 3.3 it is sufficient to check only for
|n] < 2yK(y + 1.1)/2,, since for bigger values we have |ImAa,| > 0.2yK.

4.1

4.2

4.3

Example 1

The expression in Condition 3.10 involves W,. It can be computed as W; = %
1, Q. w K y D T 20
3 | 096191 | 2.3562 | 4.7124 | 0.70711 | 0.074009 | 0.72577 | 0.087266

Expression in condition of Lemma 2.2 equals to 5.721 # 0.
Sufficient to check for |n| < 2yK(y + 1.1)/2, = 11.896. Figure 1 illustrates that Condition 3.3 is satisfied.

Expression in Condition 3.10 equals to —3.2513 # 0.

Example 2

Expression in condition of Lemma 2.2 equals to 2.545 # 0.
Sufficient to check for |n| < 2yK(y + 1.1)/Q, = 17.696. Figure 2 illustrates that Condition 3.3 is satisfied.

1

2

~

w

N

K

Y

D

T

20

4

0.16094

1.5708
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Expression in Condition 3.10 equals to —35.170 # 0.

Example 3
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Eigenvalues on the complex plane
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Fig. 3. Eigenvalues 1,(Agq,) plotted for n € [—8, 8]. The parameters are n,, = 1, Q, = 5.2477, W =7.864, K = 6.882, y = 0.3878,
D = 0.009241, T = 0.335536, and zp = 0.003142.

e Expression in condition of Lemma 2.2 equals to 6.337 # 0.
e Sufficient to check for |n| < 2yK(y + 1.1)/2, = 1.422. Figure 3 illustrates that Condition 3.3 is satisfied.
e Expression in Condition 3.10 equals to —1.5138 # 0.
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