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The paper is devoted to the specific problem of continuum mechanics - numerical computation of the solution of
two-dimensional Navier–Stokes equations for viscous incompressible fluids. The author plans to use the
constructed numerical methods in hemodynamics to compute blood flow in elastic vessels. The support operators
technique was chosen to construct the methods because it allows to construct conservative numerical methods,
which can be relatively easy implemented on unstructured meshes. These properties are very important in
hemodynamics. The whole family of such conservative methods was built. One of the methods was tested on the
problem of fluid flow between two plane-parallel plates with different values of Reynolds number.
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1. Introduction

This paper describes one of the ways to approximate two-dimensional Navier–Stokes equations for viscous
incompressible fluids, based on the finite volume method (FVM). Though there are many other ways to approach the
equations, including the finite element method, the FVM was chosen because of several reasons: it allows to construct
schemes with a very important property of conservativity. In other words, it allows to construct schemes which
approximate different conservation laws (of mass, momentum, energy and others if needed). The FVM is also relatively
easy to implement on various unstructured meshes of complex domains, especially when the boundaries of such
domains are flexible. These properties of the FVM are important because the constructed schemes will be used in
hemodynamics to compute blood flow in vessels, which walls can expand or reduce depending on the pressure inside
and outside the vessels. Among several ways to construct the FVM the support operators method was chosen. It is
based on special homogenizations of mesh functions over different areas (such as cells and regions around nodes) and
on the idea that the mesh analogues of differential operators div, grad and others should have the same properties as the
differential operators (for example, Gauss’ theorem should work for them too). This approach was mostly inspired by
the works of A. Samarski, A. Favorski, V. Tishkin [1], V. Goloviznin [2], A. Koldoba [3] and others.

The paper is divided into two parts. The first part includes the detailed construction of the family of conservative
numerical methods for two-dimensional Navier–Stokes equations and describes a way of implementation of the
methods. The second part includes the results of some tests for one of the constructed methods: in particularly, it is
tested on the problem of fluid flow between two plane-parallel plates. The computations were conducted for flows with
different parameters, special focus was given on what happens with the flows with different Reynolds numbers.

2. Navier–Stokes Equations

Navier–Stokes equations describe the motion of viscous incompressible fluid. Their form in Euler coordinates [4]:

div v ¼ 0; ð2:1Þ

�
@v

@t
þ �ðv;rÞvþ grad p ¼ ��v; r 2 S; t > 0; ð2:2Þ

r 2 S; t > 0.
Here � is fluid’s density, v ¼ vðr; tÞ - fluid’s velocity, p ¼ pðr; tÞ - pressure, � - fluid’s coefficient of dynamic

viscosity, r - radius-vector of point in space, t - time, S - open domain. For the simplicity we will examine the two-
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dimensional case. Equation (2.1) is called the continuity equation and it represents the law of conservation of mass,
(2.2) - the motion equation and it represents the law of conservation of momentum.

It is assumed that there are no sources of fluid inside domain S, � is a scalar constant and there is also no external
force. Some boundary conditions are given on the boundary @S ¼ C and some initial conditions in the domain S [ C. It
is required to find sufficiently differentiable functions v; p, satisfying (2.1), (2.2) in S, boundary conditions on C and
initial conditions in S [ C.

Notice that in consequence of (2.1): �v ¼ grad div v� rot rot v ¼ �rot rot v.
Due to the fact that usage of differential equations requires the functions to be smooth enough, equations (2.1), (2.2)

do not describe the discontinuous motion of fluid. In order to construct a numerical method, which can approximate the
discontinuous motion of fluid, we will use one of the integral analogues of Navier–Stokes equations for incompressible
fluid [4]: I

C

ðvðr; tÞ; nÞ dl ¼ 0; 8t > 0 ð2:3Þ

�

Z
S

½viðr; t þ�tÞ � viðr; tÞ� dSþ �
Ztþ�t

t

I
C

ðvivðr; t0Þ; nÞ dl dt0 þ
Ztþ�t

t

I
C

pðr; t0Þ ni dl dt0

¼ ��
Ztþ�t

t

I
C

½rot vðr; t0Þ;n�i dl dt0; 8t > 0; �t > 0; i ¼ 1; 2; ð2:4Þ

where N - external unit normal to the contour line C, n1; n2; v1; v2 - x and y-components of external unit normal and
velocity in some fixed Cartesian coordinate system. System (2.1), (2.2) can be deducted from (2.3), (2.4), using two-
dimensional analogue of Gauss’ theorem [4], the average theorem and directing �t! 0.

Notice that system’s (2.3), (2.4) requirements of the differentiability of functions v; p are less strict than in system
(2.1), (2.2). Let’s approximate equations (2.3), (2.4).

3. Construction of Numerical Method

3.1 Discretization of the Domain and Variables

Let’s choose some bounded two-dimensional domain and build a random unstructured mesh on it with different
polygons as cells (see Fig. 1).

Let !h be a set of internal nodes of the mesh, �h - set of boundary nodes of the mesh, �h - set of cells of the mesh,
where h - maximal length of edges of the mesh.

Let’s also build a time mesh: !� ¼ ftn ¼ n� j n ¼ 0;Tg, where � - time step.
The variables in the system (2.3), (2.4) are a scalar function p and vector function v. Let’s put the values of scalar

functions to the cells (mass centres of the cells in particular), values of vector functions to the nodes. In other words, we
build two sets of mesh functions:

F! ¼ fa! j ! 2 !h [ �h; a! 2 R2g
F� ¼ f f� j � 2 �h; f� 2 Rg

Then pressure pðx 2 �; tnÞ � pn� 2 F� and velocity vðx!; tnÞ � vn! 2 F!.

Fig. 1. Example of an unstructured mesh.
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3.2 Approximation of Integral Equations

Due to the fact that scalars are put into cells and vectors - into nodes, it will be reasonable to approximate scalar
continuity equation (2.3) for every cell � 2 �h, and vector motion equation (2.4) for every internal node ! 2 !h.

3.2.1 Continuity Equation

Let’s fix any cell � of the mesh. Equation (2.3) must be valid not only for domain S, but also for every subdomain of
S. Let’s write down equation (2.3) in the moment of time t ¼ tn for the domain, which is bounded by chosen cell:I

@�

ðvðr; tnÞ;nÞ dl ¼ 0 ð3:1Þ

Now we will approximate the contour integral in (3.1) this way: integral over every edge of the polygon is
approximated using the trapezoidal rule [5] and the values of v in the polygon’s nodes.I

@�

ðvðr; tnÞ; nÞ dl �
Xm�

i¼1

vn�;i þ vn�;iþ1

2
;N�;i

� �
l�;i

Here m� is a number of edges in polygon �, l�;i - lenght of edge i, N�;i - external unit normal to edge i, v�;i - value of
vector mesh function v in node i of polygon �, v�;m�þ1 ¼ v�;1 (see Fig. 2).

Let’s define mesh operator DIV : F! ! F�:

ðDIV aÞ� ¼
1

S�

Xm�

i¼1

a�;i þ a�;iþ1

2
;N�;i

� �
l�;i; ð3:2Þ

where S� is the area of cell �. Then we have an approximation for the equation (3.1):

S�ðDIV vnÞ� ¼ 0; 8� 2 �h ð3:3Þ

Due to the trapezoidal rule, equation (3.3) approaches (3.1) with the third order of approximation accuracy. Notice that
if one sums equations (3.3) for two adjoining cells �1 and �2, one gets an equation, which approximates (3.1) for the
domain �1 [�2. Therefore, summing equation (3.3) for all cells of the mesh, we get the equation, which approaches
(2.3) in the moment of time tn.

3.2.2 DIV Operator and its Adjoint Operator

Let’s examine the invariant definition of the differential divergence operator [4]:

div a ¼ lim
jS0 j!0

1

jS0j

I
@S0

ða;nÞdl; ð3:4Þ

where S0 is the domain around the point, in which the operator is defined, jS0j - the area of this domain, n - the external
unit normal to the contour line @S0. Comparing (3.2) and (3.4) we can say that ðDIV vÞ� is an approximation of operator
div v in cell �, which in general has the first order of approximation accuracy on a random unstructured mesh (on a
quadrilateral mesh, where every internal node has exactly 4 adjoint cells, (3.2) has the second order of approximation
accuracy).

Now let’s examine the invariant definition of the differential gradient operator [4]:

Fig. 2. Template for DIV (m� ¼ 3).
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grad f ¼ lim
jS0j!0

1

jS0j

I
@S0

fn dl; ð3:5Þ

where the designations are similar to (3.4). Notice that there is a similar to (3.5) contour integral (more precisely its
components) in (2.4), so an integral of such kind has to be approximated.

It is known that for sufficiently smooth finite in domain S functions f and a this statement is valid:Z
S

f div a dS ¼ �
Z
S

ða; grad f Þ dS ð3:6Þ

Let’s define scalar products in the spaces of finite in domain S scalar ð f ; pÞ and vector ðu; vÞ functions:

ð f ; pÞ1 ¼
Z
S

f p dS;

ðu; vÞ2 ¼
Z
S

ðu; vÞ dS:

Then (3.6) can be rewritten:

ðdiv a; f Þ1 ¼ �ða; grad f Þ2 , grad ¼ �ðdivÞ�

Now we need to construct an operator GRAD: GRAD ¼ �ðDIVÞ�. For that we will form a so called control volume
around every internal node ! 2 !h. For every cell, which has ! as a node, we connect the mass center of the cell with
the middles of those edges of the cell, which have ! as one of the endpoints. The resulting polygon around ! we will
call the control volume of the node ! (see Fig. 3).

Let’s define mesh operator GRAD f : F�! F!:

ðGRAD f Þ! ¼
1

S!

Xm!
i¼1

f!;i �!;i;

where S! is the area of the control volume of !, m! - number of cells adjoint to !, f!;i - value of the scalar mesh
function f in surrounding cell i, �!;i - some vector coefficients.

Then we define scalar products in the spaces of mesh functions F� and F!:

ð f ; pÞ� ¼
X
�2�h

f�p�S�;

where the summation is conducted over all cells of the mesh,

ðu; vÞ! ¼
X
!2!h

ðu!; v!ÞS!;

where the summation is conducted over all internal nodes of the mesh.

Fig. 3. Template for GRAD (m! ¼ 5).
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Let’s choose coefficients �i for every internal node ! 2 !h, so the following equation were valid:

ðDIV a; f Þ� ¼ �ða;GRAD f Þ!;

which means: X
�2�h

f�
Xm�

i¼1

a�;i þ a�;iþ1

2
;N�;i

� �
l�;i ¼ �

X
!2!h

a!
Xm!
i¼1

f!;i �!;i:

Switching the order of summation in the left part, we finally get:

ðGRAD f Þ! ¼
1

S!

Xm!
i¼1

f!;i
1

2
ðl!;i�1N!;i�1 � l!;iN!;iÞ; ð3:7Þ

see Fig. 3 for the designations of l!;i and N!;i.

3.2.3 Operators GRAD and grad

Let’s show that:

S!ðGRAD f Þ! �
I
bC!

fn dl; ð3:8Þ

where bC! is some contour line around node !. Let’s examine node ! and one of the adjoint to it cells with a scalar
value f!;i in it (see Fig. 4).

It is easy to show that vector ðl!;i�1N!;i�1 � l!;iN!;iÞ is a normal to the edge, which connects nodes !1 and !2 and has
the same length as this edge. Then 1

2
ðl!;i�1N!;i�1 � l!;iN!;iÞ is a normal to the interval, which connects the middles of

edges !!1 and !!2, which is directed from node ! and has the same length as this interval, because the interval is the
midline of the triangle with !; !1; !2 as nodes. Then expression (3.8) approximates the contour integral over the
polygon around node !, which is pictured on Fig. 5 with green colour. The expression has the first order of
approximation accuracy, because in general mass centres (where values f!;i are) of surrounding ! cells are not situated
on the edges of the polygon bounded by bC!. Notice that operator GRAD does not approximate differential operator
grad on a random unstructured mesh, because contour integral in the invariant definition of grad (3.5) is approached
with error ¼ OðhÞ, and the area in the denominator is ¼ Oðh2Þ.

Due to the relatively small difference between contour lines bC! and C! (C! is the contour line, which bounds the
control volume of node !) we get:

S!ðGRAD f Þ! ¼
I
C!

fn dlþ OðhÞ

Contour lines bC! and C! are pictured with green and blue colours respectively on Figs. 4 and 5.

3.2.4 Motion Equation

Similarly to the continuity equation (2.3), the motion equation (2.4) must be valid for every subdomain of S. Let’s fix
some internal node ! 2 !h of the mesh and write down the equation for S! - the control volume of !, and t ¼ tn,
�t ¼ � ¼ tnþ1 � tn:

Fig. 4. A node with one adjoint cell.
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�

Z
S!

½viðr; tnþ1Þ � viðr; tnÞ� dSþ �
Ztnþ1

tn

I
C!

ðvivðr; t0Þ;nÞ dl dt0 þ
Ztnþ1

tn

I
C!

pðr; t0Þ ni dl dt0

¼ ��
Ztnþ1

tn

I
C!

½rot vðr; t0Þ; n�i dl dt0; i ¼ 1; 2: ð3:9Þ

At first we approximate integral over S and time integrals in (3.9):Z
S!

viðr; tnþ1Þ dS¼ S!ðvnþ1
! Þi þ OðhÞ;

Z
S!

viðr; tnÞ dS ¼ S!ðvn!Þi þ OðhÞ;

Ztnþ1

tn

I
C!

ðvivðr; t0Þ; nÞ dl dt0 ¼ ��1

I
C!

ðvivðr; tnþ1Þ;nÞ dlþ �ð1� �1Þ
I
C!

ðvivðr; tnÞ; nÞ dlþ Oð�2Þ

Ztnþ1

tn

I
C!

pðr; t0Þ ni dl dt0 ¼ ��2

I
C!

pðr; tnþ1Þ ni dlþ �ð1� �2Þ
I
C!

pðr; tnÞ ni dlþ Oð�2Þ

Ztnþ1

tn

I
C!

½rot vðr; t0Þ;n�i dl dt0 ¼ ��3

I
C!

½rot vðr; tnþ1Þ;n�i dlþ �ð1� �3Þ
I
C!

½rot vðr; tnÞ;n�i dlþ Oð�2Þ;

where 0 6 �1 6 1, 0 < �2 6 1, 0 6 �3 6 1 are some weighting coefficients.
Now there are only 3 types of integrals to approximate:

1)
H
C!

fn dl,

2)
H
C!

ða;nÞ dl, (notice that the contour line is different from (3.1))

3)
H
C!

½g;n� dl, where g ¼ f0; 0; gg can be considered as a scalar, which belongs to F�.

We also need to approximate differential operator rot a, so it could transform mesh functions from F! to F�. Notice
that the approximation of 1) has already been constructed (3.8):I

C!

fn dl � S!ðGRAD f Þ!

To approach 2) let’s define mesh operator DIV 0 : F!! F!:

ðDIV 0 aÞ! ¼
1

S!

Xm!
i¼1

a!;i þ a!

2
;N?;2!;i

� �
l?;2!;i þ

a!;i þ a!

2
;N?;1!;iþ1

� �
l?;1!;iþ1

� �
; ð3:10Þ

where m! is a number of cells adjoint to node !, a! - value of mesh function a in node !, a!;i - value of mesh function
a in node i of adjoint to ! nodes (two nodes are adjoint if they are endpoints of the same edge), N - unit normals,
l - lenghts (see the designations and numeration on Fig. 6).

Fig. 5. Contour lines bC! and C!.
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Defining DIV 0 that way can guarantee that:

S!ðDIV 0 aÞ! �
I
C!

ða; nÞ dl; ð3:11Þ

because the left side of (3.10) is the approximation of the contour integral based on the interpolation of vectors a over
the edges of cells and the rectangle method of numerical integration. Therefore, the approach (3.11) has the first order
of approximation accuracy.

Now let’s approximate the differential operator rot. For that we will need to use the invariant definition of this
operator, which can be deducted from the generalized Gauss’ theorem [4]:

rot a ¼ lim
jS0 j!0

1

jS0j

I
@S0

½a;n�dl; ð3:12Þ

where S0 is the domain around the point, in which the operator is defined, jS0j - the area of the domain, n - external unit
normal to contour line @S0.

For every cell � 2 �h we define mesh operator ROD : F!! F�:

ðROD aÞ� ¼
1

S�

Xm�

i¼1

a�;i þ a�;iþ1

2
; l�;i

� �
; ð3:13Þ

where S� is the area of the cell �, m� - number of nodes in the cell, l�;i - vector directed from node i to node iþ 1 of
the cell, a�;i - value of mesh function a in node i of the cell (see Fig. 7).

Expression on the right side of (3.13) is the approximation of the third component (it matches the axis, which is
orthogonal to the plane containing domain S) of the differential operator rot a in the mass center of cell �, because of
the statement, which is valid for every two-dimensional vectors a and n (if we consider them as vectors of three-
dimensional space with zero as third component):

Fig. 6. Templtate for DIV 0 (m! ¼ 5).

Fig. 7. Template for ROD (m� ¼ 3).
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½a; n�1 ¼ 0; ½a;n�2 ¼ 0; ½a; n�3dl ¼ ða; dlÞ;
and the approximation of the contour integral in (3.12) is based on the trapezoidal rule. Therefore, ROD a approaches
rot a with the first order of approximation accuracy.

Now let’s approximate the contour integral in 3). For that we will define mesh operator ROG : F�! F!:

ðROG gÞ! ¼
1

S!

Xm!
i¼1

g!;ifw2;i;�w1;ig; ð3:14Þ

where m! - number of cells surrounding node m!, g 2 F� is the third (and the only one non-zero) component of some
vector, situated in the mass centers of cells surrounding the node,

wi ¼ fw1;i;w2;ig ¼ l?;1!;i N
?;1
!;i þ l?;2!;i N

?;2
!;i ;

the designations are similar to the designations on Fig. 6.
Then (3.14), multiplied by the area of the control volume of the node, approaches the integral in 3) with the second
order of approximation accuracy because it is based on the rectangle method of numerical integration:

S!ROG g �
I
C!

½g;n� dl: ð3:15Þ

Joining (3.8), (3.11), (3.13) and (3.15), we get the approximation of the motion equation (3.9):

�S!ððvnþ1
! Þi � ðv

n
!ÞiÞ þ �1��S!ðDIV 0ðvivÞnþ1Þ! þ ð1� �1Þ��S!ðDIV 0ðvivÞnÞ!

þ �2�S!ððGRAD pnþ1Þ!Þi þ ð1� �2Þ�S!ððGRAD pnÞ!Þi
¼ ��3��S!ððROG ROD vnþ1Þ!Þi � ð1� �3Þ��S!ððROG ROD vnÞ!Þi; ð3:16Þ

8! 2 !h; i ¼ 1; 2;

0 6 �1 6 1; 0 < �2 6 1; 0 6 �3 6 1

Approximation (3.16) in general has the error ¼ OðhÞ þ Oð�Þ. Notice that, just like in (3.3), if we sum (3.16) for two
adjoining nodes !1; !2, we get the approximation of (3.9) for the domain S!1

[ S!2
. Therefore, summing equation (3.3)

for all internal nodes of the mesh will give us the equation, which approaches (2.4).

3.3 Numerical Method’s Properties

Joining (3.3) and (3.16) we get the approximation of problem (2.3), (2.4) with initial and boundary conditions:

S�ðDIV vnÞ� ¼ 0; 8� 2 �h; n ¼ 1;K;

�S!ððvnþ1
! Þi � ðv

n
!ÞiÞ þ �1��S!ðDIV 0ðvivÞnþ1Þ! þ ð1� �1Þ��S!ðDIV 0ðvivÞnÞ!

þ �2�S!ððGRAD pnþ1Þ!Þi þ ð1� �2Þ�S!ððGRAD pnÞ!Þi
¼ ��3��S!ððROG ROD vnþ1Þ!Þi � ð1� �3Þ��S!ððROG ROD vnÞ!Þi;

8! 2 !h; i ¼ 1; 2; n ¼ 1;K; ð3:17Þ

v! ¼ v0ðr!Þ; 8! 2 !h;

p� ¼ p0ðr�Þ; 8� 2 �h;

�vðv!Þ ¼ 0; 8! 2 �h;

�pðp�Þ ¼ 0; 8� 2 �h;

where r! is the radius-vector of node !, r� - radius-vector of the mass center of cell �, v0ðrÞ ¼ vðr; t0Þ, p0ðrÞ ¼
p0ðr; t0Þ - initial conditions, �v - some approximation of boundary conditions for v, �p - some approximation of
boundary conditions for p, �h - set of cells used to implement �p, which consists of extra layers of cells near the
boundary. The implementation of �p may be not uniform and depends on the type of the boundary conditions and the
type of used mesh.

3.3.1 Method’s Conservativity

As it has been noticed before, the fulfilment of (3.3) and (3.16) for every cell and internal node of the mesh results in
the satisfaction of the difference analogues of conservation laws (3.1) and (3.9) for every subdomain of S, which
consists of various cells and control volumes of the mesh. The satisfaction of these difference laws is called the
conservativity of the method. The conservativity means that the method not only approaches the solution of the
problem, but also it describes the whole new difference model of fluid - an analogue to the continuous model. This
difference model has various properties, such as scheme viscosity and others, which in general are different from their
continuous analogues. Such approach allows us to expect that the numerical and analytical solutions will be alike

206 AFANASIEV



even on coarse meshes.

3.3.2 Connection to the Differential Problem

Let’s modify equations (3.3) and (3.16):

ðDIV vnÞ� ¼ 0; 8� 2 �h; ð3:18Þ

�
ðvnþ1
! Þi � ðvn!Þi

�
þ �1�ðDIV 0ðvivÞnþ1Þ! þ ð1� �1Þ�ðDIV 0ðvivÞnÞ!

þ �2ððGRAD pnþ1Þ!Þi þ ð1� �2ÞððGRAD pnÞ!Þi
¼ ��3�ððROG ROD vnþ1Þ!Þi � ð1� �3Þ�ððROG ROD vnÞ!Þi; ð3:19Þ

8! 2 !h; i ¼ 1; 2:

Now let’s compare (3.18), (3.19) to (2.1), (2.2). Equation div v ¼ 0 gives us: ðv;rÞv ¼ fdivðv1vÞ; divðv2vÞg. Operators
DIV , GRAD, ROD, ROG were constructed so they could approximate contour integrals in equations (2.3), (2.4) and in
invariant definitions of the differential operators. Therefore, if the contour integrals are approached with relatively high
order of approximation accuracy (higher than the second order) then the mesh operators will approximate proper
differential operators and consequently (3.18), (3.19) will approach (2.1), (2.2). Notice that the constructed method
approaches only equation (2.1), because the contour integral in the invariant definition of grad is approached only with
the first order of approximation accuracy.

3.4 Implementation of the Method

3.4.1 Newton’s Method

As you can see in (3.16), if �1 6¼ 0 the motion equation’s approximation is non-linear with respect to velocity v. It
was decided to solve the non-linear system of equations using Newton’s iterative method [5].

If one needs to solve the system:

fðxÞ ¼ fðx1; . . . ; xnÞ ¼ 0;

where f ¼ f f1; . . . ; fng; fi are non-linear equations, then Newton’s method is described with the formulas:

f 0ðxkÞ½xkþ1 � xk� ¼ �fðxkÞ; ð3:20Þ

f 0 ¼

@ f1

@x1

@ f1

@x2

� � �
@ f1

@xn

..

. ..
. . .

. ..
.

@ fn

@x1

@ fn

@x2

� � �
@ fn

@xn

0
BBBBBB@

1
CCCCCCA
;

x0 is some initial point. The iterations continue until some accuracy is achieved.
The method converges if certain conditions are satisfied, including the proximity of the initial point and the solution. Its
convergence is quadratic. Notice that in case of linear equations Newton’s method requires only one iteration to
converge, so we can can formally use Newton’s method if �1 ¼ 0. The solution from the previous time step is always
taken as the initial point for the iterations on the next time step. That allows us to expect that the method will converge
if � is small enough.

3.4.2 Solving Linear Equations

Newton’s method requires us to solve certain system of linear equations (3.20). As operators DIV , GRAD, DIV 0,
ROD, ROG have limited templates (template is a set of nodes/cells of the mesh which appear in the operator),
the matrix of the system is sparse. If one reasonably enumerates the variables and the equations, the matrix will be
banded with a bandwidth q, which depends on the type of used mesh and the form of domain S. Thereby, it was decided
to use one of the methods of solving SLAE, which is based on LU-decomposition of the matrix of the system (library
Y12M [6]).

4. Computation Results

To test the method several computations were conducted, including the case when fluid flows between two plane-
parallel plates (see the domain of the problem and boundary conditions on Fig. 8).

The author used rectangular meshes with cells of sizes hx � hy to discretize the domain S. Notice that system (2.3),
(2.4) in this domain has an analytical solution, which represents stationary laminar flow of the fluid:

v ¼ fv; 0g; v ¼ vðyÞ ¼
�p

2�L
yð2R� yÞ; p ¼ pðxÞ ¼ pL �

�p

L
x; ð4:1Þ
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where pL - pressure on the left boundary, �p is pressure difference between the left and the right boundaries of the
domain, L - length of the plates (according to the x-axis), R ¼ D

2
- half of the distance between the plates.

Let’s also define Reynolds number:

Re ¼
v0D0�0

�
;

where v0, D0, �0 are typical dimension scales of the problem. It is known that for every type of fluid flow (flow between
parallel plates, flow over ellipsoid, etc.) some value Recr exists. If Re� Recr then the flow is laminar, if Re	 Recr
than the flow can become turbulent [7].

From now on the fluid has density � ¼ 1, numerical solution is obtained with the method (3.17) with �1 ¼
�2 ¼ �3 ¼ 1.

Designations for all following plots: brown colour - analytical solution (4.1) for v (vx in particular, because vy ¼ 0);
purple colour - numerical solution for vx; orange colour - numerical solution for vy; green colour - numerical solution
for p. On all following plots for pressure horizontal indexes of the cells act as an x-axis.

4.1 Boundary and Initial Conditions Corresponding to Analytical Solution

Let L ¼ 2:5, D ¼ 0:6, hx ¼ 0:1, hy ¼ 0:1, � ¼ 0:01. Let’s set pressure values pL and pR on the left and right
boundaries and corresponding to �p ¼ pL � pR velocity (4.1) on the left boundary and as initial condition in domain S.
Then the analytical solution of (2.3), (2.4) is exactly stationary flow (4.1). Here are the results of computations for
several sets of parameters:
1) � ¼ 10�2, pL ¼ 1, pR ¼ 0, Re ¼ 100 (see Figs. 9 and 10)
2) � ¼ 10�4, pL ¼ 10�2, pR ¼ 0, Re ¼ 10000

In both cases parameters are chosen so the analytical solutions for velocity in 1) and 2) were identical.

Fig. 8. Domain of the problem.

Fig. 9. Sustained velocity in case 1).
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In case 1) numerical solution matches the laminar flow in which velocity doesn’t depend on x, pressure is linear with
respect to x. Values for velocity v insignificantly fluctuate near the analytical solution. Figure 9 shows velocity
components on layer x ¼ 1:2, t ¼ 500�; Fig. 10 shows pressure on layer y ¼ 0:35, t ¼ 500�. Computational error at the
moment t ¼ 500� in this case doesn’t exceed 10�5.

Case 2) is almost similar to case 1) apart from the computational errors, which at the moment t ¼ 500� do not
exceed 10�2.

As we see in results 1) and 2), increase of Reynolds number Re is followed by decrease in accuracy.

4.2 Boundary Conditions Corresponding to Analytical Solution and Zero Initial Conditions

Let L ¼ 2:5, D ¼ 0:6, hx ¼ 0:1, hy ¼ 0:1, � ¼ 0:01. Let’s set pressure values pL and pR on the left and right
boundaries and corresponding to �p ¼ pL � pR velocity (4.1) on the left boundary. Inside domain S we set zero initial
conditions for velocity and pR for pressure. Thereby, we have discontinuous initial conditions. Let’s see if the
numerical solution can give sustained flow (4.1) at various Re values.

1) � ¼ 1, pL ¼ 100, pR ¼ 0, Re ¼ 1 (see Figs. 11, 12, and 13)

As you can see on Fig. 11, the current near the left border (layer x ¼ 0:1) has non-zero y-component of velocity after
the first time step. On other layers the flow is laminar. The pressure becomes linear with respect to x right after the first
step. After the second step the flow in all domain becomes laminar and converges fast to the analytical solution (at
t ¼ 25� error 
 0:05, at t ¼ 50� error 
 10�5).

Fig. 10. Sustained pressure in case 1).

Fig. 11. Velocity at t ¼ � near the left boundary in case 1).
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2) � ¼ 10�2, pL ¼ 1, pR ¼ 0, Re ¼ 100 (see Figs. 14–17)
In case 2) y-components of velocity near the left boundary are non-zero for much longer than in case 1): about 150�

against �. On Figs. 14, 15, 16 we have magnitude of velocity, velocity near the left boundary (layer x ¼ 0:1) and
pressure (layer y ¼ 0:35) accordingly at the moment t ¼ 150�. The flow at that moment still has relatively small
non-zero y-components of velocity and a jump in pressure, which is caused by the discontinuity of initial conditions.
After getting rid of y-components of velocity the numerical solution starts to converge relatively (for that value of Re)

Fig. 12. Velocity at t ¼ 15� near the left boundary in case 1).

Fig. 13. Sustained pressure in case 1).

Fig. 14. Velocity magnitude at t ¼ 150� in case 2).
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fast to the analytical solution. By the moment t ¼ 350� the current becomes laminar, pressure becomes linear and the
error 
 0:06. By the moment t ¼ 1000� the error 
 10�3.

3) � ¼ 10�3, pL ¼ 0:2, pR ¼ 0, Re ¼ 1000 (see Figs. 18–21). In this case the computations were conducted for the
domain, which is twice longer than in previous tests (L ¼ 5).

Fig. 17. Velocity at t ¼ 350� near the left boundary in case 2).

Fig. 15. Velocity at t ¼ 150� near the left boundary in case 2).

Fig. 16. Pressure at t ¼ 150� in case 2).
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In case 3) the situation is different from cases 1) and 2). Until t � 700� there are vortices which are moving from the
left to the right boundary (see Figs. 18 and 19). These vortices have a noticeable impact on pressure (there are certain
waves on pressure’s plot, which relate to the passing vortices; see Fig. 20). At t � 700� the current becomes laminar
and starts to converge to the analytical solution (see Fig. 21). At t ¼ 850� the error 
 0:08 and it continues to decrease.

As a result we can state that the larger Reynolds number Re is, the more noticeable vortices appear near the left
boundary and it takes more time for the method to smooth over the solution and converge to the analytical solution.
Other similar tests showed that the vortices, which do not disappear near the left boundary and spread to the right, start
to appear approximately at Re � 200.

Fig. 18. Velocity magnitude at t ¼ 175� in case 3).

Fig. 19. Velocity at t ¼ 175� in case 3) (see layer on Fig. 18).

Fig. 20. Pressure at t ¼ 175� in case 3).
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Notice that if the sustained flow from 1) or 2) (result of the scheme relatively close to the analytical solution) is taken
as new boundary and initial conditions, then the numerical solution of such problem will be stationary and will
approximate the analytical solution (4.1).

5. Conclusions

The whole family of conservative methods for the solution of two-dimensional Navier–Stokes equations for viscous
incompressible fluids was constructed. The tests showed that the numerical solutions for some problems converge to
the analytical solutions on continuous and non-continuous initial conditions. Also such properties as laminarity of the
flow when Re� Recr are valid for the numerical solutions, and some turbulences might occur if Re	 Recr, where Recr
is some property of the method, which in general is not equal to the analytical Recr . The author plans to continue testing
the constructed methods on more complex domains and he also hopes to try the methods on other types of meshes,
triangular or hybrid.
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