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The present paper treats the period TN of the Hadamard walk on a cycle CN with N vertices. Dukes (2014)
considered the periodicity of more general quantum walks on CN and showed T2 ¼ 2, T4 ¼ 8, T8 ¼ 24 for the
Hadamard walk case. We prove that the Hadamard walk does not have any period except for his case, i.e.,
N ¼ 2; 4; 8. Our method is based on a path counting and cyclotomic polynomials which is different from his
approach based on the property of eigenvalues for unitary matrix that determines the evolution of the walk.
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1. Introduction

The quantum walk (QW) is a quantum counterpart of the classical random walk. QWs have been widely investigated
for the last decade, mainly in connection with quantum information science. The reviews and books on QWs are, for
example, Kempe [1], Kendon [2], Venegas-Andraca [3, 4], Konno [5], Cantero et al. [6], Manouchehri and Wang [7],
Portugal [8]. The properties of QWs on graphs including cycles were studied by Aharonov et al. [9]. In this paper, we
consider two-state QWs on a cycle CN with N vertices, where CN ¼ f0; 1; . . . ;N � 1g. In particular, we focus on the
periodicity of the Hadamard walk on CN .

From now on we present a brief definition of the general two-state QWs on CN , which includes the Hadamard walk
as a special case. The discrete-time QW is a quantum version of the classical random walk with additional degree of
freedom called chirality. The chirality takes values left and right, and it means the direction of the motion of the walker.
At each time step, if the walker has the left chirality, it moves one step to the left, and if it has the right chirality, it
moves one step to the right. Let us define

jLi ¼
1

0

� �
; jRi ¼

0

1

� �
;

where L and R refer to the left and right chirality states, respectively.
The time evolution of the walk is determined by U 2 Uð2Þ, where U(n) be the set of n� n unitary matrices and

U ¼
a b

c d

� �
:

To define the dynamics of our model, we divide U into two matrices:

P ¼
a b

0 0

� �
; Q ¼

0 0

c d

� �
;

with U ¼ Pþ Q. The important point is that P (resp. Q) represents that the walker moves to the left (resp. right) at any
position at each time step.

The QW considered here is

U ¼ H ¼
1ffiffiffi
2
p

1 1

1 �1

� �
: ð1:1Þ

This model is called the Hadamard walk which has been extensively and deeply investigated in the study of QWs.
Let �n denote the amplitude at time n of the QW on CN :
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�n ¼ T½�L
nð0Þ;�

R
n ð0Þ;�

L
nð1Þ;�

R
n ð1Þ; . . . ;�

L
nðN � 1Þ;�R

n ðN � 1Þ�;
¼ T½�nð0Þ;�nð1Þ; � � � ;�nðN � 1Þ�;

¼ T
�L

nð0Þ
�R

n ð0Þ

" #
;

�L
nð1Þ

�R
n ð1Þ

" #
; . . . ;

�L
nðN � 1Þ

�R
n ðN � 1Þ

" #" #
2 ðC2ÞN ;

where C denote the set of complex numbers, T means the transposed operation, and �nðxÞ ¼ T ½�L
nðxÞ;�R

n ðxÞ� (x 2 CN)
is the amplitude at time n and position x.

Now we introduce the following 2N � 2N unitary matrix:

UðsÞN ¼

O P O O � � � O Q

Q O P O � � � O O

O Q O P � � � O O

O O Q O � � � O O

..

. ..
. ..

. ..
. . .

. ..
. ..

.

O O O O � � � O P

P O O O � � � Q O

2
6666666666664

3
7777777777775

with O ¼
0 0

0 0

� �
:

For N ¼ 2, following Dukes [10], we put

UðsÞ2 ¼
O U

U O

� �
:

Then the state of the QW at time n is given by

�n ¼ ðUðsÞN Þ
n�0; ð1:2Þ

for any n � 0.
Put Rþ ¼ ½0;1Þ. Here we introduce a map � : ðC2ÞN ! R

N
þ such that if

� ¼ T
�Lð0Þ
�Rð0Þ

" #
;

�Lð1Þ
�Rð1Þ

" #
; � � � ;

�LðN � 1Þ
�RðN � 1Þ

" #" #
2 ðC2ÞN ;

then

�ð�Þ ¼ T½j�Lð0Þj2 þ j�Rð0Þj2; j�Lð1Þj2 þ j�Rð1Þj2; . . . ; j�LðN � 1Þj2 þ j�RðN � 1Þj2� 2 RN
þ:

That is, for any x 2 CN ,

�ð�ÞðxÞ ¼ j�LðxÞj2 þ j�RðxÞj2:

Sometimes we identify �ð�ðxÞÞ with �ð�ÞðxÞ. Moreover we define the measure of the QW at position x by

�ðxÞ ¼ �ð�ðxÞÞ ðx 2 CNÞ:

The probability that quantum walker at time n, Xn ¼ X’n , starting from 0 exists at position x 2 Z is defined by

PðXn ¼ xÞ ¼ PðX’n ¼ xÞ ¼ �ððUðsÞÞn�’
0ÞðxÞ:

Here the initial state �
’
0 is given by

�
’
0 ¼

T
�L

0ð0Þ
�R

0 ð0Þ

" #
;

�L
0ð1Þ

�R
0 ð1Þ

" #
; � � � ;

�L
0ðN � 1Þ

�R
0 ðN � 1Þ

" #" #
¼ T ’;

0

0

� �
; � � � ;

0

0

� �� �
;

where ’ ¼ T½�; �� 2 C2 with j�j2 þ j�j2 ¼ 1.
We put

N ¼ fn � 1 : ðUðsÞN Þ
n ¼ I2Ng:

If N 6¼ ;, the period TNð<1Þ is defined by TN ¼ minN . If N ¼ ;, then we say that the QW does not have any period
and write TN ¼ 1.

Let eigenvalues of UðsÞN be f�k : k ¼ 0; 1; . . . ; 2N � 1g. Remark that ðUðsÞN Þn ¼ I2N if and only if �n
k ¼ 1ðk ¼

0; 1; . . . ; 2N � 1Þ.
Dukes [10] studied periodicity of a class of two-state QWs on CN by using the property of eigenvalues �kðk ¼

0; 1; . . . ; 2N � 1Þ of UðsÞN : if period TN is finite, then �TN
j ¼ 1 for any j. As for the Hadamard walk case, he showed

T2 ¼ 2, T3 > 30, T4 ¼ 8, T8 ¼ 24. So we prove that TN ¼ 1 except for N ¼ 2; 4; 8 (Theorem 2.6).
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The rest of this paper is organized as follows. In Sect. 2, we present results on our model. Sections 3 and 4 are
devoted to proofs of Lemma 2.4 and Theorem 2.6, respectively. In Sect. 5, we summarize our result and give a future
problem.

2. Results

This section gives our results. We begin with N ¼ 3 case. Then

UðsÞ3 ¼
O P Q

Q O P

P Q O

2
64

3
75:

So we have

ðUðsÞ3 Þ
2 ¼

PQþ QP Q2 P2

P2 PQþ QP Q2

Q2 P2 PQþ QP

2
64

3
75;

ðUðsÞ3 Þ
3 ¼

P3 þ Q3 PQPþ QP2 þ P2Q PQ2 þ QPQþ Q2P

PQ2 þ QPQþ Q2P P3 þ Q3 PQPþ QP2 þ P2Q

PQPþ QP2 þ P2Q PQ2 þ QPQþ Q2P P3 þ Q3

2
64

3
75:

Let Aðk; lÞ ð1 � k; l � mÞ denote the ðk; lÞ component of a 2m� 2m matrix A. For example, ðUðsÞ3 Þ
3ð1; 2Þ ¼

PQPþ QP2 þ P2Q.
In order to compute ðUðsÞN Þ

nðk; lÞ, we use nice relations: P2 ¼ aP, Q2 ¼ dQ. Moreover we introduce the following
2� 2 matrices, R and S:

R ¼
c d

0 0

� �
; S ¼

0 0

a b

� �
:

Then we obtain the next table of products of matrices, P, Q, R, and S:

P Q R S

P aP bR aR bP

Q cS dQ cQ dS

R cP dR cR dP

S aS bQ aQ bS

where PQ ¼ bR, for example. In particular, for the Hadamard walk case, we have

P Q R S

P P=
ffiffiffi
2
p

R=
ffiffiffi
2
p

R=
ffiffiffi
2
p

P=
ffiffiffi
2
p

Q S=
ffiffiffi
2
p

�Q=
ffiffiffi
2
p

Q=
ffiffiffi
2
p

�S=
ffiffiffi
2
p

R P=
ffiffiffi
2
p

�R=
ffiffiffi
2
p

R=
ffiffiffi
2
p

�P=
ffiffiffi
2
p

S S=
ffiffiffi
2
p

Q=
ffiffiffi
2
p

Q=
ffiffiffi
2
p

S=
ffiffiffi
2
p

This path counting method was introduced and intensively studied by [11, 12]. Using this relation, for example, we
compute

ðUðsÞ3 Þ
3ð1; 2Þ ¼ PQPþ QP2 þ P2Q ¼ bcPþ abRþ acS ¼

1ffiffiffi
2
p

� �2

ðPþ Rþ SÞ:

Similarly we have

ðUðsÞ3 Þ
4ð1; 2Þ ¼ Q3Pþ P4 þ PQ3 þ QPQ2 þ Q2PQ

¼ a3Pþ bd2Rþ ðcd2 þ bcd þ bcdÞS ¼
1ffiffiffi
2
p

� �3

fPþ Rþ ð1� 1� 1ÞSg:

Moreover we write the number of paths which contribute to ðUðsÞN Þ
nðk; lÞ by wðN; n; ðk; lÞÞ, e.g.,

wð3; 2; ð1; 2ÞÞ ¼ 1;wð3; 3; ð1; 2ÞÞ ¼ 3;wð3; 4; ð1; 2ÞÞ ¼ 5:

It is easy to see the following property of the Hadamard walk on cycles.

Lemma 2.1. For any N � 2, n � 1, wðN; n; ðk; kÞÞ is even for k 2 f1; 2; . . . ;Ng and wðN; n; ð1; lÞÞ ¼
wðN; n; ð1;N � ðl� 2ÞÞÞ for l 2 f2; 3; . . . ; ½ðN=2Þ þ 1�g, where ½x� is the integer part of real number x.
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We should note that P, Q, R, and S form an orthogonal basis of the vector space of 2� 2 matrices with respect to the
trace inner product hAjBi ¼ trðA�BÞ. Thus if there exist cp; cq; cr; cs 2 C such that

cpPþ cqQþ crRþ csS ¼ O2;

then cp ¼ cq ¼ cr ¼ cs ¼ 0. It implies that for any N � 2, n � 1 and k 2 f1; 2; . . . ;Ng, if wðN; n; ðk; lÞÞ is odd, then
ðUðsÞN Þ

nðk; lÞ 6¼ O2. Combining this property with Lemma 2.1, we obtain the following lemma which is one of the key
results of our method.

Lemma 2.2. If there exists n � 1 such that ðUðsÞN Þ
n ¼ I2N , then wðN; n; ðk; lÞÞ is even for any k; l 2 f1; 2; . . . ;Ng.

To count the number of paths, we introduce the adjacency matrix AN of CN :

AN ¼

0 1 0 � � � 0 1

1 0 1 � � � 0 0

0 1 0 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � 0 1

1 0 0 � � � 1 0

2
66666666664

3
77777777775
:

For example, in N ¼ 3 case, we have

A3 ¼
0 1 1

1 0 1

1 1 0

2
64

3
75; ðA3Þ2 ¼

2 1 1

1 2 1

1 1 2

2
64

3
75; ðA3Þ3 ¼

2 3 3

3 2 3

3 3 2

2
64

3
75:

In general, ðANÞnðk; lÞ is the number of paths from k to l with length n.
Moreover we introduce another N � N matrix BðnÞN whose component BðnÞN ðk; lÞ is equal to ðANÞnðk; lÞ (mod 2). For

N ¼ 3 case, we get

Bð1Þ3 ¼ Bð2Þ3 ¼ Bð3Þ3 ¼ � � � ¼
0 1 1

1 0 1

1 1 0

2
64

3
75:

By using notation BðnÞN ðk; lÞ, Lemma 2.2 can be rewritten as

Lemma 2.3. If there exists n � 1 such that ðUðsÞN Þ
n ¼ I2N , then BðnÞN ðk; lÞ ¼ 0 for any k; l 2 f1; 2; . . . ;Ng.

On the other hand, we have the following result.

Lemma 2.4. For any odd number Nð� 3Þ, we have BðnÞN ðk; lÞ ¼ 1 for some distinct k; l 2 f1; 2; . . . ;Ng.

The proof will appear in Sect. 3. Combining Lemma 2.3 with Lemma 2.4 immediately gives

Proposition 2.5. For any odd number Nð� 3Þ, we have TN ¼ 1.

By using Proposition 2.5 and the property of cyclotomic polynomials, we obtain the following main result.

Theorem 2.6. For any N except for N ¼ 2; 4; 8, we have TN ¼ 1.

The proof will appear in Sect. 4. We should remark that Higuchi et al. [13] investigated the periodicity of the
Szegedy walk on graphs, e.g., the complete graphs, by using a method based on the property of cyclotomic
polynomials. On the other hand, we consider the periodicity of the Hadamard walk on cycles by using not only
cyclotomic polynomials but also the path counting for the walk.

Combining Dukes’ result, T2 ¼ 2, T4 ¼ 8, T8 ¼ 24, with our Theorem 2.6 gives immediately

Theorem 2.7. For any N � 2,

TN ¼

2; ðN ¼ 2Þ;
8; ðN ¼ 4Þ;
24; ðN ¼ 8Þ;
1; ðN 6¼ 2; 4; 8Þ:

8>>><
>>>:

We should note that for the classical random walk in which the walker moves one step to the left with probability p

and to the right with probability q with pþ q ¼ 1ðp; q 2 ½0; 1�Þ, the eigenvalues f�k : k ¼ 0; 1; . . . ;N � 1g of the
corresponding transition matrix are given by
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�k ¼ cos
2k�

N

� �
þ iðq� pÞ sin

2k�

N

� �
ðk ¼ 0; 1; . . . ;N � 1Þ:

Therefore we see that for any N � 3,

TN ¼
N; ðp ¼ 0; 1Þ;
1; ðp 2 ð0; 1ÞÞ;

�

since �k ¼ e2�ik=Nðp ¼ 0Þ; e�2�ik=Nðp ¼ 1Þ, and j�1j < 1 (0 < p < 1). Note that T2 ¼ 2 for all p 2 ½0; 1�.
From now on we briefly review previous results on the Hadamard walk on CN . To do so, we define the time-averaged

measure �n at time n and the limit measure �1 for the Hadamard walk on CN by

�nðxÞ ¼
1

n

Xn�1

k¼0

PðXk ¼ xÞ;

�1ðxÞ ¼ lim
n!1

1

n

Xn�1

k¼0

PðXk ¼ xÞ

for any x 2 CN . Aharonov et al. [9] proved that the time-averaged limit measure �1 is uniform for odd N, that is,
�1ðxÞ ¼ 1=Nðx 2 CNÞ, independent of the initial state.

Bednarska et al. [14] considered the Hadamard walk on CN with even N. They obtained the eigenvalues and
eigenvectors of UðsÞN and gave an explicit formula of �1 starting from a single vertex for any N. By using the formula,
they showed that �1 is uniform for N ¼ 2; 4. Moreover they found that �1 is very sensitive to the arithmetric
properties of N.

Bednarska et al. [15] reported examples for three different kinds of behaviour of the total variation distance between
a uniform measure and the time-averaged measure �n for the Hadamard walk on CN with even N.

From Theorem 2.7, we have

Corollary 2.8. For N ¼ 2; 4; 8,

�1 ¼
1

TN

XTN�1

n¼0

�n:

3. Proof of Lemma 2.4

Before we move to the proof, we consider N ¼ 5 case. In this case, Bð1Þ5 ð¼ A5Þ is given by

Bð1Þ5 ¼

0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0

2
6666664

3
7777775
:

Then we would like to show that for any n � 1, there exists ðk; lÞ with k 6¼ l such that BðnÞ5 ðk; lÞ ¼ 1 by induction.
When n ¼ 1, we see immediately Bð1Þ5 ð1; 2Þ ¼ 1.
Next we consider n ¼ m case. By Lemma 2.1, we put

½BðmÞ5 ð1; 1Þ;B
ðmÞ
5 ð1; 2Þ;B

ðmÞ
5 ð1; 3Þ;B

ðmÞ
5 ð1; 4Þ;B

ðmÞ
5 ð1; 5Þ� ¼ ½0; c1; c2; c2; c1�: ð3:1Þ

We assume that when n ¼ m, the statement holds. That is, ðc1; c2Þ 6¼ ð0; 0Þ. We consider n ¼ mþ 1. We assume that

½Bðmþ1Þ
5 ð1; 1Þ;Bðmþ1Þ

5 ð1; 2Þ;Bðmþ1Þ
5 ð1; 3Þ;Bðmþ1Þ

5 ð1; 4Þ;Bðmþ1Þ
5 ð1; 5Þ� ¼ ½0; 0; 0; 0; 0�: ð3:2Þ

Then Eq. ð3.1Þ implies

½Bðmþ1Þ
5 ð1; 1Þ;Bðmþ1Þ

5 ð1; 2Þ;Bðmþ1Þ
5 ð1; 3Þ;Bðmþ1Þ

5 ð1; 4Þ;Bðmþ1Þ
5 ð1; 5Þ� ¼ ½0; c2; c1 þ c2; c1 þ c2; c2�: ð3:3Þ

Combining Eq. ð3.2Þ with Eq. ð3.3Þ gives

c2 ¼ c1 þ c2 ¼ 0:

Thus we have c1 ¼ c2 ¼ 0. This contradicts the assumption for n ¼ m, i.e., ðc1; c2Þ 6¼ ð0; 0Þ. Therefore we see that there
exists ð1; lÞ with l 2 f2; 3; 4; 5g such that Bðmþ1Þ

5 ð1; lÞ ¼ 1. So Lemma 2.4 is valid for N ¼ 5.
We can extend this argument to general odd number N ¼ 2M þ 1 as follows.
When n ¼ 1, we easily see Bð1ÞN ð1; 2Þ ¼ 1. Next we consider n ¼ m. In a similar way, we put

½BðmÞN ð1; 1Þ;B
ðmÞ
N ð1; 2Þ; . . . ;B

ðmÞ
N ð1;NÞ� ¼ ½0; c1; c2; . . . ; cM�1; cM ; cM ; cM�1; . . . ; c2; c1�: ð3:4Þ
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We assume that when n ¼ m, the statement holds. That is, ðc1; c2; . . . ; cMÞ 6¼ ð0; 0; . . . ; 0Þ. We consider n ¼ mþ 1. We
assume that

½Bðmþ1Þ
N ð1; 1Þ;Bðmþ1Þ

N ð1; 2Þ; . . . ;Bðmþ1Þ
N ð1;NÞ� ¼ ½0; 0; . . . ; 0�: ð3:5Þ

Then Eq. ð3.4Þ gives

½Bðmþ1Þ
N ð1; 1Þ;Bðmþ1Þ

N ð1; 2Þ; . . . ;Bðmþ1Þ
N ð1;NÞ�

¼ ½0; c2; c1 þ c3; c2 þ c4; . . . ; cM�2 þ cM ; cM�1 þ cM ; cM�1 þ cM ; cM�2 þ cM ; . . . ; c2 þ c4; c1 þ c3; c2�: ð3:6Þ
From Eq. ð3.5Þ and Eq. ð3.6Þ, we obtain

c2 ¼ c1 þ c3 ¼ c2 þ c4 ¼ � � � ¼ cM�2 þ cM ¼ cM�1 þ cM ¼ 0:

Thus we have c1 ¼ c2 ¼ � � � ¼ cM ¼ 0. This contradicts the assumption for n ¼ m, i.e., ðc1; c2; . . . ; cMÞ 6¼ ð0; 0; . . . ; 0Þ.
Therefore we see that there exists ð1; lÞ with l 2 f2; . . . ;Ng such that Bðmþ1Þ

N ð1; lÞ ¼ 1, and the proof is completed.

4. Proof of Theorem 2.6

First we introduce cyclotomic polynomials: F1ð�Þ ¼ � � 1, and for n � 2,

Fnð�Þ ¼
Y

1�k�n�1:
gcdðk;nÞ¼1

� � exp
2�ik

n

� �� �
;

where gcdðn1; n2; . . . ; nkÞ denotes the greatest common divisor of ðn1; n2; . . . ; nkÞ.
Before we move to a proof of Theorem 2.6, we give another proof of Dukes’ result, T2 ¼ 2, T4 ¼ 8, T8 ¼ 24, by

using cyclotomic polynomials. By definition of UðsÞN , we have

detð�I2N � UðsÞN Þ ¼
YN�1

k¼0

�2 þ i
ffiffiffi
2
p

sin
2�k

N

� �
� � 1

� �
; ð4:1Þ

see [14, 15], for example. From Eq. ð4.1Þ, we compute

detð�I4 � UðsÞ2 Þ ¼ F1ð�Þ2F2ð�Þ2;

detð�I8 � UðsÞ4 Þ ¼ F1ð�Þ2F2ð�Þ2F8ð�Þ;

detð�I16 � UðsÞ8 Þ ¼ F1ð�Þ2F2ð�Þ2F8ð�ÞF12ð�Þ2:

Then we have the desired conclusion:

T2 ¼ lcmð1; 2Þ ¼ 2; T4 ¼ lcmð1; 2; 8Þ ¼ 8; T8 ¼ lcmð1; 2; 8; 12Þ ¼ 24;

where lcmðn1; n2; . . . ; nkÞ denotes the least common multiple of ðn1; n2; . . . ; nkÞ.
Next we give another proof of N ¼ 3 case of Proposition 2.5 by using cyclotomic polynomials. That is, we prove

T3 ¼ 1. From Eq. ð4.1Þ, we calculate

detð�I6 � UðsÞ3 Þ ¼ F1ð�ÞF2ð�ÞGð�Þ;

where

Gð�Þ ¼ �4 �
�2

2
þ 1:

On the other hand, it is known that there are only four cyclotomic polynomials with degree 4 as follows:

F5ð�Þ ¼ �4 þ �3 þ �2 þ � þ 1; F8ð�Þ ¼ �4 þ 1;

F10ð�Þ ¼ �4 � �3 þ �2 � � þ 1; F12ð�Þ ¼ �4 � �2 þ 1:

Thus, we confirm that Gð�Þ is not a cyclotomic polynomial and conclude that T3 ¼ 1.
From now on, we move to a proof of Theorem 2.6. First we consider odd N case. Then we have

Proposition 4.1. For any odd N, there exist mðNÞ; r1; r2; . . . ; rmðNÞ � 1 such that

detð�I2N � UðsÞN Þ ¼
YmðNÞ
j¼1

Frjð�Þ � Gð�Þ;

where Gð�Þ is not a cyclotomic polynomial.

The proof is that if we do not have such a Gð�Þ, then TN ¼ lcmðr1; r2; . . . ; rmðNÞÞ <1 and this contradicts
Proposition 2.5.
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Now we consider N ¼ 2n �M case, where n � 1 and M is an odd number. By Eq. ð4.1Þ, we see that there exists a
polynomial Hð�Þ such that

detð�I2N � UðsÞN Þ ¼
Y2n�M�1

k¼0

�2 þ i
ffiffiffi
2
p

sin
2�k

2n �M

� �
� � 1

� �

¼
YM�1

k0¼0

�2 þ i
ffiffiffi
2
p

sin
2�� 2n � k0

2n �M

� �
� � 1

� �
� Hð�Þ ¼ detð�I2M � UðsÞM Þ � Hð�Þ:

From Proposition 4.1, we see that there exist mðMÞ; r1; r2; . . . ; rmðMÞ � 1 such that

detð�I2N � UðsÞN Þ ¼
YmðMÞ
j¼1

Frjð�Þ � GMð�Þ � Hð�Þ;

where GMð�Þ is not a cyclotomic polynomial. So we have TN ¼ 1 for N ¼ 2n �M, where n � 1 and M is an odd
number.

Therefore it is enough to deal with N ¼ 2n ðn � 4Þ cases, since T2 ¼ 2;T22 ¼ 8;T23 ¼ 24. For N ¼ 24 ¼ 16 case, we
obtain

detð�I25 � UðsÞ
24 Þ ¼ F1ð�Þ2F2ð�Þ2F8ð�ÞF12ð�Þ2 � �4 �

�2

2
þ 1

� �2

�4 �
3�2

2
þ 1

� �2

: ð4:2Þ

Since the right hand side of ð4.2Þ contains a factor �4 � �2=2þ 1, we obtain T24 ¼ 1 as in the case of N ¼ 3. For
N ¼ 2n ðn � 5Þ, we see that there exists a polynomial GNð�Þ such that

detð�I2nþ1 � UðsÞ2n Þ ¼ detð�I25 � UðsÞ
24 Þ � GNð�Þ: ð4:3Þ

In view of ð4.2Þ, we conclude that TN ¼ 1 for any N ¼ 2n ðn � 5Þ.

5. Summary

In this paper, we proved that the period TN ¼ 1 except with N ¼ 2; 4; 8 for the Hadamard walk on CN . On the other
hand, T2 ¼ 2, T4 ¼ 8, T8 ¼ 24 was previously shown by Dukes [10]. Our method is based on a path counting and
cyclotomic polynomials which is different from his approach based on the property of eigenvalues for UðsÞN . An
implementation of a Hadamard-like QW on CN was proposed by Moqadam et al. [16] by using optomechanical
systems. We hope that our result is helpful in building new quantum algorithms. Chou and Ho [17] investigated
numerically the asymptotic behaviour of space-inhomogeneous QWs on Z, where Z is the set of integers. Their model
is defined by a periodic quantum coin Uxðx 2 ZÞ given by H or I2, where I2 is the 2� 2 identity matrix, e.g., Ux ¼ H for
x ¼ 0 (mod N), Ux ¼ I2 for x 6¼ 0 (mod N) with N � 2. They discussed localization of the QWs, so one of the
interesting future problems is to consider the periodicity of space-inhomogeneous QWs on CN .
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[14] Bednarska, M., Grudka, A., Kurzyński, P., Łuczak, T., and Wójcik, A., ‘‘Quantum walks on cycles,’’ Phys. Lett. A, 317: 21–25

Periodicity for the Hadamard Walk on Cycles 7



(2003).
[15] Bednarska, M., Grudka, A., Kurzyński, P., Łuczak, T., and Wójcik, A., ‘‘Examples of nonuniform limiting distributions for the
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