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In this expository work, we discuss spatially inhomogeneous quantum walks in one dimension and describe a
genre of mathematical methods that enables one to translate information about the time-independent eigenvalue
equation for the unitary generator into dynamical estimates for the corresponding quantum walk. To illustrate the
general methods, we show how to apply them to a 1D coined quantum walk whose coins are distributed according
to an element of the Thue–Morse subshift.
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1. Introduction

Quantum walks in one dimension comprise a popular class of models in mathematics, physics, and computer science;
see [1, 4–10, 13–18, 21, 23] and references therein for a small sampler on the literature. A (one-dimensional coined)
quantum walk is described by a unitary operator on the Hilbert space

H ¼def
‘2ðZÞ � C2;

which models a state space in which a wave packet comes equipped with a ‘‘spin’’ at each integer site. The elementary
tensors of the form

��n ¼
def
�n � e�; n 2 Z;

comprise an orthonormal basis of H, where we denote the standard orthonormal basis of C2 by

eþ ¼
def 1

0

� �
; e� ¼

def 0

1

� �
:

A time-homogeneous quantum walk is given as soon as coins

Cn ¼
c11
n c12

n

c21
n c22

n

 !
2 Uð2Þ; n 2 Z; ð1:1Þ

are specified. As one passes from time ‘ to time ‘þ 1, the update rule of the quantum walk is given by U ¼ SC, where
S denotes the shift S��n ¼ ��n�1, and

C ¼def
M
n2Z

Cn:

That is to say, C is defined by

C : �þn 7! c11
n �
þ
n þ c21

n �
�
n ; C : ��n 7! c12

n �
þ
n þ c22

n �
�
n :

Given an initial state  2 H normalized by k k ¼ 1, we are interested in the time evolution of the vector  , that is, we
want to study the evolution of  ð‘Þ ¼ U‘ as ‘ 2 Zþ grows. The most favorable situations are those in which the walk
is translation-invariant, i.e., there exists q such that Cnþq ¼ Cn for all n. In this case, one can explicitly solve the walk
via a Floquet–Bloch transform, and one deduces strong ballistic motion and an explicit expression for the asymptotic
group velocity; see [1, Theorem 4] and [8, Corollary 9.3]. In fact, ballistic motion with an explicit group velocity also
holds for quantum walks that are rapidly and uniformly approximated by translation-invariant quantum walks
[12, Remark 1.3.(4)].

Naturally, one wants to go beyond exactly solvable models. In this short note, we will give a brief introduction to the
general methods of [8]. Specifically, we will describe a general method that enables one to study the time-dependent
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spreading characteristics of a quantum walk with spatially inhomogeneous coins by establishing suitable estimates on
the time-independent eigenvalue equation. Concretely, one must estimate matrix elements of RUðzÞ ¼ ðU � zIÞ�1, the
resolvent of the unitary generator U. This is particularly fruitful in one dimension, where we can probe the resolvent by
using a transfer matrix formalism to study solutions of the time-independent eigenvalue equation.

In this paper, we focus on the case  ¼ �þ0 for simplicity, but it is a straightforward matter to generalize this to
different initial states. To quantify the spreading rate of U‘�þ0 , we first put

aðn; ‘Þ ¼ jh�þn ;U
‘�þ0 ij

2 þ jh��n ;U
‘�þ0 ij

2; ‘ 2 Zþ; n 2 Z;

which can be thought of as the probability that the wavepacket is at site n at time ‘. The astute observer will notice that
both terms that comprise aðn; ‘Þ correspond to the modulus squared of a Fourier coefficient of a spectral measure of U.
Since regularity estimates on measures enable one to prove decay estimates on their Fourier coefficients, one can prove
quantitative estimates on wavepacket propagation by investigating regularity and singularity of spectral measures of U,
an approach that is proposed and executed in [9]. However, there are two nontrivial drawbacks to this method. First, in
some cases, the spectral measures are so singular that the kinds of estimates that one can deduce from spectral
regularity are essentially useless; this is the case in random polymer models, for which one expects pure point spectral
measures. Second, it is often quite difficult in concrete examples to prove quantitative estimates on the regularity of
spectral measures. This is the case for quantum walks with Thue–Morse coins discussed herein; it is known that their
spectral measures are singularly continuous, but we have no quantitative information regarding the moduli of
continuity.

In one-dimensional models, regularity estimates on spectral measures may be established using subordinacy theory,
which relates growth and decay estimates on generalized eigenfunctions to quantitative regularity of spectral measures.
The quantitative theory of subordinacy is described for CMV matrices in [22, Section 10.8], so, in light of the CGMV
connection [5, 6], this analysis also applies to 1D coined quantum walks. Thus, one naturally may wonder whether it is
possible to ‘‘cut out the middleman’’ of subordinacy theory and to go directly from eigenfunction estimates to
dynamical information. One avenue that enables one to do precisely this is the following variant of the Parseval
formula.

Theorem 1.1 (Damanik, F., Vance [8, Proposition 3.16]). Let H be a Hilbert space, and ’;  2 H. If U is a unitary
operator on H, one has X1

‘¼0

e�2‘=Ljh ;U‘’ij2 ¼ e2=L

Z 2�

0

jh ; ðU � ei�þL
�1

IHÞ�1’ij2
d�

2�
ð1:2Þ

for all L > 0.

The identity ð1.2Þ allows us to connect (time-averaged) dynamical information (on the left hand side) to generalized
eigenfunctions, since the matrix elements of the resolvent may (almost) be recovered from the eigenvalue equation. For
example, if � ¼ ðU � zÞ�1�þ0 , then U� ¼ z�þ �þ0 , so � is ‘‘almost’’ an eigenvector of U. In light of the averaging
present on the left-hand side of Theorem 1.1, we will be interested in the time-averaged dynamical probabilities, given
by

eaðn;LÞ ¼ ð1� e�2=LÞ
X1
‘¼0

e�2‘=Laðn; ‘Þ; L > 0; n 2 Z: ð1:3Þ

Since U is a unitary operator, kU‘ k ¼ 1 for every ‘, so we may view að�; ‘Þ andeað�;LÞ as defining a pair of probability
distributions on Z. From this point of view, it makes sense to describe the spreading of these distributions in terms of
their moments. In this paper, we will focus on the time-averaged setting, and so we define

hjXjpiðLÞ ¼
X
n2Z
ðjnj þ 1Þpeaðn;LÞ; L; p > 0:

To better understand the moments jXjp, let us consider their behavior in two simple cases.
(1) First, consider U ¼ I‘2ðZÞ, the identity operator. Clearly, U‘�þ0 ¼ �

þ
0 for all ‘. Consequently, hjXjpiðLÞ ¼ 1 for all

L. Thus, jXjp remains bounded in this case.
(2) At the other extreme, consider U ¼ S, the shift defined above. Clearly, then, U‘�þ0 ¼ �

þ
‘ for ‘ 2 Zþ, so hjXjpiðLÞ

grows like Lp as L!1.
In order to compare the growth of the pth moment to polynomial growth of the form L�p for a suitable exponent �, we
define (upper and lower) transport exponents by

e�þðpÞ ¼ lim sup
L!1

logðhjXjpiðLÞÞ
p logðLÞ

; e��ðpÞ ¼ lim inf
L!1

logðhjXjpiðLÞÞ
p logðLÞ

:

The values for e�� range from zero to one. In view of the previous examples, e� ¼ 1 represents (time-averaged) ballistic
transport and e� ¼ 0 represents (a weak form of) dynamical localization. Notice, by Jensen’s inequality, e�� are both
non-decreasing functions of p > 0 [11, Lemma 2.7].
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1.1 Thue–Morse Coins. As a concrete example of how one can implement the overall program relating
eigenfunction estimates to dynamical estimates, we will investigate the transport exponents for spatially inhomoge-
neous quantum walks with coins modulated by the Thue–Morse subshift. We begin by describing the Thue–Morse
substitution. Let A ¼ f0; 1g. The free monoid over A denotes the set of words of finite length with letters drawn from
A, and is denoted by A�. The Thue–Morse substitution is the map S : A! A� defined by Sð0Þ ¼ 01 and Sð1Þ ¼ 10.
This extends by concatenation to maps S : A� ! A�, and S : AZþ ! AZþ . We may then iterate S on the initial symbol
0 to obtain a sequence of words wn ¼

def
Snð0Þ:

w0 ¼ 0

w1 ¼ Sð0Þ ¼ 01

w2 ¼ Sð01Þ ¼ Sð0ÞSð1Þ ¼ 0110

w3 ¼ Sð0110Þ ¼ Sð0ÞSð1ÞSð1ÞSð0Þ ¼ 01101001

� � �
Notice that wn is always a prefix of wnþ1, and thus, there is a natural limiting infinite word

wTM ¼
def

0110100110010110 � � � 2 AZþ ;

and it is easy to see that SðwTMÞ ¼ wTM, i.e., wTM is invariant under the action of S. The associated subshift is defined to
be the set of all two-sided infinite 0–1 sequences that have the same local factor structure as wTM, that is,

XTM ¼ fx : Z! A : every finite subword of x is a subword of wTMg:

One may also view XTM as the collection of accumulation points of fTnwTM : n � 1g, where T denotes the left shift

½Tx�n ¼
def

xnþ1; n 2 Z; x 2 AZ:

Aperiodic subshifts such as XTM are popular as tractable models of one-dimensional quasicrystals, i.e., mathematical
structures that simultaneously exhibit aperiodicity (the absence of translation-invariance) and long-range order [2].
For a much more thorough introduction into mathematical aspects of quasicrystals, the reader is referred to [3]. The
Fibonacci substitution, defined by SFð0Þ ¼ 01 and SFð1Þ ¼ 0 is another popular quasi-crystal model. Quantum walks
with Fibonacci coins were studied numerically in [20] and mathematically in [8–10].

Now, pick phases �; � 2 R. For each x 2 XTM, we obtain a quantum walk operator U ¼ Ux;�;� by choosing coins

Cn ¼ Cn;x ¼
R� if xn ¼ 0

R� if xn ¼ 1,

�
ð1:4Þ

where

R� ¼
def cos � �sin�

sin � cos �

� �
� 2 R:

Theorem 1.2. Fix �; � 2 ð0; �=2Þ and x 2 XTM, and denote by U ¼ Ux;�;� the quantum walk operator with coins Cn

defined by ð1.4Þ, and denote the corresponding transport exponents by e��ðpÞ ¼ e��x;�;�ðpÞ. For all �; �, all x 2 XTM, and
all p > 0, we have

e�þðpÞ � e��ðpÞ � 1�
1

p
:

We remark that Theorem 1.2 is not new. Indeed, it is essentially [8, Theorem 8.2]. However, [8] produces this result
as a corollary of a fairly general piece of machinery, [8, Theorem 2.1]. Thus, the goal of the present note is to illustrate
the general manner in which resolvent estimates may be transformed into dynamical estimates in a simple (but
nontrivial) scenario, so we will show how to prove the statement directly, without appealing to the general machinery
of [8].

2. Proof of Lower Bounds

In this section, we will describe the arguments that prove Theorem 1.2. There are two key ingredients: an exact
renormalization scheme for eigenfunctions of U and the presence of degenerate spectral parameters at which the
corresponding transfer operators commute with one another. The renormalization scheme is most clearly exhibited by
the so-called transfer matrices, which we now introduce. Suppose that

U ¼ z for some z 2 C and some  2 CZ � C2: ð2:1Þ
We may represent  in coordinates as

Resolvent Methods for Quantum Walks 29



 ¼
X
n2Z
ð þn �

þ
n þ  

�
n �
�
n Þ;  �n 2 C:

Notice, we do not assume that  is a normalizable state in H, i.e., we do not assumeX
n2Z
ðj þn j

2 þ j �n j
2Þ <1:

It is straightforward to deduce from ð2.1Þ that

 þnþ1

 �n

" #
¼ Mxðn; zÞ

 þn
 �n�1

" #
for all n 2 Z ð2:2Þ

for fixed x 2 XTM, where M is defined by

Mxðn; zÞ ¼
def

secð’nÞ
z�1 �sinð’nÞ

�sinð’nÞ z

" #
; ’n ¼

def � if xn ¼ 0

� if xn ¼ 1

�
ð2:3Þ

Thus, we are concerned products involving the matrices:

A�ðzÞ ¼
def

secð�Þ
z�1 �sinð�Þ
�sinð�Þ z

" #
A�ðzÞ ¼

def
secð�Þ

z�1 �sinð�Þ
�sinð�Þ z

" #

In particular, to control growth and decay of eigenfunctions of U, it suffices to control the growth and decay of the
norms of matrices of the form

Txðn;m; zÞ ¼
I2	2 n ¼ m

Mxðn� 1; zÞMxðn� 2; zÞ � � �Mxðm; zÞ n > m

Txðm; n; zÞ�1 n < m

8<:
Thus, the key estimate is supplied by the following preliminary result.

Lemma 2.1. For every 0 < �; � < �=2, there is a constant c ¼ cð�; �Þ > 0 such that

kTxðn;m; iÞk 
 c ð2:4Þ
for all n;m 2 Z and all x 2 XTM.

Proof. It is straightforward to check that

A�ðiÞA�ðiÞA�ðiÞA�ðiÞ ¼ A�ðiÞA�ðiÞA�ðiÞA�ðiÞ ¼ I2	2:

Since any x 2 XTM may be uniquely decomposed into subwords of the form ‘‘0110’’ and ‘‘1001’’, the lemma follows
immediately by interpolation. �

Remark 2.1. In the language of [19], Lemma 2.1 shows that z ¼ i is a ‘‘Type-I’’ spectral parameter for the Thue–
Morse quantum walk. We chose z ¼ i for concreteness, but there is a countably dense subset of the spectrum upon
which the transfer matrices are bounded in this fashion; compare [8, Lemma 8.1].

Proof of Theorem 1.2. The theorem follows is a consequence of Lemma 2.1 and [8, Theorem 2.1]. Since this paper is
meant to be an illustration of the methods, though, let us say a few more words about how the arguments develop.
Throughout, we use f & g to denote that there is a constant c such that f � cg; constants may depend on �; �; x, and p,
but will be independent of n;L, and ".

Notice that the right-hand side of the Parseval identity ð1.2Þ involves an integral over �, so we need effective
estimates not just at z ¼ i, but on a set of phases with positive length. Thus, the first step is to perturb Lemma 2.1 in the
quasi-energy; concretely, Lemma 2.1 gives information when the spectral parameter is z ¼ i, and we can parlay this
into information about spectral parameters z that are very close to z ¼ i. We may do this at the expense of restricting the
range of n and m to suitable finite-length windows; such ideas have a long and venerable history in differential
equations and usually go by the name Gronwall’s inequality. The discrete version that we need is furnished by [8]. In
particular, by Lemma 2.1 and [8, Lemma 3.3],1 there is a constant K1 (independent of n;m; z, and "), so that

kTxðn;m; zÞk 
 K1 ð2:5Þ

whenever jz� ij < " and jn� mj < "�1 for some 0 < " < 1. Since Txðn;m; zÞ is unimodular, we get

1The matrices in [8, Lemma 3.3] are the so-called Szegö matrices, which are not exactly the same as those introduced in ð2.3Þ. However, these

matrices are conjugate to one another in a natural manner; cf. [8, Equation (3.3)].
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kTxðn;m; zÞ~vk � K�1
1 whenever jz� ij < "; jn� mj 
 "�1; and k~vk ¼ 1: ð2:6Þ

For each z with jzj > 1, define  ¼  z ¼
def ðU � zÞ�1�þ0 . Since U ¼ z þ �þ0 , one may check that the recursion ð2.2Þ

holds for all n 6¼ �1. In light of this and ð2.6Þ, we may estimate the matrix elements of the resolvent via

jh�n; ðU � ei�þ	Þ�1�þ0 ij
2
& 1 whenever jei�þ	 � ij < " and

"�1

2
< jnj < "�1; ð2:7Þ

where � 2 R and 	 > 0. In ð2.7Þ and below, we use the shorthand notation

jh�n; ’ij2 ¼
def jh�þn ; ’ij

2 þ jh��n ; ’ij
2:

Now, we combine everything to estimate the time-averaged moments. First, use the definition and remove the terms
with jnj < 2L and jnj > 4L to obtain

hjXjpiðLÞ ¼
X
n2Z
jnjpeaðn; LÞ � Lpð1� e�2=LÞ

X
2L
jnj
4L

X1
‘¼0

e�2‘=Ljh�n;U‘�þ0 ij
2:

Of course, 1� e�2=L � L�1 as L!1, so we may estimate this as

Lpð1� e�2=LÞ
X

2L
jnj
4L

X1
‘¼0

e�2‘=Ljh�n;U‘�þ0 ij
2
& Lp�1

X
2L
jnj
4L

X1
‘¼0

e�2‘=Ljh�n;U‘�þ0 ij
2:

Now, apply the Parseval formula ð1.2Þ to get

Lp�1
X

2L
jnj
4L

X1
‘¼0

e�2‘=Ljh�n;U‘�þ0 ij
2
& Lp�1

X
2L
jnj
4L

Z 2�

0

jh�n; ðU � ei�þL
�1

Þ�1�þ0 ij
2 d�

2�
:

We want to concentrate on phases � for which ei� � i, so we can bound this from below by

Lp�1
X

2L
jnj
4L

Z
BL

jh�n; ðU � ei�þL
�1

Þ�1�þ0 ij
2 d�

2�
;

where BL ¼ ½�=2� L�1; �=2þ L�1�. At last, applying ð2.7Þ, and using that the length of BL is 2=L, we have

Lp�1
X

2L
jnj
4L

Z
BL

jh�n; ðU � ei�þL
�1

Þ�1�þ0 ij
2 d�

2�
& Lp�1 � L � L�1 ¼ Lp�1:

Thus, we have

hjXjpiðLÞ & Lp�1;

which suffices to prove the desired lower bound on e��ðpÞ. �
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