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Dynamics of two-member Markov processes is formulated based on the binomial probability. Sets of initial
states are then sought such that the final state reaches an equilibrium. On the two-parameter phase plane, such
initial states are found to exhibit diverse geometric configurations depending on the source probability. Those
initial-state boundaries undergo phase transitions ranging over pills, stripes, circles, ellipses, lemons, and even
fuzzy shapes. These results are quite helpful in understanding several physical phenomena involving photons,
electrons, and atoms. For convenience of discussion, deformations of vortices are taken as an example.
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1. Introduction

Based on the binomial probability [1], we are here to examine certain Markov processes from two perspectives:
geometric deformations [2], and two-member interactions [3].

Firstly, consider geometric deformations of two-dimensional vortices as an example [2]. There is a vast literature on
vortices as a physical phenomenon of either electronic or photonic nature [3]. The circular shape represented by typical
vortices is just one of many possible geometric configurations. For instance, a slight material anisotropy alters the
circular shape of a vortex into varying degrees of elliptic shapes [4]. We could even suppose that a linear stripe on a
plane is deformed eventually into a circular vortex after undergoing various dynamical evolutions. One of the key
characters of vortices is the direction of circulation. For instance, vortices of opposite senses are more likely to cancel
among them, thus possibly contributing to a net zero circulation [3]. In terms of the aforementioned stripe, the
rotational direction of a vortex corresponds to which way information is propagated along the stripe’s direction. This
discussion on vortices has been made in both physical real space and parameter space.

Secondly, consider a two-member interaction which is the simplest one among multiple members. As an example,
many issues in quantum optics are discussed in terms of two-member systems [5, 6]. As another example, two-mode
radiation field treats a quantum mechanical vortex state when generated by subtracting a photon [7]. Notice that the
vortex states in [7] are represented by two-mode wave functions on the parameter plane formed by the two quadrature
coordinates. The complex parameter representing the inter-mode interaction of a squeezed state plays a key role in
determining how elliptic vortex states occur [7]. Besides, the phase plane can be what is employed for the Wigner
function [5, 8].

As yet another two-member system, consider interactions between electromagnetic field and a two-level atom
[5, 6, 8]. Such two-level systems form the basis for the interferometers [9–13]. In addition, the Schwinger boson
representation for even-numbered spin systems is admissible, thus revealing a bosonic feature of the collective
ensemble of fermionic atoms [11]. A similar pseudospin picture is employed for the two-dimensional electrons of a
bilayer graphene or a double quantum well under the action of perpendicular magnetic fields [3]. Additionally, two
spin-rotation angles serve to form a phase plane in case with quantum walks [2].

Let us combine the aforementioned two aspects of geometric deformations and two-member interactions. In our
study, two parameters specify an initial state of a certain dynamics. The dynamics itself is constructed by two-member
binomial probability with the source parameter acting as a time-like variable [1, 8]. Our Markov process is hence
established by employing various combinations of such binomial probabilities in forming pertinent transition
probability matrices [5, 6, 13, 14]. The end state of this Markov process is assumed to be in equilibrium where its
constituent substates are of equal probabilities. By this way, we can impose a certain constraint on the initial state. Our
discussion will center on the various phase-plane shapes for such an initial state.
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As a result, such initial-state boundaries on the initial-state phase plane are found to range over medicine pills, linear
stripes, circles, ellipses, lemons, and fuzzy shapes as the source probability is altered. In particular, phase transitions are
found to take place between different geometric shapes with the source probability playing the role of a critical
parameter [2]. It turns out that the source probabilities of one third and two thirds delineate drastic changes in the
shapes of those initial-state boundaries. Elongated ellipses on the frequency space are also seen for interference patterns
of light polarization [12, 13]. In a few physical examples observed in real space, we find a similar array of shape
changes with varying parameters [5, 10]. These phenomena on two-dimensional real space are of particular importance
from the viewpoint of phase transitions and topological physics [2, 3, 13].

Consider a few more characteristics of Markov processes. The approximation of adiabatic slow processes underlies
Markov processes [3, 14, 15]. Therefore, non-Markovian processes involving fast optical pulses or switching are not
under our investigation [6, 8]. In addition, our Markov process corresponds to the steady increase in indistinguishability
among the member states [9, 10, 12, 13]. Along the same line of reasoning, Markov processes governed by random
transition matrices normally erase the initial-state dependence as events progress [5]. In stark contrast, the initial states
are usually remembered whenever collapses and revivals are prevalent.

This paper is organized as follows. In Sect. 2, fundamentals of Markov processes are presented for a single member.
In Sect. 3, Markov processes are worked out for two members. In Sect. 4, the initial-state boundaries are investigated
for a simpler two-member system. In Sect. 5, phase changes are discussed for a more complicated system as the source
probability is varied. Section 6 presents discussions followed by conclusion in Section 7.

2. Fundamentals of Markov Processes

Consider the binomial probability defined below [1].

Cg
n ¼

g!

n!ðg� nÞ!
; Pg

nðqÞ ¼ Cg
nð1� qÞg�nqn: ð1Þ

In terms of the balls-in-boxes argument, the integers n and g refer to the numbers of indistinguishable balls and
boxes, respectively. Alternatively, n is called a generation number, whereas g is called the member or particle number.
Therefore, the total of admissible substates is gþ 1. The source probability q is continuous over the interval 0 � q � 1.
Furthermore, q can be interpreted from several perspectives [3, 7, 8, 11–14]: (i) the probability of rightward or leftward
one-dimensional random walks, (ii) the doping level or degree of defects in compound materials, (iii) a dynamical
evolution variable, or (iv) squeezing parameter. By incorporating an additional time variable into Pg

nðqÞ, evolutionary
dynamics can be readily formulated [1, 5, 8].

Figure 1 displays both P1
nðqÞ in (a) and P2

nðqÞ in (b), both plotted against q. Here, P1
0ðqÞ ¼ 1� q and P1

1ðqÞ ¼ q,
whereas P2

0ðqÞ ¼ ð1� qÞ2, P2
1ðqÞ ¼ 2ð1� qÞq, and P1

1ðqÞ ¼ q2. At q ¼ 1=2, the symmetry of P2
1ðqÞ with respect to q is

clearly visible from Fig. 1(b) [1, 11].

Let us consider the simplest case with g ¼ 1. The transition probability matrices (TPMs) based on P1
nðqÞ have two

possibilities as follows.

T1
0 �

P1
0 P1

1

P1
0 P1

1

 !
; T1

1 �
P1

0 P1
1

P1
1 P1

0

 !
: ð2Þ

Fig. 1. The binomial probability for a single particle with g ¼ 1 in (a), and two particles with g ¼ 2 in (b).
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Here, the subscript m in T1
m indicates different ways of permutation. Suppose that T1

m gives rise to a pair of eigenvalues
ð�1

mÞ� with � ¼ 0; 1. As one limitation on Eq. (2), only the amplitude aspect of dynamics is taken into account without
its phase information.

Let the k-th Markov step be denoted by the column vector ~VðkÞ � fxðkÞ; yðkÞgT . Therefore, an initial state is given by
~Vð0Þ � fxð0Þ; yð0ÞgT . For the first case with TPM T1

0 , we find the two eigenvalues ð�1
0 Þ0 ¼ 1 and ð�1

0 Þ1 ¼ 0. Hence,
xðkÞ ¼ yðkÞ ¼ ð1� qÞxð0Þ þ qyð0Þ. As a result, ~VðkÞ remains the same with varying k throughout a given Markov
process for any combinations of xð0Þ and yð0Þ. In addition, a fixed-point state xðkÞ ¼ yðkÞ ¼ 1=2 is established for the
particular initial state xð0Þ ¼ yð0Þ ¼ 1=2.

In the second case with T1
1 , we have ð�1

1 Þ0 ¼ 1 and ð�1
1 Þ1 ¼ 1� 2q. From both left and right eigenvectors [1], its

Markov process is described by the following transient dynamics [10].

~VðkÞ �
xðkÞ
yðkÞ

� �
¼

1

2

1

1

� �
þ
ð2q� 1Þk

2

1 �1

�1 1

� �
xð0Þ
yð0Þ

� �
: ð3Þ

Here on the right-hand side, the first term refers to the stationary state, being constant in this particular case. In the
meantime, the second term means transient or decaying dynamics since j2q� 1j < 1 for all q over 0 < q < 1. A
special is obtained exactly for q ¼ 1 such that xðkÞ ¼ 1

2
þ 1

2
xð0Þ � 1

2
yð0Þ and yðkÞ ¼ 1

2
� 1

2
xð0Þ þ 1

2
yð0Þ for any values

of k. As a check, we obtain xðkÞ þ yðkÞ ¼ 1 for all k, of course. There is no oscillatory feature with varying k in this
one-member case, due to lack of interactions.

3. Two-Member Markov Processes

As the next simple case, consider the case with g ¼ 2. The corresponding six TPMs T2
m are defined as follows.

T2
0 �

P2
0 P2

1 P2
2

P2
0 P2

1 P2
2

P2
0 P2

1 P2
2

0
B@

1
CA; T2

1 �
P2

0 P2
1 P2

2

P2
1 P2

0 P2
2

P2
2 P2

1 P2
0

0
B@

1
CA; T2

2 �
P2

0 P2
1 P2

2

P2
2 P2

0 P2
1

P2
0 P2

2 P2
1

0
B@

1
CA: ð4Þ

Likewise, the remaining TPMs T2
3 , T2

4 , and T2
5 can be easily constructed. Let us now denote the triplet of eigenvalues

by ð�2
mÞ� with � ¼ 0; 1; 2 for each of T2

m. Furthermore the k-th Markov step is denoted by the column vector ~VðkÞ �
fxðkÞ; yðkÞ; zðkÞgT with the corresponding initial state ~Vð0Þ � fxð0Þ; yð0Þ; zð0ÞgT .

First, consider the simplest TPM T2
0 , for which three eigenvalues are ð�2

0 Þ0 ¼ 1, ð�2
0 Þ1 ¼ 0, and ð�2

0 Þ2 ¼ 0.
Correspondingly, the stationary Markov process is obtained as follows.

~VðkÞ �
xðkÞ
yðkÞ
zðkÞ

8><
>:

9>=
>; ¼

ð1� qÞ2 2ð1� qÞq q2

ð1� qÞ2 2ð1� qÞq q2

ð1� qÞ2 2ð1� qÞq q2

0
B@

1
CA

xð0Þ
yð0Þ
zð0Þ

8><
>:

9>=
>;: ð5Þ

Hence, we have xðkÞ ¼ yðkÞ ¼ zðkÞ for any k with xðkÞ ¼ ð1� qÞ2xð0Þ þ 2ð1� qÞqyð0Þ þ q2zð0Þ. Besides, we find the
fixed-point state xðkÞ ¼ yðkÞ ¼ zðkÞ ¼ 1=3 for the particular initial state xð0Þ ¼ yð0Þ ¼ zð0Þ ¼ 1=3.

Next, consider the non-trivial TPM T2
1 , for which three eigenvalues are ð�2

1 Þ0 ¼ 1, ð�2
1 Þ1 ¼ 1� 2q, and

ð�2
1 Þ2 ¼ 1� 4qþ 3q2. Firstly, ð�2

1 Þ1 vanishes at q ¼ 1=2. Secondly, we rewrite the third eigenvalue such that
ð�2

1 Þ2 ¼ 3ðq� 2=3Þ2 � 1=3. Summarizing the respective ranges of the eigenvalues,

ð�2
1 Þ1 � 1� 2q

ð�2
1 Þ2 � 1� 4qþ 3q2

(
)

0 < ð�2
1 Þ1 < 1

�1=3 < ð�2
1 Þ2 < 1

(
: ð6Þ

The resulting Markov process is found as follows.

~VðkÞ �
xðkÞ
yðkÞ
zðkÞ

8><
>:

9>=
>; ¼ A2

1ðqÞ
xð0Þ
yð0Þ
zð0Þ

8><
>:

9>=
>;: ð7Þ

Here, the Markov dynamics A2
1ðqÞ for the TPM T2

1 is broken first into three parts A2
1ðqÞ � ½A2

1ðqÞ�0 þ ½A2
1ðqÞ�1 þ ½A2

1ðqÞ�2
as follows.

A2
1ðqÞ � ½A

2
1ðqÞ�0 þ ½A

2
1ðqÞ�1 þ ½A

2
1ðqÞ�2

þ
1

8� 6q

4� 6qþ 3q2 4� 4q 4q� 3q2

4� 6qþ 3q2 4� 4q 4q� 3q2

4� 6qþ 3q2 4� 4q 4q� 3q2

0
B@

1
CA
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þ
ð1� 2qÞk

qþ 2

q 0 �q
q 0 �q

q� 2 0 �q

0
B@

1
CAþ ð1� 4qþ 3q2Þk

4� 3q

2� 2q 2q� 2 0

q� 2 2� q 0

2� 2q 2q� 2 0

0
B@

1
CA: ð8Þ

Let us examine the right-hand side of Eq. (8). The first term ½A2
1ðqÞ�0 refers to the stationary state [5]. Both second

term ½A2
1ðqÞ�1 and third term ½A2

1ðqÞ�2 indicate transient dynamics because of Eq. (6). It is worth noting that the end
value of q ¼ 1 leads to infinitely oscillatory dynamics, because of ð1� 2qÞk ! ð�1Þk in ½A2

1ðqÞ�1. This oscillation is in
stark contrast to the previous one-member case discussed by Eq. (3), where ð2q� 1Þk ! ðþ1Þk ¼ 1 for q ¼ 1 even
with varying k.

4. Initial-State Boundaries for an Equilibrium Stationary State

Let us focus on the following stationary term on the right-hand side of Eq. (8) obtained as k!1.

~Vð1Þ �
xð1Þ
yð1Þ
zð1Þ

8><
>:

9>=
>; ¼

1

8� 6q

4� 6qþ 3q2 4� 4q 4q� 3q2

4� 6qþ 3q2 4� 4q 4q� 3q2

4� 6qþ 3q2 4� 4q 4q� 3q2

0
B@

1
CA

xð0Þ
yð0Þ
zð0Þ

8><
>:

9>=
>;: ð9Þ

The central question now reads: ‘‘When is the set of initial states leading to the equilibrium stationary state?’’. This
happens if the equilibrium condition xð1Þ ¼ yð1Þ ¼ zð1Þ ¼ 1=3 of equal probabilities is satisfied, whereby Eq. (9)
leads to the following constraint.

ð4� 6qþ 3q2Þxð0Þ þ ð4� 4qÞyð0Þ þ ð4q� 3q2Þzð0Þ
8� 6q

¼
1

3
: ð10Þ

Since xð0Þ þ yð0Þ þ zð0Þ ¼ 1 according to the probability constraint, the initial-state vector ~Vð0Þ can be
parameterized as follows by two spherical angles ð�; �Þ over a spherical surface of unit radius [2, 3, 10, 11, 15, 16].

~Vð0Þ �
xð0Þ
yð0Þ
zð0Þ

8><
>:

9>=
>; ¼

cos2 �

sin2 � cos2 �

sin2 � sin2 �

8><
>:

9>=
>;: ð11Þ

In terms of the two angles ð�; �Þ in Eq. (11), the requirement in Eq. (10) is cast into the following.

0 ¼ f 2
1 ð�; �; qÞ � ð4� 6qþ 3q2Þ cos2 � þ ð4� 4qÞ sin2 � cos2 �

þ ð4q� 3q2Þ sin2 � sin2 �� ð8� 6qÞ=3:
ð12Þ

Let us call f 2
1 the ‘‘residual function’’, which is desired to vanish. Figure 2 shows f 2

1 on two kinds of parameter
planes. Firstly, the three panels (a3)–(a5) enclosed by the horizontal green box display f 2

1 ðxð0Þ; yð0Þ; qÞ on the
xð0Þ � yð0Þ-plane. Secondly, the five panels (b1)–(b5) enclosed by the two-row red box plot f 2

1 ð�; �; qÞ on the
ð�; �Þ-plane. Here, both �; � coordinates are normalized by � so that the ð�; �Þ-plane is searched over the rectangular
domain fð�; �Þ: 0 � � � �; 0 � � � �g.

The source probability q is specified on the upper portion of each panel except for panel (b0). We prepared both
panels (a3) and (b3) with the equal q ¼ 0:25, Likewise, both panels (a4) and (b4) are drawn with the equal q ¼ 0:6665.
In addition, both panels (a5) and (b5) are plotted with the equal q ¼ 0:999. Panels (b1) and (b2) are made with q ¼ 0

and 0.1 in order to provide a more detailed picture on the ð�; �Þ-plane. For panels (b1)–(b5), an arrow is inserted
between two neighboring panels to show the direction of increasing q. The panel (b0) will be explained shortly.

On each panel, the brighter and darker colors refer to f 2
1 > 0 and f 2

1 < 0, respectively. In particular, the strength of
the bluish color corresponds to the magnitude j f 2

1 j for the case f 2
1 < 0. As a visual guide to readers, the positive and

negative values on each panel are indicated by the signs ‘‘+’’ and ‘‘�’’, respectively. Therefore, the boundary(ies)
between the two zones of different colors indicate(s) the set of initial states leading to the same equilibrium stationary
state.

Consider panels (a3)–(a5) of Fig. 2 plotted for q ¼ 0:25, 0.6665, 0.999, respectively. Recall however that the state at
q ¼ 1 is not reachable in a finite value of the time-like parameter q in reference to Eq. (6). It is why we prepared
panel (a5) for q ¼ 0:999 instead of q ¼ 1. The boundary on this xð0Þ � yð0Þ-plane is found to be a single straight line
on all the three panels. Consider the equilibrium initial state [11]: xð0Þ ¼ yð0Þ ¼ zð0Þ ¼ 1=3. In this case, Eq. (9) gives
rise to xð1Þ ¼ yð1Þ ¼ zð1Þ ¼ 1=3, a trivial result, but confirming again that the equilibrium initial state is
maintained. We have marked this special state xð1Þ ¼ yð1Þ ¼ zð1Þ ¼ 1=3 by the single small disk in red circular
boundary on panels (a3)–(a5). These small disks are a little bit off the linear boundary because of the coloring problem
on computers.

Consider next panels (b3)–(b5) of Fig. 2 plotted similarly for q ¼ 0:25, 0.6665, and 0.999, but now on the
ð�; �Þ-plane. The negative zone is elliptic on panel (b3), whereas it is almost stripe-like on panel (b4) [11]. Although
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the negative zone on panel (b5) appears to be split into two parts, it is elliptic as well if it is drawn on the �-coordinate
shifted by a half period. From Eq. (12), let us explicitly find the boundaries for stationary states for the following key
values of q.

q ¼ 0: sin2 � sin2 � ¼ 1=3

q ¼ 2=3: sin2 � cos2 � ¼ 0

q ¼ 1: sin2 � cos2 � ¼ 1=3:

ð13Þ

In Fig. 2, the boundary shown on panel (b1) for q ¼ 0 and expressed by sin2 � sin2 � ¼ 1=3 in Eq. (13) is almost like
a circle. We call this a quasi-circle, which has a certain degree of ellipticity. Likewise, both boundaries shown in
panel (b2) for q ¼ 0:1 and that shown in panel (b3) for q ¼ 0:25 are quasi-circles. For comparison, consider the
following true circle with its center located on the center of the ð�; �Þ-plane and with its radius of r ¼ 0:3.

ðcircleÞ:
�

�
�

1

2

� �2

þ
�

�
�

1

2

� �2

¼
0:3

�

� �2

: ð14Þ

This true circle is displayed on panel (b0) enclosed in a broken red box. Let us examine the series of panels (b1)–(b4)
over the range 0 � q < 2=3 with increasing q. We can thus find that the quasi-circle at q ¼ 0 on panel (b1) accumulates
more ellipticity through panels (b2) and (b3) to finally become two lines on panel (b4) for q ¼ 0:6665. The single-lobe
vortex-like structure displayed on panels (b1)–(b3) is in a contrast to two-lobe vortex-like structures in the case of
photonic vortices [7].

Exactly at q ¼ 2=3, the initial-state boundary is given by sin � cos� ¼ 0 from Eq. (13). The solutions to sin � cos� ¼
0 is �=� ¼ 1=2, thereby being a single horizontal line in the middle. Its additional solutions � ¼ 0 and �=� ¼ 1 are just

Fig. 2. The region of positive (in brighter color) and negative (in darker bluish color) values of the residual function f 2
1 ð�; �; qÞ

indicating the stationary states in equilibrium. On the three panels (a3)–(a5) enclosed by the green box, f 2
1 is plotted on the

xð0Þ � yð0Þ plane for the initial states. On the five panels (b1)–(b5) enclosed by the red box, f 2
1 is plotted on the ð�; �Þ-plane for

the initial states. Both �; � coordinates are normalized by �. The source probability q is specified on the upper portion of each
panel except for panel (b0). The single disk with a red circular boundary on panels (a3)–(a5) and the four disks with respective
red circular boundaries on panels (b1)–(b5) indicate the equilibrium stationary states with xð1Þ ¼ yð1Þ ¼ zð1Þ ¼ 1=3.
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the boundary overlapping the respective vertical boundaries of a panel. That is why we chose to draw on panel (b4) the
initial-state boundary for q ¼ 0:6665, which is slightly smaller than q ¼ 2=3. It is now numerically found that the
initial-state boundaries are located approximately at �=� ¼ 1=4 and 3/4, thus referring respectively to the lower and
upper boundaries of the blue stripe on panel (b4).

Upon closer look on panel (b4), the region of f 2
1 < 0 form a rounded square like a medicine pill, rather than a stripe.

Therefore, it is remarkable that a small variation of q ¼ 2=3� 0:6665 � 0:0002 causes such a drastic change on the
initial-state phase space. This is clearly indicative of a first-order phase change. For reference, such a rounded square of
the medicine pill is called a lozenge.

For q ¼ 1 on panel (b5) of Fig. 2, the boundary in Eq. (13) is sin2 � cos2 � ¼ 1=3, which is nothing but the boundary
sin2 � sin2 � ¼ 1=3 for q ¼ 0 but with a phase shift of �=� ¼ 1=2. Hence, the boundary on panel (b5) of Fig. 2 appears
to be broken into two pieces in comparison to its counterpart on panel (b1). From an overall view on panels (b1)
through (b5), there is a certain phase change across panel (b4) whereby a circle-like boundaries transit into two halves.

In order to more closely examine the phase change across q ¼ 2=3, we prepared Fig. 3. As indicated by the inter-
panel arrows, the five panels of Fig. 3 are arranged in the clockwise direction over (a) q ¼ 0:6, (b) q ¼ 0:6666666, (c)
q ¼ 2=3, (d) q ¼ 0:67, and (e) q ¼ 0:75. First of all, we have exaggerated the horizontal line on panel (c) for q ¼ 2=3.
Secondly, for q ¼ 0:6666666 being closer to q ¼ 2=3 than the previous q ¼ 0:6665, the blue region of f 2

1 < 0 on
panel (b) of Fig. 3 looks almost like a strip. In contrast, panel (a) for q ¼ 0:6 clearly exhibits a rounded square of a
medicine pill, rather than a stripe. On panel (a), this shape of the initial-state boundary is certainly a quasi-circle with a
higher level of ellipticity. In other words, panel (a) is just an extension of panels (b1)–(b3) of Fig. 2, but with an
increased ellipticity.

Both panels (d) and (e) of Fig. 3 demonstrate how the linear boundary on panel (c) of Fig. 3 undergoes slow
transitions into two halves of a quasi-circle previously displayed on panel (b5) of Fig. 2.

As with Eq. (11), let us express the stationary state ~Vð1Þ in terms of two angles ð�1; �1Þ as follows.

~Vð1Þ �
xð1Þ
yð1Þ
zð1Þ

8><
>:

9>=
>; ¼

cos2ð�1Þ

sin2ð�1Þ cos2ð�1Þ

sin2ð�1Þ sin2ð�1Þ

8><
>:

9>=
>;: ð15Þ

Hence, the equilibrium condition xð1Þ ¼ yð1Þ ¼ zð1Þ ¼ 1=3 is reduced to the two requirements: cos2ð�1Þ ¼ 1=3 and
cos2ð�1Þ ¼ sin2ð�1Þ ¼ 1=2. In the domain fð�1; �1Þ: 0 � �1 � �; 0 � �1 � �g, we are thus led to the particular set

Fig. 3. Plots of f 2
1 ð�; �; qÞ near q ¼ 2=3, thus demonstrating an abrupt phase change from one-piece pills through a horizontal line

to two halves of a pill. The five panels are arranged in the clockwise direction over (a) q ¼ 0:6, (b) q ¼ 0:6666666, (c) q ¼ 2=3,
(d) q ¼ 0:67, and (e) q ¼ 0:75.
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of four points with �1=� � 0:304; 0:696 (numerically found) and �1=� ¼ �1=4;�3=4. In Fig. 2, the corresponding
states in terms of ð�1; �1Þ are marked by the four small disks in red circular boundaries on each of panels (b0)–(b5).
Therefore, the single small disk in red circular boundary on each of panels (a1)–(a3) on the xð0Þ � yð0Þ-plane
corresponds to these four small disks in the same red circular boundary.

As a further observation on Fig. 2, there is hardly any visible color distribution (namely, almost in the same color)
inside the strip-like zone on panel (b4) for q ¼ 0:6665. On the other hand, we find slight degrees of color distributions
in the interiors of the broken quasi-circle on panel (b5) for q ¼ 0:999. From comparing panels (b1)–(b4) of Fig. 2, we
find that the squeezing is horizontally directed [11].

On panels (b1)–(b5) of Fig. 2, ~Vð1Þ denoting the final equilibrium lies on the initial-state boundary, which reminds
us of the commensurability issue of the vortex lattices or crystalline lattices discussed in conjunction with layered
superconductors [4]. Let us take another look at a special off-equilibrium case that xð0Þ ¼ yð0Þ ¼ 1=2 with zð0Þ ¼ 0,
which is marked by the single yellow triangle with the green boundary on panel (a4) of Fig. 2. This special case
corresponds to �=� ¼ 1=4 or �=� ¼ 3=4 with �=� ¼ 0 or �=� ¼ 1 [8]. Panel (b4) of Fig. 2 marks these four states by
the same yellow triangles with the green boundaries, located on the horizontal boundaries (both on the top and bottom).
As expected, these states with the triangular markers do not lie on the initial-state boundary obtained for the
equilibrium stationary state.

5. Phase Change and Criticality

Consider a little more complicated TPM T2
2 presented in Eq. (4). Its three eigenvalues are found to be ð�2

2 Þ0 ¼ 1 and
ð�2

2 Þ� ¼ 1
2
ð1� 2qÞ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
�2

2ðqÞ
p

with �2
2ðqÞ � 1� 12qþ 32q2 � 24q3. Instead of analytically finding the bounds on the

absolute values of ð�2
2 Þ� as with Eq. (6) for T2

1 , we plot just numerically jð�2
2 Þ�j in Fig. 4(a) as the source probability q

is varied. As a result, it is confirmed that jð�2
2 Þ�j < 1 for 0 < q < 1. Notice that jð�2

2 Þþj ¼ 1 at both q ¼ 0 and 1,
whereas jð�2

2 Þ�j ¼ 1 only at q ¼ 1.
Take note in Fig. 4(a) that the two curves are overlapping such that jð�2

2 Þþj ¼ jð�2
2 Þ�j over the two regions of q as

indicated by the two horizontal broken lines in green color. In fact, these overlapping regions correspond to both ð�2
2 Þ�

being complex. Complex ð�2
2 Þ� arise from negative �2

2ðqÞ. Outside these overlapping regions, we plot in Fig. 4(b) only
the real parts ð�2

2 Þ� so that they can take negative values around q ¼ 0:6.
As with Eq. (8), the Markov dynamics A2

2ðqÞ for the TPM T2
2 is broken first into three parts A2

2ðqÞ �
½A2

2ðqÞ�0 þ ½A2
2ðqÞ�þ þ ½A2

2ðqÞ��. We do not present the detailed procedure for obtaining A2
2ðqÞ, because it involves so

much complicated algebraic manipulations even with the help of commercial symbolic-language softwares such as
Mathematica. In particular, both ½A2

2ðqÞ�þ and ½A2
2ðqÞ�� designating the transient parts are exceedingly complicated.

Fortunately, the fact that jð�2
2 Þ�j < 1 except at both ends q ¼ 0 and 1 relieves us of the labor of explicitly finding

½A2
2ðqÞ��.
Therefore, we list below the simple stationary part ½A2

2ðqÞ�0 only.

½A2
2ðqÞ�0 �

1

4� 7qþ 6q2

ð2� 5qþ 4q2Þ ð2� 6qþ 8q2 � 3q3Þ ð4q� 6q2 þ 3q3Þ
ð2� 5qþ 4q2Þ ð2� 6qþ 8q2 � 3q3Þ ð4q� 6q2 þ 3q3Þ
ð2� 5qþ 4q2Þ ð2� 6qþ 8q2 � 3q3Þ ð4q� 6q2 þ 3q3Þ

0
B@

1
CA: ð16Þ

As for Eq. (12), we obtain the corresponding residual function f 2
2 ð�; �; qÞ from Eq. (16).

Fig. 4. (a) The absolute values of the eigenvalues jð�2
2 Þþj in blue color and jð�2

2 Þ�j in red color for the transient parts in case of the
TPM T2

2 . Both are drawn as a function of the source probability q. (b) Real parts ð�2
2 Þ� when �2

2ðqÞ > 0.
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0 ¼ f 2
2 ð�; �; qÞ � ð2� 5qþ 4q2Þ cos2 � þ ð2� 6qþ 8q2 � 3q3Þ sin2 � cos2 �

þ ð4q� 6q2 þ 3q3Þ sin2 � sin2 �� 1
3
ð4� 7qþ 6q2Þ:

ð17Þ

As with Eq. (13), we list below the initial-state boundaries for the following key values of q [3].

q ¼ 0: sin2 � sin2 � ¼ 1=3

q ¼ 1=3: cos2 � þ sin2 �ðcos2 �þ sin2 �Þ ¼ 1

q ¼ 2=3: ð1þ sin2 �Þ sin2 � ¼ 1

q ¼ 1: cos2 � þ sin2 �ðcos2 �þ sin2 �Þ ¼ 1:

ð18Þ

The reason why we write here the trivial identity cos2 � þ sin2 �ðcos2 �þ sin2 �Þ ¼ 1 for q ¼ 1 is to emphasize that it
is satisfied for all combinations of ð�; �Þ. The same thing applies to the case for q ¼ 1=3. This identity is linked to phase
change as will be discussed.

For 0 < q < 1, we performed a systematic study on f 2
2 ð�; �; qÞ by varying q in a continuous way. Figure 5 shows

several representative panels for selected values of q. The direction of increasing q is indicated by the arrows along the
boundary of the figure’s box. The way the colors are employed in Fig. 5 is the same as for panels of (b1)–(b5) of Figs. 2
or 3.

Overall, Fig. 5 displays that those initial-state boundaries undergo rather dramatic changes as q is varied. Firstly, the
region with f 2

2 < 0 is elliptic for 0 < q < 1=3. As a result, a slight dependence of the boundary shape on q can be seen
through Figs. 5(a)–5(b) for the relatively small-q range over 0 < q	 1=3. If q is taken to imply either doping level or
defect concentration, the suitably defined ellipticity varies linearly through Figs. 5(a)–5(b) with such doping level or
defect concentration [4].

In contrast, it might seem true throughout 1=3 < q < 2=3 that the region with f 2
2 > 0 is elliptic as well. In other

word, there is an flip-over change in the sign of f 2
2 across q ¼ 1=3. This flip-over can be considered as a sort of phase

change. This assertion will be confirmed shortly. Eventually, at q ¼ 2=3 on Fig. 5(e), the region with f 2
2 > 0 takes a

lemon-like shape, which is characterized by two cusps on its top and bottom. Notice however that the transition in the
boundary shapes from Figs. 5(c) to 5(d) is considered to be still continuous. This last observation will be disputed
shortly.

From q ¼ 2=3 onward up to q ¼ 1 through Figs. 5(e)–5(g), the region with f 2
2 > 0 becomes stripe-shaped. However,

right at q ¼ 1 on Fig. 5(h), the initial-state boundary becomes so fuzzy or chaotic that the regions with f 2
2 > 0 are

intermixed with the regions with f 2
2 < 0 [14]. This fuzzy structure is due to the highly oscillatory dynamics right at

q ¼ 1. This fact is related in turn to the values of jð�2
2 Þ�j ¼ 1 at q ¼ 1, as shown by Fig. 4.

Such a fuzzy landscape is obtained exactly for q ¼ 1=3 as well (but not presented). This fact is understandable from
the fact that f 2

2 ð�; �; qÞ reduces to the same expression cos2 � þ sin2 �ðcos2 �þ sin2 �Þ ¼ 1 at both q ¼ 1=3 and 2/3 as
listed in Eq. (18). Slightly off q ¼ 1=3, say, for q ¼ 0:3333 as shown in Fig. 5(c), the initial-state boundary is merely a
normal quasi-circle. As a consequence, the above-mentioned flip-over in the sing of f 2

2 is accompanied indeed by a
phase change.

Graphically speaking, a two-dimensional quasi-circle is squeezed into a two-dimensional lemon, as it goes from
Figs. 5(d) to 5(e). The top and bottom ends of the lemon on Fig. 5(e) open up as we goes towards Fig. 5(f). As a check
on the equation for the lemon on Fig. 5(e), consider ð1þ sin2 �Þ sin2 � ¼ 1 in Eq. (18) for q ¼ 2=3. Unlike the single
horizontal line displayed panel (c) of Fig. 3 for the TPM T2

1 , q ¼ 2=3 for the TPM T2
2 is not singular as shown by

panel (e) of Fig. 5. Therefore, we employed q ¼ 2=3 for Fig. 5 instead of its approximate q ¼ 0:6665 in Fig. 2.
At the location of the cusps in Fig. 5(e), �=� ¼ 0:5. Hence, we obtain two solutions �=� ¼ 0; 1. As another way of

finding representative initial-state boundary points, consider the particular coordinates �=� ¼ 1=4; 3=4. From ð1þ
sin2 �Þ sin2 � ¼ 1 in Eq. (18), we thus obtain the corresponding coordinates �=� ¼ 1=3; 2=3. We marked in Fig. 5(e) the
four locations ð�; �Þ ¼ ð1=3; 1=4Þ, ð�; �Þ ¼ ð1=3; 3=4Þ, ð�; �Þ ¼ ð2=3; 1=4Þ, and ð�; �Þ ¼ ð2=3; 3=4Þ by small disks with
red circular boundaries. The same set of small disks are placed on the initial-state boundary(ies) for all the panels (a)–
(g) of Fig. 5.

Finally, we reach a stripe on Fig. 5(g). This stripe represents the extreme anisotropy in contrast to the nearly perfect
isotropy of the quasi-circle shown in panel (b1) of Fig. 2 [3, 4, 11]. On Fig. 5(g) as q! 1, we found numerically that
the initial-state boundaries are located at either �=� � 0:3 or �=� � 0:7 irrespectively of �. This stripe is quite different
from the indeterminacy of identity cos2 � þ sin2 �ðcos2 �þ sin2 �Þ ¼ 1 found right at q ¼ 1 as in Eq. (18). To repeat,
the indeterminacy manifests itself as a fuzzy landscape in Fig. 5(h). The same indeterminacy occurs at q ¼ 1=3, also as
seen from Eq. (18).

In case of the TPM T2
1 , panel (b4) of Fig. 2 or more precisely Fig. 3(c) shows that a strip designating a phase change

appears at an intermediate value of 0 < q ¼ 2=3 < 1. In contrast, in case of the TPM T2
2 , Fig. 5(h) displays that a phase

change shows up at the end value of q ¼ 1, thereby implying an infinite time in the context of dynamics. Do not forget
however that a different phase change (namely, the flip-over) takes place across q ¼ 1=3 in case of the TPM T2

2 .
The transition encompassing the lemon- and stripe-like shapes in Fig. 5 corresponds conceptually to the notion of

‘‘squeezing’’ [15]. For this matter, one angular range for the initial states is narrowed or squeezed in the �-direction,
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whereas the other angular range in the �-direction slowly gets widened. The stripe in Fig. 5(g) corresponds therefore to
an infinite squeezing [11]. So come together the squeezing in one direction and the opening in the other direction. In
other words, a directional anisotropy gradually develops as it goes from Figs. 5(a) to 5(g).

6. Discussions

We have seen from Eqs. (13) and (18) that the residual functions reduce to the same equation sin2 � sin2 � ¼ 1=3 for
q ¼ 0. Its contour is shown either Figs. 2(b1) or 5(a). These quasi-circles still exhibit certain degrees of ellipticity. In
terms of the two variables ð�; �Þ, the true circle defined as in Eq. (14) is quadratically nonlinear, whereas sin2 � sin2 � ¼
1=3 for the quasi-circles involve a product of two infinite series. As an extension, consider the two-variable two-
parameter equation sin� � sin� � ¼ 1=3 with �; � > 0. We have learned from numerical experiments that the ellipticity
increases as either j�� �j or j�þ �j�1 increases.

The major axes of the ellipses shown on panels (b1)–(b3) in Fig. 2 are largely oriented in the horizontal direction,
whereas the major axes in Fig. 5 are mostly directed in the vertical direction. This geometric asymmetry constitutes the
principal feature of quantum squeezing, where the directions of squeezing and anti-squeezing are perpendicular [11].
We have performed a similar analysis for each of the remaining TPMs, namely, for T2

3 , T2
4 , and T2

5 mentioned as regards
Eq. (4). As a consequence, we found either horizontal or vertical squeezing (but not presented here).

It is noticed from Eq. (11) that vertical stripes with � ¼ 0; � indicate xð0Þ ¼ 1 and yð0Þ ¼ zð0Þ ¼ 0, whereas
horizontal stripes with � ¼ 0; � imply xð0Þ þ yð0Þ ¼ 1 and zð0Þ ¼ 1. As a result, stripes refer to relatively pure initial

Fig. 5. The initial-state plane is divided into zones with positive (in brighter colors) and negative (in darker bluish colors) values of
the residual function f 2

2 ð�; �; qÞ. The boundaries between two such different zones delineate the initial states, for which the final
stationary state is in equilibrium. The initial-state ð�; �Þ-plane is normalized by � in both directions. The arrows on the periphery
of the box encompassing all the panels indicate the increase in q. On each of panels (a)–(g), the set of four small disks in red
circular boundaries indicates the equilibrium stationary states as defined in Eq. (15) with xð1Þ ¼ yð1Þ ¼ zð1Þ ¼ 1=3.
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states [14], which are relevant to the revival times in the very special adiabatic limit [11]. Here in [11], the initial-state
boundaries may refer to the measurement outcomes that are independent of the intensity of the incident illuminating
lights after a sequence of complicated optical processes. It is interesting in case of cuprate superconductors that
physical stripes are found to undergo changes in spatial orientations as a doping level is varied [16]. Because squeezing
refers to the anisotropy, the lemon with a cusp in Fig. 5(e) may imply the start of initial-state squeezing. Other
configurations with kinks can also be seen on the parameter plane of position and momentum [14]. Such singularities at
the boundaries of the parameter range 0 � q � 1 corresponds to the peaking behavior of quantum probability
distribution [5] or quantum walks [2].

We have studied the initial-state boundaries so that transitions to the equilibrium stationary state with xð1Þ ¼
yð1Þ ¼ zð1Þ ¼ 1=3 are achieved. The results displayed in Fig. 5 are made for the particular transition probability
matrix T2

2 provided in Eq. (4). In the cases on Figs. 5(a)–5(d) over 0 < q < 2=3, it is ensured that 0 < xð0Þ; yð0Þ; zð0Þ <
1 on each initial-state boundary. Therefore, there could be a certain constraint among three components of the initial
state ~Vð0Þ. Specially on Fig. 5(e), the two cusps at � ¼ 0 and � for �=� ¼ 1=2 correspond to the initial state with
zð0Þ ¼ 0 or equally xð0Þ þ yð0Þ ¼ 1. Therefore, there could be a constraint imposed only upon the two components (out
of three components) of initial state ~Vð0Þ.

In the case of two boxes with g ¼ 2, we could ascribe the origin of the critical value of two thirds q ¼ 2=3 to the ratio
of the number of the permutation matrices to the total number of three-by-three components, namely, q ¼ 3!=32 ¼ 2=3.
Interestingly enough, this magic number 2=3 shows itself up when dealing with the reduction in the visibility or
concurrences for two-photon interference experiments [6, 13]. In addition, the maximum squeezing in two-mode
interactions also exhibits a two-third exponent, but in diabatic limits [11].

We remark that the negative-binomial probability has been excluded from this article, since it involves an infinite
series in q and hence it makes complicated the interpretation of the ensuing results [1, 16]. In a future work comparing
both positive- and negative-binomial probabilities, we could tell the difference between fermionic and bosonic
characteristics when employed for Markov processes [12]. In addition, few-member (more than two) system can be
worked out by following the approach taken in this study, although the corresponding algebraic complexity would
increase dramatically with certainty [5, 8].

If we assume the source probability to be directly proportional to time, we could infer how fast the changes in
geometric shapes take place between any two neighboring states as found in Figs. 2, 3, and 5. The last but not the least
point is to extend our phase plane fð�; �Þ: 0 � � � �; 0 � � � �g, which is considered to be the irreducible Brillouin
zone. By this way, we can discuss an array of vortices and topological physics.

7. Conclusion

In summary, we have examined both one- and two-component binomial probabilities by forming appropriate
transition matrices for Markovian dynamics. As a result, Markovian dynamics interpreted on the parameter plane
designating initial states provides us with quite useful tools for understanding several key physical phenomena. From a
geometric viewpoint, the changes observed in the initial-state boundary shapes indicate interesting dynamical
evolutions including phase changes.
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