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We theoretically investigate the localization of population distribution in rotational excitation of diatomic
molecules induced by a train of optical pulses in the terahertz region. In a simulation with parameters of real
molecules, the localization is observed as a combined effect of several causes. For mathematical analysis, we
classify the localization into four types based on the viewpoints of physical processes. We provide some extreme
numerical examples of the four types of localizations.
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1. Introduction

Massive and efficient rotational excitation of diatomic molecules can be achieved by irradiating an optical pulse train
whose intervals are precisely tuned to the period of molecular rotation [1]. This effect is called quantum resonance [2].
We can select one isotope from an isotopic mixture by tuning the pulse interval, as the period of molecular rotation
depends on each isotope [3-5]. In the condition of ideal quantum resonance, the molecules at any initial rotational state
will be rotationally excited and de-excited, and eventually they all will be transferred into highly rotationally excited
states [6]. This process has a possibility to be applied for highly efficient isotope separation in radioactive nuclear
wastes [7, 8]. However, as long as we use conventional methods, the ideal quantum resonance cannot be realized in real
molecules. The localization of population distribution will inevitably be induced by the centrifugal distortion of
molecules and imperfections of the optical pulses. To implement efficient isotope separation by rotational excitation,
we have to develop a fundamental theory to predict the range of localization. This range can be easily evaluated by
numerical simulations of time-dependent Schrédinger equation systems. However, we cannot easily reach optimized
parameters for industrial applications using huge amounts of repetition of numerical calculations. This is because the
localization would be observed as a combined effect of several causes in calculations using real parameters from
experiments. To obtain a systematic parameter design method for industrial applications, we have to develop a
mathematical foundation and analyze each localization process independently. This foundation will provide reasonable
experimental parameters that could not be obtained by the repetition of numerical calculations.

The molecular rotational excitation by optical pulses at the most ideal condition can be described as the continuous-
time quantum walk (CTQW) [9]. We regard the molecular excitation as an extended class of CTQWs, and try to apply
some mathematical methods developed for quantum walks to the present system. In a previous report, we proposed a
mathematical model of molecular rotational excitation and derived a unified parameter to predict localization behavior
and its dependence on the pulse amplitude under some simplifying assumptions [10]. In this paper, we introduce further
general model equations and classify the types of localization from the viewpoint of physics. This classification was
performed by numerical observation and physics considerations; however, the provision of some analytically-solvable
simple cases would accelerate the mathematical research on quantum walks. Finally, we discuss a prospect towards the
unification of the presented localizations.

2. Mathematical Model

The mathematical modeling of molecular rotational excitation has been described in our previous report [10]. In the
previous work, we assumed a constant transition probability between neighboring states for simplicity. Here, we
eliminate this assumption to work with general cases. The time-dependent Schrodinger equation system for molecular
rotational excitation is given by:
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i Cim(t) = —e®lps—1.m exp{(E; — E; )it} Cy_1m(t) + pgps exp{(Es — Eyy )it} Crim(0)], (2.1)
where Cjy(t) is the complex amplitude of the rotational states (J, M) at time t, &(¢) is the electric field, py is the
transition dipole moment from (J, M) to (J + 1, M), and E; is the rotational energy of state J. C;y(¢) and 1) are only
defined for J > 0. For J < 0, wjy is set to be zero. The probability distribution of state J is given by |CJM(t)|2.

The rotational energy of molecules at each state E; is given by

E; = 27BuJ(J 4+ 1) — 22D J*(J + 1), (2.2)

where By and D, are molecular spectroscopic constants for a rotational series. Here, we only deal with a single
rotational series with fixed M value by ignoring vibrational excitation and assuming a linear polarization of optical

pulses.
A train of optical pulses is expressed by a summation of cosine waves as
N-1
&(t) = Biepc + 2B; Z gj cos{4nB;(j + 1)1}, (2.3)
j=0

where epc is the scaled amplitude of DC component, ¢; is the scaled spectral amplitude inducing transition from J = j
toJ = j+ 1, By is the frequency constant that corresponds to By of the molecules, and N is the maximum J state to be
connected by optical transitions. The molecular classical rotational period and pulse repetition interval are given by
Teor = ﬁ and Tyep = ZLBF, respectively.

By substituting Eq. (2.3) into Eq. (2.1), and performing the rotating-wave approximation, we can obtain the model
equation system as

d
—i E Cin(t) = Bf8J,1,bL‘/,1,M CXp{47TilAB] — SJTI.IDVJ?)}C‘/,LM(I) 2.4

+ Brejpypmexp{—4nitAB(J + 1) 4 8mitD(J + 1)3}C]+1,M(t),

where AB = By — Bt. In the rotating-wave approximation, we consider only the most slowly changing terms in the
equations. The correctness of the rotating-wave approximation was validated in €, < 5 by numerical calculations in
the previous report [10]. By dividing all the frequency parameters by Bf, we obtain the model equation system as:
d AB D
—i— Cyy(t) = Jwy exp{ dmit — J — 8mit — J° { Cr_ m(1)
dt By By

AB D,
+ Jora exp{ —dmit = (J + 1) + St () + I)S}CJH,M(z), 2.5)
f f

where /w1 = e5lbm.

3. C(lassification of Localizations

In the model system, the time evolution of the rotational population distribution is localized due to several reasons.
We classify the localization into four types, and introduce them with extreme examples of numerical simulations. The
classification was performed by considering the physical sources of localization.

3.1 Localization 1: Localization by Interval Mismatching

Even if the molecule can be regarded as a rigid rotor, the strong localization will be observed in the condition of
AB # 0. This localization comes from the interval mismatch between molecular rotation and pulse repetition, and is
the main principle of isotope selection. The range of localization depends on AB and on the pulse amplitude, and it’s
prediction is non-trivial. For example, we provide the following equation system:

d y . AB . AB
—i—Ciy(t) = = |expydmit — J 1 Cj_1 (1) + expy —4mit — (J + 1) ; Crr1.m(2) |- 3.1
dt 2 By ’ By '
This equation was obtained by substituting Dy, = 0 and ,/@; = ¥ into Eq. (2.5). For the case of AB/B; = 0.00, the
rotational distribution was rapidly dispersed into large J states [Fig. 1(a)]. Moreover, no localization was observed. For
the case of AB/B;y = 0.03, the population hardly transfers from the initial state [Fig. 1(b)]. This is the strong
localization caused by interval mismatching. The approximate same strong localization can be observed from any
initial state [Fig. 1(c)].

3.2 Localization 2: Localization by Centrifugal Distortion

Because the real molecule is not a rigid rotor, the centrifugal distortion significantly influences the evolution of
rotational distribution. Despite the case of AB/By = 0, a weak localization will be observed for D, /By # 0. In real

systems, the order of magnitude of g—; ~ g—;‘ is generally about 10> — 10~7; therefore, the observed localization
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Fig. 1. Examples of time evolutions of Eq. (3.1) simulated with y =2.0 and AB/By = 0.00 from J =10 (a), y =2.0 and
AB/Bs = 0.03 from J = 10 (b), and y = 2.0 and AB/B; = 0.03 from J = 40 (c).
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becomes weaker than that by interval mismatching, even though D, is multiplied by the terms of J3. This weak
localization is called Bloch oscillation in a similar context [1]. The range of localization exhibits nontrivial dependence
on the amplitude of pulses, the same as localization by AB. For example, consider the equation:

d
_iZ
dt

This equation was obtained by substituting AB = 0 and ,/@; = £ into Eq. (2.5). Figure 2 shows an example of time
evolution with weak localization by centrifugal distortion. For the case of weak localization, the turning point always
appears nearly in the same position, regardless of the initial state [Figs. 2(a) and 2(b)]. For an initial state above the
turning point, the time evolution is similar to the localization by interval mismatching [Fig. 2(c)]. The dependence of
the range of localization on the pulse amplitude is shown in Fig. 3. This localization can be canceled by adjusting the
phase of the optical pulses; however, it is experimentally difficult to obtain using current technologies.

c Y Dy 3 . Dy 3
m(t) = 5 exp —SJTZIB—J CJ_LM(t) + exp 87TltB— J+1) C]+1,M(l‘) . 3.2)
f f
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Fig. 2. Examples of time evolutions of Eq. (3.2) simulated with y = 2.0 and D, /B; = 1.0 x 107 from J = 10 (a), J = 20 (b), and
J =50 (c).

3.3 Localization 3: Localization by Lack of Spectral Amplitude

In real systems, the transition probability to a neighboring state becomes zero in a highly excited state because the
linewidth of a real optical pulse is finite. If the transition probability suddenly falls from a constant value to zero, the
reflection of the population would be observed at that state. Actually, such a reflection can be observed at J = 0.
However, in the case that the transition probability asymptotically approaches zero, predicting the point of reflection is
difficult. To our knowledge, the detail of this type of localization is not explicitly discussed elsewhere. In the following,
we give an example of Gaussian spectral amplitude that is peaked at J = 0:

d J—1)7?
—i—C(t) = Agexp| — 5 Cr_1m(t) + Agexp
dt Bg

2

TR
B;

)CJ+1,M(1‘)- (3.3)

This equation was obtained by substituting AB = 0, D, = 0, and /@1 = Agexp(—;*/B;) into Eq. (2.5). The time
evolutions of Eq. (3.3) for a same B, and different A, are shown in Fig. 4. It is worth to mention that the reflection
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Fig. 3. Time-averaged relative population distribution using Eq. (3.2) with various y and D,/B; = 1.0 x 107 from J = 10.

behavior of these three cases is completely the same, except for the speed of evolution. The range of localization on this
case is determined by the relative shape of spectral amplitude, and it does not depend on its absolute intensity.
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Fig. 4. Examples of time evolutions of Eq. (3.3) simulated with B, ~ 12.01 with A, = 0.25 (a), A, = 1.0 (b), and A, = 5.0 (c),
from J = 10. The value of B, corresponds to HWHM = 10.0.

3.4 Localization 4: Localization by Augmentation of Spectral Amplitude

In localization 3, we assumed that the transition probabilities, which come from the spectral amplitude of pulses,
change smoothly on each state. When the spectral amplitude sharply changes, another type of localization will be
observed at that point. This localization was predicted by Segawa et al. in their mathematical considerations. They
named this phenomenon “localization by augmentation”. For an extreme example, consider the equation:

d
—i— Cyy(t) = JoyCroim(®) + /i1 Crpm(®),

dt
P
w) = { poG=1 (3.4)
g G>1D

This equation was obtained by substituting AB =0, D, =0, and ,/w; = p, ,/w;=1 = g into Eq. (2.5). The results of
population distribution after 100 pulses are shown in Fig. 5. For the case of p < 2¢, no localization can be observed
[Fig. 5(a)]. When p > 24, part of the population was trapped around J = 0 [Figs. 5(b) and 5(c)]. For this type of
localization, the remaining part of the population was not localized, and escaped into highly excited states. This
localization needs further studies. For example, the requirement for localization is not clear in the case where two or
more augmentations are included in the system.

4. Towards a Unified Approach for Predicting the Range of Localization

In real systems, the localization will appear as a combination of the effects of the four localizations presented here.
For a prediction of the range of localization, we need to consider all the four localizations simultaneously. Here, we
briefly introduce our prospects towards a unified theoretical approach in which no numerical simulation is required.
We have two approaches for the unified treatment of localization in this system. One is a semi-analytical approach with
empirical parameters, and the other is a full analytical approach.

In the semi-analytical approach, we focus on whether the range of localization depends on the pulse amplitude or not.
Localizations 1 and 2 depend on the amplitude, and localizations 3 and 4 are independent of it. We have already
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Fig. 5. Examples of population distribution after 100 pulses obtained by Eq. (3.4) from J = 0 with ¢ = 0.25 and p = 0.45 (a),
p = 0.55 (b), and p = 0.65 (c).

derived the unified parameter for the combination effect of localizations 1 and 2 [10]. The unified parameter comprises
the peak amplitude and interval between the pulses as well as the level energies of the initial (/ = r) and final (J = s)

rotational states of the molecule. For the model equation system Eq. (2.5) with , /@; = %, the unified parameter is given
as

B
=22 4.1)
|/3x - :Br|
where B; is given by
By = E; —2aBrJ(J + 1). 4.2)

The population distribution is localized in the region of u;, > 0.5. Even though the relation between the unified
parameter and the range of localization was obtained empirically, it aptly describes the dependence of the range of
localization on the amplitude of pulses. Because localizations 3 and 4 do not depend on the amplitude of pulses, their
effects should be expressed as correction factors for the unified parameter. Numerical evaluations for limited cases will
determine the correlation factors, and they will be extended for general cases.

In the full analytical approach, we are attempting to formulate the asymptotic behavior of time evolution by using a
method of orthogonal polynomials. The limit distribution of several simple cases for localizations 3 and 4 has been
already formulated in our mathematical analysis. We are improving the mathematical foundation and making
examples. This approach will be extended to localizations 1 and 2, and all the localization in rotational excitation in
diatomic molecules will soon be predicted without numerical simulations.
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