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In this paper we discuss the periodicity of the evolution matrix of Szegedy walk, which is a special type of
quantum walk induced by the classical simple random walk, on a finite graph. We completely characterize the
periods of Szegedy walks for complete graphs, compete bipartite graphs and strongly regular graphs. In addition,
we discuss the periods of Szegedy walk induced by a non-reversible random walk on a cycle.
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1. Introduction

Research on quantum walks has been developed in various areas [1–3, 8, 15, 16, 19, 22, 23]. Among a wide range of
properties of them, we here focus on periodicity of the evolution matrix Usz of Szegedy walk, the discrete-time
quantum walks, on a special class of finite graphs. For the continuous-time quantum walks, periodicity is discussed in
terms of ‘‘perfect state transfer’’ in [7]. As can be seen in the reviews on the development of quantum walks in the
analogous field of random walks [11, 12], discrete-time quantum walks have some different features from classical
random walks. For example, the quantum walk with a Hadamard coin returns exactly to its initial state after 8 and 24
steps on the cycle of length 4 and 8, respectively; this property may be called periodicity. In contrast, the classical
isotropic random walk on any cycle of length n (n � 3) has no such behaviour. For details and more observation, refer
to [11, 12] and references therein. In this paper, we restrict ourselves to considering Szegedy walks, which belong to a
special class of quantum walks and relate closely to the underlying classical random walks. Our object is to identify all
finite graphs to have periodic Szegedy walks; as a valid starting point, our graphs in this paper are restricted to complete
graphs, complete bipartite graphs, strongly regular graphs and cycles.

We first show our setting. Graphs treated here are finite only. Let G ¼ ðVðGÞ;EðGÞÞ be a connected graph (having
possibly multiple edges and self-loops) with the set VðGÞ of vertices and the set EðGÞ of unoriented edges. We say two
vertices u and v are adjacent if there exists an unoriented edge joining u and v; uv 2 EðGÞ. Considering each edge in
EðGÞ to have two orientations, we can introduce the set of all oriented edges; it is denoted by DðGÞ. For an oriented
edge e 2 DðGÞ, the origin vertex and the terminal one of e are denoted by oðeÞ and tðeÞ, respectively; the inverse edge of
e is denoted by e�1. The degree deg v ¼ degG v of a vertex v of G stands for the number of oriented edges whose origin
is v. For a connected graph G with n vertices and m unoriented edges, we often set VðGÞ ¼ fv1; . . . ; vng and
DðGÞ ¼ fe1; . . . ; em; e

�1
1 ; . . . ; e�1

m g.
Let p : DðGÞ ! ð0; 1� be a transition probability such thatX

e:oðeÞ¼v
pðeÞ ¼ 1 ð1:1Þ

for every vertex v 2 VðGÞ. A classical random walk on G is defined by this probability p, that is, a particle at u ¼ oðeÞ
can be considered to move to a neighbour v ¼ tðeÞ along the oriented edge e with probability pðeÞ in one unit time. For
a finite graph G, we consider the transition matrix Tp such that Tp is an n� n-matrix and
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ðTpÞu;v ¼

X
oðeÞ¼u;tðeÞ¼v

pðeÞ; if uv 2 EðGÞ;

0; otherwise:

8<
: ð1:2Þ

With respect to the transition probability of a classical random walk, the evolution matrix of the Szegedy walk, which is
a kind of quantum walk introduced in [22], is defined as follows (cf. [17, 22]): Usz is a 2m� 2m-matrix and

ðUszÞe; f ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðeÞpð f�1Þ

p
� �e�1; f ; if tð f Þ ¼ oðeÞ;

0; otherwise:

(
ð1:3Þ

Here �a;b is the Kronecker delta function, that is,

�a;b ¼
1; if a ¼ b;

0; otherwise:

�

In the above, we consider an ðe; f Þ-element stands for the hopping rate of wave’s traveling from f 2 DðGÞ to e 2 DðGÞ.
The Szegedy matrix with respect to the simple random walk is called the Grover matrix, whose original form can be

seen in [23]. In fact, setting pðeÞ ¼ 1=degGoðeÞ in ð1.3Þ, we can get the following form: the Grover matrix UgrðGÞ ¼
ðUe; f Þe; f2DðGÞ of G is defined by

ðUgrÞe; f ¼
2=degGoðeÞ; if tð f Þ ¼ oðeÞ and f 6¼ e�1;

2=degGoðeÞ � 1; if f ¼ e�1;

0; otherwise:

8><
>: ð1:4Þ

We often use the symbol T0 for the transition matrix for the simple random walk.
Let us introduce the notion of ‘‘periodicity’’, which is the main theme in this paper. Let Usz be the Szegedy matrix for

a finite graph G with m unoriented edges; I2m be the 2m� 2m identity matrix.

Definition 1.1 (Periodicity of Szegedy walk). If there exists a positive integer k such that

Uk
sz ¼ I2m; ð1:5Þ

then we call Usz periodic and the minimum positive integer satisfying ð1.5Þ its period. If there does not exist such a
positive integer k satisfying ð1.5Þ, then we call Usz aperiodic.

The main theorems in this paper are as follows:

Theorem 1.2 (Complete graphs). Let Usz be the Szegedy matrix induced by an ‘-lazy simple random walk on a
complete graph Kn for n � 2. For a rational number ‘ 2 ½0; 1Þ, Usz is periodic if and only if ðn; ‘Þ ¼ ð2; 0Þ, ð3; 0Þ,
ðn; 1=nÞ, ð2; 1=4Þ or ðn; ðnþ 1Þ=ð2nÞÞ, whose period is 2, 3, 4, 6 and 6, respectively.

An ‘-lazy version of T and more detail setting on graphs will be discussed in Section 2.2.1.

Theorem 1.3 (Complete bipartite graphs). Let Usz be the Szegedy matrix induced by an ‘-lazy simple random walk
on a complete bipartite graph Km;n with m; n > 0 and mþ n � 3. For a rational number ‘ 2 ½0; 1Þ, U is periodic if and
only if ‘ ¼ 0 or ‘ ¼ 1=2, whose period is 4 and 12, respectively.

Theorem 1.4 (Strongly regular graph SRGðn; k; �; �Þ). Let Ugr be the Grover matrix induced by the simple random
walk on a strongly regular graph SRGðn; k; �; �Þ. Ugr is periodic if and only if

ðn; k; �; �Þ ¼ ð2k; k; 0; kÞ; ð3�; 2�; �; 2�Þ; ð5; 2; 0; 1Þ;
whose period is 4, 12 and 5, respectively.

Remark that there exists a complete balanced bipartite graph, Kk;k, a complete balanced tripartite graph, K�;�;� and a
cycle of length 5, C5, for such parameters, respectively.

Definition and some fundamental properties on a strongly regular graph are given in Section 2.2.2.
Finally we discuss a non-reversible random walk on the cycle Cn of length n: VðCnÞ ¼ fv1; . . . ; vng and EðCnÞ ¼
fviviþ1g for i ¼ 1; . . . ; n ðmod nÞ.

Theorem 1.5 (Szegedy walk induced by a non-reversible random on Cn). Let Usz be the Szegedy matrix induced by a
non-reversible random walk on the cycle Cn of length n. For a rational number p0 with 0 < p0 < 1=2, we set a non-
reversible probability as pðeÞ ¼ p0 for oðeÞ ¼ vi and tðeÞ ¼ viþ1. Then the following hold:
(0) Usz is aperiodic for any n 6¼ 2; 4; 8;
(1) For n ¼ 2, Usz is periodic if and only if p0 ¼ ð2�

ffiffiffi
3
p
Þ=4, ð2�

ffiffiffi
2
p
Þ=4 or 1=4, whose period is 6, 8 or 12,

respectively;
(2) For n ¼ 4, Usz is periodic if and only if p0 ¼ ð2�

ffiffiffi
3
p
Þ=4, ð2�

ffiffiffi
2
p
Þ=4 or 1=4, whose period is 12, 8, or 12,

respectively;
(3) For n ¼ 8, Usz is periodic if and only if p0 ¼ ð2�

ffiffiffi
2
p
Þ=4, whose period is 24.
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Detailed setting can be seen in Section 2.2.3. It is easy to check the period of Usz is n if p ¼ 1=2; that of U is 4 if
p ¼ 0. See the end of Section 2.2.3. We should add a remark that, after this research is established, the period of the
Hadamard walk on a cycle is studied in a slightly different way in [13].

This paper is organized as follows: In Section 2, we briefly explain the setting for graphs and the main tools, which
include the spectrum mapping theorem in the context of the Szegedy walks, a lazy version of random walk and the
cyclotomic polynomial and so on. In Section 3, we give the proofs of theorems above: those of Theorems 1.2, 1.3, 1.4,
and 1.5 can be seen in Sections 3.1, 3.2, 3.3, and 3.4, respectively. We discuss also a strategy on deciding the
periodicity of the Grover walk Ggr induced by the simple random walk T0 on a general finite graph in Section 4.

2. Setting and Tools

2.1 Spectral Mapping Theorem

Here we explain the spectral mapping theorem, which is one of main tools. First we give an n� n matrix S ¼ Sp
derived from a given transition probability p as

ðSpÞu;v ¼

X
oðeÞ¼u;tðeÞ¼v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðeÞpðe�1Þ

p
; if uv 2 EðGÞ;

0; otherwise:

8<
: ð2:1Þ

Then the following mapping theorem has been obtained; see [9, 17]. For more general abstract quantum walks, it is
generalized [18].

Theorem 2.1. (cf. [9, 17]) For the Szegedy matrix Usz of G with n vertices and m unoriented edges, we have

detð�I2m � UszÞ ¼ ð�2 � 1Þm�n detðð�2 þ 1ÞIn � 2�SpÞ:
�

According to this theorem, we have all eigenvalues of Usz are all of the solutions of

�2 � 2�� þ 1 ¼ 0 ð2:2Þ

for each eigenvalue � of Sp and, if m� n > 0, �1. Naturally, since Usz is a unitary matrix, all of its eigenvalues are on
the unit circle on the complex plane. Moreover, it is well known that unitary matrices can be diagonalizable. Then the
following obvious but important property holds. Here the complex value � is said to be a root of unity if there exists a
positive integer n such that �n ¼ 1. In addition, if �n ¼ 1 and �k 6¼ 1 for any positive integer k < n, then � is said to be
a primitive n-th root of unity and have the period n.

Proposition 2.2. The Szegedy matrix Usz is periodic if and only if all of its eigenvalues are roots of unity. Moreover,
if Usz is periodic, then its periodicity coincides with the least common multiple (LCM) of all periods of eigenvalues.

�

For a transition probability p, if there exists a positive valued function m : VðGÞ ! ð0;1Þ such that

mðoðeÞÞpðeÞ ¼ mðtðeÞÞpðe�1Þ ð2:3Þ

for every oriented edge e 2 DðGÞ, p is said to be reversible; the function m is said to be a reversible measure for p or for
the random walk, which is unique, if exists, up to a multiple constant. If p is reversible, it is easy to check that
MTpM

�1 ¼ Sp, where ðMÞu;v ¼
ffiffiffiffiffiffiffiffiffiffi
mðuÞ
p

� �u;v; hence Tp and Sp are isospectral. Thus, for any reversible random walk Tp
and the Szegedy walk Usz induced by p, the equation (2.2) also holds for the eigenvalue of Tp instead of �.

As a representative examples of a reversible random walk, we may display the simple random walk on G, which is
induced by p such that pðeÞ ¼ 1=degGoðeÞ for every e 2 DðGÞ. Obviously mðuÞ ¼ degG u is a reversible measure for
such p.

We should remark that each random walk treated in Sections 3.1, 3.2 and 3.3 is reversible; one only in Section 3.4 is
non-reversible.

2.2 Graphs and Lazy Random Walk

Finite graphs appeared in our theorems here are only a special type of graphs, that is, a complete graph Kn on n

vertices, a complete bipartite graph Km;n on mþ n vertices, a strongly regular graph SRGðn; k; �; �Þ and a cycle graph
Cn on n vertices.

For completeness, we give the definition of the above in our context.

2.2.1 Lazy random walk on complete graph and complete bipartite graph

Definition 2.3. (Complete graph and complete bipartite graph) A complete graph Kn is a graph on n vertices where
every vertex is adjacent to any other vertex and has one self-loop. A complete bipartite graph Km;n with VðKm;nÞ ¼
V1 t V2 such that jV1j ¼ m and jV2j ¼ n is a graph where every vertex in V1 is adjacent to any vertex in V2 and every
vertex has one self-loop. See Figs. 1 and 2.
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Usually Km and Km;n are defined without self-loops, but adding self-loops to them, we naturally derive the Szegedy
quantum walks from the lazy version of random walks. For ‘ 2 ð0; 1Þ, an ‘-lazy version of simple random walk is
defined by the transition matrix ‘I þ ð1� ‘ÞT0 on usual Kn and Km;n; Equivalently, we express the probabilities p for an
‘-lazy simple random walks on the above Kn and Km;n as follows: for Kn and ‘ 2 ð0; 1Þ,

pðeÞ ¼
‘=2; if oðeÞ ¼ tðeÞ;
ð1� ‘Þ=ðn� 1Þ; if tðeÞ 6¼ oðeÞ;

�
ð2:4Þ

for Km;n with jV1j ¼ m and jV2j ¼ n and ‘ 2 ð0; 1Þ,

pðeÞ ¼
‘=2; if oðeÞ ¼ tðeÞ;
ð1� ‘Þ=n; if oðeÞ 2 V1 and tðeÞ 2 V2;

ð1� ‘Þ=m; if oðeÞ 2 V2 and tðeÞ 2 V1:

8><
>: ð2:5Þ

Remark that, since there exist two oriented edges with respect to an unoriented self-loop for every vertex in the
above, the transition probability from a vertex to itself, that is, that of a particle staying on a vertex in one unit time is
equal to 2� ‘=2 ¼ ‘. Moreover it is trivial that, if ‘ ¼ 0, then the random walk with respect to the above probability
coincides with the simple random walk on a usual self-loopless Kn or Km;n. Thus, if ‘ ¼ 0, we assume Kn and Km;n are
in the usual forms, that is, graphs without self-loops, and T0 is the transition matrix of the simple random walk with
respect to them. Let us summarize our complete graph and complete bipartite graph setting with respect to an ‘ lazy
random walk:
(1) if ‘ ¼ 0, our Kn and Km;n are in the standard self-loop less forms;
(2) if 0 < ‘ < 1, our Kn and Km;n are in the form stated as in Definition 2.3.

Thanks to the definitions above of p on Kn or Km;n in Definition 2.3, the Szegedy matrix Usz, whose ðe; f Þ-element
present for the hopping rate of travelling quantum wave, can be naturally obtained from the given lazy version of p as
in (1.3); moreover we can apply Theorem 2.1.

We note that this formulation for the Szegedy walk induced by a lazy version of random walk is somewhat different
from what is seen in [10].

2.2.2 Strongly regular graph

A graph is called a regular graph if each vertex has the same degree.

Definition 2.4. (Strongly regular graph) A strongly regular graph SRGðn; k; �; �Þ with parameters n; k; �; � is a non-
complete k-regular graph with n vertices such that: 1) every two adjacent vertices have � common neighbours; 2) every
two non-adjacent vertices have � common neighbours.

Here we use the usual definition of strongly regular graphs. See also the standard texts, for instance, Brouwer and
Haemers [5], Cameron and Van Lint [6] and so on. The four parameters, n, k, � and �, cannot be chosen independently:
for example, the following relation holds:

ðn� k � 1Þ� ¼ kðk � � � 1Þ: ð2:6Þ

Many strongly regular graphs are known for some kind class of four adequate parameters; On the other hand, for
general class of four adequate parameters, we do not know whether such a graph exists or not, and, if it exists, whether
it is unique or not. However, if a graph exists for four adequate parameters, then the spectra of T0, the transition matrix
of the simple random walk, can be determined. For details, refer to [5, 6]:

Proposition 2.5. (Spectra, cf. [5, 6]) The eigenvalues of T0 on SRGðn; k; �; �Þ are as follows: the value 1 with
multiplicity one, and

r� ¼
1

2k
ð� � �Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð� � �Þ2 þ 4ðk � �Þ

q� �
; ð2:7Þ

whose multiplicities are

Fig. 1. Complete graph K4 with self-loops. Fig. 2. Complete bipartite graph K3;4 with self-loops.
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1

2
ðn� 1Þ 	

2k þ ðn� 1Þð� � �Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð� � �Þ2 þ 4ðk � �Þ

p
 !

; ð2:8Þ

respectively. Here �1 
 r� < rþ < 1 and the values r� satisfy

rþ þ r� ¼ ð� � �Þ=k; and rþr� ¼ ð�� kÞ=k2: ð2:9Þ

We should also remark four parameters are a non-negative integers with n � 2, 1 
 k 
 n� 2, 0 
 � 
 k � 1, and
1 
 � 
 k. On the other hand, noting multiplicities are always integers, we obtain further information on parameters,
which is known in [5, 6] as follows:

Theorem 2.6. (cf. [5, 6]) If 2k þ ðn� 1Þð� � �Þ 6¼ 0, then both r� are rational. Otherwise, r� ¼ ð�1�
ffiffiffi
n
p
Þ=

ðn� 1Þ. �

2.2.3 Non-reversible random walk on Cn

A graph G is called a cycle of length n if VðGÞ ¼ fv0; . . . ; vn�1g and DðGÞ ¼ fei; e�1
i ; i ¼ 0; . . . ; n� 1g, where

oðeiÞ ¼ vi and tðeiÞ ¼ viþ1 under modulo n. This is a standard definition of cycles and denoted by Cn. Now we give a
non-reversible transition probability p: For p0 2 ð0; 1=2Þ, we set a probability p as

pðeÞ ¼
p0; if e ¼ ei;

1� p0; if e ¼ e�1
i :

�
ð2:10Þ

Obviously this chain on Cn is non-reversible. Let us exhibit two type of simple examples of the periodicity on Cn by
using Theorem 2.1 and Proposition 2.2: two cases where p0 ¼ 0 and p0 ¼ 1=2.

If p0 ¼ 0, then we can easily obtain that all eigenvalues of Sp are 0’s. Thus, by Theorem 2.1, the set of eigenvalues
of Usz consists of �

ffiffiffiffiffiffiffi
�1
p

; we have Usz has the period 4 by Proposition 2.2.
On the other hand, if p0 ¼ 1=2, then p express the simple random walk, that is, Tp ¼ T0 and p is reversible. It is easy

to see the set of eigenvalues of T0, which is the same as that of Sp, consists of cosð2k�=nÞ, (k ¼ 0; . . . ; n� 1). Similarly,
by Theorem 2.1, we know the set of eigenvalues of Ugr on Cn consists of expð2k�

ffiffiffiffiffiffiffi
�1
p

=nÞ (k ¼ 0; . . . ; n� 1); we have
Usz has the period n by Proposition 2.2. Here, for the sake to discussing the periodicity, we only have to pay attention to
the set of eigenvalues without their multiplicities.

2.3 Cyclotomic Polynomial

Let us explain briefly the cyclotomic polynomial �nðxÞ for the primitive n-th roots of unity, which is well known in
the area of algebra:

�nðxÞ ¼
Y
�

ðx� �Þ; ð2:11Þ

where the product is taken over all of the primitive n-th roots of unity; � can be expressed as expð2�
ffiffiffiffiffiffiffi
�1
p

j=nÞ for
ð j; nÞ ¼ 1. This polynomial is known as monic and has integer coefficients; moreover it is also known that this is
irreducible over the field of the rational numbers Q. Some properties are exhibited as follows: (1) The degree of �nðxÞ
is �ðnÞ, which is the value at n of the Euler �-function defined as the number of integers k such that 1 
 k 
 n and
ðk; nÞ ¼ 1; (2)

P
djn �ðdÞ ¼ n; (3) The function �ðnÞ is multiplicative, that is, �ðmnÞ ¼ �ðmÞ�ðnÞ if ðm; nÞ ¼ 1 and can be

expressed as

�ðnÞ ¼ n
Y
qjn
ð1� 1=qÞ; ð2:12Þ

where the product is over all prime numbers q dividing n; (4) The coefficient of �nðxÞ can be calculated inductively:
�1ðxÞ ¼ x� 1 and

�nðxÞ ¼ ðxn � 1Þ
� Y

djn;d<n
�dðxÞ; ð2:13Þ

where the product is over all positive integers dividing n and less than n.
For details, refer to some standard textbooks on algebra, for instance, Lang [14], Stillwell [21] and so on. Therein the

following fundamental theorem helps us in this paper:

Theorem 2.7. (cf. [14, 21]) Factorization of a polynomial into irreducible ones over Q is unique up to order and
constant factor. �

The following is an easy consequence from Theorem 2.7, but plays an important role in Section 3.4.

Proposition 2.8. Let f ðxÞ be a monic polynomial with Q-coefficients. If all solutions of f ðxÞ ¼ 0 are roots of unity,
then f ðxÞ can be uniquely factorized into cyclotomic polynomials. Hence f ðxÞ must be a monic polynomial with
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Z-coefficients. �

For convenience, we exhibit some cyclotomic polynomials up to n ¼ 12; it is easy to check �ðnÞ ¼ deg �nðxÞ � 6 for
n � 13:

�1ðxÞ ¼ x� 1; �2ðxÞ ¼ xþ 1; �3ðxÞ ¼ x2 þ xþ 1; �4ðxÞ ¼ x2 þ 1; �5ðxÞ ¼
X4

k¼0
xk; �6ðxÞ ¼ x2 � xþ 1;

�7ðxÞ ¼
X6

k¼0
xk; �8ðxÞ ¼ x4 þ 1; �9ðxÞ ¼ x6 þ x3 þ 1; �10ðxÞ ¼ x4 � x3 þ x2 � xþ 1; �11ðxÞ ¼

X10

k¼0
xk; ð2:14Þ

�12ðxÞ ¼ x4 � x2 þ 1:

3. Proofs of Theorems

3.1 Szegedy Walk on Complete Graphs Kn

As is seen in Section 2.2, we assume that Tp ¼ T0 is the transition matrix for the simple random walk on a standard
self-loopless Kn if ‘ ¼ 0 and Tp is the one for the ‘-lazy random walk in (2.4) on our Kn with self-loops in (2.3) if
0 < ‘ < 1. Then 2m ¼ 2jEðKnÞj ¼ nðn� 1Þ if ‘ ¼ 0, and 2m ¼ nðnþ 1Þ if 0 < ‘ < 1. We can easily calculate the
spectra of Tp, for n � 2 and ‘ 2 ½0; 1Þ, as

SpecðTpÞ ¼ f1; ðn‘� 1Þ=ðn� 1Þg ð3:1Þ

with multiplicity 1 and n� 1, respectively.

Proof of Theorem 1.2. First we should note that ðn‘� 1Þ=ðn� 1Þ < 1 since ‘ < 1 and ðn‘� 1Þ=ðn� 1Þ ¼ �1 if and
only if ðn; ‘Þ ¼ ð2; 0Þ. In case where ðn; ‘Þ ¼ ð2; 0Þ, the eigenvalues of Tp are �1, so, by Theorem 2.1, the eigenvalues
of Usz are also �1. Thus we know Usz has the period 2. Hereafter we may assume ðn; ‘Þ 6¼ ð2; 0Þ and
�1 < ðn‘� 1Þ=ðn� 1Þ < 1. Also, by Theorem 2.1, we obtain that the eigenvalues of Usz derived from those of Tp
are 1 and the solutions of FðxÞ ¼ 0, where FðxÞ is a monic polynomial with Q-coefficients and

FðxÞ ¼ x2 � 2ðn‘� 1Þ=ðn� 1Þxþ 1: ð3:2Þ

Recall ‘ is assumed to be a rational number in ½0; 1Þ and the equation FðxÞ ¼ 0 cannot have the solutions �1. If Usz is
periodic, then all of the solutions of FðxÞ ¼ 0 must be the roots of unity from Proposition 2.2. In addition, it follows
from Proposition 2.8 that FðxÞ in (3.2) must be a cyclotomic polynomial of degree 2 if Usz is periodic. Referring to
(2.14), we can see FðxÞ in (3.2) becomes �3ðxÞ, �4ðxÞ or �6ðxÞ; equivalently,

� 2ðn‘� 1Þ=ðn� 1Þ ¼ 1; 0 or � 1: ð3:3Þ

If FðxÞ ¼ �3ðxÞ, then ‘ ¼ ð3� nÞ=ð2nÞ; thus we have ðn; ‘Þ ¼ ð2; 1=4Þ or ð3; 0Þ. If FðxÞ ¼ �4ðxÞ, then ‘ ¼ 1=n. If
FðxÞ ¼ �6ðxÞ, then ‘ ¼ ðnþ 1Þ=ð2nÞ. Finally we should remark that jEðKnÞj � n > 0 if and only if ðn; ‘Þ 6¼ ð3; 0Þ, that
is, Usz has the eigenvalue �1 if and only if ðn; ‘Þ 6¼ ð3; 0Þ. Conversely, for such a pair of n and ‘, it is obvious that Usz

has the period as stated in Theorem 1.2 in Introduction. Thus the proof is completed. �

If we consider our complete graph with self-loops for ‘ ¼ 0, the conclusions in Theorem 1.2 still hold except only
the case where ðn; ‘Þ ¼ ð3; 0Þ. Since Usz has the eigenvalue �1 for our K3 in Definition 2.3, the period of Usz changes to
6 for ðn; ‘Þ ¼ ð3; 0Þ.

3.2 Szegedy Walk on Complete Bipartite Graphs Km;n

As is seen in Section 2.2, we assume that Tp ¼ T0 is the transition matrix for the simple random walk on a standard
self-loopless Km;n if ‘ ¼ 0 and Tp is the one for the ‘-lazy random walk in (2.5) on our Km;n with self-loops in (2.3) if
0 < ‘ < 1. Then 2jEðKnÞj ¼ 2mn if ‘ ¼ 0, and 2jEðKnÞj ¼ 2mnþ mþ n if 0 < ‘ < 1. We can easily calculate the
spectra of Tp, for ‘ 2 ½0; 1Þ, as

SpecðTpÞ ¼ f1; ‘; 2‘� 1g ð3:4Þ

with multiplicity 1, mþ n� 2 and 1, respectively.

Proof of Theorem 1.3. We may assume m 
 n. Since ‘ 2 ½0; 1Þ, it is obvious that �1 
 2‘� 1 < ‘ < 1 and that
2‘� 1 ¼ �1 if and only if ‘ ¼ 0. First we set ‘ ¼ 0. In this case, we easily see, by Theorem 2.1, the eigenvalues of Usz

are
ffiffiffiffiffiffiffi
�1
p

, �
ffiffiffiffiffiffiffi
�1
p

, 1, �1. Then Usz has the period 4. Hereafter we assume ‘ 6¼ 0; then �1 < 2‘� 1 < ‘ < 1. Also, by
Theorem 2.1, we obtain that the eigenvalues of Usz derived from those of Tp are 1 and the solutions of FiðxÞ ¼ 0,
(i ¼ 1; 2), where F1ðxÞ and F2ðxÞ are monic polynomials with Q-coefficients and

F1ðxÞ ¼ x2 � 2‘xþ 1 and F2ðxÞ ¼ x2 � 2ð2‘� 1Þxþ 1: ð3:5Þ

Recall ‘ is assumed to be a rational number in ½0; 1Þ and both of the equations FiðxÞ ¼ 0 cannot have the solutions �1.
By the same way as in the proof in Section 3.1, we find Usz is periodic if and only if all of the solutions of F1ðxÞ ¼ 0

and F2ðxÞ ¼ 0 are the roots of unity from Proposition 2.2. Assume Usz is periodic. Referring to (2.14), we find
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F1ðxÞ ¼ �6ðxÞ since �2 < �2‘ < 0, which implies that ‘ ¼ 1=2 and F2ðxÞ ¼ �4ðxÞ. Here let us remark that Usz has the
eigenvalue �1 since jEðKm;nÞj � jVðKm;nÞj ¼ mn > 0. Conversely, it is obvious that Usz has the period 12 for ‘ ¼ 1=2.
This completes the proof of Theorem 1.3 in Introduction. �

3.3 Grover Walk on Strongly Regular Graphs SRGðn; k; �; �Þ

Proof of Theorem 1.4. By Theorem 2.1, we obtain that the eigenvalues of Usz derived from those of Tp are 1 and the
solutions of FiðxÞ ¼ 0, (i ¼ 1; 2), where F1ðxÞ and F2ðxÞ are monic polynomials with R-coefficients and

F1ðxÞ ¼ x2 � 2ðr�Þxþ 1 and F2ðxÞ ¼ x2 � 2ðrþÞxþ 1: ð3:6Þ

Recall r� satisfy (2.8) and (2.9), and both of the equations FiðxÞ ¼ 0 cannot have the solution 1. By the same way as in
the proofs in Sections 3.1 and 3.2, we find Usz is periodic if and only if all of the solutions of F1ðxÞ ¼ 0 and F2ðxÞ ¼ 0

are the roots of unity from Proposition 2.2.
Now let us divide this proof into two cases where r� are rational or not.

3.3.1 For rational r�

In this subsection, we assume r� are rational numbers. Then both of the monic polynomials in (3.6) are with
Q-coefficients. When r� ¼ �1, we find that � ¼ k, � ¼ 0, and rþ ¼ 0 according to (2.9) and the fact 1 
 � 
 k; we
have n ¼ 2k by (2.6). Therefore, F1ðxÞ ¼ ðxþ 1Þ2 and F2ðxÞ ¼ x2 þ 1. In result, we obtain Usz has the period 4. Recall
a strongly regular graph is not a complete one. For k � 2, we can find Kk;k as SRGð2k; k; 0; kÞ.

Under the condition that Usz is periodic, we may now assume that neither of �1 are the solutions of the equations
FiðxÞ ¼ 0 for i ¼ 1; 2. Then F1ðxÞ and F2ðxÞ are irreducible over Q, so each of them is a monic cyclotomic polynomial
of degree 2, that is, coincides with �3ðxÞ, �4ðxÞ or �6ðxÞ in (2.14).

Let F1ðxÞ ¼ �3ðxÞ and F2ðxÞ ¼ �4ðxÞ, equivalently, r� ¼ �1=2 and rþ ¼ 0. Then we find that k ¼ � ¼ 2� and
n ¼ 3� according to (2.9) and (2.6). In this case, we obtain Usz has the period 12. For k � 2, we can find Kk;k;k as
SRGð3k; 2k; k; 2kÞ. Here A complete tripartite graph Kk;m;n with VðKk;m;nÞ ¼ V1 t V2 t V3 such that jV1j ¼ k, jV2j ¼ m

and jV3j ¼ n is a graph where every vertex in Vi is adjacent to any vertex in Vj for every distinct pair ði; jÞ.
Next let F1ðxÞ ¼ �3ðxÞ and F2ðxÞ ¼ �6ðxÞ, equivalently, r� ¼ �1=2 and rþ ¼ 1=2. Then we find that � ¼ k � k2=4

by (2.9). Since 0 < � < k and k � 2, it is impossible. Finally let F1ðxÞ ¼ �4ðxÞ and F2ðxÞ ¼ �6ðxÞ, equivalently,
r� ¼ 0 and rþ ¼ 1=2. Then we find that � ¼ k and � ¼ 3k=2 by (2.9), which contradicts � < k.

3.3.2 For irrational r�

In this subsection, we assume r� are irrational number. Then we may set n ¼ 4�þ 1, k ¼ 2� and � ¼ �� 1 by
Theorem 2.6; therefore

r� ¼
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�þ 1
p

2k
: ð3:7Þ

Assume Usz is periodic. Then all of the solutions of F1ðxÞ ¼ 0 and F2ðxÞ ¼ 0 are the roots of unity. Although both of r�
are distinct irrational numbers, GðxÞ ¼ F1ðxÞF2ðxÞ is a monic polynomial with Q-coefficients:

GðxÞ ¼ x4 � 2ðrþ þ r�Þx3 þ ð4rþr� þ 2Þx2 � 2ðrþ þ r�Þxþ 1

¼ x4 �
2ð� � �Þ

k
x3 þ

4ð�� kÞ þ 2k2

k2
x2 �

2ð� � �Þ
k

xþ 1

¼ x4 þ
1

�
x3 þ
�1þ 2�

�
x2 þ

1

�
xþ 1: ð3:8Þ

Noting that the solutions of F1ðxÞ ¼ 0 and F2ðxÞ ¼ 0 are mutually distinct roots of unity and not equal to �1, we find
GðxÞ is a monic polynomial with Q-coefficients, which is irreducible over Q; this must be a cyclotomic polynomial of
degree 4. Thus this coincides with �5ðxÞ, �8ðxÞ, �10ðxÞ or �12ðxÞ in (2.14). Observing the form in (3.8), we obtain
� ¼ 1; then GðxÞ ¼ �5ðxÞ and ðn; k; �; �Þ ¼ ð5; 2; 0; 1Þ. When G is a SRGð5; 2; 0; 1Þ, jEðGÞj ¼ jVðGÞj, which implies
that Usz does not have the eigenvalue �1. Therefore Usz has the period 5. In this case we can find C5 as SRGð5; 2; 0; 1Þ.

All of the proof of Theorem 1.4 in Introduction is completed. �

3.4 Szegedy Walk Induced by a Non-reversible Random on Cn

Proof of Theorem 1.5. For the setting given in 2.2.3, we can easily calculate the spectra of Sp, for 0 < p0 < 1=2, as

SpecðSpÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

p
cos

2k�

n
; k ¼ 0; 1; . . . n� 1

� �
: ð3:9Þ

By Theorem 2.1, we obtain that the eigenvalues of Usz are the solutions of FkðxÞ ¼ 0, (k ¼ 0; . . . ; n� 1), where

FkðxÞ ¼ x2 � 2�kxþ 1; ð3:10Þ
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where �k ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ
p

cos 2k�
n

. Remark that Usz does not have the eigenvalues �1, since �1 62 SpecðSpÞ and
jEðCnÞj � jVðCnÞj ¼ 0.

Moreover, we should note that the form of spectra of Sp in (3.9) tells us that, for a fixed p0, the set of eigenvalues
SpecðSpÞ on Cm is a subset of that on Cn if mjn; thus every eigenvalue of Usz on Cm is that of Usz on Cn if mjn from
Theorem 2.1. Hence, if Usz on Cm is aperiodic, then so is that on Cn for mjn.

Recall we assume p0 is rational, and that Usz is periodic if and only if all the solutions of FkðxÞ ¼ 0, (k ¼
0; . . . ; n� 1), are roots of unity by Proposition 2.2. The plan in this section is as follows:
(0) We characterize p0 such that the roots of F0ðxÞ ¼ 0 are roots of unity in Section 3.4.1. In fact, we find Usz is
aperiodic unless p0 ¼ ð2�

ffiffiffi
3
p
Þ=4, ð2�

ffiffiffi
2
p
Þ=4 or 1/4;

(1) When n ¼ 2, we characterize p0 such that Usz is periodic in Section 3.4.2;
(2) When n ¼ 22, we characterize p0 such that Usz is periodic in Section 3.4.3;
(3) When n ¼ 23, we characterize p0 such that Usz is periodic in Section 3.4.4;
(4) When n ¼ 24, we show Usz is aperiodic for any p0 in Section 3.4.5;
(5) When n is odd prime, we show Usz is aperiodic for any p0 in Section 3.4.6.
Summarizing the above, if n has an odd prime factor, then Usz is aperiodic from (5); if n has a factor 2k for k � 4, then
Usz is aperiodic from (4); thus, if Usz is periodic, then n ¼ 2, or 4 or 8.

3.4.1 The roots of F0ðxÞ ¼ 0

For k ¼ 0, that is, �0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ
p

, we consider the solutions of F0ðxÞ ¼ 0. Assume Usz is periodic. Then those
solutions of F0ðxÞ ¼ 0 must be roots of unity.

First let
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ
p

be rational. Then F0ðxÞ is a monic polynomial with Q-coefficients of degree 2 and irreducible
over Q; in result, F0ðxÞ is a cyclotomic polynomial of degree 2. Here, since �0 > 0, we find F0ðxÞ ¼ �6ðxÞ. So we get
p0ð1� p0Þ ¼ 1=16, equivalently, p0 ¼ ð2�

ffiffiffi
3
p
Þ=4.

Next let
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ
p

be irrational. It is easy to see that, for any solution � of F0ðxÞ ¼ 0, �� is also a root of unity,
that is, all of the solutions of F0ð�xÞ are roots of unity. Consider F0ðxÞF0ð�xÞ:

F0ðxÞF0ð�xÞ ¼ x4 þ 2ð1� 8p0ð1� p0ÞÞx2 þ 1:

Here all of the solutions of F0ðxÞF0ð�xÞ ¼ 0 are root of unity. This polynomial is also a monic polynomial with
Q-coefficients of degree 4 and irreducible over Q; this is a cyclotomic polynomial of degree 4. Referring (2.14), we
find F0ðxÞF0ð�xÞ ¼ �8ðxÞ or �12ðxÞ. So we get p0ð1� p0Þ ¼ 1=8 or 3/16, equivalently, p0 ¼ ð2�

ffiffiffi
2
p
Þ=4, or 1/4.

3.4.2 For n ¼ 2

From the observation in Section 3.4.1, we only have to discuss when p0ð1� p0Þ ¼ 1=8, 3/16 or 1/16. Recall
SpecðSpÞ ¼ f�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ
p

g.
Let us first assume that p0ð1� p0Þ ¼ 1=8, equivalently, p0 ¼ ð2�

ffiffiffi
2
p
Þ=4. Then we have SpecðSpÞ ¼ f�1=

ffiffiffi
2
p
g, thus

SpecðUszÞ ¼ fexpð2k�
ffiffiffiffiffiffiffi
�1
p

=8Þ; k ¼ 1; 3; 5; 7g;

therefore we find Usz has the period 8.
Let us secondly assume that p0ð1� p0Þ ¼ 3=16, equivalently, p0 ¼ 1=4. Then we have SpecðSpÞ ¼ f�

ffiffiffi
3
p
=2g, thus

SpecðUszÞ ¼ fexpð2k�
ffiffiffiffiffiffiffi
�1
p

=12Þ; k ¼ 1; 5; 7; 11g;

therefore we find Usz has the period 12.
Let us finally assume that p0ð1� p0Þ ¼ 1=16, equivalently, p0 ¼ ð2�

ffiffiffi
3
p
Þ=4. Then we have SpecðSpÞ ¼ f�1=2g,

thus

SpecðUszÞ ¼ fexpð2k�
ffiffiffiffiffiffiffi
�1
p

=6Þ; k ¼ 1; 2; 4; 5g;

therefore we find Usz has the period 6.

3.4.3 For n ¼ 22

Also in this section, we only have to discuss when p0ð1� p0Þ ¼ 1=8, 3/16 or 1/16. Recall
SpecðSpÞ ¼ f0;�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ
p

g. Then we have

SpecðUszÞ ¼ f�
ffiffiffiffiffiffiffi
�1
p
g [ fexpð2k�

ffiffiffiffiffiffiffi
�1
p

=8Þ; k ¼ 1; 3; 5; 7g

if p0 ¼ ð2�
ffiffiffi
2
p
Þ=4,

SpecðUszÞ ¼ f�
ffiffiffiffiffiffiffi
�1
p
g [ fexpð2k�

ffiffiffiffiffiffiffi
�1
p

=12Þ; k ¼ 1; 5; 7; 11g

if p0 ¼ 1=4, and

SpecðUszÞ ¼ f�
ffiffiffiffiffiffiffi
�1
p
g [ fexpð2k�

ffiffiffiffiffiffiffi
�1
p

=6Þ; k ¼ 1; 2; 4; 5g

if p0 ¼ ð2�
ffiffiffi
3
p
Þ=4. Therefore we find Usz has the period 8, 12 and 12, respectively.
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3.4.4 For n ¼ 23

Also in this section, we only have to discuss when p0ð1� p0Þ ¼ 1=8, 3/16 or 1/16. Recall

SpecðSpÞ ¼ f�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

p
=
ffiffiffi
2
p
; 0;�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

p
g:

If p0 ¼ ð2�
ffiffiffi
2
p
Þ=4, equivalently p0ð1� p0Þ ¼ 1=8, then

SpecðUszÞ ¼ fexpð2k�
ffiffiffiffiffiffiffi
�1
p

=6Þ; k ¼ 1; 2; 4; 5g [ f�
ffiffiffiffiffiffiffi
�1
p
g [ fexpð2k�

ffiffiffiffiffiffiffi
�1
p

=8Þ; k ¼ 1; 3; 5; 7g;

thus we find Usz has the period 24.
Let us consider the case where p0ð1� p0Þ ¼ 3=16 and 1/16. From (3.10), all of the solutions of

F1ðxÞ ¼ F7ðxÞ ¼ x2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p0ð1� p0Þ

p
xþ 1 and F3ðxÞ ¼ F5ðxÞ ¼ x2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p0ð1� p0Þ

p
xþ 1 ð3:11Þ

must be roots of unity if Usz is periodic. In these p0, neither F1ðxÞ nor F3ðxÞ are with Q-coefficients, but F1ðxÞF3ðxÞ
becomes a monic polynomial with Q-coefficients, which is irreducible over Q:

F1ðxÞF3ðxÞ ¼ x4 þ 2ð1� 4p0ð1� p0ÞÞx2 þ 1: ð3:12Þ

However, for p0ð1� p0Þ ¼ 3=16 or 1/16, the polynomial in (3.12) is a monic polynomial having not Z-coefficients,
which contradicts Proposition 2.8.

3.4.5 For n ¼ 24

From the observation in Section 3.4.4, we only have to discuss when p0ð1� p0Þ ¼ 1=8. Recall

SpecðSpÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

p
cos

k�

8
; k ¼ 0; . . . ; 15

� �
:

Here we pay attention to the eigenvalues 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ
p

cos ð2k�1Þ�
8

for k ¼ 1; 2; 3; 4, and the equations

x2 � 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

p
cos
ð2k � 1Þ�

8
� xþ 1 ¼ 0 ð3:13Þ

by (3.10). Let us first remark any solution of

x2 � 2 cos
ð2k � 1Þ�

8
xþ 1 ¼ 0

is a primitive 16-th root of unity for each k ¼ 1; 2; 3; 4. Then

�16ðxÞ ¼
Y4
k¼1

x� exp
ð2k � 1Þ�

ffiffiffiffiffiffiffi
�1
p

8

 ! !
x� exp

�ð2k � 1Þ�
ffiffiffiffiffiffiffi
�1
p

8

 ! !

¼
Y4
k¼1

x2 � 2 cos
ð2k � 1Þ�

8
xþ 1

� �

¼ x4
Y4
k¼1

xþ
1

x

� �
� 2 cos

ð2k � 1Þ�
8

� �
: ð3:14Þ

On the other hand, we know

�16ðxÞ ¼ x8 þ 1 ¼ x4ððxþ 1=xÞ4 � 4ðxþ 1=xÞ2 þ 2Þ: ð3:15Þ

Combining (3.14) with (3.15), we obtain

Y4
k¼1

X � 2 cos
ð2k � 1Þ�

8

� �
¼ X4 � 4X2 þ 2: ð3:16Þ

Let us assume that, for k ¼ 1; 2; 3; 4, all of the solutions of equations in (3.13) are roots of unity. By using (3.16), we
have

Y4
k¼1

x2 � 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

p
cos
ð2k � 1Þ�

8
� xþ 1

� �

¼ ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

p
xÞ4
Y4
k¼1

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ
p

� �
ðxþ 1=xÞ � 2 cos

ð2k � 1Þ�
8

� �
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¼ ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

p
xÞ4

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ
p ðxþ 1=xÞ

� �4

� 4
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ
p ðxþ 1=xÞ

� �2

þ 2

 !

¼ x8 þ 4ð1� 4p0ð1� p0ÞÞx6 þ 2ð1� 4p0ð1� p0ÞÞð3� 4p0ð1� p0ÞÞx4 þ 4ð1� 4p0ð1� p0ÞÞx2 þ 1: ð3:17Þ
Putting p0ð1� p0Þ ¼ 1=8 into (3.17), we have x8 þ 2x6 þ ð5=2Þx4 þ 2x2 þ 1, which is a monic polynomial having not
Z-coefficients; this contradicts Proposition 2.8.

3.4.6 For odd prime integer n

In this section, we assume n is an odd prime integer. As is seen in Section 3.4.1, we only have to discuss when
p0ð1� p0Þ ¼ 1=8, 3/16 or 1/16. Recall

SpecðSpÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

p
cos

2k�

n
; k ¼ 0; . . . ; n� 1

� �
:

Moreover, by (3.10), assuming all of the solutions of the equations

x2 � 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

p
cos

2k�

n
� xþ 1 ¼ 0 ð3:18Þ

are root of unity, we shall derive a contradiction.
First we set �0 ¼ expð2�

ffiffiffiffiffiffiffi
�1
p

=nÞ. Since n is an odd prime integer, �k
0 for each k ¼ 1; . . . ; n� 1 is a primitive n-th

root of unity. In the same way in Section 3.4.5, let us see �nðxÞ: we know

�nðxÞ ¼
Xn�1

j¼0

xj

¼ xm ðxþ 1=xÞm þ ðxþ 1=xÞm�1 þ
3� n

2
ðxþ 1=xÞm�2 þ

Xm�3

j¼0

ajðxþ 1=xÞ j
 !

; ð3:19Þ

where m ¼ ðn� 1Þ=2 and aj’s are rational. On the other hand, we have

�nðxÞ ¼
Yn�1

j¼1

ðx� � j
0Þ ¼

Ym
j¼1

ðx� � j
0Þðx� �

� j
0 Þ

¼
Ym
j¼1

x2 � 2 cos
2j�

n
xþ 1

� �

¼ xm
Ym
j¼1

xþ
1

x

� �
� 2 cos

2j�

n

� �
: ð3:20Þ

Combining (3.19) with (3.20), we obtain

Ym
j¼1

X � 2 cos
2j�

n

� �
¼ Xm þ Xm�1 þ

3� n

2
Xm�2 þ

Xm�3

j¼0

ajX
j: ð3:21Þ

Let us put Gþn ðxÞ ¼
Qm

j¼1ðx2 � 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ
p

cos 2 j�
n
� xþ 1Þ. Then we have,

Gþn ðxÞ ¼ ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

p
xÞm

Ym
j¼1

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ
p xþ

1

x

� �
� 2 cos

2j�

n

� �

¼ ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

p
xÞm Xm þ Xm�1 þ

3� n

2
Xm�2 þ

Xm�3

j¼0

ajX
j

 !
; ð3:22Þ

where X ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1�p0Þ
p ðxþ 1=xÞ. Noting that ðxþ 1=xÞk ¼

Pk
‘¼0

k
‘

� 	
xk�2‘, we obtain the following expression:

Gþn ðxÞ ¼ xn�1 þ
n� 1

2
þ 2p0ð1� p0Þð3� nÞ

� �
xn�3 þ

Xðn�1Þ=2

j¼2

bjx
n�1�2 j

 !

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

p
xn�2 þ

Xðn�1Þ=2

j¼2

djx
n�2 j

 !
;

ð3:23Þ

where bj and dj are rational. Since it is assumed every solutions � of Gþn ðxÞ is a root of unity, �� becomes also a root of
unity. In other words, if we set G�n ðxÞ ¼ Gþn ð�xÞ, all of the solutions of G�n ðxÞ ¼ 0 are roots of unity. Let us now
consider GnðxÞ ¼ Gþn ðxÞG�n ðxÞ; it is obvious that every solution of GnðxÞ ¼ 0 is a root of unity. Then we have, from
(3.23),
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GnðxÞ ¼ Gþn ðxÞG
�
n ðxÞ

¼ xn�1 þ
n� 1

2
þ 2p0ð1� p0Þð3� nÞ

� �
xn�3 þ

Xðn�1Þ=2

j¼2

bjx
n�1�2 j

 !2

� 4p0ð1� p0Þ xn�2 þ
Xðn�1Þ=2

j¼2

djx
n�2 j

 !2

:

ð3:24Þ

Consequently we have GnðxÞ is a monic polynomial with Q-coefficients:

GnðxÞ ¼ x2n�2 þ ðn� 1þ 4ð2� nÞp0ð1� p0ÞÞx2n�4 þ
Xn�3

j¼0

~ajx
2 j; ð3:25Þ

where ~aj is rational. Putting p0ð1� p0Þ ¼ 1=8, 3/16 or 1/16 into (3.25), we have GnðxÞ, which is a monic polynomial
having not Z-coefficients; this contradicts Proposition 2.8. �

4. Further Remarks

In this paper, we give some characterization on the periodicity of the Szegedy walks on a special class of finite
graphs. However one of the things that we want to do is to determine the periodicity of the Grover walks completely for
general finite graphs. We discuss some strategy on such characterization. For a finite graph G with n vertices and m

unoriented edges, let �i’s be eigenvalues of Tp with counting each multiplicity, for i ¼ 1; . . . ; n. In other word, �i’s are
the roots of detðxIn � TpÞ ¼ 0. If Tp is reversible, then all of the eigenvalues of Usz inherited from Tp are the solutions of

x2 � 2�ixþ 1 ¼ 0 ð4:1Þ

by Theorem 2.1 and (2.2). Here let us consider the following monic polynomial FðxÞ ¼ detðxI2m � UszÞ, which can be
expressed as

FðxÞ ¼
Yn
i¼1

ðx2 � 2�ixþ 1Þ: ð4:2Þ

Then we have

FðxÞ=ð2xÞn ¼
Yn
i¼1

1

2
xþ

1

x

� �
� �i

� �
; ð4:3Þ

as is essentially seen in Sections 3.3 and 3.4. It is obvious that the polynomial of X,

Yn
i¼1

ðX � �iÞ; ð4:4Þ

is the characteristic polynomial of Tp. For the Grover matrix Ugr induced by a simple random walk T0, FðxÞ is obviously
a monic polynomial with Q-coefficients by its definition (1.4); simultaneously, FðxÞ is also characterized as above (4.3)
with (4.4).

Let us recall Proposition 2.2, that is, all of the solutions of FðxÞ ¼ 0 are roots of unity if and only if Usz is periodic. In
addition, it follows from the observation above and Proposition 2.8 that the above FðxÞ has Z-coefficients and can be
factorized by cyclotomic polynomials if and only if the Grover matrix Ugr is periodic.

The following is an obvious conclusion:

Proposition 4.1. Assume the Grover matrix Ugr is periodic. Then Ugr has a primitive n-th root of unity as an
eigenvalue if and only if it has all of the primitive n-th roots of unity as its eigenvalues. �

The following is one of simple necessary conditions for Ugr to be periodic. Now let �1 be the second largest
eigenvalue of T0, that is, there exists no eigenvalue in ð�1; 1Þ. The value 1� �1 is often called the spectral gap. Many
results on it are derived in terms of random walks and so on. For instance, refer to [4].

Proposition 4.2. If the Grover matrix Ugr is periodic, then there exists a positive integer k such that �1 ¼ cosð2�=kÞ.

Proof. Under the condition that Ugr is periodic, all of the solutions of FðxÞ ¼ 0 are roots of unity. Hence FðxÞ is a
monic polynomial with Z-coefficients and can be factorized by cyclotomic polynomials. Now the solutions of

x2 � 2�1xþ 1 ¼ 0

are roots of unity; they can be expressed by

expð�2�j
ffiffiffiffiffiffiffi
�1
p

=mÞ;
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where j;m are positive integers with ð j;mÞ ¼ 1. Equivalently, expð�2�j
ffiffiffiffiffiffiffi
�1
p

=mÞ is the primitive m-th root of unity for
some positive integer m and �1 ¼ cosð2�j=mÞ. Let us assume j 6¼ 1 or m� 1 modulo m. By Proposition 4.1, we find
Ugr has the eigenvalues expð�2�

ffiffiffiffiffiffiffi
�1
p

=mÞ, which implies T0 has the eigenvalue cosð2�=mÞ. This contradicts �1 is the
second largest eigenvalue of T0. �

We believe the periodicity of Ugr for more wider class of finite graphs can be characterized.

Problem 4.3 By using the above FðxÞ with some fruitful results on the simple random walk T0, determine the
periodicity of Ugr for more wider class of finite graphs. In particular, determine all graphs for Ugr to be periodic.
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