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Based on the similarity between telegraph equation for transmission lines and Klein–Gordon equation, we have
related a distributed element model in electrical engineering to a discrete-time quantum walk through Dirac
equation. As a result, we have constructed a discrete transmission line model for a discrete-time quantum walk,
and it enables us understanding the characteristics of quantum walks as those of the transmission line.
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1. Introduction

Quantum walks are quantum analogs of classical random walks [1, 2]. In late years quantum computers come to be
broadcast by the media and they have been attracted much attention. Quantum computer has a potential ability to
perform some calculations significantly faster than the current computers, and it is expected as a next-generation
computer. Quantum walk is a useful mathematical model for further developing the basic theory of the quantum
computer. In addition quantum walks have been expected as powerful tools for the development of quantum
algorithms. Quantum walk is often compared with classical random walk, and it is introduced as a quantum version of
classical random walk. However, the behavior of persistent random walk is nearer to the behavior of quantum walk
than that of random walk. For example, both in persistent random walk and in quantum walk walkers spread out to left
and right ballistically depending on an initial state. In contrast, the behavior of random walk is not so. Persistent
random walk also has a connection with the telegraph equation [3], which expresses the propagation of the electric
voltage and current in transmission line. In addition there is the similarity between telegraph equation and the Klein–
Gordon equation, which is related with a quantum walk [2]. Then, we can relate quantum walk to a model of
transmission line.

In this contribution, we have related a quantum walk to a distributed element model for a transmission line, which is
often used in electronics. In the next section we briefly explain the basics of random walks, persistent random walks,
and quantum walks. Then Section 3 explains the characteristics of the transmission lines for a small loss (or high
frequency) case and for a lossless case. In Section 4, we construct a discrete transmission line model, which is a
complex equivalent circuit model, for discrete-time quantum walks. In Section 5, we show the characteristics of the
complex equivalent circuit. Final Section 6 devoted to our conclusions.

2. Quantum Walk

One dimensional (1D) random walk is a mathematical stochastic model in which a particle (or a walker) moves to the
right or to the left on 1D lattice sites. Let the probability of moving to the right as p and that of moving to the left as q,
where p and q satisfy the condition of pþ q ¼ 1. The time evolution equation of the 1D random walk is described by

�tþ1ðxÞ ¼ p �tðxþ 1Þ þ q �tðx� 1Þ; ð2:1Þ

where �tðxÞ is the probability of the walker at a position x and at a time step t.
We next explain 1D persistent random walk [3]. There are two walkers A and B. We write each probability of two

walkers at a position x and at a time step t as �tAðxÞ and �tBðxÞ, respectively. In each time step, one of the walkers A

persistently goes to the right site with a probability p, and goes to the left site with a probability q ¼ 1� p. The other
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walker B persistently goes to the left site with a probability p, and goes to the right site with a probability q ¼ 1� p.
Thus the difference equations for the probabilities �tþ1

A ðxÞ and �tþ1
B ðxÞ are:

�tþ1
A ðxÞ ¼ p�tAðx� 1Þ þ q�tBðx� 1Þ;
�tþ1
B ðxÞ ¼ q�tAðxþ 1Þ þ p�tBðxþ 1Þ:

(
ð2:2Þ

The probability of 1D persistent random walk �tPðxÞ is defined as the sum of each probability:

�tPðxÞ ¼ �
t
AðxÞ þ �

t
BðxÞ: ð2:3Þ

We next explain quantum walks. Two different kinds of quantum walks are proposed [2]: one is a continuous-time
quantum walk; and the other is a discrete-time quantum walk (DTQW). For the simplicity we only consider a DTQW
on the line, i.e., on 1D lattice. To describe the behavior of a DTQW, it is important to understand the probability
amplitude, the rules of the time evolution and the probability. The probability amplitude  ðx; tÞ at a position x and a
time step t is expressed as a two-component wavefunction. The time evolution of a DTQW is described by the state
vector j ðx; tÞi. For a given initial state vector j ðx; 0Þi, the probability amplitude evolves in one time step by applying
a time-evolution operator Û which consists of a quantum coin operator Ĉ and shift operator Ŝ as Û ¼ Ŝ� Ĉ. The time
evolution of DTQW is expressed by

j ðx; t þ 1Þi ¼ Ŝ � Ĉ j ðx; tÞi; ð2:4Þ

with

j ðx; tÞi ¼
Xþ1

k¼�1
jki �

atk

btk

� �
; ð2:5Þ

where Ĉ and Ŝ are 2� 2 unitary matrices, and the position of k-th site is x ¼ k�x with a suitable small distance �x.
Since the time evolution operator Û is unitary, if we take an initial condition to be j ðx; 0Þj2 ¼ 1, the total probability is
conserved k ðx; tÞk2 ¼ 1 at all time step t > 0.
The quantum walker can be observed at position x at time t with a probability. The probability is defined in the square
of the norm of the probability amplitude  ðx; tÞ at position x at time step t. There is big difference in characteristics in
the time evolution of quantum walk and that of random walk. For example, the spreading width of a probability
distribution for a quantum walker increases proportionally to the number of time step t, whereas that of a classical
random walk is proportional to

ffiffi
t
p

[2].

3. Telegraph Equation

A distributed element (or transmission line) model represents the transmission line as the infinite series of a two-port
elementary circuit, and each circuit represents an infinitesimally short segment of the transmission line [4] as shown in
Fig. 1. The two-port circuit is characterized in terms of the following electrical elements: the distributed resistance
R½�=m� of the conductors (or wires) of the transmission line; the distributed inductance L½H/m� due to the magnetic
field around the wires, self-inductance, etc.; the shunt capacitance C½F/m� between the two conductors; and and the
conductance G½S/m� of the two conductors.

By applying Kirchhoff’s circuit laws we have

vtk � vtkþ1 ¼ R�x itk þ L�x
@

@t
itk;

itk � itkþ1 ¼ G�x vtkþ1 þ C�x
@

@t
vtkþ1:

8>><
>>: ð3:1Þ

Fig. 1. A distributed element model of a transmission line.
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where vtk is the electric voltage, itk is the electric current at a time t at a position x ¼ k�x with an integer k. Now
introducing the forward difference operator �þx acting a function f ðxÞ as

�þx f ðxÞ �
f ðxþ�xÞ � f ðxÞ

�x
; ð3:2Þ

and the backward difference operator ��x as

��x f ðxÞ �
f ðxÞ � f ðx��xÞ

�x
: ð3:3Þ

By using these difference operators, Eq. ð3.1Þ becomes

��þx v
t
k ¼ Ritk þ L

@

@t
itk;

���x i
t
k ¼ Gvtk þ C

@

@t
vtk:

8>><
>>: ð3:4Þ

Then the telegraph equation (TE) for the voltage is written by

��x �þx vtk ¼ RGvtk þ ðRC þ LGÞ
@

@t
vtk þ LC

@2

@t2
vtk; ð3:5Þ

and that for the current is

��x �þx itk ¼ RG itk þ ðRC þ LGÞ
@

@t
itk þ LC

@2

@t2
itk: ð3:6Þ

For a sinusoidal wave with frequency !, it is often convenient to analyze in frequency domain and we can replace the
time differential operator @

@t with j!. From Eq. ð3.4Þ we have

��þx vtk ¼ ðRþ j!LÞ itk;
���x itk ¼ ðGþ j!CÞ vtk:

(
ð3:7Þ

Then by eliminating vtk or itk we obtain the following difference equations:

��x �þx vtk ¼ ðRþ j!LÞðGþ j!CÞ vtk;
��x �þx itk ¼ ðRþ j!LÞðGþ j!CÞ itk:

(
ð3:8Þ

The general solutions of Eq. ð3.8Þ are expressed in the following form:

vtk ¼ V1 expð�� k�xÞ þ V2 expðþ� k�xÞ; ð3:9Þ

itk ¼
V1

Zð!Þ
expð�� k�xÞ �

V2

Zð!Þ
expðþ� k�xÞ; ð3:10Þ

where

Zð!Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ j!L

Gþ j!C

s
; ð3:11Þ

is the characteristic impedance and

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþ j!LÞðGþ j!CÞ

p
; ð3:12Þ

is the propagation constant. The parameter V1 and V2 are determined according to the given boundary conditions. The
term V1 expð�� k�xÞ describes an electromagnetic wave propagating along the forward direction along the x-axis,
while V2 expðþ� k�xÞ describes one propagating along the backward direction. The propagation constant � is a
complex quantity in general, and can be decomposed as the real and imaginary parts: � ¼ �þ j�, where � is called
attenuation constant, � the phase constant.

When the conditions: R� !L; and G� !C are satisfied, i.e., in a small loss or high frequency case, � and � are
approximated as

� ’
1

2
!

ffiffiffiffiffiffi
LC
p RC þ LG

!LC

� �
; ð3:13Þ

� ’ !
ffiffiffiffiffiffi
LC
p

: ð3:14Þ
For the case of a lossless (R ¼ G ¼ 0) transmission line, the propagation constant �0 is

�0 ¼ j� ¼ !
ffiffiffiffiffiffi
LC
p

; ð3:15Þ

which is no dispersion. The corresponding phase velocity v0
p and group velocity v0

g are
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v0
p ¼

!

�
¼

1ffiffiffiffiffiffi
LC
p ; v0

g ¼
@!

@�
¼ v0

p: ð3:16Þ

4. A Complex Equivalent Circuit

We here relate the distributed element model of a transmission line to DTQW through Dirac equation. We firstly
relate the TE to Klein–Gordon (KG) equation [5, 6]. Secondly, it relates to Dirac equation. Finally, we relate the Dirac
equation to DTQW. In this way we can relate the distributed element model to DTQW.

4.1 Relating the Telegraph Equation to Klein–Gordon Equation

The continuous version of Eq. ð3.5Þ is

@2

@x2
vðx; tÞ ¼ RGvðx; tÞ þ ðRC þ LGÞ

@

@t
vðx; tÞ þ LC

@2

@t2
vðx; tÞ: ð4:1Þ

On the other hand, KG equation for a wavefunction  ðx; tÞ is described by

� h�
2 @

2

@t2
 ðx; tÞ ¼ �h� 2c2 @

2

@x2
 ðx; tÞ þ m2c4  ðx; tÞ: ð4:2Þ

If in Eq. ð4.1Þ the coefficient of the first-order time derivative is 0, Eq. ð4.1Þ and Eq. ð4.2Þ become the same form. Thus
we can relate the TE to KG equation by requiring the following conditions:

RC þ LG ¼ 0; c ¼
1ffiffiffiffiffiffi
LC
p ; and RG ¼

mc

h�

� �2

: ð4:3Þ

Note that in order to satisfy these conditions Eq. ð4.3Þ, R and G should be pure imaginary quantities with opposite
signs, i.e., R ¼ �jjRj;G ¼ jjGj.

4.2 Relating Klein–Gordon Equation to Dirac Equation

A general partial differential equation which is first-order partial differential in both space and time is written by

@

@t
 ðx; tÞ ¼ �̂x

@

@x
þ �̂y

@

@y
þ �̂z

@

@z

� �
 ; ð4:4Þ

where �̂x; �̂y and �̂z are operators to be determined. In order to relate this equation to Eq. ð4.2Þ, changing the
coefficients as

jh�
@

@t
 ¼ �h� 2c2 �̂x

@

@x
þ �̂y

@

@y
þ �̂z

@

@z

� �
þ �̂mc2

� �
 ; ð4:5Þ

where j stands for imaginary unit. We here consider only 1D case [7]. Taking out only operator parts in formula ð4.5Þ,
and squaring the both sides, it follows

� h�
2 @

2

@t2
¼ �h� 2c2�̂2

z

@2

@z2
� jh�mc

3 �̂z�̂þ �̂�̂z
� � @

@z
þ �̂2m2c4: ð4:6Þ

By comparing the coefficients of Eq. ð4.2Þ and those of Eq. ð4.6Þ, we see that �̂2
z ¼ 1, �̂z�̂þ �̂�̂z ¼ 0, �̂2 ¼ 1 are seen

to be necessary conditions. It is known that �̂z and �̂ in Eq. ð4.4Þ are as follows.

�̂z ¼
0 �̂z

�̂z 0

� �
; �̂ ¼

Î 0

0 �Î

 !
; ð4:7Þ

where we used Pauli’s matrices [8], Î is unit 2� 2 matrix, and �jh� @
@z is expressed by the momentum operator p̂z.

Arranging the first and third components of  as ’ ¼ ð 1

 3
Þ. In this way we obtain Dirac equation for a free particle [9]:

jh�
@

@t
’ðx; tÞ ¼ ðc�̂x p̂z þ �̂zmc2Þ’ðx; tÞ: ð4:8Þ

4.3 Relating Dirac Equation to a Discrete-time Quantum Walk

The Hamiltonian of Eq. ð4.8Þ is given by

H ¼ c�̂x p̂z þ �̂zmc2: ð4:9Þ

After suitable rotations around the coordinate axises, this Hamiltonian can be converted as

HD ¼ c�̂z p̂z þ �̂xmc2; ð4:10Þ
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and the corresponding Dirac equation is given by

jh�
@

@t
’ðx; tÞ ¼ ðc�̂z p̂z þ �̂xmc2Þ’ðx; tÞ: ð4:11Þ

By applying Suzuki–Trotter approximation, the infinitesimal time-evolution operator Ûð�tÞ is approximated as

Ûð�tÞ � exp �j
HD

h�
�t

� �
exp �jc

�̂z p̂z

h�
�t � j

�̂xmc
2

h�
�t

� �
’ exp �jc

�̂z p̂z

h�
�t

� �
exp �j

�̂xmc
2

h�
�t

� �
: ð4:12Þ

If c�t is replaced with the infinitesimal step �x in spatial direction, and introducing a parameter

� ¼
mc2

h�
�t; ð4:13Þ

Eq. ð4.12Þ becomes

Ûð�tÞ ¼ exp �j
�̂z p̂z
h�

�x

� �
expð�j�̂x�Þ: ð4:14Þ

Here the second exponential factor is rewritten as

exp �j�̂x�
� �

¼ Î cos � � j�̂x sin � ¼
cos � �j sin �
�j sin � cos �

� �
; ð4:15Þ

which is nothing but a coin operator Cð�Þ in DTQW. For the first exponential factor in Eq. ð4.14Þ, we see from Euler’s
formula that

exp �j
�̂z p̂z

h�
�x

� �
¼ cos

p̂z

h�
�x

� �
� j�̂z sin

p̂z

h�
�x

� �	 


¼
1

2
ðÎ þ �̂xÞ exp �j

p̂z

h�
�x

� �
þ ðÎ � �̂xÞ exp þj

p̂z

h�
�x

� �	 

:

ð4:16Þ

Introducing the infinitesimal translation operator,

T	ð�xÞ ¼ exp 	j
p̂z

h�
�x

� �
; ð4:17Þ

we see that the infinitesimal time-evolution operator of Dirac equation is expressed as that of DTQW:

Ûð�tÞ ¼
T� 0

0 Tþ

� �
cos � �j sin �
�j sin � cos �

� �
¼ Ŝð�xÞ Ĉð�Þ: ð4:18Þ

4.4 Relating the Distributed Element Model to Dirac Equation

The continuous version of Eq. ð3.1Þ are written as

�
@

@x
vðx; tÞ ¼ Rþ L

@

@t

� �
iðx; tÞ;

�
@

@x
iðx; tÞ ¼ Gþ C

@

@t

� �
vðx; tÞ;

8>>><
>>>:

ð4:19Þ

respectively. After some algebra they are rewritten as

@

@t

ffiffiffiffi
C
p

vðx; tÞ ¼ �
1ffiffiffiffiffiffi
LC
p

@

@x

ffiffiffi
L
p

iðx; tÞ �
G

C

ffiffiffiffi
C
p

vðx; tÞ;

@

@t

ffiffiffi
L
p

iðx; tÞ ¼ �
1ffiffiffiffiffiffi
LC
p

@

@x

ffiffiffiffi
C
p

vðx; tÞ �
R

L

ffiffiffiffi
C
p

iðx; tÞ:

8>><
>>: ð4:20Þ

By using the condition of the RC þ LG ¼ 0 in Eq. ð4.3Þ, we introduce a new parameter �

� �
R

L
¼ �

G

C
: ð4:21Þ

Adding and subtracting both equations in Eq. ð4.20Þ we have

@

@t
ð
ffiffiffiffi
C
p

vðx; tÞ þ
ffiffiffi
L
p

iðx; tÞÞ ¼ �
1ffiffiffiffiffiffi
LC
p

@

@x
ð
ffiffiffiffi
C
p

vðx; tÞ þ
ffiffiffi
L
p

iðx; tÞÞ þ �ð
ffiffiffiffi
C
p

vðx; tÞ �
ffiffiffi
L
p

iðx; tÞÞ;

@

@t
ð
ffiffiffiffi
C
p

vðx; tÞ �
ffiffiffi
L
p

iðx; tÞÞ ¼
1ffiffiffiffiffiffi
LC
p

@

@x
ð
ffiffiffiffi
C
p

vðx; tÞ �
ffiffiffi
L
p

iðx; tÞÞ þ �ð
ffiffiffiffi
C
p

vðx; tÞ þ
ffiffiffi
L
p

iðx; tÞÞ:

8>><
>>: ð4:22Þ

These equations are rewritten as
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@

@t

aðx; tÞ
bðx; tÞ

� �
¼ �

1ffiffiffiffiffiffi
LC
p

@

@x

1 0

0 �1

� �
aðx; tÞ
bðx; tÞ

� �
þ �

0 1

1 0

� �
aðx; tÞ
bðx; tÞ

� �

¼ �
1ffiffiffiffiffiffi
LC
p

@

@x
�̂z þ ��̂x

� �
aðx; tÞ
bðx; tÞ

� �
; ð4:23Þ

where we introduced the variables

aðx; tÞ ¼
ffiffiffiffi
C
p

vðx; tÞ þ
ffiffiffi
L
p

iðx; tÞ; bðx; tÞ ¼
ffiffiffiffi
C
p

vðx; tÞ �
ffiffiffi
L
p

iðx; tÞ: ð4:24Þ

By invoking to the same technique that is used in Sect. 4.2, the approximated solution of Eq. (4.23) can be cast into the
following form.

aðx; t þ�tÞ
bðx; t þ�tÞ

� �
¼

T� 0

0 Tþ

� �
cos � �j sin �
�j sin � cos �

� �
aðx; tÞ
bðx; tÞ

� �
; ð4:25Þ

where T	 is the infinitesimal translation operator with x	�x, �x ¼ c�t ¼ �tffiffiffiffiffi
LC
p , and � ¼ j��t ¼ j�j�t ¼ jRj�t

L
.

Equation ð4.25Þ expresses the discrete transmission line model for discrete-time quantum walks. We call it the
complex equivalent circuit (see Fig. 1.), because the value of the resistance R and conductance G are purely imaginary
quantities.

5. The Characteristics of the Complex Equivalent Circuit

In the previous section, in order to relate the TE to DTQW, we have to choose the value of the resistance R and that
of the conductance G in the distributed element model as a pure imaginary one. Since this is not the standard cases, we
here show the characteristics, as a transmission line, of the complex equivalent circuit in which the resistance and
conductance are pure imaginary. Recall that we imposed the conditions in Eq. ð4.3Þ, the propagation constant � is
expressed as

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþ j!LÞðGþ j!CÞ

p
¼ j

ffiffiffiffiffiffi
LC
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!� j

R

L

� �
!� j

G

C

� �s
¼

j

v0
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!� j�Þð!þ j�Þ

p
¼

j

v0
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ �2

p

¼
j

v0
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � j�j2

q
; ð5:1Þ

where we used the phase velocity v0
p in Eq. ð3.16Þ of a lossless transmission line and the parameter � defined in

Eq. ð4.21Þ. Note that the parameter � is pure imaginary. Since the time-evolution of a quantum walk is unitary, the total
probability k ðtÞk2 is conserved at any time t. This means the attenuation constant � should be zero, i.e. � ¼ j�. This
leads to the condition !2 > j�j2 and the corresponding phase constant � is

�ð!Þ ¼
1

v0
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � j�j2

q
: ð5:2Þ

Similarly the characteristic impedance Z is

Zð!Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ j!L

Gþ j!C

s
¼

ffiffiffiffi
L

C

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R=Lþ j!

G=C þ j!

s
¼ Z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!þ j�j
!� j�j

s
: ð5:3Þ

The phase velocity vp and group velocity vg are

vpð!Þ ¼
!

�
¼ v0

p

!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � j�j2

p ; vgð!Þ ¼
@!

@�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � j�j2

p
!

: ð5:4Þ

We see that these characteristic parameters of the complex equivalent circuit are frequency dependent. Note that in the
standard situation (R ¼ G ¼ 0) of the lossless transmission line, the characteristic impedance Z0 has no frequency
dependency, i.e., Z0 ¼

ffiffiffiffiffiffiffiffiffi
L=C
p

. Therefore we consider some peculiar behaviors of quantum walks compared to those of
classical random walks are due to these frequency dependent characteristics in the view from the complex equivalent
circuit.

6. Conclusions

Based on the similarity between TE and KG equation, we have related DTQW to the distributed element model of
transmission lines. The time-evolution equation of DTQW are related to those of the complex equivalent circuit of
the transmission line. We have constructed the discrete transmission line model in Eq. ð4.25Þ. Consequently, the
characteristics of the quantum walk can be understood as those of the equivalent circuit. Different from a typical
transmission line which is often considered in basic electronics, the characteristics of the complex equivalent circuit
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have frequency dependency as shown in Section 5. In particular the characteristic impedance Zð!Þ of the complex
equivalent circuit depends on the frequency of the propagating waves. We thus expect that this property will explain
some characteristic features of quantum walks. Further study is needed to confirm this.
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