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We analyze the equivalence between discrete-time coined quantum walks and Szegedy’s quantum walks. We
characterize a class of flip-flop coined models with generalized Grover coin on a graph � that can be directly
converted into Szegedy’s model on the subdivision graph of � and we describe a method to convert one model into
the other. This method improves previous results in literature that need to use the staggered model and the concept
of line graph, which are avoided here.
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1. Introduction

Coined quantum walks (QWs) on graphs were defined in Ref. [1] and have been extensively analyzed in literature
[2–6]. The coined model has an internal space, which determines the direction that a particle would take. The model’s
Hilbert space in this case is the tensor product of the internal space and the space associated with the graph.

Szegedy’s model [7], on the other hand, does not have an internal state. This model provides a recipe to generate
coinless discrete-time QWs on bipartite graphs using a Hilbert space associated with the graph only. Szegedy’s model
was used for the spatial search problem, that is, for finding the location of a marked vertex in a graph [8, 9], and for
searching triangles [10].

The detailed relation between the coined and Szegedy’s model has remained elusive for many years until Ref. [11]
used the staggered QW model [12] as a bridge to describe under which conditions Szegedy’s and coined QWs are
equivalent. The method described in Ref. [11] employs the line graph of the graph on which the Szegedy’s model is
defined. In this work we describe a simpler method of obtaining the equivalence between Szegedy’s and coined QWs
using neither the staggered QW model nor the concept of line graphs. We characterize a class of flip-flop coined QWs
on graph � with generalized Grover coin that is equivalent to Szegedy’s QWs on the subdivision graph of � and
describe how those coined QWs can be converted into Szegedy’s model.

The structure of this paper is as follows. In Sect. 2, we give the definition of the main concepts used in this work. In
Sect. 3, we present our main result which is the method to convert coined QWs into Szegedy’s QWs. In Sect. 4, we
draw our conclusions.

2. Main Definitions

Let �ðV ;EÞ be a multigraph with vertex set V ¼ Vð�Þ and edge set E ¼ Eð�Þ with cardinalities jVj and jEj,
respectively. We set H2jEj as the Hilbert space whose computational basis is fjv; ji : v 2 V ; 0 � j < dvg. We take a
decomposition of H2jEj by

H2jEj ¼
M
v2V

spanfjv; ji : j ¼ 0; 1; . . . ; dv � 1g; ð2:1Þ

where dv is the degree of vertex v.

Definition 2.1. The flip-flop coined QW on a multigraph �ðV ;EÞ associated with Hilbert space H2jEj is driven by a
unitary operator the form of which is

U ¼ SC0; ð2:2Þ
where C0 is a direct sum of jVj matrices under the decomposition of (2.1) with dimensions d1; . . . ; djV j, and S is the shift
operator which permutes the vectors of the computational basis of H2jEj,
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Sjv; ji ¼ jv0; j0i; 8v 2 V ; 0 � j < dv; ð2:3Þ

where vertices v and v0 are adjacent, label j points from v to v0, and label j0 points from v0 to v and j, j0 lie on the same
edge.

Notice that jv; ji is a notation for the basis vectors that cannot be written as jvi � jji unless the multigraph is regular.
We take the order of the basis vectors as jv1; 0i; . . . ; jv1; d1 � 1i; jv2; 0i; . . . ; jv2; d2 � 1i, etc., so that C0 will have a
block diagonal form with jVj matrices.

We set A ¼ Að�Þ as the set of symmetric arcs induced by Eð�Þ, that is, Eð�Þ ¼ ffa; �ag : a 2 Ag. Here we denote the
origin and terminal vertices of a 2 Að�Þ by oðaÞ; tðaÞ 2 V , and the inverse arc of a by �a.

Remark 2.2. It holds that jAj ¼ j
S

v2Vfðv; jÞ : j 2 f1; . . . ; dvggj since a one-to-one correspondence between them is
ðv; jÞ $ a, where oðaÞ ¼ v with e :¼ fa; �ag 2 E, and j lies on e. We define bijection � : A!

S
v2Vfðv; jÞ : j 2

f1; . . . ; dvgg by

�ðaÞ ¼ ðoðaÞ; jÞ; where j lies on fa; �ag: ð2:4Þ

Let HA be the Hilbert space whose computational basis is fjai : a 2 Ag. We define the unitary map V� : HA! H2jEj

by

V�jai ¼ joðaÞ; ji;

where j lies on fa; �ag. The shift operator is expressed by V�1
� SV�jai ¼ j �ai. For v 2 V , define the subspace Hv � HA by

Hv ¼ spanfjai : oðaÞ ¼ vg which is isomorphic to spanfjv; ji : j ¼ 0; . . . ; dv � 1g � H2jEj. Thus if C0 ¼
P

v2V �Cv,
then the coin operator is expressed by

V�1
� C0V�jai ¼

X
b2fb2A:oðaÞ¼oðbÞg

ðCoðaÞÞ��1ðbÞ;��1ðaÞjbi:

Let us define the QW model known as Szegedy’s model [7]. Consider a connected bipartite graph �ðX;Y ;E0Þ, where
X;Y are disjoint sets of vertices and E0 is the set of non-directed edges. Let

0 M

MT 0

� �
ð2:5Þ

be the biadjacency matrix of �ðX; Y ;E0Þ, that is, ðMÞx;y ¼ 1 if fx; yg 2 E, ðMÞx;y ¼ 0 otherwise. Here T is the transpose
operator. Using M, define P as a probabilistic map from X to Y with entries pxy � 0, that is, ðMÞx;y ¼ 0) pxy ¼ 0.
Using MT , define Q as a probabilistic map from Y to X with entries qyx � 0, that is, ðMT Þy;x ¼ 0) qyx ¼ 0. If P is an
m	 n matrix, Q will be an n	 m matrix. Both are right-stochastic, that is, each row sums to 1. Let Hmn ¼ Hm �Hn

be the Hilbert space whose canonical basis is fjx; yi :¼ jxi � jyi; x 2 X; y 2 Yg. Using P and Q, it is possible to define
unit vectors on Hmn for given x 2 X and y 2 Y ,

j�xi ¼
X
y2Y

ffiffiffiffiffiffiffi
pxy
p

ei�xy jx; yi; ð2:6Þ

j yi ¼
X
x2X

ffiffiffiffiffiffi
qyx
p

ei�
0
xy jx; yi; ð2:7Þ

that have the following properties: h�xj�x0 i ¼ �xx0 and h yj y0 i ¼ �yy0 . Here �xy; �
0
xy 2 R. In Szegedy’s original

definition, �xy ¼ �0xy ¼ 0. We call extended Szegedy’s QW the version that allows nonzero angles.�

Definition 2.3. Szegedy’s QW on a bipartite graph �ðX;Y ;EÞ with biadjacent matrix (2.5) is defined on a Hilbert
space Hmn ¼ Hm �Hn, where m ¼ jXj and n ¼ jYj, the computational basis of which is fjx; yi : x 2 X; y 2 Yg. The
QW is driven by the unitary operator

W ¼ R1 R0; ð2:8Þ

where

R0 ¼ 2
X
x2X
j�xih�xj � I; ð2:9Þ

R1 ¼ 2
X
y2Y
j yih yj � I: ð2:10Þ

Notice that operators R0 and R1 are unitary and Hermitian (R2
0 ¼ R2

1 ¼ I).
Let us define the notion of generalized Grover operator.

1Another extended version of Szegedy’s QW model can be seen in [13].
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Definition 2.4. Let Hdv � H2jEj (v 2 V) be the subspace spanfjv; ji : j ¼ 0; . . . ; dv � 1g. A generalized Grover
operator Gv on Hdv has the form

Gv ¼ 2j vih vj � IHdv ; ð2:11Þ

where j vi 2 Hdv is a unit vector.

The Grover operator is obtained when hv; jj vi ¼ 1=
ffiffiffi
d
p

v for all j 2 f0; . . . ; dv � 1g. We put j�ðvÞi :¼ V�1
� j vi 2 HA.

Thus the generalized Grover operator on Hv � HA is Cv :¼ V�GvV
�1
� , expressed by

Cv ¼ 2j�ðvÞih�ðvÞj � IHv
:

Definition 2.5. The subdivision graph Sð�Þ of a multigraph � ¼ ðV ;EÞ is defined as follows:

VðSð�ÞÞ ¼ Vð�Þ [ Eð�Þ;
EðSð�ÞÞ ¼ ffv; eg : v 2 Vð�Þ; e 2 Eð�Þ; v 2 eg:

That means that Sð�Þ is the graph obtained from � by adding a vertex in the middle of each edge of �.

Remark 2.6. The map � : Að�Þ ! EðSð�ÞÞ such that �ðaÞ ¼ foðaÞ; fa; �agg is bijection since Sð�Þ is a simple graph.

See Fig. 1, for the equivalence relations of fjv; ji : v 2 V ; 0 � j � dvg, Að�Þ and EðSð�ÞÞ.

Proposition 7.2.2 of Ref. [14] shows that the subdivision graph Sð�Þ of a multigraph � is a bipartite graph
�0 ¼ ðX;Y ;E0Þ. Set X comprises the vertices v 2 V and set Y comprises the new vertices so that jYj ¼ jEj. The
cardinality of E0 is 2jEj.

3. Main Results

Consider the following lemma.

Lemma 3.1. Let HE � Hnm be the subset whose computational set is fjxi � jyi : fx; yg 2 Eð�Þg. It holds that

WðHEÞ ¼ HE; WjHE
? ¼ 1;

which means a matrix representation of W is

W ¼

WjHE
0 
 
 
 0

0 1 
 
 
 0

..

. ..
. . .

. ..
.

0 0 
 
 
 1

2
66664

3
77775; ð3:1Þ

Proof. Let � be the orthogonal projection onto HE. Put  ¼  1 þ  2 with  1 2 HE and  2 2 HE
?. Then we have

�W ¼ �Wð 1 þ  2Þ ¼ W 1 since R0 2 ¼ R1 2 ¼ � 2. On the other hand, W� ¼ W 1. So we have
�W ¼ W�, which implies WðHEÞ ¼ HE. Indeed, for any jf i 2 HE, jgi 2 HE

?, hgjW f i ¼ hW�gjf i ¼ hgjf i ¼ 0,
which implies WðHEÞ � HE. On the other hand, since W is a bijection onto Hnm, for any f 2 Hnm, there uniquely
exists jgi 2 Hnm such that jf i ¼ Wjgi. Using this �jf i ¼ �Wjgi ¼ W�jgi 2 WðHEÞ. �

Due to the isomorphism between HA and H2jEj in (2.4), from now on we identify H2jEj with HA, V�C
0V�1
� with C0,

and V�SV
�1
� with S. The main result of this work is:

Theorem 3.2. Let U� : HAð�Þ ! HEðSð�ÞÞ be the unitary representation of the bijection map � : Að�Þ ! EðSð�ÞÞ in
Remark 2.6, that is,

Fig. 1. The equivalence relations of fjv; ji : v 2 V ; 0 � j � dvg, Að�Þ and EðSð�ÞÞ.
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U�jai ¼ joðaÞi � jfa; �agi: ð3:2Þ

A flip-flop coined QW on a multigraph � ¼ ðV ;EÞ such that C0 ¼
L

v2V Cv and each Cv is a generalized Grover
operator can be cast into the extended Szegedy’s model on the subdivision graph Sð�Þ, that is,

U ¼ U�1
� WjHEðSð�ÞÞU�;

where U : HAð�Þ ! HAð�Þ is the time evolution of a flip-flop coined QW on � with the generalized Grover coin and
W : HjVð�Þj �HjEð�Þj ! HjVð�Þj �HjEð�Þj is the time evolution of an extended Szegedy walk on Sð�Þ.

Proof. Since Cv is a generalized Grover operator, it can be written as

Cv ¼ 2j�ðvÞih�ðvÞj � IHv
; ð3:3Þ

where Hv is the subspace spanned by fjai : oðaÞ ¼ vg and j�ðvÞi is a unit vector on Hv. We put

j�ðvÞi ¼
X

a:oðaÞ¼v
�ajai ð3:4Þ

with
P

a:oðaÞ¼v j�aj
2 ¼ 1. By the assumption of a generalized Grover operator, we have �a :¼ haj�ðvÞi 6¼ 0 for every

a 2 Að�Þ with oðaÞ ¼ v. Since the coin C0 is the direct sum of generalized Grover operators fCvgv2Vð�Þ, then the coin C0

is rewritten as

C0 ¼ 2
X

v2Vð�Þ
j�ðvÞih�ðvÞj � IHAð�Þ : ð3:5Þ

Therefore specðC0Þ ¼ f�1g and

kerð1� C0Þ ¼ spanfj�ðvÞi : v 2 Vg:

We call the above LHS (+1)-eigenspace of C0. Since Sjai ¼ j �ai and Sj �ai ¼ jai, then spanfjai; j �aig � HA is invariant
under the action of S, and S acts as

S ¼�
0 1

1 0

� �

in this invariant subspace. Therefore specðSÞ ¼ f�1g, and

kerð1� SÞ ¼ spanfj�ðeÞi : e 2 Eg;
kerð1þ SÞ ¼ spanfj	ðeÞi : e 2 Eg:

Here

j�ðeÞi ¼
jai þ j �aiffiffiffi

2
p ; j	ðeÞi ¼

jai � j �aiffiffiffi
2
p ; ð3:6Þ

where e ¼ fa; �ag 2 Eð�Þ. The kerð1� SÞ is the (+1)-eigenspace of S. Thus S is expressed by

S ¼
X
e2Eð�Þ

j�ðeÞih�ðeÞj � j	ðeÞih	ðeÞj

¼ 2
X

e2Eð�Þ
j�ðeÞih�ðeÞj � IHAð�Þ : ð3:7Þ

Consider the subdivision graph Sð�Þ. Sð�Þ is obtained from � by adding a new vertex in the middle of each edge
e 2 E. If e contains arcs a and �a as depicted in Fig. 2, the label for the new vertex is fa; �ag or equivalently f �a; ag. We
consider identical the labels fa; �ag and f �a; ag. The new vertex is depicted in Fig. 3. Remark 2.6 implies HAð�Þ ¼�
HEðSð�ÞÞ � HjVð�Þj �HjEð�Þj. The goal now is to define a Szegedy model on the subdivision graph Sð�Þ. To this end,

ā a
v v

Fig. 2. Example of a graph depicting two generic vertices v and v0. The coin direction j represented by arc a points from v to v0 and
j0 represented by arc �a points from v0 to v.
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consider Hilbert space HjVð�Þj �HjEð�Þj as the total state space of our desired Szegedy’s model. The computational
basis uses the following notation: The first 2jEj vectors are given by jvi � jei, where v 2 Vð�Þ is in the end of e 2 Eð�Þ.
We will consider identical the vectors jei ¼ jfa; �agi and jf �a; agi with e ¼ fa; �ag. The remaining vectors are given by
jvi � jei, where v is not the ends of e.

Vectors j�ðvÞi are given in terms of the computational basis fjai : a 2 Ag of HA. Define vectors j�ðvÞi in HEðSð�ÞÞ �
HjVð�Þj �HjEð�Þj using j�ðvÞi given by (3.4) and the one-to-one map given by (3.2); we replace jai 2 HAð�Þ by
joðaÞi � jfa; �a0gi 2 HEðSð�ÞÞ obtaining

j�ðvÞi ¼
X

a:oðaÞ¼v
�ajvi � jfa; �agi; ð3:8Þ

and the same for vectors jai in j�ðeÞi given by (3.6), they are also replaced by joðaÞi � jfa; �agi obtaining vectors j ðeÞi,
which are defined as

j ðeÞi ¼
joðaÞi � jfa; �agi þ jtðaÞi � jfa; �agiffiffiffi

2
p ; ð3:9Þ

where e ¼ fa; �ag. Notice that j ðeÞi can be factorized because the jfa; �agi and jf �a; agi are identical.
Now we define an operator on HjVð�Þj �HjEð�Þj that is expected to be a well defined evolution operator of the

Szegedy’s model by W ¼ R1R0, where

R0 ¼ 2
X

v2Vð�Þ
j�ðvÞih�ðvÞj � I; ð3:10Þ

R1 ¼ 2
X

e2Eð�Þ
j ðeÞih ðeÞj � I: ð3:11Þ

Using (3.2), we obtain U�j�ðvÞi ¼ j�ðvÞi and U�j�ðeÞi ¼ j ðeÞi. Thus

U� C
0U�1

� ¼ 2
X
v2V
j�ðvÞih�ðvÞj � IHEðSð�ÞÞ ¼ 2

X
v2V
j�ðvÞih�ðvÞj � I

 !����
HEðSð�ÞÞ

and

U� SU
�1
� ¼ 2

X
e2E
j ðeÞih ðeÞj � IHEðSð�ÞÞ ¼ 2

X
e2E
j ðeÞih ðeÞj � I

 !����
HEðSð�ÞÞ

:

Thus we obtain U ¼ U�1
� WjHEðSð�ÞÞU�.

Next, let us show that this operator W is a well-defined Szegedy evolution operator. First we check that W is
restricted to HEðSð�ÞÞ, which is spanned by the first 2jEj computational vectors of HjVj �HjEj. Using j�ðvÞi and j ðeÞi,
we define matrices P and Q, whose entries are pv;e ¼ j�ej2 and qe;v ¼ qe;v0 ¼ 1=2, respectively. P and Q are right
transition matrices. In fact,

P
e pv;e ¼ 1, 8v 2 V because j�ðvÞi has unit ‘2-norm and qe;v þ qe;v0 ¼ 1, 8e 2 E. Let P0;Q0

be the matrices obtained from P;Q by replacing the nonzero entries by 1. We also have to show that Q0T ¼ P0 (see
Definition 2.3), or equivalently p0v;e ¼ 1, q0e;v ¼ 1. We have the following equivalent relations:

p0v;e ¼ 1, fv; eg 2 EðSðGÞÞ , e 2 fa; �ag with v 2 foðaÞ; tðaÞg
, jvi � jfa; �agi 2 Computational basis of HEðSð�ÞÞ with v 2 foðaÞ; tðaÞg

, qe;v ¼ 1=
ffiffiffi
2
p
, q0e;v ¼ 1:

The first equivalence of ‘‘(’’ follows from �a 6¼ 0 for all a 2 fa0 2 Að�Þ : oða0Þ ¼ vg, which is our assumption. The
second follows from the last equivalence and the definition of  ðeÞ presented in (3.9). Thus we obtain Q0T ¼ P0.

Finally, we check the well-definedness of the remaining space H?EðSð�ÞÞ spanned by the jV jjEj � 2jEj vectors. For any
jf i 2 H?EðSð�ÞÞ, j�ðvÞi and j ðeÞi are orthogonal to jf i since all the computational basis of H?EðSð�ÞÞ are orthogonal to j�ðvÞi
and j ðeÞi by the definition. Thus R0jf i ¼ R1jf i ¼ �jf i, which implies Wjf i ¼ jf i. Therefore we have WjH?EðSð�ÞÞ ¼

{a, ā}
jv v

j

Fig. 3. Subdivision graph depicting the label fa; �ag for the new vertex placed between vertices v and v0 with coin directions j and j0.
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IHEðSð�ÞÞ . By Lemma 3.1, the walk restricted to H?EðSð�ÞÞ is well-defined. Taken all together, the walk, whose time
evolution is driven by W , is a well-defined Szegedy walk. �

In Theorem 3.2, if Cv for some vertex v has more the one (+1)-eigenvector, Cv is similar to the direct sum of smaller
matrices. In this case, the graph on which Szegedy’s model takes place is not the subdivision graph of the graph on
which the coined model takes place. This case was addressed in Ref. [11].

Finally, we provide an example in Fig. 4, which shows an application of Theorem 3.2. In this figure we takeX
y2Vð�Þ

�C0y ¼ R0

with C0y ¼ U�CyU
�1
� , (y 2 fu; v;w; xg), and X

e2Eð�Þ
�

0 1

1 0

� �
¼ R1:

4. Conclusions

We have described a method to convert discrete-time coined QWs that employ the generalized Grover coin on a
graph � into Szegedy’s QWs on the subdivision graph of �. This method shows that the internal space of the coined
model can be eliminated by including extra vertices into the graph. If the graph on which the coined model is defined is
not the complete graph, then the dimension of the Hilbert space of the equivalent Szegedy’s model is larger than the
one employed by the coined model. This is consequence of the following fact: If Szegedy’s model is defined on a
bipartite graph with m vertices in the first set and n vertices in the second set, the Hilbert space of Szegedy’s model is
spanned by mn vectors, but the dynamics takes place in the subspace spanned by the edges of the graph. The number of
edges is smaller than mn if the bipartite graph is not complete. Szegedy’s model has an idle subspace when defined on
non-complete bipartite graphs.
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