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Workshop on Irregular Stellar Pulsation at Mizusawa*’

(Received September 29, 1989)

A workshop on stellar pulsation theory was held at the conference room of
Mizusawa Astrogeodynamics Obsexvatory on 22 August, 1989. The workshop was
opened by the address of Professor I. Okamoto. The introductory talk was
delivered by Professor M. Takeuti. Five talks were presented. The following
is the abstracts of talks. The workshop was financially supported by National
Astronomical Observatory of Japan.

Introduction

Mine TAKEUTI

Astronomical Institute, Faculty of Science,
Tohoku University, Aoba-ku, Sendai 980, Japan

Since the stars are the dynamical framework of galaxies and the principal
agent to synthesize heavy elements, the studies of structures and evolutionary
stages of stars are very important. Studies of stellar pulsations are useful
because the features of stellar variability may depend on the details of
stellar structures. The period-density relationship have been obtained based
on linear pulsation theory. Combined with evolutionary models of supergiant
stars, investigators succeeded in estimating the masses of classical cepheids.
Hydrodynamical models of RR Lyrae stars give us the helium abundance.

The theoretical studies of pulsating stars have proceeded in several ways.
We can estimate linear adiabatic periods from linear adiabatic study (LA).
Linear nonadiabatic studies (LNA) gives us more reliable periods and growth
rates of pulsations. Hydrodynamic models which are the numerical simulation
based on the time-dependent hydrodynamic equations are useful to study the
time variations of observed quantities., The hydrodynamical studies require a
lot of computing time, however. Therefore, a qualitative nonlinear study is
useful for preparing such an expensive investigation. Nonlinear amplitude
equations based on an assumption that oscillations can be decomposed to
several harmonic waves were investigated. Nonlinear equations without any
assumption on the separation of variables were also studied. Baker's one-zone
stellar model is so simple that we cannot reproduce their luminosity changes,
but quite useful for studying the exciting processes of critical ionization
layers in stellar envelopes.

*) Communicated from Professor M. Takeuti.
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The qualitative properties of nonlinear stellar pulsations found in
recent papers (Saito et al., Seya et al,) are as follows:

1) one-zone models which have only one mode show a period-doubling
sequence proceeding to chaotic oscillations when convenient conditions
are fulfilled in opacity changes; )

2) nonlinear coupling of a model cepheid in a two-mode case including
self-exciting processes shows period-doubling bifurcation;

3) with the changes of parameters, oscillations synchronized in a single
mode move to double-mode oscillations in phase-locking,

Not only the period-doubling bifurcation but also chaotic intermittency
are found in hydrodynamic simulations. The period-doubling in nearly resonant
case is also confirmed. Nevertheless, the double-mode case in phase-locking
has not been confirmed yet in hydrodynamical studies except for a few example
of double-mode oscillations.

At the end of my introductory talk, I wish to express my hope that the
attendants pay sufficient attention to dominating physical processes in pulsat-
ing stars, even though dynamics treat the action and.reaction by ignoring
their physical nature in general. The essential contribution to astrophysics
is usually come from the discovery of essential physical processes controlling
the phenomena.

On linear nonadiabatic pulsations of yellow bright stars

Fusatoshi YAMAKAWA, Toshihito ISHIDA, and Mine TAKEUTI

Astronomical Institute, Faculty of Science,
Tohoku University, Aoba-ku, Sendai 980, Japan

Pulsations of yellow bright stars sometimes show semiirregular properties.
So that, the study of these stars is very important. The investigation is
useful also to clarify the parent stars of planetary nebulae. Compared with
its importance, linear nonadiabatic periods which give basic data for pulsat-
ing stars have not been clearly established. ,

Takeuti and Aikawa (1986: Sci. Reports Tohoku Univ. Eighth Ser. 7 109)
calculated linear nonadiabatic periods of yellow bright stars. Since Worrell's
careful study (1986: Mon. Not. R. astr. Soc. 223 787) is not identical with
their results, it seems necessary to investigate again the linear nonadiabatic
periods by using much more detailed calculations. We try in determining them
using 400 zoning models. We examined Zalewski's unpublished procedure which
indicates the connection between adiabatic modes and nonadiabatic ones.

We compared standard method originally derived by Castor (1971: Astrophys.
J. 166 109). Takeuti and Aikawa's procedure, Worrell's one, and Zalewski's
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one. The results show Zalewski's one is the best for solving strongly
nonadiabatic pulsations. So we use this one for calculating the pulsations
properties of the models investigated by Takeuti and Aikawa (loc. cit.). Two
procedures give nearly identical periods for the fundamental mode oscillations.
Worrell's B and C modes seem the nonadiabatic cases derived from the first and
second overtone modes when we use Zalewski's procedure. The real role of
these modes in stellar pulsations has not been resolved till now.

Chaotic behavior in nonlinear two-mode coupling stellar models

Keiji SEYA

Faculty of Education, Ibaraki University,
Mito 310, Japan

The time developments of two-mode coupling models with the Van der Pol
type force of radial stellar oscillations (M. Takeuti, 1984: in Non-Linear
Phenomena in Stellar Outer-Layers, Tohoku Univ.) are studied. The equations
are as follows:
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d*x;/dt® = =0,°x; +0,° [((1/2)Cy 1%, +Cyo%x,5)%;

+e; (L =-a,%x,%) (ax,/dt) + (1/2)Cy,,%,%]
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As the coupling coefficiehté Cijk’ the values for a model classical cepheid
(M. Takeuti and T. Aikawa, 1981, Science Reports Tohoku Univ.) are adopted.
Since these values are around 3 in Mode 1 and around 6 in Mode 2, the modal
coupling is rather strong.

We choose 0, =1, 0,2=1.9 and €, =0.1, and take a;? (i=1,2) and €, as
variables. Three cases of ulz are chosen: (I) o .?2>a_?, (II) a,2=a.2and

1 2 1 2
(1III) alz <a.?. We have already obtained complex beats, phase-locking and

period—doublgng bifurcation (K. Seya, Y. Tanaka and M. Takeuti, 1989: Submitted
to Publ. Astron. Soc. Japan). We now show Poincare sections for e€¢,= 0.15 for
the cases I and II which are given in Fig. 1(a) and (b), respectively. The
points at which the values of x, change from negative to positive are plotted
on the (x2-dx2/dt) plane. Since a closed curve is formed in the case I, we

can see that the trajectory moves on the surface of torus (i.e., quasi-periodic).

In the case II, the surface is folded, which corresponds to the chaotic behavior.
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On the Poincare section for the case III, a closed curve which is far smaller
than that in the case I is formed, ‘

Next, period-doubling bifurcation can be seen after phase-locking with
the change of a,’ for €;=0,1, €,=0.24 and a,? =800. An example of this is
shown in Fig, 2: (a) a22 =510, period 1; (b) 0:.22 =500, period 2; (c) a,” =489,
chaos. The subpanels on the left are the orbits on the (xl-dxl/dt) planes,
and those on the right are the orbits for Mode 2. We regard the phase-locking
with 4:5 as period 1 here.

In conclusion, we found out that the coupled nonlinear model oscillators
show quasi-periodic, phase-locking, period-doubling and chaos. It is emphasized
that the phase-locking with 5:7 is obtained (K. Seya et al., loc. cit.)

Three mode nonresonant coupling in stellar pulsation

Toshihito ISHIDA

Astronomical Institute, Faculty of Science,
Tohoku University, Aoba-ku, Sendai 980, Japan

Recent observations have shown the existence of many multi-mode pulsating
stars. Theoretically, there are two approaches to study modal coupling in
stellar pulsation. One is to study the oscillator model equations as Takeuti
and Aikawa (1981: Sci. Rep. Tohoku Univ. 8th Ser. 2 106). The other is to
study the amplitude equations as Dziembowski and Kovacs (1984: Mon. Not. R.
astr. Soc. 206 497). Some properties of pulsating stars are explained by
their researches. However, no one studied the three mode nonresonant coupling
case. As three dimensional systems have essential difference from two dimen-
sional ones, especially on the occurence of chaotic behaviors, it is important
to study three mode nonresonant coupling as a general case.

In present study, we qualitatively investigated the amplitude equations
for nonresonantly coupling three mode case. An example of the three mode
interacting hydrodynamic model of classical Cepheid is also presented.

The amplitude equations which studied here are followings:

ax

at EF (1 - o,
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and the linear growth rates of the fundametal, the first overtone, and. the
second overtone, respectively, aij(i,j==l,2,3) are the mode coupling
coefficients.

Next, we studied the properties of singularities by stability analysis.
The result shows that in a certain case the three mode fixed point has
possibility to being an unstable focus and the other four points are unstable.
Therefore, there is the possibility of chaotic behavior of three amplitudes.

On the other hand, we found an example of three mode nonresonantly
interacting hydrodynamic model of classical Cepheid. Model parameters are
L=1500L,, Teff=6000K, and M=5.0 My. Linear nonadiabatic periods for the
fundamental, the first overtone, and the second overtone are 3,60944, 2,65190,
and 2.11051 (days), respectively. There is no significant resonance and all
modes are pulsationally unstable. The hydrodynamical model shows complicated
behavior, and none of three modes is negligible. Although the final state of
this model is unclear for the limited computation time, obviously the nonres-
onant three mode coupling has an imoortant role.

In conclusion, irregular behavior by the change of mode coupling coef-
ficients, which has never been considered, can occur in three mode nonresonant
coupling amplitude equations. We also presented an example of three mode
nonresonantly interacting hydrodynamic model of classical Cepheid.

Chaotic oscillation in hydrodynamic models for less-massive supergiant stars

Toshiki AIKAWA

Faculty of Liberal Arts, Tohoku Gakuin University
Ichinazaka, Izumi-ku, Sendai 981-31, Japan

Chaotic behaviors of oscillation are commonly observed in hydrodynamic
models for less-massive supergiant variable stars. Takeuti (1987: Astrophys.
Space Sci. 136, 129) has suggested that the irregular oscillation is closely
related with the deterministic chaos. 1In fact, Aikawa (1987: Astrophys. Space
Sci. 139, 281) has shown that the type of the transition from limit cycles to
the irregular oscillations in less-massive supergiant stars is in agreement
with the intermittency in deterministic chaos.

Meantime, Kovacs and Buchler (1988: Astrophys. J. 344, 971) have
investigated the transition in less-massive supergiant stars with a wider
range of stellar parameters, and found the intermittency for luminous stars,
and the period-doubling cascade for lesser luminous stars as types of the
transition,

In this report, we investigate the results of Kovacs and Buchler using
the TGRID code (Simon and Aikawa, 1986: Astrophys, J. 304, 249) which was used
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in Aikawa (1987). ‘
The stellar parameters used in the present study are as follows:

M

i

0.6 Mg ,

L = 400, 500, 600 Ly ,

and the chemical abundances of Population II are assumed with x=0.745, z =
0.005. The effective temperature is a control parameter, For each of the
three luminosities, we thus constructed a model sequence with changing the
effective temperature. We run each model in the sequence for about 400
pulsation periods to see the behavior of oscillation in non-linear regime.

We demonstrate the summary of the present study on the HR diagram (Fig.l).
For L= 400 L, the models show limit cycles for a wide range of effective
temperature. The model at T,=5000 K has a periodic oscillation with period
2. We thus expect the first subharmonic bifurcation between T, = 5100 and
5000 K models,
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Fig. 1 Summary of the behavior of oscillation in nonlinear regime presented

on the HR diagram, We use fifferent symbols for the region of limit cycle,
period-doubling and intermittency. A small circle at the edge of each
sequence indicates the blue edge of the fundamental mode.

For L=500 Lg, the situation is much more complicated. We confirm the
subharmonic bifurcation started at about T, = 5360 K, up to the second sub-
harmonic bifurcation, The period 4 oscillation generated from the final
bifurcation, however, goes to irreqular oscillation thought the intermittency
abruptly, as the effective temperature is decreased. This means that the
intermittency takes place in the way of the period-doubling cascade.
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For L= 600 Ly, the intermittency takes place directly through the limit
cycle. This sequence thus has no subharmonic bifurcation.,

We have shown that the types of bifurcation from the limit cycle in
hydrodynamic models for less-massive supergiant stars are the intermittency
for luminous stars, and the subharmonic bifurcation for lesser luminous stars.
The conclusion is qualitatively in agreement with that of Kovacs and Buchler
(1988). The present results, however, suggest transition from regular to

irregular oscillations are caused by the intermittency for both the cases.



