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Chapter 1

Introduction

In [15], [18], a large deviation principle was proved for additive functionals of Brownian

motion corresponding to Kato measures. In [21], they used the Gärtner-Ellis theorem

to show a large deviation principle for additive functionals of symmetric α-stable

processes. For applying the Gärtner-Ellis theorem, they proved the differentiability of

logarithmic moment generating functions of the additive functional. A main objective

of this paper is to extend these results in [15], [18] and [21] to more general symmetric

Markov processes, especially in the case that the logarithmic moment generating

function is not differentiable.

In [22], he established a sufficient condition for uniform large deviation princi-

ple. In [20], he proved the uniform large deviation principle for symmetric Markov

processes under certain assumptions. Second object of this paper is to show the lo-

cally uniform lower bound of the large deviations for occupation times of symmetric

Markov processes with finite life time by using the ground state transform.

Let E be a locally compact separable metric space andm a positive Radon measure

on E with full topological support. Let M = (Px, Xt) be an irreducible, conservative,

m-symmetric Markov process on E with the doubly Feller property. Let (E ,D(E)) be
the Dirichlet form on L2(E;m) generated by M. We assume that (E ,D(E)) is regular
and transient. Let µ be a positive Radon measure in the Green-tight Kato class (in

notation µ ∈ K∞) and Aµ
t the positive continuous additive functional in the Revuz

correspondence to µ.

We define

γ(θ) := inf

{
E(u, u) : u ∈ D(E), θ

∫
E

u2dµ = 1

}
, θ ∈ R1. (1.1)

Let θ0 be a unique value such that γ(θ0) = 1. We define the functions C(θ) and C̃(θ)
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by

C(θ) = − inf

{
E(u, u)− θ

∫
E

u2dµ : u ∈ C0(E) ∩ D(E),
∫
E

u2dm = 1

}
,

and

C̃(θ) =

{
C(θ), θ ≥ θ0

0, θ < θ0.

Here C0(E) is the space of continuous functions on E with compact support.

Let I(λ) (resp. Ĩ(λ)) be the Legendre transform of C(θ) (resp. C̃(θ)):

I(λ) = sup
θ∈R1

{λθ − C(θ)}
(
resp. Ĩ(λ) = sup

θ∈R1

{λθ − C̃(θ)}
)
, λ ∈ R1.

Our main theorem is as follows:

Theorem 1.1. Suppose M satisfies (I), (DF), (C) and (LU) below. Let µ ∈ K∞.

Then

(i) For any open set G ⊂ R1,

lim inf
t→∞

1

t
logPx

(
Aµ

t

t
∈ G

)
≥ − inf

λ∈G
I(λ).

(ii) For any closed set K ⊂ R1,

lim sup
t→∞

1

t
logPx

(
Aµ

t

t
∈ K

)
≤ − inf

λ∈K
Ĩ(λ).

We can show that I equals Ĩ on [C ′(θ0+),∞), where C ′(θ0+) = limϵ↓0C
′(θ0 + ϵ).

As a corollary of Theorem 1.1, for A ⊂ [C ′(θ0+),∞) with infλ∈A◦ I(λ) = infλ∈Ā I(λ),

lim
t→∞

1

t
logPx

(
Aµ

t

t
∈ A

)
= − inf

λ∈A
I(λ).

In particular, if C = C̃, that is, C(θ) = 0 for θ ≤ θ0, then the large deviation principle

for Aµ
t /t holds.

In [18], [21], they showed that C equals C̃ for the Brownian motion or α-stable

process. In general, C does not equal C̃ when C(0) < 0([19, Theorem 3.1 (ii)]). Hence

Theorem 1.1 turn out to be an extension of the result in [21].

In the proof of the large deviation principle for Aµ
t , we also use the Gärtner-

Ellis Theorem. The function C̃(θ) is regarded as the logarithmic moment generating

function of Aµ
t . In the Gärtner-Ellis theorem, the differentiability of logarithmic

moment generating functions is a sufficient condition for obtaining the lower bound.
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Needless to say, it is impossible to show the differentiability for continuous additive

functionals of general symmetric Markov processes. Indeed, if θ0 > 0 and C(0) < 0,

then the right derivative of C̃ at θ = θ0 is positive because it is equal to C ′(θ0)

and C̃(θ) is convex, but the left derivative is 0. Therefore, the logarithmic moment

generating function C̃(θ) is not differentiable at θ0.

We prove first the lower bound for the absorbing symmetric Markov process MG

on a relatively compact open set G ⊂ E. For θ ∈ R1, let

CG(θ) = − inf

{
Eθµ,G(u, u) : u ∈ D(EG),

∫
G

u2dm = 1

}
,

where D(EG) = {u ∈ D(E) : u = 0 q.e. on E \ G}. Here Eθµ,G is the Schrödinger

form on G defined in (3.1). Combining the local ultra-contractivity with the analytic

perturbation theory, we can obtain that CG(θ) is an analytic function in θ. Applying

the Gärtner-Ellis theorem, we can show the lower bound for absorbing symmetric

Markov process MG. Then by approximating E by Gn, where {Gn} is an increasing

sequence of relatively compact open sets with
∪∞

n=1Gn = E, we obtain the lower

bound for the Markov process M on the whole space E.

On the other hand, to show the upper bound, we use two facts, Lp-independence

of spectral bounds of Feynman-Kac semigroups and gaugeability for Schrödinger type

operator. We show by the Lp-indepencence that for θ ≥ θ0 the logarithmic moment

generating function of Aµ exists and equals C̃, and by the gaugeability that for θ ≤ θ0

it equals 0. Hence, applying Gärtner-Ellis theorem, we have the upper bound. In

appendix 5.1 and 5.2, we precisely treat the Lp-independence and the gaugeability,

respectively.

From above results, we find different rate functions between for the upper bound

and for the lower bound and see that the two rate functions coincide on a certain

interval.

Finally, we treat the 1-dimensional Brownian motion (P k
x , Xt) with a positive

drift k as an example. At this time, (P k
x , Xt) satisfies the assumptions in Theorem

1.1 . We can choose the Dirac measure δ0 at 0 as a positive Radon measure in the

Green-tight Kato class. Then the local time lt of the Brownian motion (P k
x , Xt) at

the origin is the continuous additive functional in the Revuz correspondence to δ0.

Let L = 1
2

d2

dx2 + k d
dx

be the infinitesimal generator of (P k
x , Xt). Then Lδ0 := L + δ0

is a self-adjoint operator on L2(R, e2kxdx). Since C(θ) is equal to the bottom of

spectrum of Lδ0 , C(θ) is negative on θ < k. Therefore we can see that C(θ) ̸= C̃(θ)

on θ < k, and hence I(λ) ̸= Ĩ(λ) on 0 ≤ λ < k. In particular, for A ⊂ [k,∞) with
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infλ∈A◦ I(λ) = infλ∈Ā I(λ), we have

lim
t→∞

1

t
logP k

x

(
lt
t
∈ A

)
= − inf

λ∈A
I(λ).

In [20], the uniform large deviation principle for a symmetric Markov processes

is proved under certain assumptions. In Chapter 4, we study the conditions for

satisfying the uniform large deviation principle for a symmetric Markov processes. As

an application, we prove the locally uniform lower bound of the large deviations for

occupation times of symmetric Markov processes with finite life time. For the proof of

this fact, the ground state transform plays a crucial role. We further consider the large

deviation principle for symmetric Markov processes conditioned on non-absorption up

to t > 0.

This paper is organized as follow. After giving preliminaries in Chapter 2, we shall

prove a large deviation principle for the positive continuous additive functional Aµ
t

in the Revuz correspondence with µ in the Green-tight Kato class in Chapter 3. We

shall give an example for our theorem to the 1-dimensional Brownian motion with

a positive drift k in Section 3.2. As mentioned above, in Chapter 4, we study the

uniform large deviation principle for symmetric Markov processes with finite life time.

Finally, in Appendix 5.1, 5.2 and 5.3, we check the Lp-independence, the gaugeability

and a property of Legendre transform.
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Chapter 2

Preliminaries

2.1 The Gärtner-Ellis theorem

The large deviation principle characterizes the limiting behavior, as ϵ → 0, of a

family of probability measures {µϵ} on (E,B) in terms of a rate function. This

characterization is via asymptotic upper and lower exponential bounds on the values

that µϵ assigns to measurable subsets of E. Throughout E is a topological space

so that open and closed subsets of E are well-defined, and the simplest situation

is when elements of BE, the Borel σ-field on E, are of interest. To reduce possible

measurability questions, all probability spaces in this paper are assumed to have been

completed, and, with some abuse of notations, BE always denotes the thus completed

Borel σ-field.

Definition 2.1. A rate function I is a lower semicontinuous mapping I : E →
[0,∞](such that for all α ∈ [0,∞), the level set ΨI(α) := {x : I(x) ≤ α} is a closed

subset of E). A good rate function is a rate function for which all the level sets ΨI(α)

are compact subsets of E. The effective domain of I, denoted DI , is the set of points

in E of finite rate, namely, DI := {x : I(x) < ∞}. When no confusion occurs, we

refer to DI as the domain of I.

In our case, since E is a metric space, the lower semicontinuity property may be

checked on sequences, i.e., I is lower semicontinuous if and only if lim infxn→x I(xn) ≥
I(x) for all x ∈ E. A consequence of a rate function being good is that its infimum

is achieved over closed sets.

For any set Γ, Γ denotes the closure of Γ, Γo the interior of Γ, and Γc the comple-

ment of Γ. The infimum of a function over an empty set is interpreted as ∞.
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Definition 2.2. {µϵ} satisfies the large deviation principle with a rate function

I if, for all Γ ∈ B,

− inf
x∈Γo

I(x) ≤ lim inf
ϵ→0

ϵ log µϵ(Γ) ≤ lim sup
ϵ→0

ϵ log µϵ(Γ) ≤ − inf
x∈Γ

I(x). (2.1)

The right- and left-hand sides of (2.1) are referred to as the upper and lower bounds,

respectively.

When BX ⊂ B, the large deviation principle is equivalent to the following bounds:

(i) (Upper bound) For any closed set F ⊆ E,

lim sup
ϵ→0

ϵ log µϵ(F ) ≤ − inf
x∈F

I(x). (2.2)

(ii) (Lower bound) For any open set G ⊆ E,

lim inf
ϵ→0

ϵ log µϵ(G) ≥ − inf
x∈G

I(x). (2.3)

Consider a sequence of random vectors Zn ∈ Rd, where Zn possesses the law µn

and logarithmic moment generating function

Λn(λ) := logE
(
e⟨λ,Zn⟩

)
. (2.4)

The existence of a limit of properly scaled logarithmic moment generating func-

tions indicates that µn may satisfy the large deviation principle. Specifically, the

following assumption is imposed throughout this section.

Assumption 2.3. For each λ ∈ Rd, the logarithmic moment generating function,

defined as the limit

Λ(λ) := lim
n→∞

1

n
Λn(nλ)

exists as an extended real number. Further, the origin belongs to the interior of

DΛ := {λ ∈ Rd : Λ(λ) <∞}.

Let Λ∗(·) be the Fenchel-Legendre transform of Λ(·), that is,

Λ∗(·) := sup
λ∈Rd

{⟨λ, x⟩ − Λ(λ)},

with DΛ∗ = {x ∈ Rd : Λ∗(x) <∞}. It is our goal to state conditions under which the

sequence µn satisfies the large deviation principle with the rate function Λ∗.
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Definition 2.4. y ∈ Rd is an exposed point of Λ∗ if for some λ ∈ Rd and all

x ̸= y,

⟨λ, y⟩ − Λ∗(y) > ⟨λ, x⟩ − Λ∗(x)

this λ is called an exposing hyperplane.

Definition 2.5. A convex function Λ : Rd → (−∞,∞] is essentially smooth if:

(i) Do
Λ is non-empty.

(ii) Λ(·) is differentiable throughout Do
Λ.

(iii) Λ(·) is steep, namely, limn→∞ |∇Λ(λn)| = ∞ whenever {λ} is a sequence in Do
Λ

converging to a boundary point of Do
Λ.

Theorem 2.6 (The Gärtner-Ellis Theorem). Assumption 2.3 hold.

(i) For any closed set F ,

lim sup
n→∞

1

n
log µn(F ) ≤ − inf

x∈F
Λ∗(x). (2.5)

(ii) For any open set G,

lim inf
n→∞

1

n
log µn(G) ≥ − inf

x∈G∩F
Λ∗(x), (2.6)

where F is the set of exposed points of Λ∗ whose exposing hyperplane belongs to

Do
Λ.

(iii) If Λ is an essentially smooth, lower semicontinuous functions, then the large

deviation holds with the good rate function Λ∗(·).

2.2 Symmetric Markov processes and Dirichlet forms

Let E be a locally compact separable metric space andm a positive Radon measure on

E with full topological support. Let (E ,D(E)) be an m-symmetric regular irreducible

Dirichlet form on L2(E;m). It is known that a regular Dirichlet form E has the

Beurling-Deny decomposition ([10, Theorem 3.2.1]) : for u ∈ D(E)

E(u, u) = 1

2

∫
E

dµc
⟨u⟩ +

∫∫
E×E\diag

(u(x)− u(y))2J(dxdy) +

∫
E

u2dk. (2.7)

Here µc
⟨u⟩, J and k are the energy measure of the strongly local part, the jumping

measure and the killing measure with respect to (E ,D(E)), respectively.
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We assume that (E ,D(E)) is transient, that is, there exists a strictly positive,

bounded function g ∈ L1(E;m) such that for u ∈ D(E)∫
E

|u|gdm ≤
√
E(u, u)

(cf. [10, p.40]).

We denote by u ∈ Dloc(E) if for any relatively compact open set D there exists

a function v ∈ D(E) such that u = v m-a.e. on D. We denote by De(E) the family

of m-measurable functions u on E such that |u| < ∞ m-a.e. and there exists an

E-Cauchy sequence {un} of functions in D(E) such that limn→∞ un = u m-a.e. We

call De(E) the extended Dirichlet space of (E ,D(E)).
Let M = (Ω,F , {Ft}t≥0, {Px}x∈X , {Xt}t≥0, ζ) be the m-symmetric Hunt process

generated by (E ,D(E)), where {Ft}t≥0 is the augmented filtration and ζ is the lifetime

of M. Denote by {pt}t≥0 and {Gα}α≥0 the semigroup and resolvent of M:

ptf(x) = Ex(f(Xt)), Gαf(x) =

∫ ∞

0

e−αtptf(x)dt.

Suppose that H is semibounded self-adjoint operator on L2(D) with D being a

domain in Rd and that eHt is an irreducible positivity-preserving semigroup with

integral kernel a(t, x, y). We assume that the top of the spectrum λ1 of H is an

eigenvalue. In this case, λ1 has multiplicity one and the corresponding eigenfunction

ϕ0, normalized by ∥ϕ0∥2 = 1, is positive almost everywhere on D. ϕ0 is called the

ground state of H.

We now define the unitary operator U from L2(D,ϕ2
0(x)dx) to L

2(D) by Uf = ϕ0f

and define H̃ on L2(D,ϕ2
1(x)dx) by

H̃ = U−1(H − λ1)U.

Then eH̃t is an irreducible symmetric Markov semigroup on L2(D,ϕ2
0(x)dx) whose

integral kernel with respect to the measure ϕ2
0(x)dx is given by

e−λta(t, x, y)

ϕ0(x)ϕ0(y)
.

Definition 2.7. H is said to be ultracontrctive if eHt is a bounded operator from

L2(D) to L∞(D) for all t > 0. H is said to be intrinsically ultrative if H̃ is ultracon-

tractive; that is eH̃t is a bounded operator from L2(D,ϕ2
0(x)dx) to L∞(D,ϕ2

0(x)dx)

for all t > 0.

We assume that M satisfies the next conditions:
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Irreducibility (I). If a Borel set A is pt-invariant, i.e., pt(1Af)(x) = 1Aptf(x) m-

a.e. for any f ∈ L2(E;m) ∩ Bb(E) and t > 0, then A satisfies either m(A) = 0

or m(E \ A) = 0. Here Bb(E) is the space of bounded Borel functions on E.

Conservativeness (C). Px(ζ = ∞) = 1 for each x ∈ E.

Doubly Feller Property (DF). For each t > 0, pt(C∞(E)) ⊂ C∞(E), limt→0 ∥ptf−
f∥∞ = 0 for any f ∈ C∞(E) and pt(Bb(E)) ⊂ Cb(E), where C∞(E) (resp.

Cb(E)) is the space of continuous functions on E vanishing at infinity (resp.

the space of bounded continuous functions on E).

Local Ultra-contractivity (LU). Let {pGt } be the semigroup defined by pGt f(x) =

Ex(f(Xt); t < τG) for any f ∈ Bb(E), where τG is the first exit time from

G. Then for any relatively compact open set G, the semigroup {pGt } is ultra-

contractive, ∥pGt f∥∞ ≤ C(t)∥f∥1, where C(t) is the operator norm ∥pG∥1,∞ of

pGt from L1(G;m) to L∞(G;m) .

We remark that (DF) implies

Absolute Continuity Condition (AC). The transition probability of M is abso-

lutely continuous with respect to m, p(t, x, dy) = p(t, x, y)m(dy) for each t > 0

and x ∈ E.

Under (AC), there exists a non-negative, jointly measurable α-resolvent kernel

Gα(x, y) on E × E:

Gαf(x) =

∫
E

Gα(x, y)f(y)m(dy), x ∈ E, f ∈ Bb(E).

Moreover, Gα(x, y) is α-excessive in x and in y ([10, Lemma 4.2.4]). We simply write

G(x, y) for G0(x, y). For a measure µ, we define the α-potential of µ by

Gαµ(x) =

∫
E

Gα(x, y)µ(dy).

We define the (1-)capacity Cap associated with the Dirichlet form (E ,D(E)) as

follows: for an open set O ⊂ E,

Cap(O) = inf{E1(u, u) : u ∈ D(E), u ≥ 1, m-a.e. on O},

where E1(u, u) = E(u, u) + (u, u)m, for a Borel set A ⊂ E,

Cap(A) = inf{Cap(O) : O is open, O ⊃ A}.
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A statement depending on x ∈ E is said to hold q.e. on E if there exists a set N ⊂ E

of zero capacity such that the statement is true for every x ∈ E \ N . The notation

“q.e.” is an abbreviation of “quasi-everywhere”. A real valued function u defined q.e.

on E is said to be quasi-continuous if for any ϵ > 0 there exists an open set G ⊂ E

such that Cap(G) < ϵ and u|E\G is finite and continuous. Here, u|E\G denotes the

restriction of u to E \ G. It is known that each function u in De(E) admits a quasi-

continuous version ũ, that is, u = ũ m-a.e.([10, Theorem 2.1.7]). In the sequel, we

always assume that every function u ∈ De(E) is represented by its quasi-continuous

version.

Let S00 be the set of positive Borel measures µ such that µ(E) < ∞ and G1µ is

bounded. We call a Borel measure µ on E smooth if there exists a sequence {En} of

Borel sets increasing to E such that 1En · µ ∈ S00 for each n and

Px( lim
n→∞

σE\En ≥ ζ) = 1, ∀x ∈ E.

Here σE\En is the hitting time of E \ En by M, σE\En = inf{t > 0 : Xt ∈ E \ En}.
We denote by S the set of positive smooth Borel measures. In [10], a measure in S

is called a smooth measure in the strict sense. Here we omit the adjective phrase “in

the strict sense” .

A stochastic process {At}t≥0 is said to be an additive functional (AF in abbrevi-

ation) if the following conditions hold:

(i) At(·) is Ft-measurable for all t ≥ 0.

(ii) There exists a set Λ ∈ F∞ = σ (∪t≥0Ft) such that Px(Λ) = 1, for all x ∈ E,

θtΛ ⊂ Λ for all t > 0, and for each ω ∈ Λ, A·(ω) is right continuous and has the left

limit on [0, ζ(ω)), A0(ω) = 0, |At(ω)| < ∞ for t < ζ(ω), At(ω) = Aζ(ω)(ω) for t ≥ ζ,

and At+s(ω) = At(ω) + As(θtω) for s, t ≥ 0.

If an AF {At}t≥0 is positive and continuous with respect to t for each ω ∈ Λ, the AF

is called a positive continuous additive functional (PCAF in abbreviation). The set of

all PCAF’s is denoted by A+
c . The family S and A+

c are in one-to-one correspondence

(Revuz correspondence) as follows: for each smooth measure µ, there exists a unique

PCAF {At}t≥0such that for any f ∈ B+(E) and γ-excessive function h,

lim
t→0

1

t
Eh·m

(∫ t

0

f(Xs)dAs

)
=

∫
E

f(x)h(x)µ(dx) (2.8)

([10, Theorem 5.1.7]). Here, Eh·m( · ) =
∫
X
Ex( · )h(x)m(dx). We denote by Aµ

t the

PCAF in the Revuz correspondence with µ.

We define some classes of smooth measures.

Definition 2.8. Suppose that µ ∈ S is a positive Radon measure.
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(1) A measure µ is said to be in the Kato class of M (K in abbreviation) if

lim
α→∞

∥Gαµ∥∞ = 0.

A measure µ is said to be in the local Kato class of M (Kloc in abbreviation)

if 1K · µ ∈ K for any relatively compact open set K. Here 1K is the indicator

function of K.

(2) A measure µ is said to be in the class K∞ if µ ∈ K and for any ϵ > 0, there exists

a compact set K = K(ϵ)

sup
x∈E

∫
Kc

G(x, y)µ(dy) < ϵ.

A measure µ in K∞ is called Green-tight.

We note that every measure treated in this paper is supposed to be Radon. Thus

we see from [1, Theorem 3.9] that µ ∈ K if and only if

lim
t↓0

sup
x∈E

Ex(A
µ
t ) = lim

t↓0
sup
x∈E

∫ t

0

∫
E

p(s, x, y)µ(dy)ds = 0. (2.9)

Chen [2] defined the Green-tight class in slightly different way, however two definitions

are equivalent under the strong Feller property ([13, Lemma 4.1]). We see from [17]

that for α ≥ 0 and µ ∈ K∫
E

u2dµ ≤ ∥Gαµ∥∞ · Eα(u, u) for any u ∈ D(E). (2.10)

Let µ ∈ K. We define the Schrödinger form by Eµ(u, u) = E(u, u)−
∫
E

u2dµ

D(Eµ) = D(E).
(2.11)

We denote by Lµ = L + µ the self-adjoint operator associated with the closed sym-

metric form (Eµ,D(Eµ)), that is, (−Lµu, v)m = Eµ(u, v) for any u, v ∈ D(E).
We define the Feynman-Kac semigroup {pµt }t≥0 by

pµt f(x) = Ex(exp(A
µ
t )f(Xt)), x ∈ E, f ∈ Bb(E).

The next two inequalities are versions of the inequality (2.10), which plays a crucial

role in chapters below.

Theorem 2.9. ([17]) Let µ ∈ K. For any ϵ > 0 there exists M(ϵ) > 0 such that

for any u ∈ D(E) ∫
E

u2dµ ≤ ϵE(u, u) +M(ϵ)

∫
E

u2dm.
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Theorem 2.9 follows from the next theorem and the definition of Kato measures.

Theorem 2.10. ([17]) Let µ ∈ K∞. Then for any u ∈ D(E)∫
E

u2dµ ≤ ∥Gµ∥∞ · E(u, u).

Proof of Theorem 2.9. The inequality in Theorem 2.9 follows from Theorem 2.10.

Indeed, for α ≥ 0 and µ ∈ K,∫
E

u2dµ ≤ ∥Gαµ∥∞ · Eα(u, u)

= ∥Gαµ∥∞ · E(u, u) + α∥Gαµ∥∞ · (u, u).

From the definition of Kato measures, we can choose ϵ > 0 so that ∥Gαµ∥∞ < ϵ and

put M(ϵ) = α∥Gαµ∥∞.
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Chapter 3

Large deviation principle (LDP)

3.1 LDP for additive functionals

Let G ⊂ E be a relatively compact open set. We set

D(EG) = {u ∈ D(E) : u = 0 q.e. on E \G}.

Here EG is the part of the Dirichlet form E on G. D(EG) is a closed subspace of the

Hilbert space (D(E), E1). It is known that (EG,D(EG)) is a regular Dirichlet form

on L2(G;m). Let MG be the associated Markov process of (EG,D(EG)), namely, the

part process of M on G ([10, A.2]). Indeed, MG is an absorbing Markov process on

G with an m-symmetric transition function pGt on (G,B(G)) defined by pGt (x,B) =

Px(Xt ∈ B; t < τG), where τG is the first exit time of G.

For θ ∈ R1 define

Eθµ,G(u, u) = EG(u, u)− θ

∫
E

u2dµ, u ∈ D(EG) (3.1)

and

CG(θ) = − inf

{
Eθµ,G(u, u) : u ∈ D(EG),

∫
G

u2dm = 1

}
. (3.2)

Let IG be the Legendre transform of CG:

IG(λ) = sup
θ∈R1

{
λθ − CG(θ)

}
, λ ∈ R1.

Lemma 3.1. For u1, u2 ∈ D(E) and 0 ≤ α ≤ 1, u :=
√
αu21 + (1− α)u22 ∈ D(E)

and

E(u, u) ≤ αE(u1, u1) + (1− α)E(u2, u2).

Proof. First, we consider the energy measure of the strongly local part of (2.7).
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It follows from Theorem 5.6.2 in [10] that for any Φ ∈ C1(Rd) with Φ(0) = 0 and

v1, . . . , vd ∈ D(E)b := D(E)∩L∞(E;m), the composite function Φ(v) = Φ(v1, . . . , vd)

is in D(E)b and

dµc
⟨Φ(v),w⟩ =

d∑
i=1

Φxi
(v)dµc

⟨vi,w⟩, for any ω ∈ D(E)b,

where Φxi
is the partial derivative of Φ with respect to xi. We call the formula above

the derivation property of µc
<u,v>.

By applying the formula above to x = (x1, x2) and Φ(x) =
√
αx21 + (1− α)x22, we

have for u = Φ(u1, u2), u1, u2 ∈ D(E)b

dµc
⟨u⟩ =

α2u21
αu21 + (1− α)u22

dµc
⟨u1⟩ + 2

α(1− α)u1u2
αu21 + (1− α)u22

dµc
⟨u1,u2⟩ +

(1− α)2u22
αu21 + (1− α)u22

dµc
⟨u2⟩.

Since ∫
E

α(1− α)u1u2
αu21 + (1− α)u22

dµc
⟨u1,u2⟩

≤
(∫

E

α(1− α)u22
αu21 + (1− α)u22

dµc
⟨u1⟩

)1/2 (∫
E

α(1− α)u21
αu21 + (1− α)u22

dµc
⟨u2⟩

)1/2

≤
∫
E

α(1− α)u22
αu21 + (1− α)u22

dµc
⟨u1⟩ +

∫
E

α(1− α)u21
αu21 + (1− α)u22

dµc
⟨u2⟩,

by Lemma 5.6.1 in [10], we have∫
E

dµc
⟨u⟩ ≤

∫
E

α(αu21 + (1− α)u22)

αu21 + (1− α)u22
dµc

⟨u1⟩ +

∫
E

(1− α)(αu21 + (1− α)u22)

αu21 + (1− α)u22
dµc

⟨u2⟩

≤ α

∫
E

dµc
⟨u1⟩ + (1− α)

∫
E

dµc
⟨u2⟩.

Moreover, noting

u(x)u(y) =
√
αu21(x) + (1− α)u22(x)

√
αu21(y) + (1− α)u22(y)

≥αu1(x)u1(y) + (1− α)u2(x)u2(y),

we have

(u(x)− u(y))2 ≤ α(u1(x)− u1(y))
2 + (1− α)(u2(x)− u2(y))

2

and thus E j(u, u) ≤ αE j(u1, u1) + (1 − α)E j(u2, u2). The proof of this lemma is

completed.
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Define

J̃G(λ) := inf

{
EG(u, u) : u ∈ D(EG),

∫
G

u2dµ = λ,

∫
G

u2dm = 1

}
, λ ∈ R1

and

JG(λ) = lim
ϵ→0

inf
|λ′−λ|<ϵ

J̃G(λ′).

JG is the lower semi-continuous modification of J̃G. From Lemma 3.1, we have

Lemma 3.2. The function J̃G is convex: for 0 ≤ α ≤ 1 and λ1, λ2 ∈ R1

J̃G(αλ1 + (1− α)λ2) ≤ αJ̃G(λ1) + (1− α)J̃G(λ2).

Proof. For any u1, u2 ∈ D(EG) such that∫
G

u2i dµ = λi,

∫
G

u2i dm = 1, i = 1, 2,

let u :=
√
αu21 + (1− α)u22, 0 ≤ α ≤ 1. Then u belongs to D(EG),∫

G

u2dµ = αλ1 + (1− α)λ2 and

∫
G

u2dm = 1.

We see from the definition of J̃G(λ) and Lemma 3.1 that for any u1, u2 ∈ D(EG)

satisfying above conditions,

J̃G(αλ1 + (1− α)λ2) ≤ E(u, u)
≤ αE(u1, u1) + (1− α)E(u2, u2).

Therefore, we have the lemma.

Lemma 3.3. The function JG is convex.

Proof. Let λ1, λ2 ∈ R1. For λ′ and λ′′ with |λ′ − λ1| < ϵ and |λ′′ − λ2| < ϵ,

inf
|λ−(αλ1+(1−α)λ2)|<ϵ

J̃G(λ) ≤ J̃G(αλ′ + (1− α)λ′′)

≤ αJ̃G(λ′) + (1− α)J̃G(λ′′)

by Lemma 3.2, and thus

inf
|λ−(αλ1+(1−α)λ2)|<ϵ

J̃G(λ) ≤ α inf
|λ′−λ1|<ϵ

J̃G(λ′) + (1− α) inf
|λ′′−λ2|<ϵ

J̃G(λ′′).

The proof is completed by letting ϵ→ 0.
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Lemma 3.4. The function CG is the Legendre conjugate of JG,

CG(θ) = sup
λ∈R1

{θλ− JG(λ)}.

Proof. Let

A =

{
u ∈ D(EG) :

∫
G

u2dm = 1

}
Aλ =

{
u ∈ D(EG) :

∫
G

u2dµ = λ,

∫
G

u2dm = 1

}
, λ ∈ R1.

For any ϵ > 0, set

Aλ,ϵ =

{
u ∈ D(EG) : λ− ϵ <

∫
G

u2dµ < λ+ ϵ,

∫
G

u2dm = 1

}
.

Then

inf
u∈A

Eθµ,G(u, u) ≤ inf
u∈Aλ,ϵ

Eθµ,G(u, u) ≤ lim
ϵ→0

inf
u∈Aλ,ϵ

Eθµ,G(u, u) ≤ inf
u∈Aλ

Eθµ,G(u, u)

and thus

inf
u∈A

Eθµ,G(u, u) ≤ inf
λ
lim
ϵ→0

inf
u∈Aλ,ϵ

Eθµ,G(u, u) ≤ inf
λ

inf
u∈Aλ

Eθµ,G(u, u) = inf
u∈A

Eθµ,G(u, u).

Hence we have

CG(θ) = − inf
λ
lim
ϵ→0

inf
u∈Aλ,ϵ

Eθµ,G(u, u)

= − inf
λ
lim
ϵ→0

inf
|λ′−λ|<ϵ

(
inf

u∈Aλ′
Eθµ,G(u, u)

)
= − inf

λ
lim
ϵ→0

inf
|λ′−λ|<ϵ

(
J̃G(λ′)− θλ′

)
.

Noting

lim
ϵ→0

inf
|λ′−λ|<ϵ

(
J̃G(λ′)− θλ′

)
= JG(λ)− θλ,

we have

CG(θ) = − inf
λ
{JG(λ)− θλ} = sup

λ
{θλ− JG(λ)}.

As a result, we see that

Lemma 3.5.

IG = JG.
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Proof. The function JG is lower semi-continuous, convex and not identically infinite.

Hence, it follows from Lemma 3.4 and Theorem 5.15 in Appendix 5.3 that JG =

IG.

We use the notations J (resp. J̃) for JG (resp. J̃G) when G = E.

Lemma 3.6. Let {Gn} be an increasing sequence of relatively compact open sets

with
∪∞

n=1Gn = E. Then for an open set O ⊂ R1

inf
λ∈O

J(λ) = inf
n

inf
λ∈O

JGn(λ).

Proof. By the regularity of the Dirichlet form (E ,D(E)),

inf
λ∈O

J̃(λ) = inf

{
E(u, u) : u ∈ D(E),

∫
E

u2dµ ∈ O,

∫
E

u2dm = 1

}
= inf

{
E(u, u) : u ∈ D(E) ∩ C0(X),

∫
E

u2dµ ∈ O,

∫
E

u2dm = 1

}
= inf

n
inf

{
E(u, u) : u ∈ D(E) ∩ C0(Gn),

∫
E

u2dµ ∈ O,

∫
E

u2dm = 1

}
= inf

n
inf
λ∈O

J̃Gn(λ).

Noting that infλ∈O J̃
G(λ) = infλ∈O J

G(λ) for any open set O ⊂ R1, we have the

lemma.

Let µ ∈ Kloc. Let G be a relatively compact open set of E. Denote by {GG
α}α≥0

the resolvent of the part process MG of M on G. Then the part process MG is tight

in the sense that for any ϵ > 0, there exists a compact set K ⊂ G such that

sup
x∈G

GG
1 1Kc(x) ≤ ϵ.

Here 1Kc is the indicator function of G \K. In fact, note that for x ∈ G,

GG
1 1Kc(x) =

∫ ∞

0

e−tpGt 1Kc(x)dt =

∫ δ

0

e−tpGt 1Kc(x)dt+

∫ ∞

δ

e−tpGt 1Kc(x)dt.

We see from (LU) and inequality (4.20) that the right hand side is dominated by∫ δ

0

e−tdt+

∫ ∞

δ

e−t∥pGt ∥1,∞m(G \K)dt ≤1− e−δ +

∫ ∞

δ

e−tC(δ)m(G \K)dt

≤1− e−δ + e−δC(δ)m(G \K).

For any ϵ > 0, we choose δ > log(1 − ϵ
2
) and a compact set K ⊂ G satisfying

m(G \K) < eδϵ
2c(δ)

, and obtain the tightness of MG.
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Let {pµ,Gt }t>0 be the semigroup defined by

pµ,Gt f(x) = Ex

(
eA

µ
t f(Xt); t < τG

)
, for f ∈ Bb(G).

Define the Lp-spectral bounds of {pµ,Gt }t>0 by

λGp (µ) = − lim
t→∞

1

t
log ∥pµ,Gt ∥p,p, 1 ≤ p ≤ ∞,

where ∥pµ,Gt ∥p,p is the operator norm of pµ,Gt from Lp(G;m) to Lp(G;m). We omit

‘G’ from λGp (µ) when G = E.

The Lp-independence of the spectral bounds of {pµ,Gt }t>0 means that

λGp (µ) = λG2 (µ), 1 ≤ p ≤ ∞.

As mentioned above, the Markov process MG is tight, so λGp (θµ) is independent

of p by [2, Theorem 4.1]. We easily see the following inequality

−λG2 (θµ) ≤ lim inf
t→∞

1

t
logEx

(
eθA

µ
t ; t < τG

)
≤ lim sup

t→∞

1

t
log sup

x∈G
Ex

(
eθA

µ
t ; t < τG

)
= lim sup

t→∞

1

t
log sup

x∈G
pθµ,Gt 1(x)

= lim sup
t→∞

1

t
log ∥pθµ,Gt ∥∞

= −λG∞(θµ).

By combining the Lp-independence of the spectral bounds of {pθµ,Gt }t>0 and the vari-

ational formula for λG2 (θµ),

lim
t→∞

1

t
logEx

(
eθA

µ
t ; t < τG

)
= CG(θ). (3.3)

By using (LU), the transition function pθµ,Gt (x, y) of pθµ,Gt is bounded for each t > 0

and x, y ∈ E, and thus pθµ,Gt is a Hilbert-Schmidt integral operator, in particular, a

compact operator. Hence, we see that CG(θ) is an analytic function in θ because it is

the principal eigenvalue of Lµ. Then, combining (3.3) with the Gärtner-Ellis theorem

([6, Section 2.3]), we obtain the next lower estimate: For any open set O ⊂ R1,

lim inf
t→∞

1

t
logPx

(
Aµ

t

t
∈ O; t < τG

)
≥ − inf

λ∈O
IG(λ), (3.4)

where IG is the Legendre transform of CG.

We use the notations I for IG when G = E.
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Theorem 3.7. Let µ ∈ Kloc. Then, for any open set O ⊂ R1

lim inf
t→∞

1

t
logPx

(
Aµ

t

t
∈ O

)
≥ − inf

λ∈O
I(λ).

Proof. Let {Gn} be a sequence of relatively compact open sets such that Gn ↑ E and

simply write In for IGn . Then we have from (3.4) that

lim inf
t→∞

1

t
logPx

(
Aµ

t

t
∈ O

)
≥ sup

n
lim inf
t→∞

1

t
logPx

(
Aµ

t

t
∈ O; t < τGn

)
≥− inf

n
inf
λ∈O

In(λ).

Combining Lemma 3.5 and Lemma 3.6, we have

inf
n

inf
λ∈O

In(λ) = inf
λ∈O

I(λ).

Hence we obtain the theorem.

Define

γ(θ) := inf

{
E(u, u) : u ∈ D(E), θ

∫
E

u2dµ = 1

}
, θ ∈ R1. (3.5)

Lemma 3.8.

γ(θ) ≤ 1 ⇐⇒ inf

{
Eθµ(u, u) :

∫
E

u2dm = 1

}
≤ 0. (3.6)

Proof. We can prove this lemma by the same argument as in [21, Lemma 2.2]. Assume

that γ(θ) ≤ 1. Then there exists a φ0 ∈ C0(X) with θ
∫
E
φ2
0dµ = 1 such that

E(φ0, φ0) ≤ 1. Hence we see

E(φ0, φ0) ≤ θ

∫
E

φ2
0dµ.

Letting

u0 =
φ0√∫
E
φ2
0dm

,

we have

Eθµ(u0, u0) ≤ 0.

On the other hand, we assume that inf
{
Eθµ(u, u) :

∫
E
u2dm = 1

}
≤ 0. Then there

exists a ψ0 ∈ C0(E) with
∫
E
ψ2
0dm = 1 such that Eθµ(ψ0, ψ0) ≤ 0. Letting

u0 =
ψ0√

θ
∫
E
ψ0

2dµ
,
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we have

E(u0, u0) ≤ 1.

Let θ0 > 0 be a unique value such that γ(θ0) = 1. Suppose that µ ∈ K∞.

Under the assumptions (C) and (DF), if λ2(µ) ≤ 0, λp(µ) is independent of p by [19,

Theorem 3.1]. By combining Lemma 3.8, we can derive the following in a similar way

of (3.3): for θ ≥ θ0

C(θ) = lim
t→∞

1

t
logEx

(
eθA

µ
t

)
.

On the other hand, by Lemma 3.8 and [2, Theorem 5.1] on the Schrödinger type

operator, we see that γ(θ) > 1 is equivalent to

sup
x∈E

Ex

(
eθA

µ
∞
)
<∞.

Since Aµ
t is positive, for θ < θ0

lim
t→∞

1

t
logEx

(
eθA

µ
t

)
≤ lim

t→∞

1

t
logEx

(
eθA

µ
∞
)
= 0.

Hence we have

Theorem 3.9. Let µ ∈ K∞. Then

lim
t→∞

1

t
logEx

(
eθA

µ
t

)
= C̃(θ),

where C̃(θ) is the function defined by

C̃(θ) =

{
C(θ), θ ≥ θ0,

0, θ < θ0.

Let Ĩ be the Legendre transform of C̃(θ),

Ĩ(λ) = sup
θ∈R1

{λθ − C̃(θ)}.

We see from Theorem 3.9 that C̃(θ) is the logarithmic moment generating function of

Aµ
t . Then, combining Theorem 3.9 with the Gärtner-Ellis theorem ([6, Section 2.3]),

we have the upper bound:

Theorem 3.10. Let µ ∈ K∞. Then for any closed set K ⊂ R1,

lim sup
t→∞

1

t
logPx

(
Aµ

t

t
∈ K

)
≤ − inf

λ∈K
Ĩ(λ).
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The Legendre transform of C(θ) and C̃(θ) are expressed as follows:

I(λ) = sup
θ∈R1

{λθ − C(θ)}

=


λ(C ′)−1(λ)− C((C ′)−1(λ)), λ ≥ C ′(0)

C(0), 0 ≤ λ < C ′(0)

∞, λ < 0.

(3.7)

Ĩ(λ) = sup
θ∈R1

{λθ − C̃(θ)}

=


λ(C ′)−1(λ)− C((C ′)−1(λ)), λ ≥ C ′(θ0+)

λθ0, 0 ≤ λ < C ′(θ0+)

∞, λ < 0.

(3.8)

Hence, I equals Ĩ on [C ′(θ0+),∞).

3.2 An example – Brownian motion with constant

drift

We give a simple example that our main theorem can be applied.

Example 3.11. Let us consider the 1-dimensional Brownian motion (P k
x , Xt) with

a positive drift k. Then the process (P k
x , Xt) is transient and its infinitesimal generator

L is given by 1
2

d2

dx2 + k d
dx
. Let (E ,D(E)) be the Dirichlet form on L2(R1; e2kxdx)

generated by (P k
x , Xt), that is, E(u, v) = 1

2

∫
R1

du

dx

dv

dx
e2kxdx, u, v ∈ D(E)

D(E) = the closure of C∞
0 (R1) with respect to E1/2

1 .

By using integration by parts,

E(u, v) = −1

2

∫
R

(
d2u

dx2
+ 2k

du

dx

)
ve2kxdx

= (−Lu, v)e2kxdx .

Then (P k
x , Xt) satisfies the assumptions (I), (DF), (C) and (LU).

Let µ be the Dirac measure at the origin. i.e., µ = δ0. Then µ ∈ K∞. Let lt be

the local time at 0. Then lt is the continuous additive functional corresponding to µ.
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We define the functions C(θ) and C̃(θ) by

C(θ) = − inf

{
E(u, u)− θu2(0) : u ∈ C∞

0 (R1),

∫
R1

u2e2kxdx = 1

}
,

C̃(θ) =

{
C(θ), θ ≥ θ0

0, θ < θ0.

The function C(θ) is equal to the bottom of spectrum of the self-adjoint operator

Lδ0 := L + δ0. We first consider C(θ) for θ ≥ 0. For u ∈ C∞
0 (R1), the boundary

condition

u′(0+)− u′(0−) = −2θu(0)

must be satisfied. Since u ∈ L2(R1, e2kxdx), the eigenfunction corresponding to an

eigenvalue λ forms

u(x) =

{
Ce−(k+

√
k2−2λ)x, x ≥ 0

Ce−(k−
√
k2−2λ)x, x < 0,

where C is a constant. From the boundary condition, we have

√
k2 − 2λ = θ.

Hence,

λ =
k2 − θ2

2
.

Since C(θ) = C(0) for θ < 0, we have

C(θ) =


θ2

2
−
k2

2
, θ ≥ 0

−
k2

2
, θ < 0.

Moreover, since θ0 = k, we have

C̃(θ) =


θ2

2
−
k2

2
, θ ≥ k

0, θ < k.

Let I(λ) (resp. Ĩ(λ)) be the Legendre transform of C(θ) (resp. C̃(θ)):

I(λ) = sup
θ∈R1

{λθ − C(θ)}

=


λ2

2
+
k2

2
, λ ≥ 0

∞, λ < 0.
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Ĩ(λ) = sup
θ∈R1

{λθ − C̃(θ)}

=


λ2

2
+
k2

2
, λ ≥ k

λk, 0 ≤ λ < k

∞, λ < 0.

Since C ′(0) are equal to 0, if λ ≥ 0, then λθ − C(θ) have a maximum value at θ = λ

for all θ ∈ Rd. Since C ′(k) = k and C̃(θ) = 0 for θ < k, for all θ ∈ Rd, λθ − C̃(θ)

have a maximum value at θ = k if 0 ≤ λ < k, and have a maximum value at θ = λ if

λ ≥ k. Hence, I equals Ĩ on [k,∞).

When x = 0, we see by direct calculation that lt satisfies the large deviation prin-

ciple with rate function Ĩ. The author is told by professor Hariya. This example says

that the large deviation principle holds with the Legendre transform of logarithmic

moment generating function (LMGF), even if LMGF does not satisfy the sufficient

condition in the Gartner-Ellis theorem.

Finally, for A ⊂ [k,∞) with infλ∈A◦ I(λ) = infλ∈Ā I(λ),

lim
t→∞

1

t
logP k

x

(
lt
t
∈ A

)
= − inf

λ∈A
I(λ).

We can think that the Brownian motion on hyperbolic space is in the same situ-

ation as the diffusion process treated in this example.
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Chapter 4

LDP for occupation distributions

4.1 Uniform LDP

We consider the uniform Large deviation principle with respect to starting point

x ∈ E. The sufficient condition for Uniform LDP is obtained in Wu [22]. He called

this property uniform hyper-exponential recurrence. In this section we will prove

that the conservative symmetric Markov processes with tightness property satisfy the

property.

Tightness Property (T). For any ϵ > 0, there exists a compact set K such that

supx∈E R11Kc(x) ≤ ϵ.

Definition 4.1. A positive smooth measure µ is said to be in the class K∞ if for

any ϵ > 0 there exist a compact subset K and a positive constant δ > 0 such that for

all measurable sets B ⊂ K with µ(B) < δ,

sup
x∈E

∫
Kc∪B

R1(x, y)µ(dy) ≤ ϵ.

Under the condition for M being transient, the class K∞ is usually defined by

using the Green kernel, i.e., the 0-resolvent density, and a measure µ in the class is

said to be Green-tight. Here we use the 1-resolvent density to deal with recurrent

processes. The next lemma is proven by Chen ([2, Theorem 4.2.]). We give a proof

for completion.

Lemma 4.2. If M satisfies (DF) and (T), then the measure m belongs to K∞.

Proof. By the definition of property (T), there exists a compact set K such that

supx∈E
∫
Kc R1(x, y)m(dy) ≤ ϵ/2. Suppose that for any δ > 0 there exists a Borel set

B ⊂ K withm(B) ≤ δ such that supx∈E R11B(x) > ϵ/2. Then there exists a sequence
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{Bn}∞n=1 of Borel subsets of K such that m(Bn) ≤ 1/2n and supx∈K R11Bn(x) > ϵ/2.

Define An = ∪∞
k=nBk. Then m(An) is less than 1/2n−1 and decreasingly converges to

zero as n → ∞. Hence R11An decreasingly converges to zero pointwise. Since R11An

is continuous by the property (DF), R11An uniformly converges to zero on K. This

is contradictory to supx∈K R11An(x) ≥ supx∈K R11Bn(x) > ϵ/2.

We denote by P the set of probability measures on E. Define the function IE on

P by

IE(ν) =

{
E(
√
f,

√
f), if ν = f ·m,

√
f ∈ D(E),

∞, otherwise.
(4.1)

The space P is supposed to be equipped with the weak topology. Given w ∈ Ω with

0 < t < ζ(w), let Lt(w) ∈ P be the normalized occupation distribution: for a Borel

set A of E,

Lt(w)(A) =
1

t

∫ t

0

1A(Xs(w))ds.

Takeda [20] proved the next theorem.

Theorem 4.3. Assume that M satisfies (I), (DF) and (T) .

(i) For each open set G ⊂ P,

lim inf
t→∞

1

t
logPx(Lt ∈ G, t < ζ) ≥ − inf

ν∈G
IE(ν).

(ii) For each closed set K ⊂ P,

lim sup
t→∞

1

t
logPx(Lt ∈ K, t < ζ) ≤ − inf

ν∈K
IE(ν).

Note that the uniform upper bound holds. This fact follows from the symmetry of

Markov processes.

We define the function space D+ by

D+ = {Rαf : α > 0, f ∈ L2(E;m) ∩ C+
b (E) and f ̸≡ 0},

where C+
b (E) denotes the set of non-negative bounded continuous functions. We

see that any function in D+ is strictly positive by the irreducibility (I). Define the

operator A on D+ by ARαf = αRαf − f and the function I on P by

I(ν) = − inf
u∈D+,ϵ>0

∫
E

Au

u+ ϵ
dν. (4.2)
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The function I is a version of the Donsker-Varadhan I-function introduced in [8].

Note that since the Markov process M is allowed to have a finite lifetime, the function

u = Rαf ∈ D+ is not always uniformly lower-bounded by a positive constant even if f

is so, and consequently the function Au/u is not always bounded. By adding a positive

constant ϵ, the function Au/(u+ ϵ) is bounded and continuous, and consequently the

I-function defined by (4.2) is lower semicontinuous on P with respect to the weak

topology. This is a reason why we need to modify the Donsker-Varadhan I-function.

In spite of this modification, we can identify the I-function with the Dirichlet form

([10, Theorem 6.4.2]).

Proposition 4.4.

I(ν) = IE(ν), ν ∈ P .

We define the subset PM of P by

PM =

{
u2 ·m : u ∈ D(E),

∫
E

u2dm = 1, E(u, u) ≤M

}
, M > 0.

Lemma 4.5. The set PM is compact in P.

Proof. Recall the inequality in [17]: for any β > 0 and any smooth measure µ,∫
E

u2(x)µ(dx) ≤ ∥Rβµ∥∞ ·
(
E(u, u) + β

∫
E

u2dm

)
, u ∈ D(E). (4.3)

Combining property (T) with this inequality, we see PM is tight. Indeed, for any

compact set K ⊂ E and any u2 ·m ∈ Pm,∫
Kc

u2dm ≤ ∥R11Kc∥∞ ·
(
E(u, u) +

∫
E

u2dm

)
≤ (M + 1)∥R11Kc∥∞. (4.4)

Since PM = {ν ∈ P : I(ν) ≤ M} is closed by the lower semicontinuity of I, we have

the lemma.

Let λ2 be the bottom of the spectrum:

λ2 = inf

{
E(f, f) : f ∈ D(E),

∫
E

f 2dm = 1

}
. (4.5)

A function ϕ0 on E is called a ground state of the L2-generator for E if ϕ0 ∈ D(E),
∥ϕ0∥2 = 1 and E(ϕ0, ϕ0) = λ2.

Lemma 4.6 ([20]). Assume that M satisfies (I), (DF) and (T). Then there exists

a ground state ϕ0 uniquely up to a sign. ϕ0 can be taken to be strictly positive on E.
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Proof. Let {un}∞n=1 ⊂ D(E) be a minimizing sequence, ∥un∥2 = 1, and λ2 = limn→∞

E(un, un). We see from Lemma 4.5 that there exists a subsequence {u2nk
·m}∞k=1 such

that u2nk
·m converges weakly to a probability ν = ϕ2

0 ·m, ϕ0 ∈ D(E), ϕ0 ≥ 0. Since

the function IE is lower semicontinuous by Proposition 4.4, IE(ϕ
2m) ≤ λ2. Hence the

function ϕ0 is just a ground state.

It follows from the inequality ∥ϕ0+ ϵg∥2E ≥ λ2∥ϕ0+ ϵg∥22 holding for any g ∈ D(E)
for any ϵ > 0 that E(ϕ0, g) = λ2(ϕ0, g). Hence αRα−λ2ϕ0 = ϕ0, α > λ2, which implies

that ϕ0 is strictly positive by irreducibility.

To prove the uniqueness of the ground state, we introduce a closed symmetric

form (Eϕ0 ,D(Eϕ0)) on L2(E;ϕ2
0m) by

{
Eϕ0(u, v) = E(uϕ0, vϕ0)− λ2(uϕ0, vϕ0)

D(Eϕ0) = {u ∈ L2(E;ϕ2
0m) : uϕ0 ∈ D(E)}.

(4.6)

Since 1 ∈ D(Eϕ0), Eϕ0(1, 1) = 0 and the associated resolvent Rϕ0
α satisfies Rϕ0

α f =

ϕ−1
0 Rα−λ2(fϕ0), α > λ2, we see from the strict positivity of ϕ0 that (Eϕ0 ,D(Eϕ0)) is

an irreducible recurrent Dirichlet form so that f is constant whenever f ∈ D(Eϕ0),

Eϕ0(f, f) = 0. Let ψ0 be another ground state. Then ψ0 = fϕ0 with f = ψ0/ϕ0 ∈
D(Eϕ0), Eϕ0(f, f) = E(ψ0, ψ0) − λ2 = 0, which yields that f is constant and ψ0 =

±ϕ0.

Lemma 4.7. Assume M satisfies (I), (DF) and (T) and is, in addition, conser-

vative, then it is positively recurrent.

Proof. If M is conservative, then the tightness property (T) implies that for any

ϵ > 0, there exists a compact set K such that infx∈E R11K(x) ≥ 1 − ϵ. Since the

function R11K is in L1(E;m), m is finite, and thus 1 ∈ D(E), E(1, 1) = 0. Hence M

is positively recurrent ([10, Theorem 1.6.3]).

Lemma 4.8. Assume M satisfies (AC). Then

sup
x∈E

pt1(x) = esssupx∈Xpt1(x).

Proof. Let M = supx∈E pt1(x), M̃ = esssupx∈E pt1(x). Suppose M > M̃ and take

r so that M > r > M̃ . Since the function pt1 is excessive, the set O = {x ∈ E :

pt1(x) > r} is finely open and m(O) = 0 by the definition of M̃ . Hence by the Lemma

4.1.4 and Theorem 4.1.2 in [10], the set O is polar and thus empty by the argument

in the proof of Lemma 3.1 in [20]. Therefore pt1(x) ≤ r, which is contradictory to

M > r.



28

Let us denote by ∥pt∥p,p the operator norm of pt from Lp(E;m) to Lp(E;m) and

put

−λp = lim
t→∞

1

t
log ∥pt∥p,p, 1 ≤ p ≤ ∞.

−λp is the long time exponential growth bound of the semigroup {pt}t≥0. The next

theorem gives us a probabilistic interpretation of λ∞ (cf. [16]).

Theorem 4.9. Assume M satisfies (AC). Then

λ∞ = sup

{
λ ≥ 0; sup

x∈E
Ex(e

λζ) <∞
}
. (4.7)

Proof. Let γ be the right hand side of (4.7). Since for λ < γ,

∥pt∥∞,∞ = sup
x∈E

Px(t < ζ) ≤ e−λt sup
x∈E

Ex(e
λζ),

γ ≤ λ∞. In particular, if λ∞ = 0, then γ = 0.

For 0 < λ < λ∞, let pλt = eλtpt. Then since

lim
t→∞

1

t
log ∥pλt ∥∞,∞ = λ− λ∞ < 0,∫ ∞

0

∥pλt ∥∞,∞dt =

∫ ∞

0

sup
x∈E

Ex(e
λt; t < ζ)dt <∞.

Hence

sup
x∈E

∫ ∞

0

Ex(e
λζ ; t < ζ)dt = sup

x∈E

(
Ex(e

λζ)− 1

λ

)
<∞, (4.8)

and so γ ≥ λ∞.

Let us extend the resolvent operator; for λ ≥ 0,

R−λf(x) = Ex

(∫ ∞

0

eλtf(Xt)dt

)
.

We then see from (4.8) that for λ > 0,

∥R−λ∥∞,∞ <∞ ⇐⇒ sup
x∈E

Ex(e
λζ) <∞. (4.9)

It holds that if λ∞ > 0, then supx∈E Ex(e
λ∞ζ) = ∞. Indeed, we see from (4.9)

that if supx∈E Ex(e
λ∞ζ) <∞, then ∥R−λ∞∥∞,∞ <∞. Noting that

R−λ∞−ϵ = R−λ∞ + ϵR2
−λ∞ + ϵ2R3

−λ∞ + · · ·

([12, III, §6]), we see that if 0 < ϵ < 1/∥R−λ∞∥∞,∞, then ∥R−λ∞−ϵ∥∞,∞ < ∞. Using

(4.9) again, we have supx∈E Ex(e
(λ∞+ϵ)ζ) < ∞, which is contradictory to Theorem

4.9. Therefore, we have the next corollary.
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Corollary 4.10. Suppose λ∞ > 0. Then

sup
x∈E

Ex(exp(λζ)) <∞ ⇐⇒ λ < λ∞.

Chen [2, Theorem 4.1] proved:

Theorem 4.11. Suppose M is irreducible and satisfies (AC). If the measure m

belongs to K∞, then λp is independent of p.

Combining Theorem 4.11 with Corollary 4.10, we have

Corollary 4.12. Suppose M is irreducible and satisfies (AC). If m ∈ K∞ and

λ2 > 0, then

sup
x∈E

Ex(exp(λζ)) <∞ ⇐⇒ λ < λ2.

Let K ⊂ E be a compact set and D := Kc, the complement of K. Let MD =

(Px, X
D
t ) be the part process on D:

XD
t =

{
Xt, t < τD,

∆, t > τD, τD = inf{t ≥ 0 : Xt ̸∈ D}.
(4.10)

Define the (quasi-regular) Dirichlet form (ED,D(ED)) on L2(E;m) by{
ED = E ,
D(ED) = {u ∈ D(E) : u = 0 q.e. on K}.

(4.11)

Then (ED,D(ED)) is the Dirichlet space generated by XD [10, Theorem 4.4.3].

Let λD be the principal eigenvalue of the spectrum of (ED,D(ED)):

λD = inf

{
E(u, u) : u ∈ D(ED),

∫
D

u2dm = 1

}
. (4.12)

Lemma 4.13. Suppose that M satisfies (I), (DF) and (T) and is conservative.

For any compact set K with non-empty interior Ko, the principal eigenvalue λD,

D = Kc, is positive.

Proof. Let {ϕn}∞n=1 ⊂ D(ED) ∩ C0(D) be an approximating sequence in (4.12) such

that E(ϕn, ϕn) → λD. Let {ϕ2
nk
·m}∞k=1 be weakly converging to ϕ2

0·m, ϕ0 ∈ D(E).Then

1 = lim sup
k→∞

∫
E\Ko

ϕ2
nk
dm ≤

∫
E\Ko

ϕ2
0dm,

and thus ϕ0 equals 0, m-a.e. on Ko. In particular, the function ϕ0 is not constant

on E, because m(Ko) > 0 by the assumption on m. Hence we have E(ϕ0, ϕ0) > 0.
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In fact, if E(ϕ0, ϕ0) = 0, then ϕ0 must be a constant by the irreducible recurrence of

(E ,D(E)) [11, Theorem 1.3]. We now conclude that

λD = lim inf
k→∞

E(ϕnk
, ϕnk

) ≥ E(ϕ0, ϕ0) > 0.

We write K∞(R1) for K∞ to express the dependence of the 1-resolvent. Let RD
1 be

the 1-resolvent of MD. Denote by mD the restriction of m to D, mD(·) = m(D ∩ ·).

Lemma 4.14. Let K be a compact set. Then mD ∈ K∞(RD
1 ), D = Kc.

Proof. Let K̃ and δ be a compact set and a positive constant in Definition 4.1. We

can suppose that the interior of K̃ contains K. Let G be a relatively compact open

set such that K ⊂ G ⊂ G ⊂ K̃ and m(G \K) < δ. Then K̃ ∩Gc is a compact subset

of D and

RD
1 1(K̃∩Gc)c = RD

1 1K̃c∪(G\K) ≤ R11K̃c +R11G\K ≤ ϵ.

Moreover, RD
1 1B ≤ R11B for any Borel set B ⊂ K̃ ∩Gc.

It follows from (4.4) that

∫
D

u2dm =

∫
E

u21Ddm ≤ ∥R11D∥∞ ·
(
E(u, u) +

∫
E

u2dm

)
, u ∈ D(E),

and thus

1 ≤ ∥R11D∥∞ · (λD + 1). (4.13)

The tightness property implies that there exists a sequence {Kn}∞n=1 of compact sets

such that ∪∞
n=1Kn = E and ∥R11Kc

n
∥∞ → 0 as n → ∞. Hence we see from (4.13)

that for Dn = Kc
n,

λDn ↑ ∞ as n→ ∞. (4.14)

Note that if M is conservative, then the lifetime of MD equals the hitting time of

K. Combining Lemma 4.14 with Corollary 4.12, we know that if MDn is irreducible,

then

sup
x∈Dn

Ex(exp(γσKn)) <∞ ⇐⇒ γ < λDn . (4.15)
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Note that

sup
x∈D

Ex(exp(σK)) = sup
x∈E

Ex(exp(σK)). (4.16)

Indeed, let x0 ∈ K \ Kr, where Kr is the regular set of K, i.e., Kr = {x ∈ E :

Px(σK = 0) = 1}. Then since

Ex0(exp(σK)) = Ex0(exp(σK);Xt ∈ K) + Ex0(exp(σk);Xt ∈ D)

≤ etPx0(Xt ∈ K) + Ex0(exp(t+ σK(θt));σK < t)

≤ etPx0(Xt ∈ K) + EXt(exp(σK);Xt ∈ D)

≤ etPx0(Xt ∈ K) + sup
x∈D

Ex(exp(σK))

and

Px0(Xt ∈ K) ≤ Px0(σK ≤ t) → 0 as t ↓ 0,

we have (4.16) and thus

sup
x∈E

Ex(exp(γσKn)) <∞ ⇐⇒ γ < λDn . (4.17)

Hence we have from (4.14) and (4.16) the following:

Lemma 4.15. Suppose that M satisfies (I), (DF) and (T) and is conservative.

If there exists an increasing sequence {Kn}∞n=1 of compact sets such that ∪∞
n=1Kn = E

and MDn, Dn = Kc
n, are irreducible, then M has the following property:

For any γ > 0 there exists a compact set K such that

supx∈E Ex(exp(γσK)) <∞.
(4.18)

Property (4.18) is said to be a uniform hyper-exponential recurrence ([22]). We

will give sufficient conditions for the part process MD being irreducible.

Noting that

pt(x, U) = 0, ∀t > 0 ⇐⇒ Px(σU <∞) = 0,

we see that if M is irreducible, the semigroup {pt}t≥0 is topological transitive; that is,

for all non-empty open sets U and x ∈ E, there exists t > 0 such that pt(x, U) > 0.

Therefore, Theorem 1.2 in Wu [22] leads us to:

Theorem 4.16. Suppose M satisfies (I), (DF) and (T) and is conservative. If

there exists an increasing sequence {Kn}∞n=1 of compact sets such that ∪∞
n=1Kn = E

and MDn, Dn = Kc
n, are irreducible, then the uniform large deviation principle holds:

for each open set G of P,

lim inf
t→∞

1

t
log inf

x∈E
Px(Lt ∈ G) ≥ − inf

µ∈G
IE(µ).



32

4.2 Locally uniform lower bound

In this section, as an application of uniform LDP, we consider the locally uniform lower

bound of the large deviations for occupation times of symmetric Markov processes

with finite life time. We further consider the large deviation principle for symmetric

Markov processes conditioned on non-absorption up to t > 0.

Let M = (Xt, Px) be the Markov process on E with the semigroup {pt}t≥0. We

assume m(E) < ∞. We also assume that the semigroup {pt}t≥0 is ultra-contractive

(UC), that is, ∥pt∥1,∞ = Ct < ∞. Here ∥ · ∥1,∞ means the operator norm from

L1(E;m) to L∞(E;m).

Note that

R11Kc(x) =

∫ ∞

0

e−tpt1Kc(x)dt

=

∫ δ

0

e−tpt1Kc(x)dt+

∫ ∞

δ

e−tpt1Kc(x)dt

≤
∫ δ

0

e−tdt+

∫ ∞

δ

e−t∥pt∥1,∞m(Kc)dt.

Indeed, we have last inequality from the following :

∥pt1Kc∥∞ ≤ ∥pt∥1,∞∥1Kc∥1 and ∥1Kc∥1 =
∫
X

1Kc(x)dm = m(Kc).

Since there exists δ such that
∫ δ

0
e−tdt ≤ ϵ/2 for all ϵ > 0, we have∫ δ

0

e−tdt = 1− e−δ. (4.19)

If t > s, we have

∥ptf∥∞ = ∥ps · pt−sf∥∞
≤ ∥ps∥1,∞∥pt−sf∥1
≤ ∥ps∥1,∞∥pt−s∥1,1∥f∥1.

Since ∥pt−s∥1,1 ≤ 1, we have

∥pt∥1,∞ ≤ ∥ps∥1,∞ for t > s, (4.20)

that is, Ct is monotone decrease. Hence,∫ ∞

δ

e−t∥pt∥1,∞m(Kc)dt ≤
∫ ∞

δ

e−t · Cδ ·m(Kc)dt

= Cδe
−δm(Kc) < ϵ/2, (4.21)
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for a sufficiently large compact set K. Combining (4.19) and (4.21), we then have the

tightness of M.

Lemma 4.17. If m(E) <∞ and ∥pt∥1,∞ = Ct <∞, then M is tight.

Applying the uniform large deviation principle, Theorem 4.16, we show the locally

uniform large deviation principle and the conditional large deviation principle for the

part process MD on D in (4.10). By Lemma 4.6, we can find the bottom of the

spectrum λ2 and a ground state ϕ0 that is strictly positive on E. We define the

semigroup {pϕ0
t }t≥0 by

pϕ0
t f = eλ0t

1

ϕ0

pDt (ϕ0f).

Let Mϕ0 = (Xt, P
ϕ0
x ) be the Markov process on D with the semigroup {pϕ0

t }t≥0.

Then, Mϕ0 is ϕ2
0m-symmetric, pϕ0

t 1 = 1 and ϕ2
0m(D) =

∫
D
ϕ2
0dm < ∞. We as-

sume that the semigroup {pDt }t≥0 is intrinsically ultra-contractive (IUC), that is, the

semigroup {pϕ0
t }t≥0 is ultra-contractive.

Let us denote by P(D) the set of probability measures on D. Note that for an

open set G ⊂ P(D)

Px(Lt ∈ G, t < τD) = e−λ2tϕ0(x)E
ϕ0
x

(
1

ϕ0(Xt)
;Lt ∈ G

)
because

P ϕ0
x (Xt ∈ G) = e−λ2t

1

ϕ0

PD
x (ϕ0(Xt);Xt ∈ G) .

Since

1

t

(
f − pϕ0

t f, f
)
ϕ2
0m

=
1

t

(
ϕ0f − eλ2tpDt (ϕ0f), ϕ0f

)
m

=
1

t

(
ϕ0f − pDt (ϕ0f), ϕ0f

)
m
+

1

t

(
(1− eλ2t)pDt (ϕ0f), ϕ0f

)
m

→ ED(ϕ0f, ϕ0f)− λ2

∫
(ϕ0f)

2dm as t→ ∞,

by definition of ED, we have

Eϕ0(f, f) = ED(ϕ0f, ϕ0f)− λ2

∫
(ϕ0f)

2dm.

For K ⊂ D being compact,

inf
x∈K

Px(Lt ∈ G, t < τD) ≥ e−λ2t

(
inf
x∈K

ϕ0(x)

)
1

∥ϕ0∥∞
inf
x∈K

P ϕ0
x (Lt ∈ G).



34

Then, by Theorem 4.16, we have

lim inf
t →∞

1

t
log inf

x∈K
Px(Lt ∈ G, t < τD) ≥ −λ2 − inf

ϕ2ϕ2
0m∈G

Eϕ0(ϕ, ϕ)

= − inf
ϕ2m∈G

ED(ϕ, ϕ).

Hence we have

Theorem 4.18 (locally uniform lower bound). For any open set G ∈ P(D),

lim inf
t→∞

1

t
log inf

x∈K
Px(Lt ∈ G; t < τD) ≥ − inf

µ∈G
IED(µ). (4.22)

Here K is a compact set of D.

We now consider the locally uniform lower bound for symmetric Markov processes

conditioned on non-absorption up to t. Since

Px(Lt ∈ G|t < τD) =
Px(Lt ∈ G; t < τD)

Px(t < τD)
,

note that

logPx(Lt ∈ G|t < τD) = logPx(Lt ∈ G; t < τD)− logPx(t < τD).

and

inf
x∈K

Px(Lt ∈ G|t < τD) = inf
x∈K

(
Px(Lt ∈ G; t < τD)

Px(t < τD)

)
≥ infx∈K Px(Lt ∈ G; t < τD)

supx∈D Px(t < τD)
.

By Theorems 4.3 and 4.18, we have

1

t
log inf

x∈K
Px(Lt ∈ G|t < τD) ≥

1

t
log inf

x∈K
Px(Lt ∈ G; t < τD)−

1

t
log sup

x∈D
Px(t < τD)

≥ − inf
u2m∈G

ED(u, u)− λ2.

Let Iτ = IED + λ2. Hence we have the following conditional lower bound.

Theorem 4.19. For any open set G ∈ P(D),

lim inf
t→∞

1

t
log inf

x∈K
Px(Lt ∈ G|t < τD) ≥ − inf

µ∈G
Iτ (µ). (4.23)
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4.3 An example – killed Brownian motion

In this section, applying the results obtained in the previous chapter to killed Brown-

ian motions, we give another proof of the main theorem in [3]. Let (Px, Xt) be a stan-

dard d-dimensional Brownian motion (d ≥ 1) on {Ω,Ft}, where Ω = C([0,∞),Rd)

is the family of all continuous maps from R+ to Rd and Ft = σ{Xs; 0 ≤ s ≤ t} is the

σ-algebra generated by {Xs; 0 ≤ s ≤ t}. Denote by {Px;x ∈ Rd} the corresponding

Markov family. Let D be an open bounded connected set in Rd and we set

XD
t =

{
Xt, if τD ≥ t,

∂, if τD ≤ t,

where ∂ is an extra point and τD is the first exit time of the domain D. In this

section, we simply write τ for τD. We call XD
t the Brownian motion killed outside

D. Note that Px(τ > t) > 0 for any x ∈ D. The state space of XD
t is D ∪ ∂ and the

transition function is

pDt (x,B) = Px(Xt ∈ B; τ > t), t > 0, x ∈ D, B ∈ B(D), (4.24)

where B(D) is the Borel σ-algebra on D. The transition function has a density with

respect to the Lebesgue measure.

Proposition 4.20 (See [5, p.33]).

Px(Xt ∈ B; τ > t) =

∫
B

pD(t; x, y)dy, x ∈ D, t > 0, B ∈ B(D) (4.25)

The density function pDt (·, ·) is symmetric continuous, and strictly positive on D×D.

Furthermore, it satisfies that

pDt (x, y) =

∫
D

pDl (x, z)p
D
t−l(z, y)dz, x, y ∈ D, t > l > 0. (4.26)

Let C∞
0 (D) = {f ; f ∈ C∞(Rd) and the support of f is in D} . We define

∇f =

(
∂

∂x1
f, · · · , ∂

∂xd
f

)
and ∆f =

d∑
i=1

∂2

∂x2d
f(x), for f ∈ C∞

0 (D).

Moreover, Let H1
0 (D) be the completion of C∞

0 (D) with respect to the norm

∥f∥ =

(∫
D

f 2(x)dx+
1

2

∫
D

∇f · ∇fdx
)1/2

.
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Let L2(D) = L2(D; dx) be the real Hilbert space with inner product ⟨f, g⟩ =∫
D
fgdx, f, g ∈ L2(D). We can define a family of operators {pDt }t≥0 on L2(D) asso-

ciated with XD
t as follows,

pDt f(x) =

∫
D

pDt (x, y)f(y)dy = Ex(f(Xt); τ > t), t > 0, x ∈ D, f ∈ L2(D). (4.27)

{pDt }t≥0 also has the strong Feller property, i.e.,

pDt f ∈ Cb(D), f ∈ L∞(D; dx), t > 0,

where Cb(D) = {f : f is a real valued bounded continuous function on D}. We state

further properties of the semigroup.

Proposition 4.21 (See [5, p.33 and p.56]). {pDt }t≥0 is a strong continuous, sym-

metric, compact, and contraction semigroup on L2(D). The infinitesimal generator

is ∆
2
, D = {f ∈ H1

0 (D) : ∇f exists weakly and ∆f ∈ L2(D)}. The corresponding

Dirichlet form E(·, ·) is

E(f, g) = 1

2

∫
D

∇f · ∇gdx, f, g ∈ D(E) = H1
0 (D).

The followings are the eigenfunction expansion for the density pDt of the killed

Brownian motion, and some estimates which are based on this expansion.

Proposition 4.22. (i) (See, [14, p.123]) The density pDt has the following ex-

pansion :

pDt (x, y) =
∞∑
n=1

exp(−λnt)ϕn(x)ϕn(y),

where {λn} are the (nondecreasing) Dirichlet eigenvalues of ∆
2

counting mul-

tiplicity, and ϕn are the corresponding eigenfunctions which form a complete

orthonormal system of L2(D) and satisfy

ϕ2
n(x) ≤ exp(λnϵ)

(
1

2πϵ

) d
2

.

Furthermore, for 0 < ϵ < t,

∞∑
n=1

exp(−λnt)ϕn(x)ϕn(y) ≤
(

1

2πϵ

) d
2

∞∑
n=1

exp(−λn(t− ϵ)) < +∞. (4.28)

Thus as n0 → ∞,
∑∞

n=n0
exp(−λnt)ϕn(x)ϕn(y) converges to 0 absolutely and

uniformly on D ×D.
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(ii) (See, [9, p.336]) λ1 is simple, so λ1 < λn, for n > 1. and ϕ1 ∈ C∞(D) with

φ > 0.

From now, we study the large deviation principle for the killed Brownian motion.

Firstly, we define the Donsker-Varadhan I-function of the killed Brownian motion on

the domain D by

I(µ) =

{
E(f, f), if f =

(
dµ
dx

)1/2 ∈ H1
0 (D), ,

∞, otherwise.
(4.29)

The following is the known large deviation principle. An important point is that the

rate function I attains the unique minimum at µ0

Theorem 4.23. (i) (See, [10, p.367]) I is a good rate function, i.e., for r ∈
[0,∞), the level set ΨI(r) = {µ ∈ P(D); I(µ) ≤ r} is compact in P(D).

(ii) (See, [10, p.367] and [9, p.336]) I attains its unique minimum at µ0 which is just

the mean ratio qusai-stationary distribution, and λ1 = I(µ0) = infµ∈P1(D) I(µ)

is the first Dirichlet eigenvalue of −∆
2
.

(iii) (See, [10, p.349]) (Lower bound) For any open set G ∈ P(D) and ν ∈ P(D),

lim inf
t→∞

1

t
logPν(Lt ∈ G, τ > t) ≥ − inf

µ∈G
I(µ). (4.30)

(iv) (See, [10, p.349]) (Uniform upper bound) For any set C ∈ P(D),

lim sup
t→∞

1

t
log sup

x∈D
Px(Lt ∈ C, τ > t) ≤ − inf

µ∈C
I(µ). (4.31)

We give the following slight generalization of the lower bound.

Theorem 4.24 (Local uniform lower bound). For any open set G ∈ P(D) and

compact set K ∈ D,

lim inf
t→∞

1

t
log inf

x∈K
Px(Lt ∈ G, τ > t) ≥ − inf

µ∈G
I(µ). (4.32)

Proof. For any µ ∈ G, there exist ϵ > 0 and fi ∈ Cb(D) with |fi| ≤ 1, i = 1, 2, . . . , n,

such that

Uϵ =

{
ν ∈ P(D) :

∣∣∣∣∫ fid(ν − µ)

∣∣∣∣ < ϵ, i = 1, 2, · · · , n
}

⊂ G.

If t > 4
ϵ
, we have for f ∈ Cb(D) with |f | ≤ 1
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∣∣∣∣∫ f(x)Lt−1(θ1w)(dx)−
∫
f(x)Lt(x)(dx)

∣∣∣∣
=

∣∣∣∣ 1

t− 1

∫ t

1

f(ws)ds−
1

t

∫ t

0

f(ws)ds

∣∣∣∣
=

∣∣∣∣1t
∫ 1

0

f(ws)ds−
1

t(t− 1)

∫ t

1

f(ws)ds

∣∣∣∣ ≤ 2

t
<
ϵ

2
.

Let a = infx,y∈K p
D
1 (x, y) > 0. Combining the above with Theorem 4.23 and the

Markov property, we see that

lim inf
t→∞

1

t
log inf

x∈K
Px(Lt ∈ G, τ > t)

≥ lim inf
t→∞

1

t
log inf

x∈K
Px(Lt−1(θ1w) ∈ U ϵ

2
, τ(θ1w) > (t− 1), τ > 1)

= lim inf
t→∞

1

t
log inf

x∈K

∫
PX1(Lt−1 ∈ U ϵ

2
, τ > (t− 1))1{τ>1}dPx

= lim inf
t→∞

1

t
log inf

x∈K

∫
Py(Lt−1 ∈ U ϵ

2
, τ > (t− 1))pD1 (x, y)dy

≥ lim inf
t→∞

1

t
log

∫
K

a · Py(Lt−1 ∈ U ϵ
2
, τ > (t− 1))dy

≥− I(µ).

We have the theorem.

The following large deviation principle for the conditional process is a direct con-

sequence of Theorems 4.23 and 4.24. Let Iτ = I − λ1.

Theorem 4.25 (Conditional large deviation principle).

(i) (Lower bound) For any open set G ∈ P(D) and ν ∈ P(D),

lim inf
t→∞

1

t
logPν(Lt ∈ G|τ > t) ≥ − inf

µ∈G
Iτ (µ). (4.33)

(ii) (Local uniform lower bound) For any open set G ∈ P(D) and compact set

K ⊂ D,

lim inf
t→∞

1

t
log inf

x∈K
Px(Lt ∈ C|τ > t) ≥ − inf

µ∈G
Iτ (µ). (4.34)

(iii) (Upper bound) For any closed set C ∈ P(D) and ν ∈ P(D),

lim sup
t→∞

1

t
logPν(Lt ∈ C|τ > t) ≤ − inf

µ∈C
Iτ (µ). (4.35)
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(iv) (Local uniform upper bound) For any closed set C ∈ P(D) and compact set

K ⊂ D,

lim sup
t→∞

1

t
log sup

x∈K
Px(Lt ∈ C|τ > t) ≤ − inf

µ∈C
Iτ (µ). (4.36)

(v) Iτ is good and Iτ (µ) = 0 if and only if µ = µ0.

Proof. Note that

(i) For any initial distribution ν,

logPν(Lt ∈ A|τ > t) = logPν(Lt ∈ A, τ > t)− logPν(τ > t),

and by Theorem 4.23, limt→∞
1
t
logPν(τ > t) = −λ1.

(ii) For compact set K ⊂ D,

log inf
x∈K

Px(Lt ∈ C|τ > t) ≥ log inf
x∈K

Px(Lt ∈ C, τ > t)− log sup
x∈D

Px(τ > t),

and

log sup
x∈K

Px(Lt ∈ C|τ > t) ≤ log sup
x∈D

Px(Lt ∈ C, τ > t)− log inf
x∈K

Px.(τ > t)

Then by using above results, we can easily show the desired assertions.

For 0 ≤ s < t, let

Q(t− s;x, y) := exp(λ1(t− s))
ϕ1(y)

ϕ1(x)
pDt−s(x, y). (4.37)

Q(t;x, y) is the density of a probability transition function with respect to the Lebesgue

measure. Then we can construct a Markov process {Ys : 0 ≤ x <∞} on C([0,∞),Rd).

Let {Qx, x ∈ Rd} be the associated Markov family on C([0,∞),Rd).

Finally, we prove the large deviation principle for the limiting process. The fol-

lowing lemma is used to compare the limiting process with the conditional process,

which is important in deriving the large deviation principle.

Lemma 4.26. For A ∈ Ft,

Qx(A) =
exp(λ1t)

ϕ1(x)
Ex(ϕ1(xt);A, τ > t). (4.38)
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Proof. Let A = At0 × A1 × · · · × Ak for Ai ∈ B(D) and 0 = t0 < t1 < · · · < tk = t.

From (4.37), we have

Qx((Yt0 , Yt1 , · · · , Ytk) ∈ A)

=

∫
A

k∏
i=1

Q(ti − ti−1; yi−1, yi)δx(dy0)dy1 · · · dyk

=

∫
A

k∏
i=1

exp(λ1(ti − ti−1))
ϕ1(yi)

ϕ1(yi−1)
pDti−ti−1

(yi−1, yi)δx(dy0)dy1 · · · dyk

=
exp(λ1t)

ϕ1(x)

∫
A

ϕ1(yk)
k∏

i=1

pDti−ti−1
(yi−1, yi)δx(dy0)dy1 · · · dyk

=
exp(λ1t)

ϕ1(x)
Ex(ϕ1(xt);A, τ > t).

The proof is completed by extending the above equality for any A ∈ Ft.

Lemma 4.27. For any open set O ⊂ D, if V is an open set in P(D), then

V ∩ P(O) is open set in P(O).

Proof. If V ∩ P(O) = ∅, it is open. Otherwise ∀µ ∈ V ∩ P(O), there exists a open

set U in P(D) as follows:

U =

{
ν ∈ P(D) :

∣∣∣ ∫
D

fiν(dx)−
∫
D

fiµ(dx)
∣∣∣ < ϵi, i = 1, 2, · · · , k

}
⊂ V,

where fi ∈ Cb(D). Since the function fi is restricted to O are also bounded and

continuous in O, we see that

U ∩ P(O) =

{
ν ∈ P(O) :

∣∣∣ ∫
O

fiν(dx)−
∫
O

fiµ(dx)
∣∣∣ < ϵi, i = 1, 2, · · · , k

}
is a open set in P(O).

The following is an approximation result.

Lemma 4.28. Given µ ∈ P(D). If I(µ) < ∞, then for any ϵ > 0 there is an

open subset O of D with O ⊂ D, and a ν(dx) = g2dx ∈ P(O) with g ∈ C∞
0 (D), such

that ∥µ− ν∥Var < ϵ and |I(µ)− I(ν)| < ϵ.

Proof. By definition of I and the assumption, I(µ) = 1
2

∫
D
∇f · ∇fdx with f =

(dµ
dx
)1/2 ∈ H1

0 (D). Thus by definition ofH1
0 (D), we can find fn ∈ C∞

0 (D), n = 1, 2, . . . ,

such that
∫
D
f 2
ndx = 1 and

lim
n→∞

(∫
D

(f − fn)
2(x)dx+

1

2

∫
D

∇(f − fn) · ∇(f − fn)dx

)1/2

= 0.
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Since

∥µ− 1Df
2
ndx∥Var =

∫
D

|f 2 − f 2
n|dx,

we have the lemma.

Now we can state the large deviation result for the limiting process.

Theorem 4.29 (Large deviation principle for the limiting process).

(i) (Local uniform upper bound) For any compact set K ∈ D and closed set C ⊂
P(D),

lim sup
t→∞

1

t
log sup

x∈K
Qx(Lt ∈ C) ≤ − inf

µ∈C
Iτ (µ). (4.39)

(ii) (Local uniform lower bound) For any compact set K ∈ D and open set G ⊂
P(D),

lim inf
t→∞

1

t
log inf

x∈K
Qx(Lt ∈ G) ≥ − inf

µ∈G
Iτ (µ). (4.40)

Proof. (i) Since ϕ is continuous, strictly positive and bounded above on D,

M =
supx∈D ϕ1(x)

infx∈K ϕ1(x)

is also strictly positive and finite. Thus by Theorem 4.23 and lemma 4.26, we

have

lim sup
t→∞

1

t
log sup

x∈K
Qx(Lt ∈ C)

= lim sup
t→∞

1

t
log sup

x∈K

{
exp(λ1t)

ϕ1(x)
Ex(ϕ1(xt), Lt ∈ C, τ > t)

}
≤ lim sup

t→∞

1

t
log sup

x∈K
{M exp(λ1t)Px(Lt ∈ C, τ > t)}

≤ − inf
µ∈C

Iτ (µ).

(ii) To prove the theorem, it is enough to show that for any µ ∈ G,

lim inf
t→∞

1

t
log inf

x∈K
Qx(Lt ∈ G) ≥ I(µ) + λ1.

If I(µ) = ∞, it is trivial. Otherwise by Lemma 4.28, ∀ϵ > 0, there exists an

open subset O1 of G with O1 ∈ G, such that µ1(dx) = f 2
1dx with f1 ∈ C∞

0 (O1)
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and |I(µ1)− I(µ)| < ϵ. We can choose another open subset O of G with O ⊂ G

and O ∪K ⊂ O. Thus,

m =
infx∈O ϕ1(x)

supx∈K ϕ1(x)

is strictly positive and finite. By combining the above with Theorem 4.24,

Lemma 4.26 and Lemma 4.27, we have that

lim inf
t→∞

1

t
log inf

x∈K
Qx(Lt ∈ G)

= lim inf
t→∞

1

t
log inf

x∈K

{
exp(λ1t)

ϕ1(x)
Ex(ϕ1(xt), Lt ∈ G, τ > t)

}
= lim inf

t→∞

1

t
log inf

x∈K

{
exp(λ1t)

ϕ1(x)
Ex(ϕ1(xt), Lt ∈ G ∩ P(O), τO > t)

}
≤ lim inf

t→∞

1

t
log inf

x∈K
{m exp(λ1t)Px(Lt ∈ G ∩ P(O), τO > t)}

≥ −I(µ1) + λ1

≥ −(I(µ) + ϵ) + λ1,

where τO = inf{t > 0;Xt(w) ∈ Oc}. Since ϵ is arbitrary, we have the theorem.
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Chapter 5

Appendix

5.1 Lp-independence of spectral bounds

In this chapter, let Cu(X) be the set of continuous functions on E that have the limit

as x → ∞. For f ∈ Cu(X), put f(∞) = limx→∞ f(x). Under the assumptions (I),

(DF) and (C), we obtain the following results.

Theorem 5.1. Let µ = µ+ − µ− ∈ K∞ −K∞

(i) There exist constants C and κ(µ) such that

∥pµt ∥p,p ≤ Ceκ(µ)t, 1 ≤ ∀p ≤ ∞, t > 0.

Here ∥ · ∥p,p means the operator norm on Lp(E;m).

(ii) pµt is a strongly continuous symmetric semigroup on Lp(E;m) and the closed

form corresponding to pµt is identical to (Eµ,D(E)).

(iii) For each f ∈ Bb(E), p
µ
t f ∈ Cb(E).

(iv) pµt (Cu(E)) ⊂ Cu(E) and limx→∞ pµt f(x) = f(∞) for f ∈ Cu(E).

Proof. The statements (i) and (ii) follow from results in [1]. From [4, Theorem 3],

the semigroup pµt possesses the strong Feller property (iii).

(iv) By (i),

|Ex(exp(−Aµ
t )f(Xt))| ≤ |Ex(exp(−A2µ

t )|1/2|Ex(f
2(Xt))|1/2, for f ∈ C∞(E),

and supx∈E Ex(exp(−A2µ
t )) < ∞. Hence limx→∞ pµt f(x) = 0 from the assumption

(DF). Since f(x)− f(∞) ∈ C∞(E) and pµt f(x) = pµt (f − f(∞)) + f(∞)pµt 1(x), it is

enough to show that

lim
x→∞

pµt 1(x) = lim
x→∞

Ex(exp(−Aµ
t )) = 1.
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Let µ ∈ K∞ and K ⊂ E a compact set.

Ex(exp(A
µK
t )) =Ex(exp(A

µK
t );σK > t) + Ex(exp(A

µK
t );σK ≤ t)

=Px(σK > t) + Ex(exp(A
µK
t );σK ≤ t),

where σK = inf{t > 0 : Xt ∈ E}. We have that Px(σK > t) converges to 1 as x→ ∞
from the assumption (DF). Indeed, let f be a strictly positive function in C∞(E).

Then

PX(σK ≤ t) ≤ eλt

c
Ex(e

−λσKGλf(XσK
)) ≤ eλt

c
Gλf(x),

where c = infx∈K Gλf(x) > 0. Since

eλ(σK−t) ≥ 1 and
Gλf(XσK

)

infx→∞Gλf(x)
≥ 1 for σK ≤ t,

we can easily see the first inequality. Moreover, since

Ex(e
−λσKGλf(XσK

)) =Ex(e
−λσK

∫ ∞

0

e−λtptf(XσK
)dt)

=

∫ ∞

σK

e−λtptf(x)dt

≤Gλf(x),

we have the second inequality.

In addition, since

Ex(exp(A
µK
t );σK ≤ t) ≤ Ex(exp(A

2µK
t ))1/2Px(σK ≤ t)1/2,

the left-hand side above converges to 0 as x→ ∞. Therefore, we have

lim
x→∞

Ex(exp(A
µK
t )) = 1.

By the definition of K∞,

lim
K↑E

sup
x∈E

Ex(A
µKc

t ) = lim
K↑E

sup
x∈E

∫
Kc

G(x, y)dµ(y) = 0. (5.1)

By Khasminskii’s lemma,

sup
x∈E

Ex(exp(A
µKc

t )) ≤ 1

1− supx∈E Ex(A
µKc

t )
. (5.2)

From (5.1) and (5.2), we obtain

lim
K↑E

sup
x∈E

Ex(exp(A
µKc

t )) ≤ 1.
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Since

lim sup
x→∞

Ex(exp(A
µ
t )) = lim sup

x→∞
Ex(exp(A

µK
t ) exp(AµKc

t ))

≤ lim sup
x→∞

(Ex(exp(A
2µK
t ))1/2Ex(exp(A

2µKc

t ))1/2)

≤ sup
x∈E

Ex(exp(A
2µKc

t ))1/2),

we have

lim inf
x→∞

Ex(exp(−Aµ
t )) ≥

1

lim supx→∞Ex(exp(A
µ
t ))

≥ 1.

Note that for µ = µ+ − µ− ∈ K∞ −K∞

Ex(exp(−Aµ+

t )) ≤ Ex(exp(−Aµ
t )) ≤ Ex(exp(A

µ−

t )),

we have

lim
x→∞

Ex(exp(−Aµ
t )) = 1.

Let P(E) be the set of probability measures on E with the weak topology. We

define a function IEµ on P(E) by

IEµ(v) =

{
Eµ(

√
f,

√
f), if v = f · dx,

√
f ∈ D(E),

∞, otherwise.

Let

D++(Hµ) = {ϕ = Rµ
αg;α > κ(µ), g ∈ Cu(E) with g ≥ ∃ϵ > 0},

where Rµ
αf(x) =

∫∞
0
e−αtpµt f(x)dt. Here κ(µ) is the constant in Theorem 5.1(i). For

ϕ = Rµ
αg ∈ D++(Hµ), let

Hµϕ = αϕ− g.

We define the I-function as follows:

Iµ(v) = − inf
ϕ∈D++(Hµ)

∫
X

Hµϕ

ϕ
dv, v ∈ P(E).

It follows that

IEµ(v) = Iµ(v), v ∈ P(E).

We define a transition density p̄t(x, dy) on E∞ by

p̄t(x,D) = pt(x,D \ {∞}), x ∈ D,
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and

p̄t(∞, D) = δ∞(D) :=

{
1 ∞ ∈ D,

0, ∞ ̸∈ E.

Let M̄ = (P̄x, Xt) be the Markov process on E∞ with transition probability p̄t(x, dy).

M̄ is an extension of M and ∞ is to be a trap. For µ = µ+ − µ− ∈ K∞ − K∞, we

define p̄µt and R̄µ
α by

p̄µt f(x) = Ēx(exp(−Aµ
t )f(Xt)), R̄

µ
αf(x) =

∫ ∞

0

e−αtp̄µt f(x)dt, f ∈ B(E∞).

Then, R̄µ
αf(x) = Rµ

αf(x) on x ∈ E and R̄µ
αf(∞) = f(∞). Let

D++(H̄µ) = {ϕ = R̄µ
αg;α > κ(µ), g ∈ C(E∞) with g > 0}.

By Theorem 5.1 (iv), for ϕ = Rµ
αg ∈ D++(H̄µ)

lim
x→∞

ϕ(x) =
g(∞)

α
. (5.3)

We define a function Īµ on P(E∞), the set of probability measures on E∞, by

Īµ(v) = − inf
ϕ∈D++(H̄µ)

∫
X∞

H̄µϕ

ϕ
dv, v ∈ P(E∞),

where H̄µϕ = αR̄µ
αg − g for ϕ = R̄µ

αϕ ∈ D++(H̄µ).

For ϕ ∈ D++(H̄µ), we define the multiplicative functional Nϕ
t by

Nϕ
t = e−Aµ

t

(
ϕ(Xt)

ϕ(X0)

)
exp

(
−
∫ t

0

H̄µϕ

ϕ
(Xs)ds

)
.

Let us define the sequence of sets {Kn}∞n=1 by Kn = {x ∈ E;ϕ(x) ≥ 1
n
} and denote

by Ko
n the fine interior of Kn. Let τn be the first exit time from Ko

n: τn = inf{t >
0;Xt ̸∈ Ko

n}.

Lemma 5.2. For each n

Nϕ
t∧τn − 1 =

∫ t∧τn

0

1

ϕ(X0)
exp

(
−
∫ s

0

H̄µϕ

ϕ
(Xu)du

)
dMµ,ϕ

s ; Px-a.e., (5.4)

where Mµ,ϕ
t = e−Aµ

t ϕ(Xt)− ϕ(X0)−
∫ t

0
e−Aµ

s H̄µϕ(Xs)ds.

Proof. The right-hand side of (5.4) is equal to

1

ϕ(X0)

∫ t∧τn

0

exp

(
−
∫ s

0

H̄µϕ

ϕ
(Xu)du

)(
d(e−Aµ

sϕ(Xs))− e−Aµ
s H̄µϕ(Xs)ds

)
.
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Since

d

(
e−Aµ

sϕ(Xs)) exp

(
−
∫ s

0

H̄µϕ

ϕ
(Xu)du

))
= exp

(
−
∫ s

0

H̄µϕ

ϕ
(Xu)du

)(
d(e−Aµ

sϕ(Xs))− e−Aµ
s H̄µϕ(Xs)ds

)
,

we have the lemma.

Since Ex(M
µ,ϕ
t ) = 0 and Mµ,ϕ

t = Mµ,ϕ
s+t + e−Aµ

sMµ,ϕ
t ◦ θs, Mµ,ϕ

t is a martingale with

respect to Px. Here θt, t ≥ 0, is the shift operator satisfying Xs ◦θt = Xs+t identically

for s, t ≥ 0.

Indeed, for ϕ = R̄µ
αϕ ∈ D++(H̄µ), Ex(M

µ,ϕ
t ) is equal to

Ex

(
e−Aµ

t R̄µ
αg(Xt)− R̄µ

αg(X0)−
∫ t

0

e−Aµ
s (αR̄µ

αg − g)(Xs)ds

)
. (5.5)

By using definition of R̄µ
α and the semigroup property of {pµt }t>0,

Ex

(
e−Aµ

t R̄µ
αg(Xt)

)
=Ex

(
e−Aµ

t EXt

(∫ ∞

0

e−(αs+Aµ
s )g(Xs)ds

))
=Ex

(
e−Aµ

t

∫ ∞

0

e−αspµsg(Xt)ds

)
=

∫ ∞

0

e−αspµt+sg(x)ds,

Ex

(
R̄µ

αg(X0)
)
=Ex

(
EX0

(∫ ∞

0

e−(αs+Aµ
s )g(Xs)ds

))
=Ex

(∫ ∞

0

e−αspµsg(X0)ds

)
=

∫ ∞

0

e−αspµsg(x)ds,

and

Ex

(∫ t

0

e−Aµ
s g(Xs)ds

)
=

∫ t

0

pµsg(x)ds.
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Finally, by using integral by parts,

Ex

(∫ t

0

e−Aµ
sαR̄µ

αg(Xs)ds

)
= Ex

(∫ t

0

αe−Aµ
s

∫ ∞

0

e−αkpµkg(Xs)dkds

)
=

∫ t

0

∫ ∞

0

αe−αke−αkpµk+sg(x)dkds

=

∫ t

0

αe−αs

∫ ∞

s

e−αkpµkg(x)dkds

= eαt
∫ ∞

t

e−αkpµkg(x)dk −
∫ ∞

0

e−αkpµkg(x)dk +

∫ t

0

pµsg(x)ds

=

∫ ∞

0

e−αkpµt+kg(x)dk −
∫ ∞

0

e−αkpµkg(x)dk +

∫ t

0

pµsg(x)ds.

Hence, by combining above results, we see Ex(M
µ,ϕ
t ) = 0.

Therefore Nϕ
t is a local martingale with Nϕ

0 from Lemma 5.2. Then we have

Ex

(
e−Aµ

t

(
ϕ(Xt)

ϕ(X0)

)
exp

(
−
∫ t

0

H̄µϕ

ϕ
(Xs)ds

))
≤ 1.

So, we see

sup
x∈E

Ex

(
exp

(
−Aµ

t −
∫ t

0

H̄µϕ

ϕ
(Xs)ds

))
≤ supx∈E ϕ(x)

infx∈E ϕ(x)
.

Hence, for any Borel set C of P(E∞),

lim sup
t→∞

1

t
log sup

x∈E
Ex(exp(−Aµ

t );Lt ∈ C) ≤ inf
ϕ∈D++(H̄µ)

sup
µ∈C

∫
E∞

H̄µϕ

ϕ
dv. (5.6)

Note that H̄µϕ/ϕ ∈ C(E∞) and that P(E∞) is compact with respect to the weak

topology. We can obtain the following proposition from (5.6) in exactly the same way

as one in [8].

Proposition 5.3. Let µ ∈ K∞ −K∞. Then

lim sup
t→∞

1

t
log sup

x∈E
Ex(exp(−Aµ

t )) ≤ − inf
v∈P(E∞)

Īµ(v), x ∈ E. (5.7)

Lemma 5.4. For v ∈ P(E∞) \ {δ∞}, let v̂(·) = v(·)/v(E) ∈ P(E). Then

Īµ(v) = Iµ(v) = v(E)IEµ(v̂).

Proof. By combining (5.3) and H̄µϕ(x) = Hµϕ(x) on x ∈ E, for ϕ = R̄µ
αϕ ∈ D++(H̄µ),

H̄µϕ(x) = αϕ(x)− g(x) → 0, x→ ∞.
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Therefore for v ∈ P(E∞)

Īµ(v) =− inf
ϕ∈D++(H̄µ)

∫
X∞

H̄µϕ

ϕ
dv = − inf

ϕ∈D++(Hµ)

∫
X

Hµϕ

ϕ
dv

=− inf
ϕ∈D++(Hµ)

v(X)

∫
X

Hµϕ

ϕ
dv̂ = v(E) · IEµ(v̂).

Since there exists a one-to-one correspondence between P(E∞)\{δ∞} and (0, 1]×
P(E) as follows:

v ∈ P(E∞) \ {δ∞} −→
(
v(E), v̂(·) = v(·)

v(E)

)
∈ (0, 1]× P(E),

and Īµ(δ∞) = 0, we see that

inf
v∈P(E∞)

Īµ(v) = inf
0≤η≤1,v∈P(E)

(η · IEµ(v)) = inf
0≤η≤1

(
η · inf

v∈P(E)
IEµ(v)

)
. (5.8)

We define the Lp-spectral bounds of {pµt }t>0 by

λp(µ) = − lim
t→∞

1

t
log ∥pµt ∥p,p, 1 ≤ p ≤ ∞,

where ∥pµt ∥p,p is the operator norm of pµt from Lp(E;m) to Lp(E;m).

We then have

Corollary 5.5. For µ ∈ K∞ −K∞,

λ∞(µ) ≥ inf
0≤η≤1

(
η · inf

v∈P(E)
IEµ(v)

)
= inf

0≤η≤1
(η · λ2(µ)) . (5.9)

Proof. Since supx∈X Ex(exp(−Aµ
t )) equals ∥p

µ
t ∥∞,∞, the left-hand side of (5.7) equals

−λ∞(µ). By combining Proposition 5.3 and (5.8), we have the first inequality.

By spectral theorem, λ2(µ) is identical to the principal eigenvalue of the self-

adjoint operator Hµ. By also the variational formula for the principal eigenvalue, we

have

λ2(µ) = inf
v∈P(E)

IEµ(v). (5.10)

Hence we have the second equality.

If λ2(µ) ≤ 0, then inf0≤η≤1 (η · λ2(µ)) = λ2(µ). So we have

Corollary 5.6. If λ2(µ) ≤ 0, then

λ∞(µ) ≥ λ2(µ)
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By using the symmetry and the positivity of pµt , we have

∥pµt ∥2,2 ≤ ∥pµt ∥p,p ≤ ∥pµt ∥∞,∞, 1 ≤ p ≤ ∞.

Therefore the following inequality holds generally:

λ∞(µ) ≤ λ2(µ)

Hence we have

Theorem 5.7. Assume (I), (DF) and (C). Let µ ∈ K∞ − K∞. If λ2(µ) ≤ 0,

then

λp(µ) = λ2(µ), 1 ≤ p ≤ ∞.

Corollary 5.8. Assume (I), (DF) and (C). Then for µ ∈ K∞−K∞ with λ2(µ) ≤
0

lim
t→∞

1

t
logEx (exp(−Aµ

t )) = − inf

{
Eµ(u, u);u ∈ D(E),

∫
E

u2dm = 1

}
, x ∈ E.

Proof. In [19], they showed that for a symmetric Markov process with the assumptions

(I), (DF) and (C)

lim inf
t→∞

1

t
logEx (exp (−Aµ

t )) ≥ −λ2(µ), x ∈ E.

On the other hand, we see from Theorem 5.7 that

lim
t→∞

1

t
logEx (exp(−Aµ

t )) = −λ2(µ).

5.2 Gaugeability

In this section, we assume thatM = (Px, Xt) is an irreducible, transient,m-symmetric

Markov process on E. In [2], Chen defined the Green-tight class in slightly different

way as follows:

Definition 5.9. Suppose that µ is a signed smooth measure whose associated

continuous additive functional is A. Let A+ and A− be the PCAFs with Revuz

measures µ+ and µ−. Let |A| = A+ + A− and |µ| = µ+ + µ−. A measure µ is said

to be in the class K∞ if for any ϵ > 0, there are a Borel set K = K(ϵ) of finite

|µ|-measure and a constant δ = δ(ϵ) > 0 such that

sup
x∈E

∫
Kc

G(x, y)|µ|(dy) < ϵ and sup
x∈E

∫
B

G(x, y)|µ|(dy) < ϵ

for all measurable sets B ⊂ K with |µ|(B) < δ.
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However two definitions are equivalent under the strong Feller property ([13, Lemma

4.1]).

Suppose that µ is a signed smooth measure such that µ+ ∈ K∞. Let A+ and

A− be the PCAFs corresponding to µ+ and µ− respectively. Then A := A+ − A−

is the continuous additive functional with Revuz measure µ. We see that A+
ζ is

Px-integrable. So the gauge function gµ(x) := Ex(exp(Aζ)) is well-defined on E.

Theorem 5.10. For smooth measure µ with µ+ ∈ K∞, the gauge function gµ is

either bounded or identically infinite on E.

Definition 5.11. Let µ be a signed smooth measure such that µ+ is in K∞. We

say that µ is gaugeable if the gauge function x 7→ Ex(exp(Aζ)) is bounded on E.

By applying results in [16] to the 1-subprocess of M, we obtain

sup
x∈X

Ex(e
λζ) <∞ if and only if λ < λ∞. (5.11)

Theorem 5.12. Suppose that the constant function 1 is in K∞. Then λ2 = λ∞.

That is, the spectral radius λp is independent of p ∈ [2,∞]

Proof. Note that λ∞ ≤ λ2 and hence it is enough to show that if λ < λ2, then

λ < λ∞. For this, without loss of generality, we may assume 0 < λ < λ2. Let ϵ > 0

and q > 1 be such that λ + ϵ < λ2 and λ
λ+ϵ

+ 1
q
= 1. By definition of λ2, we have

∥G−(λ+ϵ)∥2,2 < ∞, where G−a =
∫∞
0
easpsds. Since 1 ∈ K∞, by Definition 5.9, there

exists an open set K of finite m-measure such that supx∈E G1Kc ≤ (2λq)−1. Since

1K ∈ L2(E;m), the function

G−(λ+ϵ)1K(x) = Ex

(∫ ∞

0

e(λ+ϵ)s1K(Xs)ds

)
is L2-integrable. Using the elementary inequality

e(λ+ϵ)a − e(λ+ϵ)b ≥ e(λ+ϵ)(a−c) − e(λ+ϵ)(b−c) for a > b > c ≥ 0,

we have

1 + (λ+ ϵ)G−(λ+ϵ)1K(x) ≥ Ex

(
exp

(
(λ+ ϵ)

∫ ∞

0

1K(Xs)ds

))
.

Now by Hölder’s inequality,

Ex(e
λζ) = Ex

(
exp

(
λ

∫ ∞

0

1Kc(Xs)ds

)
exp

(
λ

∫ ∞

0

1K(Xs)ds

))
≤

(
Ex

(
exp

(
qλ

∫ ∞

0

1Kc(Xs)ds

)))1/q

×
(
Ex

(
exp

(
(λ+ ϵ)

∫ ∞

0

1K(Xs)ds

)))λ/(λ+ϵ)

≤ 21/q(1 + (λ+ ϵ)G−(λ+ϵ)1K(x))
λ/(λ+ϵ).

(5.12)
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In the last inequality, we used Khasminskii’s inequality. Thus Ex(e
λζ) < ∞ m-a.e.

on E and therefore by Theorem 5.10, supx∈E Ex(e
λζ) <∞. This implies λ < λ∞ and

so λ2 = λ∞.

Theorem 5.13. Suppose that M satisfies (DF) and that for every ϵ > 0, there

is a compact set K such that supx∈E G11Kc(x) ≤ ϵ. Then 1 ∈ K∞(M1), where M1 =

(Yt, Px) and Yt is the 1-subprocess of Xt with semigroup {e−tpt}t>0. In particular, this

implies that λ2 = λ∞.

Proof. First note that the strong Feller property implies that the resolvent kernel

G1(x, dy) is absolutely continuous with respect to m. Let GY be the Green function

for Y . Then clearly GY = G1. For any ϵ > 0, let K be the compact set such that

supx∈E G11Kc(x) ≤ ϵ. We claim that there is a constant δ > 0 such that for any Borel

measurable subset B ⊂ K with m(B) ≤ δ. Suppose that this is not true. Then there

is a decreasing sequence of Borel measurable subsets Bk of K with m(Bk) < 1/k such

that supx∈E G11Bk
(x) ≥ ϵ for each k ≥ 1. By the strong Markov property,

sup
x∈E

G11Bk
(x) = sup

x∈K
G11Bk

(x).

Since G11Bk
is a bounded continuous function and K is compact, there is xk ∈ K so

that

G11Bk
(xk) = sup

x∈E
G11Bk

(x) ≥ ϵ. (5.13)

Taking a subsequence if necessary, we may assume that xk → x0 ∈ K. Since

G11Bk
(x0) decreases to 0 as k ↑ 0, there is k0 so that G11Bk0

(x0) < ϵ/3. By the conti-

nuity of x 7→ G11Bk0
(x), there is a neighborhood U of x0 such that supx∈U G11Bk0

(x) <

ϵ/2. As xk → x0, xk ∈ U when k > k0 is sufficiently large and so

G11Bk
(xk) ≤ G11B0(xk) < ϵ/2,

which contradicts (5.13). This proves the claim and therefore 1 ∈ K∞(M1). Now by

Theorem 5.12, the spectral radius λp(M1) of M1 is independent of p ∈ [2,∞]. Since

Yt is the 1-subprocess of Xt, λp(M1) = λp + 1. Thus the spectral radius λp of M is

independent of p ∈ [2,∞].

We will give analytic characterizations of gaugeability in terms of the associated

bilinear forms by using the result of Lp-independence of the spectral radius λp from

Theorem 5.12.

Theorem 5.14. Assume (I) and (DF). Let µ be a positive measure in K∞. Then

µ is gaugeable if and only if

inf

{
E(u, u);u ∈ F with

∫
E

u(x)2µ(dx) = 1

}
> 1.
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Proof. Let τt be the right continuous inverse of Aµ
t ; that is,

τt = inf{s : Aµ
s > t}

with the convention that inf ∅ = ∞. Let S̃ = {x ∈ X : Px(τ0 = 0) = 1} be the fine

support of µ and let S be the topological support of µ. The time-changed process

Y µ
t of Xt by Aµ is defined by Y µ

t = Xτt , whose state space is S̃. However, since

S̃ ⊂ S modulo a set having zero capacity, the semigroup of Y µ is µ-symmetric and

determines a strongly continuous semigroup on L2(S;µ) ([10, Theorem 6.2.1]). So this

time-changed process Y µ is a µ-symmetric right process. Set HSu(x) := EX(u(XσS
)),

where σS = inf{t > 0 : Xt ∈ S}. Then the Dirichlet form (Ê , F̂) of Y µ on L2(S;µ) is

given by

{
F̂ = {φ ∈ L2(S;µ) : φ = u µ-a.e. on S for some u ∈ Fe},
Ê(φ, φ) = E(HSu,HSu), φ ∈ F̂ and u ∈ Fe such that φ = u µ-a.e. on S.

(5.14)

Here Fe stands for the extended Dirichlet space of (E ,F). Note that for every Borel

f ≥ 0,

Ex

(∫ ∞

0

f(Y µ
t )dt

)
=Ex

(∫ ∞

0

f(Xτt)dt

)
= Ex

(∫ ∞

0

f(Xt)dA
µ
t

)
=

∫
S

G(x, y)f(y)µ(dy).

So the Green function of Y µ with respect to µ is G(x, y). Hence the constant function

1 ∈ K(Y µ). Since Aµ
ζ is the lifetime of the time-changed process Y µ, by Theorem

5.12,

sup
x∈E

Ex(e
Aµ

τ ) <∞ if and only if λ2(Y
µ) > 1.

Note that

λ2(Y
µ) = inf

{
Ê(φ, φ) : u ∈ F with

∫
S

φ(x)2µ(dx) = 1

}
,

which is equal to

= inf

{
E(u, u) : u ∈ F with

∫
E

u(x)2µ(dx) = 1

}
.

The theorem is now proved.
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5.3 A property of Legendre transform

In this chapter, we consider one of the basic properties of the Legendre transform.

The following theorem provides that there is a tangent line that never goes above the

graph at each point on the graph of a convex function. Let X be the locally convex,

Hausdorff topological (real) vector space.

Theorem 5.15 ([7]). Let f : X −→ (−∞,∞] be a lower semi-continuous, convex

function and define g : X∗ −→ (−∞,∞] by

g(λ) = sup {X∗⟨λ, x⟩X − f(x) : x ∈ X} .

If f is not identically equal to ∞, then g is never equal to −∞, and

f(x) = sup {X∗⟨λ, x⟩X − g(λ) : λ ∈ X∗} , x ∈ X. (5.15)

Proof. The first step in the proof is to develop the geometric picture alluded to above.

To this end, we define

E(f) = {(x, α) ∈ X × R : α ≤ f(x)}

and

E∗(f) = {(λ, β ∈ X∗ × R : f(x)) ≤ X∗⟨λ, x⟩X − β ∀x ∈ X} .

It is then an easy matter to check from our assumption that E(f) is a non-empty,

closed, convex subset of X × R. Indeed, the closedness and convexity of E(f) come

from the lower semi-continuity and convexity of f ; and it is clear that (x0, f(x0)) ∈
E(f), where x0 is any element ofX for which f(x0) <∞. On the other hand, although

E∗(f) is obviously closed and convex, it is less obvious that it is non-empty. To see

that E∗(f) ̸= ∅, choose x0 ∈ X as above and apply the Hahn-Banach Theorem to

find a (µ, ρ, γ) ∈ X∗ × R× R with the properties that the closed affine half space

H(µ, ρ, γ) := {(x, ξ) ∈ X × R : X∗⟨µ, x⟩X − ρξ ≤ γ} (5.16)

contains the set E(f) but not the point (x0, f(x0)− 1). Then, since

X∗⟨µ, x0⟩X − ρξ ≤ γ for ξ ≥ f(x0)

while

X∗⟨µ, x0⟩X − ρ(f(x0)− 1) > γ,

we see that ρ > 0 and therefore that

(λ0, β0) :=

(
µ

ρ
,
γ

ρ

)
∈ E∗(f). (5.17)
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Next, noting that β ≥ g(f) for every (λ, β) ∈ E∗(f) and

(λ, g(λ)) ∈ E∗(f), ∀λ ∈ X∗ with g(λ) <∞,

one sees that

g(λ) = inf {β : (λ, β) ∈ E∗(f)} ,

and therefore that is equivalent to

f(x) = sup {X∗⟨λ, x⟩X − β : (λ, β) ∈ E∗(f)} , x ∈ X. (5.18)

Since it is clear that f(x) ≥ X∗⟨λ, x⟩X − β for any x ∈ X and (λ, β) ∈ E∗(f), we

will have proved (5.18) as soon as we show that, for each (x, α) ̸∈ E(f), there is a

(λ, β) ∈ E∗(f) such that

X∗⟨λ, x⟩X − β > α. (5.19)

Since (x, α) ̸∈ E(f), the Hahn-Banach Theorem again provides the existence of

(µ, ρ, γ) ∈ X∗ × R × R so that the H(µ, ρ, γ) in (5.16)contains E(f) and (x, α) ̸∈
(µ, ρ, γ). In particular, since X∗⟨µ, x0⟩X − ρξ ≤ γ for ξ ≥ f(x0), we know that ρ ≥ 0.

Hence, for every δ > 0,

(λδ, βδ) :=

(
µ+ δλ0
ρ+ δ

,
γ + δβ0
ρ+ δ

)
∈ E∗(f),

where (λδ, βδ) is the element of E∗(f) described in (5.17). (The introduction of δ > 0

here is to take care of the case when the tangent hyperplane is vertical and therefore

ρ = 0.) At the same time, for sufficiently small δ > 0 one has that

X∗⟨λδ, x⟩X − α =
1

ρ+ δ
(X∗⟨µ+ δλ0, x⟩X − (ρ+ δ)α) >

γ + δβ0
ρ+ δ

= βδ.

Hence, (5.18) holds with (λ, β) = (λδ, βδ) for any sufficiently small δ > 0.
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