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Chapter 1
Introduction

In [15], [18], a large deviation principle was proved for additive functionals of Brownian
motion corresponding to Kato measures. In [21], they used the Gértner-Ellis theorem
to show a large deviation principle for additive functionals of symmetric a-stable
processes. For applying the Gartner-Ellis theorem, they proved the differentiability of
logarithmic moment generating functions of the additive functional. A main objective
of this paper is to extend these results in [15], [18] and [21] to more general symmetric
Markov processes, especially in the case that the logarithmic moment generating
function is not differentiable.

In [22], he established a sufficient condition for uniform large deviation princi-
ple. In [20], he proved the uniform large deviation principle for symmetric Markov
processes under certain assumptions. Second object of this paper is to show the lo-
cally uniform lower bound of the large deviations for occupation times of symmetric
Markov processes with finite life time by using the ground state transform.

Let E be alocally compact separable metric space and m a positive Radon measure
on E with full topological support. Let M = (P,, X;) be an irreducible, conservative,
m-symmetric Markov process on E with the doubly Feller property. Let (£, D(£)) be
the Dirichlet form on L?(E;m) generated by M. We assume that (£, D(€)) is regular
and transient. Let p be a positive Radon measure in the Green-tight Kato class (in
notation u € Ky ) and A} the positive continuous additive functional in the Revuz
correspondence to p.

We define

~(0) = inf {5(u,u) cueDE), 9/Eu2du _ 1} . BeR. (1.1)

Let 6y be a unique value such that v(6y) = 1. We define the functions C'(6) and C(0)



C(f) = —inf {E(U,u) — Q/Euzdu cu € Co(E)ND(E), /

u?dm = 1} ,
E

and

~ >
Gy [ €O 0=0
0, 0 < 6.

Here Cy(F) is the space of continuous functions on F with compact support.

Let I(\) (resp. I(X)) be the Legendre transform of C(6) (resp. C(6)):

I(\) = sup{\d — C(6)} (resp. I(\) = sup{\d — 5(9)}) . AeRL

feR! fcR1

Our main theorem is as follows:

Theorem 1.1. Suppose M satisfies (I), (DF), (C) and (LU) below. Let p € Ko.
Then

(i) For any open set G C R!,

| A} .
liminf —log P, | — € G ) > — inf I(\).
t—oo t AEG

(ii) For any closed set K C R,

limsup > log P, (2L € i < — inf I(\)
Ak =T ek WY

We can show that I equals I on [C"(6p+), 00), where C'(6y+) = lim,yo C' (6 + €).
As a corollary of Theorem 1.1, for A C [C"(6p+), 00) with infyc g0 [(N) = infyc 5 I(N),

lim llong (A_f € A) = — inf ().
t—oo ¢ t AEA

In particular, if C' = C, that is, C (0) = 0 for < 6y, then the large deviation principle
for A}’ /t holds.

In [18], [21], they showed that C' equals C' for the Brownian motion or a-stable
process. In general, C' does not equal C when C(0) < 0([19, Theorem 3.1 (ii)]). Hence
Theorem 1.1 turn out to be an extension of the result in [21].

In the proof of the large deviation principle for Af, we also use the Gértner-
Ellis Theorem. The function C (0) is regarded as the logarithmic moment generating
function of A}. In the Gartner-Ellis theorem, the differentiability of logarithmic

moment generating functions is a sufficient condition for obtaining the lower bound.



Needless to say, it is impossible to show the differentiability for continuous additive
functionals of general symmetric Markov processes. Indeed, if 6, > 0 and C(0) < 0,
then the right derivative of C' at § = 6, is positive because it is equal to C’(6,)
and C (0) is convex, but the left derivative is 0. Therefore, the logarithmic moment
generating function C (0) is not differentiable at 6.

We prove first the lower bound for the absorbing symmetric Markov process M¢

on a relatively compact open set G C E. For § € R, let
CY% ) = —inf {59“’G(u,u) Tu € D(EG),/ u*dm = 1} :
G

where D(Y) = {u € D(E) : u =0 qe.on E\ G}. Here £ is the Schrodinger
form on G defined in (3.1). Combining the local ultra-contractivity with the analytic
perturbation theory, we can obtain that C%(6) is an analytic function in 6. Applying
the Gartner-Ellis theorem, we can show the lower bound for absorbing symmetric
Markov process M“. Then by approximating E by G,,, where {G,,} is an increasing
sequence of relatively compact open sets with |J,—, G, = E, we obtain the lower
bound for the Markov process M on the whole space E.

On the other hand, to show the upper bound, we use two facts, LP-independence
of spectral bounds of Feynman-Kac semigroups and gaugeability for Schrodinger type
operator. We show by the LP-indepencence that for § > 6, the logarithmic moment
generating function of A* exists and equals C , and by the gaugeability that for 6 < 6,
it equals 0. Hence, applying Gartner-Ellis theorem, we have the upper bound. In
appendix 5.1 and 5.2, we precisely treat the LP-independence and the gaugeability,
respectively.

From above results, we find different rate functions between for the upper bound
and for the lower bound and see that the two rate functions coincide on a certain
interval.

Finally, we treat the 1-dimensional Brownian motion (P, X;) with a positive
drift k as an example. At this time, (P¥, X;) satisfies the assumptions in Theorem
1.1 . We can choose the Dirac measure dp at 0 as a positive Radon measure in the
Green-tight Kato class. Then the local time [; of the Brownian motion (P¥, X;) at
the origin is the continuous additive functional in the Revuz correspondence to dy.

Let £ = %j—; + k< be the infinitesimal generator of (P, X;). Then £% := £ +

is a self-adjoint operator on L%(R,e?**dx). Since C(f) is equal to the bottom of
spectrum of £%, C/(6) is negative on @ < k. Therefore we can see that C(0) # C(0)

on 0 < k, and hence I(\) # I(A\) on 0 < X < k. In particular, for A C [k, c0) with



infyeao I(A) = infyc 5 I(N), we have

ti s (1 € 4) =i 100

In [20], the uniform large deviation principle for a symmetric Markov processes
is proved under certain assumptions. In Chapter 4, we study the conditions for
satisfying the uniform large deviation principle for a symmetric Markov processes. As
an application, we prove the locally uniform lower bound of the large deviations for
occupation times of symmetric Markov processes with finite life time. For the proof of
this fact, the ground state transform plays a crucial role. We further consider the large
deviation principle for symmetric Markov processes conditioned on non-absorption up
tot > 0.

This paper is organized as follow. After giving preliminaries in Chapter 2, we shall
prove a large deviation principle for the positive continuous additive functional A}
in the Revuz correspondence with p in the Green-tight Kato class in Chapter 3. We
shall give an example for our theorem to the 1-dimensional Brownian motion with
a positive drift k£ in Section 3.2. As mentioned above, in Chapter 4, we study the
uniform large deviation principle for symmetric Markov processes with finite life time.
Finally, in Appendix 5.1, 5.2 and 5.3, we check the LP-independence, the gaugeability

and a property of Legendre transform.



Chapter 2

Preliminaries

2.1 The Gartner-Ellis theorem

The large deviation principle characterizes the limiting behavior, as ¢ — 0, of a
family of probability measures {u.} on (E, %) in terms of a rate function. This
characterization is via asymptotic upper and lower exponential bounds on the values
that p. assigns to measurable subsets of E. Throughout FE is a topological space
so that open and closed subsets of E are well-defined, and the simplest situation
is when elements of A, the Borel o-field on F, are of interest. To reduce possible
measurability questions, all probability spaces in this paper are assumed to have been
completed, and, with some abuse of notations, #g always denotes the thus completed
Borel o-field.

Definition 2.1. A rate function [ is a lower semicontinuous mapping [ : £ —
[0, 00](such that for all o € [0,00), the level set V() := {z : I(z) < a} is a closed
subset of E). A good rate function is a rate function for which all the level sets ¥;(«)
are compact subsets of E. The effective domain of I, denoted Dy, is the set of points
in E of finite rate, namely, D; := {z : I(x) < co}. When no confusion occurs, we

refer to Dy as the domain of 1.

In our case, since E is a metric space, the lower semicontinuity property may be
checked on sequences, i.e., I is lower semicontinuous if and only if liminf, _,, I(z,) >
I(z) for all x € E. A consequence of a rate function being good is that its infimum
is achieved over closed sets.

For any set I', T denotes the closure of I', I'° the interior of I', and I'® the comple-

ment of I'. The infimum of a function over an empty set is interpreted as oo.



Definition 2.2. {u.} satisfies the large deviation principle with a rate function
Iif forall ' € A,

— inf I(z) <lim iglfelog pe(I') < limsupelog p (I') < —inf I(x). (2.1)
J

zel* e—0 zel

The right- and left-hand sides of (2.1) are referred to as the upper and lower bounds,
respectively.

When By C £, the large deviation principle is equivalent to the following bounds:

(i) (Upper bound) For any closed set F' C E,

limsup € log p(F') < — inf I(x). (2.2)

e—0 el
(ii) (Lower bound) For any open set G C FE,

o > ‘ '
hreri)lglfelog pe(G) > ;1612 I(z) (2.3)
Consider a sequence of random vectors Z, € R? where Z, possesses the law /i,

and logarithmic moment generating function
A,(A) :=log E (eQ’Z")) : (2.4)

The existence of a limit of properly scaled logarithmic moment generating func-
tions indicates that p, may satisfy the large deviation principle. Specifically, the
following assumption is imposed throughout this section.

Assumption 2.3. For each A € R?, the logarithmic moment generating function,
defined as the limit

A(A) := lim lAn(n/\)

n—oo N
exists as an extended real number. Further, the origin belongs to the interior of
Dy :={NeRY: A()\) < oo}

Let A*(-) be the Fenchel-Legendre transform of A(-), that is,

A*() = sup { (A, ) — AN},

ACER4

with Dy~ = {z € R?: A*(x) < oo}. It is our goal to state conditions under which the
sequence i, satisfies the large deviation principle with the rate function A*.



Definition 2.4. y € R? is an exposed point of A* if for some A € R? and all

T # Y,
Ay) = A (y) > (A z2) — A*(z)

this A is called an exposing hyperplane.
Definition 2.5. A convex function A : R? — (—o0, 00| is essentially smooth if:
(i) Dg is non-empty.
(ii) A(-) is differentiable throughout Dg.

(iii) A(-) is steep, namely, lim, ., |[VA(\,)| = oo whenever {\} is a sequence in D}

converging to a boundary point of Dj.
Theorem 2.6 (The Gértner-Ellis Theorem). Assumption 2.3 hold.

(1) For any closed set F,

1
lim sup — log i, (F') < — inf A*(z). (2.5)
n—00 zeF
(i1) For any open set G,
1
N > _ . '
liminf ~log in(G) = — inf A*(z), (2.6)

where F is the set of exposed points of A* whose exposing hyperplane belongs to
D3.

(113) If A is an essentially smooth, lower semicontinuous functions, then the large
deviation holds with the good rate function A*(-).

2.2 Symmetric Markov processes and Dirichlet forms

Let E be alocally compact separable metric space and m a positive Radon measure on
FE with full topological support. Let (£, D(€)) be an m-symmetric regular irreducible
Dirichlet form on L?*(E;m). It is known that a regular Dirichlet form & has the
Beurling-Deny decomposition ([10, Theorem 3.2.1]) : for u € D(E)

E(u,u) = %/Ed,ufw + //EXE\diag(u(x) —u(y))?J (dxdy) + /Eu2dk. (2.7)

Here Iy s J and k are the energy measure of the strongly local part, the jumping

measure and the killing measure with respect to (€, D(£)), respectively.



We assume that (£,D(£)) is transient, that is, there exists a strictly positive,
bounded function g € L*(FE;m) such that for u € D(£)

/E|u|gdm < VE(u,u)

(cf. [10, p.40]).

We denote by u € D,,.(€) if for any relatively compact open set D there exists
a function v € D(E) such that u = v m-a.e. on D. We denote by D.(£) the family
of m-measurable functions u on E such that |u| < oo m-a.e. and there exists an
E-Cauchy sequence {u,} of functions in D(E) such that lim, . u, = u m-a.e. We
call D.(€) the extended Dirichlet space of (£,D(E)).

Let M = (Q, # ,{ % }1>0, { Pr }zex, { Xt }+>0, () be the m-symmetric Hunt process
generated by (€, D(E)), where {.%; };>0 is the augmented filtration and ¢ is the lifetime
of M. Denote by {p:}i>0 and {Ga}a>0 the semigroup and resolvent of M:

ptf('r) = Ez(f<Xt>)7 Gaf('r) = /Ooo e_atptf(x)dt'

Suppose that H is semibounded self-adjoint operator on L?(D) with D being a
domain in R? and that e”* is an irreducible positivity-preserving semigroup with
integral kernel a(t,z,y). We assume that the top of the spectrum A; of H is an
eigenvalue. In this case, A\; has multiplicity one and the corresponding eigenfunction
¢0, normalized by ||¢pl|l2 = 1, is positive almost everywhere on D. ¢y is called the
ground state of H.

We now define the unitary operator U from L?*(D, ¢3(x)dx) to L?(D) by Uf = ¢of
and define H on L2(D, ¢2(x)dz) by

H=U"Y(H—-x)U.
Then e/t is an irreducible symmetric Markov semigroup on L*(D, ¢2(z)dx) whose

integral kernel with respect to the measure ¢3(z)dz is given by

e Ma(t,z,y)
Po(7)¢o(y) .

Definition 2.7. H is said to be ultracontrctive if e’ is a bounded operator from
L2(D) to L*=(D) for all t > 0. H is said to be intrinsically ultrative if H is ultracon-
tractive; that is e* is a bounded operator from L%(D, ¢2(z)dz) to L®(D, ¢2(x)dx)
for all ¢t > 0.

We assume that M satisfies the next conditions:



Irreducibility (I). If a Borel set A is py-invariant, i.e., p,(1af)(z) = Lapef(x) m-
a.e. for any f € L*(E;m) N %, (E) and t > 0, then A satisfies either m(A) = 0
or m(E'\ A) = 0. Here %,(F) is the space of bounded Borel functions on E.

Conservativeness (C). P,(( =o0) =1 for each z € E.

Doubly Feller Property (DF). Foreacht > 0, p;(C(F)) C Coo(E), limyyo ||pef—
fllo = 0 for any f € C,(E) and pi(%By(E)) C Cp(E), where Coo(F) (resp.
Cy(FE)) is the space of continuous functions on E vanishing at infinity (resp.

the space of bounded continuous functions on F).

Local Ultra-contractivity (LU). Let {p&} be the semigroup defined by p& f(z) =
E.(f(X:);t < 1) for any f € By(FE), where 7 is the first exit time from
G. Then for any relatively compact open set G, the semigroup {p¢} is ultra-
contractive, |[p¥ f|le < C(¢)||f|l1, where C(t) is the operator norm ||p%||; o, of

p¢ from LY(G;m) to L>=(G;m) .

We remark that (DF') implies

Absolute Continuity Condition (AC). The transition probability of M is abso-
lutely continuous with respect to m, p(t, x, dy) = p(t, z,y)m(dy) for each t > 0
and r € E.

Under (AC), there exists a non-negative, jointly measurable a-resolvent kernel
Golz,y) on E x E:

aJ@»:L}a@yV@wmwmer,fe%um.

Moreover, G, (z,y) is a-excessive in x and in y ([10, Lemma 4.2.4]). We simply write

G(z,y) for Go(x,y). For a measure i, we define the a-potential of u by

Gwmzé@mmwm

We define the (1-)capacity Cap associated with the Dirichlet form (£, D(E)) as

follows: for an open set O C FE,
Cap(O) = inf{& (u,u) : u € D(E),u > 1, m-a.e. on O},
where & (u, u) = E(u,u) + (u, u),, for a Borel set A C E,

Cap(A) = inf{Cap(O) : O is open, O D A}.
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A statement depending on x € F is said to hold q.e. on FE if there exists aset N C E
of zero capacity such that the statement is true for every x € E'\ N. The notation
“g.e.” is an abbreviation of “quasi-everywhere”. A real valued function u defined q.e.
on F is said to be quasi-continuous if for any € > 0 there exists an open set G C F
such that Cap(G) < € and u|p\¢ is finite and continuous. Here, u|p ¢ denotes the
restriction of w to £\ G. It is known that each function u in D.(£) admits a quasi-
continuous version @, that is, u = @ m-a.e.([10, Theorem 2.1.7]). In the sequel, we
always assume that every function u € D, (&) is represented by its quasi-continuous
version.

Let Spo be the set of positive Borel measures p such that u(E) < oo and Gypu is
bounded. We call a Borel measure p on E smooth if there exists a sequence {E,} of

Borel sets increasing to E such that 1g, - p € Sy for each n and
P,(lim op\p, > () =1, Ve L.
n—oo

Here og\g, is the hitting time of E'\ E, by M, op\g, = inf{t > 0: X, € E\ E,}.
We denote by S the set of positive smooth Borel measures. In [10], a measure in S
is called a smooth measure in the strict sense. Here we omit the adjective phrase “in
the strict sense” .

A stochastic process {A; }i>0 is said to be an additive functional (AF in abbrevi-

ation) if the following conditions hold:

(i) Ai(+) is F-measurable for all t > 0.

(ii) There exists a set A € Z, = 0 (Us>0-%;) such that P,(A) =1, for all z € E,
O,A C A for all ¢t > 0, and for each w € A, A.(w) is right continuous and has the left
limit on [0, ((w)), Ag(w) = 0, |Ax(w)| < oo for t < ((w), Ay(w) = A¢(wy(w) for t >,
and Ay s(w) = Ar(w) + As(Oyw) for s, t > 0.

If an AF {A;}+>0 is positive and continuous with respect to t for each w € A, the AF
is called a positive continuous additive functional (PCAF in abbreviation). The set of
all PCAF’s is denoted by Af. The family S and A} are in one-to-one correspondence

(Revuz correspondence) as follows: for each smooth measure p, there exists a unique
PCAF {A;}:>osuch that for any f € Z(E) and 7-excessive function h,

i+ B | tf(Xs)dAs) - [ stamantar (28)

([10, Theorem 5.1.7]). Here, Epm(-) = [y Ex(-)h(z)m(dz). We denote by A} the
PCAF in the Revuz correspondence with pu.

We define some classes of smooth measures.

Definition 2.8. Suppose that u € S is a positive Radon measure.
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(1) A measure p is said to be in the Kato class of M (K in abbreviation) if
lim ||Gaplloe =0
a—00

A measure p is said to be in the local Kato class of M (K, in abbreviation)
if 1x - p € K for any relatively compact open set K. Here 1x is the indicator
function of K.

(2) A measure p is said to be in the class K if 4 € K and for any € > 0, there exists
a compact set K = K (€)

sup/cG(w,y)u(dy) <e

zel

A measure p in Ky, is called Green-tight.

We note that every measure treated in this paper is supposed to be Radon. Thus

we see from [1, Theorem 3.9] that u € K if and only if

limsup E,(AY) —hmsup/ / s, x,y)pu(dy)ds = (2.9)

0 2cE z€E

Chen [2] defined the Green-tight class in slightly different way, however two definitions
are equivalent under the strong Feller property ([13, Lemma 4.1]). We see from [17]
that for a > 0 and p € K

/ W2 < |Gaptlloe - Ea(u)  for any u € D(E). (2.10)
E

Let € K. We define the Schrodinger form by

E9(u, ) = E(u, u) — /E W2y

D(E*) =D(E).
We denote by £# = L + p the self-adjoint operator associated with the closed sym-
metric form (E#, D(EH)), that is, (—LFu,v), = EF(u,v) for any u,v € D(E).
We define the Feynman-Kac semigroup {p)'}i>0 by

pif(z) = Ex(exp(Af) f(Xy)), x € E, fe B(E).

The next two inequalities are versions of the inequality (2.10), which plays a crucial

(2.11)

role in chapters below.
Theorem 2.9. ([17]) Let o € K. For any € > 0 there exists M(e) > 0 such that
for any u € D(E)
/ wrdp < €& (u,u) + M(e)/ u*dm.
E

E
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Theorem 2.9 follows from the next theorem and the definition of Kato measures.

Theorem 2.10. (/17]) Let 1 € Kos. Then for any u € D(E)

/ Wdp < (|Gl - € (uy ).
E

Proof of Theorem 2.9. The inequality in Theorem 2.9 follows from Theorem 2.10.
Indeed, for a > 0 and p € IC,

/ P < | Gaptll - Ealu, )
E
| Gtllos - €t 0) + | Giattllow - (a1, ).

From the definition of Kato measures, we can choose € > 0 so that ||Gap|le < € and
put M(e) = a||Gaptloo- O
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Chapter 3

Large deviation principle (LDP)

3.1 LDP for additive functionals

Let G C E be a relatively compact open set. We set
DEY={uecDE): u=0qe on E\G}.

Here £¢ is the part of the Dirichlet form £ on G. D(EY) is a closed subspace of the
Hilbert space (D(£),&:1). It is known that (£, D(EY)) is a regular Dirichlet form
on L*(G;m). Let MY be the associated Markov process of (£¢,D(E%)), namely, the
part process of M on G ([10, A.2]). Indeed, M is an absorbing Markov process on
G with an m-symmetric transition function p& on (G, B(G)) defined by p¢(z, B) =
P.(X; € B;t < 1¢), where 74 is the first exit time of G.

For 6 € R! define

EMC (u,u) = E%(u,u) — 9/ u’dp, u € D(EY) (3.1)
and
CY%0) = —inf {50“’G(u,u) Tu € D(SG),/ u*dm = 1} : (3.2)
e

Let 19 be the Legendre transform of C:

I9\) = sup {0 —C%(0)}, XeR.

feR?!

Lemma 3.1. For uy, us € D(€) and 0 < a < 1, u:= y/au? + (1 — a)ui € D(&)
and
E(u,u) < af(ur,ur) + (1 — a)&(ug, ug).

Proof. First, we consider the energy measure of the strongly local part of (2.7).
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It follows from Theorem 5.6.2 in [10] that for any ® € C'(R%) with ®(0) = 0 and
V1, ...,0q € D(E)y :=D(E) N L>®(E;m), the composite function ®(v) = ®(vy, ..., vg)
is in D(E), and

d
d:u?d)(v),u» = Z (bl”z (v)d:u?vi,ww for any w € D(g)ba

i=1

where ®,. is the partial derivative of ® with respect to x;. We call the formula above

the derivation property of p<,, .

By applying the formula above to x = (x1, z5) and ®(x \/ozx1 (1 — )3, we
have for u = ®(uy, uz), ui,uy € D(E)y

2,2
auy

_ s 42 (1 — a)ujus . (1 — a)?u’
au?+ (I—a)u2 " " Tau2 4 (1—a)u2 2 T g + (1 —a)ud T

a(l — a)ugus
2 2d'u<u17u2)
g aut + (1 —a)us
o(l—apd .\ a(l—a)pd -\
< 5 Ay 5 Ay
g au?+ (1 —a)ul ! g ou? + (1 —a)u? 2
1—a)ul . 1—a)u? .
S / ( ) 2 d,l,t<ul>+/ 2( ) 1 Qd/L(uQ);
EO‘U1+(1_ )2 Eau1+(1_a)u2
by Lemma 5.6.1 in [10], we have

. afout + (1 —a)u3) | . (I —a)(aui + (1 —a)u3) ,
/E dpgyy < /E 5 i) + ; Apiin)

au? 4+ (1 — a)ul au? 4+ (1 — a)ud

a/ Ay + (1 — a)/ Ay
E E

Moreover, noting

u(@)uly) =/ aud(@) + (1 — a)ud(x)y/aud(y) + (1 — o)ud(y)

> o (z)ur(y) + (1 — a)ua(@)uz(y),
we have
(u(z) = u(y))® < a(u(z) —ui(y))? + (1 — @) (ua(z) — us(y))?

and thus & (u,u) < a&¥(ui,ur) + (1 — )& (ug,uz). The proof of this lemma is
completed. O
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Define
JE(\) == inf {EG(u,u) u € D(EY), /Gu2du =\ /Guzdm = 1} , AeR!
and

JE\) =lim inf JEN).

e—=0 | N =)\|<e

JC is the lower semi-continuous modification of J¢. From Lemma 3.1, we have

Lemma 3.2. The function JC is convex: for 0 < a <1 and A\, \s € R
JC (M + (1= a)r) < aJ%0) + (1 —a)J9\y).

Proof. For any uy,uy € D(EY) such that

/u?d,u:/\i, /ufdmzl, 1=1,2,
G el

let u := y/au? + (1 — a)u?, 0 < o < 1. Then u belongs to D(£Y),

/ w?dp = a); + (1 — a))g and / w?dm = 1.
G G

We see from the definition of jG()\) and Lemma 3.1 that for any uy,us € D((‘/’G)

satisfying above conditions,

JG(ad + (1 — a)g) < E(u,u)
< a€(ug,ur) + (1 — a)&(ug, us).
Therefore, we have the lemma. O
Lemma 3.3. The function J¢ is convez.
Proof. Let A;, Ay € R, For X and N with [N — A\ < € and |\ — \y| < e,
inf JEN) < TN + (1 — )\
it e T ) = TN+ (L= )X
< aJN) + (1 — a)JE(N)

by Lemma 3.2, and thus

inf JN) <a inf JYWN)+(1-—a) inf JEO).
A—(aM+(1—a)r2)|<e [N =A1]<e [N —Xa|<€

The proof is completed by letting € — 0. [
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Lemma 3.4. The function CY is the Legendre conjugate of JC,

C%0) = sup {OX — JE(N\)}.

AeR!

Proof. Let

A:{UED(gG)Z/UQdm=1}

G

A,\:{UED(SG)Z/UQd/L:)\, /qumzl}, A€ RL
G G

For any € > 0, set

Ay e = {UED(SG):A—6</u2d,u<)\—|—6, /u2dm:1}.
G e
Then
inf £9%(u,u) < inf E%Y(u,u) <lim inf E%C(u,u) < inf E%C(u,u)
ueA u€Ay . e—0ucAy . ucAy
and thus

inf £ (u,u) <inflim inf E%C(u,u) <inf inf E%C(u,u) = inf E%C(u,u).
ucA A e=0ueA, . A ucAy uceA

Hence we have

C%0) = —inflim inf &E%C(u,u)

A e>0ucAy .

= —inflim inf (inf 59“’G(u,u))

A e=0 NV =)\|<e \ucAy,
— _; ; : TG\ _ )/
= iyttt (00 - 0x).
Noting
lim inf (jG(X)—ex) = JE(N) — O,

e—=0 [N =)\|<e

we have

c%0) = — irif{JG()\) —0\} = sgp{ex —J\)}.

As a result, we see that

Lemma 3.5.
I¢ = J¢.
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Proof. The function J¢ is lower semi-continuous, convex and not identically infinite.
Hence, it follows from Lemma 3.4 and Theorem 5.15 in Appendix 5.3 that J¢ =
I¢. O

We use the notations J (resp. J) for J¢ (resp. J¢) when G = E.

Lemma 3.6. Let {G,} be an increasing sequence of relatively compact open sets
with \J,—, G, = E. Then for an open set O C R

inf J(A) = inf inf JE(N).
A€0 n €0

Proof. By the regularity of the Dirichlet form (£, D(E)),

inf J(\) = inf {S(u,u) tu € D(S),/ uldp € O,/ w dm = 1}
E E

€0

:inf{c‘)(u,u):uGD(S)ﬂC’O(X),/u2du€O,/u2dm:1}
E E

n

= infinf {E(u,u) cu€eDE)N CO(GH),/ u?dp € O,/ urdm = 1}
E B

= inf inf JO"(\).
n AeO
Noting that infeo JE(A) = infrco JE(N) for any open set O C R!, we have the

lemma. ]

Let y1 € Kjoe. Let G be a relatively compact open set of E. Denote by {GS}.>0
the resolvent of the part process M® of M on G. Then the part process M is tight
in the sense that for any € > 0, there exists a compact set K C G such that

sup G$1 ke (z) < e.
zelG

Here 1g-. is the indicator function of G'\ K. In fact, note that for z € G,

00 0 00
GSlge(x) = / e ke (z)dt = / e ' e (2)dt + / e 'pC 1 ke (2)dt.
0 0 5

We see from (LU) and inequality (4.20) that the right hand side is dominated by

0 00 00
/ e tdt + / e P 1eem(G\ K)dt <1 —e™° + / e 'C(6)m(G \ K)dt
0 s s

<l—e Pl +e°C(O)m(G\ K).

For any ¢ > 0, we choose 6 > log(l — §) and a compact set K C G satisfying

m(G\ K) < %, and obtain the tightness of MY.
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Let {p/"“}1~0 be the semigroup defined by
PO (@) = Ee (M (X5t < 70, for [ € B(G).
Define the LP-spectral bounds of {p"“},0 by
A1) = — lim ~ log ||piC 1<p<
p (1) = = lim —log||p™ [y, 1<p < oo,

where |[pt““|,, is the operator norm of pi““ from LP(G;m) to LP(G;m). We omit
‘G" from XS () when G = E.
The LP-independence of the spectral bounds of {p} ’G}t>0 means that

A (1) = X5 (), 1< p<oo.

As mentioned above, the Markov process M¢ is tight, so )\f (Aw) is independent
of p by [2, Theorem 4.1]. We easily see the following inequality

1 1
—\S(0p) < li%n inf n log E, <€9Af;t < TG'> < limsup — log sup F, (eeAf;t < T(;>
—00

t—00 ze€G
1
= lim sup — log sup pfu’Gl(x)
t—00 zelG
1
= lim sup - log pru’GHoo
t—00 t
= =A% (0n).

By combining the LP-independence of the spectral bounds of {pf“ ’G}t>0 and the vari-
ational formula for A5 (6p),
lim - log F, (e tit < TG> =C"%(0). (3.3)
t—oo t
By using (LU), the transition function p?*©(z,y) of pf*“ is bounded for each ¢ > 0
and z,y € E, and thus pf“ ‘% is a Hilbert-Schmidst integral operator, in particular, a
compact operator. Hence, we see that C%(6) is an analytic function in 6 because it is

the principal eigenvalue of £#. Then, combining (3.3) with the Gértner-Ellis theorem
([6, Section 2.3]), we obtain the next lower estimate: For any open set O C R?,
liminf = log P AgeO't< > — inf I9()) (3.4)
it ylos P (€0t <70 ) 2~ p 10V, -

where I¢ is the Legendre transform of C.
We use the notations I for /¢ when G = E.
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Theorem 3.7. Let i € Kjoe. Then, for any open set O C R

o1 Ay :
liminf — log P, TEO > — inf I(A).

t—oo AeO

Proof. Let {G,} be a sequence of relatively compact open sets such that G,, T E and
simply write I" for I9. Then we have from (3.4) that

1 AY
lim inf = log P, (—t S O)
t—oo t t
o1 A7
> sup hmlnfg log P, ry €0t <1g,

n t—

> —inf inf I"(\).

n AeO
Combining Lemma 3.5 and Lemma 3.6, we have
BERSTN = T

Hence we obtain the theorem. O]

Define
7(0) := inf {S(u,u) tu € D(E), O/Euzdu = 1} , 0 eR. (3.5)
Lemma 3.8.
7(0) <1 <= inf {geﬂ(u,u) : /Eu2dm = 1} <0. (3.6)

Proof. We can prove this lemma by the same argument as in [21, Lemma 2.2]. Assume
that v(f) < 1. Then there exists a gy € Co(X) with 0 [, ¢jdu = 1 such that
E(po, o) < 1. Hence we see

E(o, o) < 9/ o mn
E

Letting
2]
Uy = —F/——,
\/ fE wodm
we have

SGM(U(),U()) S 0.

On the other hand, we assume that inf {59“(u,u) D [putdm = 1} < 0. Then there
exists a 19 € Co(E) with [, ¢)§dm =1 such that E% (i, 1) < 0. Letting

Yo

N

Ug =
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we have
g(UQ,UO) S 1.
O]

Let 6y > 0 be a unique value such that () = 1. Suppose that p € K.
Under the assumptions (C) and (DF), if A\o(p) <0, A, (p) is independent of p by [19,
Theorem 3.1]. By combining Lemma 3.8, we can derive the following in a similar way
of (3.3): for 6 > 6

1 "
C(0) = lim - log E, (Jf“t) .
t—oo ¢
On the other hand, by Lemma 3.8 and [2, Theorem 5.1] on the Schrodinger type
operator, we see that «(f) > 1 is equivalent to

sup B, (eeAgo> < 00.

zel

Since A} is positive, for § < 6

1 1
lim —log F, <69A5> < lim —log F, (eeAg") = 0.
t—oo t t—oo §

Hence we have

Theorem 3.9. Let p € K. Then
1 oA\ _
i s () -0
where 6(0) is the function defined by

~ c), 6>6bp,
0, 0 < 6.

Let I be the Legendre transform of C(6),

I(\) = sup{\0 — C(6)}.

OcRL

We see from Theorem 3.9 that C (0) is the logarithmic moment generating function of
Al Then, combining Theorem 3.9 with the Gértner-Ellis theorem ([6, Section 2.3]),
we have the upper bound:

Theorem 3.10. Let u € K. Then for any closed set K C R?,

o A .
hmsupglong - € K| <—inf I(N).

t—o0 o AeK



The Legendre transform of C'(#) and C(0) are expressed as follows:

I(X) = sup{\d — C(0)}

PeR!

AC)THA) —Ce)HN), A= C(0)

—{ 00, 0< A< C'(0)

0, A <0.

I(\) = sup{\ — C(6)}

OeR!

AC) ) =CUC) TN, A= C(Bot)

= )\90, 0< A< Cl(eo—i‘)

00, A <0.

Hence, I equals I on [C”(6y+), 00).

21

(3.8)

3.2 An example — Brownian motion with constant

drift

We give a simple example that our main theorem can be applied.

Example 3.11. Let us consider the 1-dimensional Brownian motion (P¥, X;) with

a positive drift k. Then the process (P*, X;) is transient and its infinitesimal generator
L is given by %% + kL. Let (£,D(£)) be the Dirichlet form on L*(R';e**dx)

generated by (P¥, X;), that is,

1 du dv
E =— [ ==k D(E
(4, ) 2/Rldme v, u, v € DE)

D(€) = the closure of Cg°(R') with respect to 811/2.

By using integration by parts,

1 d*u du -
E(u,v) = —5/]1{ (@ + 2/4:%) ve** dy

- (_£u7 ’U)ezk-rdx .

Then (PF, X;) satisfies the assumptions (I), (DF), (C) and (LU).

Let p be the Dirac measure at the origin. i.e., p = dp. Then p € K. Let [; be

the local time at 0. Then [, is the continuous additive functional corresponding to p.
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We define the functions C(6) and C(0) by
C(0) = —inf {E(U,u) — 0u*(0) : u € C°(RY), / u2erdr = 1} ,
R1

~ 0(9), 0> 6
0, 0 < 6y.

The function C(#) is equal to the bottom of spectrum of the self-adjoint operator
L% = L + 6. We first consider C(f) for § > 0. For u € C°(R'), the boundary
condition

u'(0+) — ' (0—) = —260u(0)

must be satisfied. Since u € L?(R!, e**dz), the eigenfunction corresponding to an

eigenvalue A forms

Cef(k+\/k272)\)zy x>0
i R 2 |

where C' is a constant. From the boundary condition, we have

VE2 =2\ =0.
Hence,
/{32 _ 92
A= 5
Since C'(0) = C(0) for § < 0, we have
02 k2
7y 20
co) = 12
—— 0 .
5 <0
Moreover, since 0y = k, we have
0% k2
ce)=4 3~z =2F
0, 0 <k.

Let I(A) (resp. I(\)) be the Legendre transform of C(6) (resp. C(6)):

I(\) = sup{Nd — C(6)}
HeR!
A?k?
4= >
={ 5t5 A=20
0, A <0.
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I(\) = sup{\ — C(0)}

OcRL
A2 k?
—+ — A>k
_ 2+27 -
M, 0< A<k
0, A <0.

Since C’(0) are equal to 0, if A > 0, then A@ — C'(#) have a maximum value at § = A
for all @ € R Since C'(k) = k and C(0) = 0 for § < k, for all € R, N0 — C(0)
have a maximum value at § = k if 0 < A\ < k, and have a maximum value at 8 = X if
A > k. Hence, I equals I on [k, c0).

When z = 0, we see by direct calculation that [; satisfies the large deviation prin-
ciple with rate function I. The author is told by professor Hariya. This example says
that the large deviation principle holds with the Legendre transform of logarithmic
moment generating function (LMGF), even if LMGF does not satisfy the sufficient
condition in the Gartner-Ellis theorem.

Finally, for A C [k, 00) with infye40 [(A) = infyc 5 I(N),

1 l
lim = log PF (i c A) = —inf I(N).
t—oo t AEA

We can think that the Brownian motion on hyperbolic space is in the same situ-

ation as the diffusion process treated in this example.
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Chapter 4

LDP for occupation distributions

4.1 Uniform LDP

We consider the uniform Large deviation principle with respect to starting point
x € E. The sufficient condition for Uniform LDP is obtained in Wu [22]. He called
this property uniform hyper-exponential recurrence. In this section we will prove

that the conservative symmetric Markov processes with tightness property satisfy the

property.

Tightness Property (T). For any € > 0, there exists a compact set K such that
sUp,ep Rilge(z) <e.

Definition 4.1. A positive smooth measure p is said to be in the class K, if for
any € > 0 there exist a compact subset K and a positive constant § > 0 such that for
all measurable sets B C K with u(B) < §,

sup / Ry (,y)u(dy) < c.
KcUB

zel

Under the condition for M being transient, the class K., is usually defined by
using the Green kernel, i.e., the O-resolvent density, and a measure y in the class is
said to be Green-tight. Here we use the 1l-resolvent density to deal with recurrent
processes. The next lemma is proven by Chen ([2, Theorem 4.2.]). We give a proof

for completion.
Lemma 4.2. If M satisfies (DF) and (T), then the measure m belongs to Ko.

Proof. By the definition of property (T), there exists a compact set K such that
SUPep [xe Ri(z,y)m(dy) < €/2. Suppose that for any § > 0 there exists a Borel set
B C K with m(B) < § such that sup,. R115(x) > €/2. Then there exists a sequence
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{B,}2, of Borel subsets of K such that m(B,,) < 1/2" and sup,cx Rilp,(x) > €/2.
Define A,, = U2, Bi. Then m(A,) is less than 1/2"7! and decreasingly converges to
zero as n — 0o. Hence R;14, decreasingly converges to zero pointwise. Since Ryly,
is continuous by the property (DF), R;14, uniformly converges to zero on K. This

is contradictory to sup,cp Rila, () > sup,cx Rilp, () > €/2. O

We denote by P the set of probability measures on E. Define the function I¢ on
P by

L) :{ EWTVT), itv=f-m, VFeDE), 1)

0, otherwise.

The space P is supposed to be equipped with the weak topology. Given w € €2 with
0 <t < ((w), let Ly(w) € P be the normalized occupation distribution: for a Borel

set A of I,

Li(w)(A) = 1/0 1a(Xs(w))ds.

t
Takeda [20] proved the next theorem.
Theorem 4.3. Assume that M satisfies (I), (DF) and (T) .

(i) For each open set G C P,

1
liminfglong(Lt € G,t < () >—inf I(v).

t—00 veG

(it) For each closed set K C P,

1
limsup —log P,(L; € K,t < () < — inf I¢(v).
t—ro0 t veK
Note that the uniform upper bound holds. This fact follows from the symmetry of

Markov processes.
We define the function space D by

Dt ={R.f:a>0,f¢c L*(E;m)NC;(F)and f # 0},

where C)(F) denotes the set of non-negative bounded continuous functions. We
see that any function in DV is strictly positive by the irreducibility (I). Define the
operator A on DT by AR, f = aR.f — f and the function I on P by

(V)= — inf /E A . (4.2)

u€DF,e>0 u—+ €
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The function I is a version of the Donsker-Varadhan I-function introduced in [8].
Note that since the Markov process M is allowed to have a finite lifetime, the function
u = R.f € D7 is not always uniformly lower-bounded by a positive constant even if f
is so, and consequently the function Au/u is not always bounded. By adding a positive
constant €, the function Au/(u+ ¢€) is bounded and continuous, and consequently the
I-function defined by (4.2) is lower semicontinuous on P with respect to the weak
topology. This is a reason why we need to modify the Donsker-Varadhan I-function.
In spite of this modification, we can identify the /-function with the Dirichlet form
([10, Theorem 6.4.2]).

Proposition 4.4.

We define the subset P,; of P by
Py = {uQ-m:ueD(é’),/uzdmzl,g(u,u) SM}, M > 0.
E

Lemma 4.5. The set Py is compact in P.

Proof. Recall the inequality in [17]: for any § > 0 and any smooth measure y,

[ aide) < Rl () +6 [ dm) wene). @)

Combining property (T) with this inequality, we see Py is tight. Indeed, for any
compact set K C E and any u?-m € P,,,

¢ E

Since Py ={v € P : I(v) < M} is closed by the lower semicontinuity of I, we have
the lemma. H

Let Ay be the bottom of the spectrum:
Ay = inf {S(f, f:fe D(S),/ frdm = 1} : (4.5)
E

A function ¢y on E is called a ground state of the L?-generator for £ if ¢y € D(E),
[¢oll2 = 1 and E(¢o, ¢o) = Aa.

Lemma 4.6 ([20]). Assume that M satisfies (I), (DF) and (T). Then there exists

a ground state ¢g uniquely up to a sign. ¢o can be taken to be strictly positive on E.
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Proof. Let {u,}5°, C D(€) be a minimizing sequence, ||u,|l2 = 1, and Ay = lim,, o,
& (Un, un). We see from Lemma 4.5 that there exists a subsequence {u; -m}72, such
that u - m converges weakly to a probability v = ¢ - m, ¢g € D(E), ¢ > 0. Since
the function I¢ is lower semicontinuous by Proposition 4.4, I¢(¢*m) < Ay. Hence the
function ¢ is just a ground state.

It follows from the inequality [|¢o + €gl|z > A2||¢o + €gl|3 holding for any g € D(E)
for any € > 0 that £(¢o, g) = Aa(¢o, g). Hence aR,_x,¢0 = Po, @ > Ao, which implies
that ¢ is strictly positive by irreducibility.

To prove the uniqueness of the ground state, we introduce a closed symmetric

form (£%,D(E?)) on L*(E; ¢2m) by

(4.6)

E%(u,v) = E(ugg, vdo) — Ao (ucy, vop)
D(E#) = {u € L2(E: ¢im) - udy € D(E)}.

Since 1 € D(E%), £%0(1,1) = 0 and the associated resolvent R satisfies R f =
Go ' Ra—x, (fd0), a > Ay, we see from the strict positivity of ¢o that (£%0, D(E%)) is
an irreducible recurrent Dirichlet form so that f is constant whenever f € D(E%),
EN(f, f) = 0. Let 1y be another ground state. Then 1y = f¢o with f = 1)y/¢y €
D(E%), E(f, f) = E(g, 1) — A2 = 0, which yields that f is constant and 1y =
+ . 0

Lemma 4.7. Assume M satisfies (I), (DF) and (T) and is, in addition, conser-

vative, then it is positively recurrent.

Proof. If M is conservative, then the tightness property (T) implies that for any
e > 0, there exists a compact set K such that inf,cp R11x(z) > 1 — €. Since the
function Ry1x is in L'(E;m), m is finite, and thus 1 € D(E), £(1,1) = 0. Hence M
is positively recurrent ([10, Theorem 1.6.3]). O

Lemma 4.8. Assume M satisfies (AC). Then

iggptl(x) = esssup,c ype1(x).
Proof. Let M = sup,cppil(x), M = esssup,cp prl(z). Suppose M > M and take
r so that M > r > M. Since the function p,1 is excessive, the set O = {r €e E:
pl(z) > r} is finely open and m(O) = 0 by the definition of M. Hence by the Lemma
4.1.4 and Theorem 4.1.2 in [10], the set O is polar and thus empty by the argument
in the proof of Lemma 3.1 in [20]. Therefore p;1(x) < r, which is contradictory to
M >r. [
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Let us denote by ||p¢||,, the operator norm of p; from LP(E;m) to LP(E;m) and

put
o1
—Ap = tlggo n log |ptl[pp, 1 <p < 0.

— )\, is the long time exponential growth bound of the semigroup {p;}:>o. The next

theorem gives us a probabilistic interpretation of A, (cf. [16]).

Theorem 4.9. Assume M satisfies (AC). Then

zel

Aso = SUp {)\ > 0;sup E,(e) < oo} )

Proof. Let « be the right hand side of (4.7). Since for A < 7,

1Pt so,00 = sUp Pyu(t < ¢) < e sup E, (),
el el

v < A. In particular, if Ao, = 0, then v = 0.
For 0 < A < Ay, let p} = e p,. Then since

1
1tlim —log ||pg\||007OO = A=)y <0,
—oo T

| Wit = [ sup B < Qe < .
0 0

el
Hence

e Ex AQY 1
sup/ E,(e*;t < )dt = sup <L> < 00,
zeE JO zelR A

and so v > .

Let us extend the resolvent operator; for A > 0,

R_\f(z) = E, (/w e”f(Xt)dt) .

0
We then see from (4.8) that for A > 0,

| R Allsooe < 00 <= sup F,(e*) < oco.
ek

(4.7)

(4.9)

It holds that if Ay, > 0, then sup,cp F.(e*¢) = co. Indeed, we see from (4.9)

that if sup,cp E.(e*=¢) < 0o, then |[R_)_||c0.0o < 00. Noting that

R*)\oo*E = R,)\oo + GR%)\OO + €2Ri)\w 4+ ..

([12, II1, §6]), we see that if 0 < € < 1/||R_x_|lco,00, then [[R_x —¢lco.c0 < 00. Using

(4.9) again, we have sup,.p E,(e?=+9¢) < oo, which is contradictory to Theorem

4.9. Therefore, we have the next corollary.
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Corollary 4.10. Suppose Ao, > 0. Then

sup E(exp(A()) < 00 <= A < A\.
zel

Chen [2, Theorem 4.1] proved:

Theorem 4.11. Suppose M is irreducible and satisfies (AC). If the measure m
belongs to K, then A, is independent of p.

Combining Theorem 4.11 with Corollary 4.10, we have

Corollary 4.12. Suppose M s irreducible and satisfies (AC). If m € K and
Ay > 0, then

sup E,(exp(A()) < 00 <= A < Ao
el

Let K C E be a compact set and D := K¢, the complement of K. Let M? =
(P, XP) be the part process on D:

Xy, &
xp =] v tsTD _ (4.10)
A, t>Tp, p=inf{t >0: X, & D}.

Define the (quasi-regular) Dirichlet form (€2, D(EP)) on L*(E;m) by

{ £ =¢, (4.11)
D(EP)={ueDE):u=0qe. on K}.

Then (EP, D(EP)) is the Dirichlet space generated by X [10, Theorem 4.4.3].
Let AP be the principal eigenvalue of the spectrum of (€7, D(EP)):

AP = inf {E(U,u) :uED(ED),/DUQdm: 1}. (4.12)

Lemma 4.13. Suppose that M satisfies (I), (DF) and (T) and is conservative.
For any compact set K with non-empty interior K°, the principal eigenvalue AP,

D = K°¢, 1s positive.

Proof. Let {¢,}°°, C D(EP) N Cy(D) be an approximating sequence in (4.12) such
that &(¢n, ¢n) — AP. Let {¢2, -m}32, be weakly converging to ¢g-m, ¢ € D(E).Then

1 =lim sup/ ikdm < / padm,
k—o0 E\Ke° E\K°

and thus ¢ equals 0, m-a.e. on K° In particular, the function ¢, is not constant
on F, because m(K°) > 0 by the assumption on m. Hence we have E(¢q, o) > 0.



30

In fact, if £(¢o, ¢9) = 0, then ¢y must be a constant by the irreducible recurrence of
(€,D(€)) [11, Theorem 1.3]. We now conclude that

AP — lim inf £(n,., dn,) > E(do, do) > 0.
O

We write Koo (Ry) for Ko to express the dependence of the 1-resolvent. Let RP be
the 1-resolvent of MP. Denote by m?” the restriction of m to D, mP(-) = m(D N -).

Lemma 4.14. Let K be a compact set. Then mP € Ko (RP), D = K¢.

Proof. Let K and § be a compact set and a positive constant in Definition 4.1. We
can suppose that the interior of K contains K. Let G be a relatively compact open
set such that K € G € G € K and m(G\ K) < 8. Then K NG is a compact subset
of D and
D D
Rl 1(1~(QGC)C = Rl 1I?CU(G\K) S Rllf}c —+ Rllg\]{ S €.

Moreover, RP1p < R;1p for any Borel set B C KN Ge. O

It follows from (4.4) that

/ude:/u21de§ 1Ry 1 - (5(u,u)+/u2dm), w e D(E),
D FE E

and thus

1< ||Rilplle - (AP +1). (4.13)

The tightness property implies that there exists a sequence { K, }22, of compact sets
such that Uy | K, = F and ||Ry1x.
that for D,, = K,

~ — 0 as n — oo. Hence we see from (4.13)

AP 100 as m — oo. (4.14)

Note that if M is conservative, then the lifetime of M” equals the hitting time of
K. Combining Lemma 4.14 with Corollary 4.12, we know that if MP» is irreducible,
then

sup B, (exp(yog,)) < 0o <= v < AP (4.15)
z€Dn
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Note that

ilelg E.(exp(ok)) = ilelg E.(exp(ok)). (4.16)

Indeed, let g € K \ K", where K" is the regular set of K, i.e., K" = {z € E :
P,(ocx =0) = 1}. Then since

E, (exp(ok)) = Ey (exp(ok); Xy € K) + E, (exp(ox); X € D)
< e'Poy(X; € K) 4 Eyy(exp(t + ox(6,); 05 < t)
< & Po(X, € K) + Ex,(exp(ox); X; € D)
<e'P(X; € K)+ sgg E.(exp(ok))

and
P, (Xi € K) < P,(0x <t)—0 as t]0,

we have (4.16) and thus

sup B, (exp(y0k,)) < 00 <= v < APr. (4.17)
ek

Hence we have from (4.14) and (4.16) the following:

Lemma 4.15. Suppose that M satisfies (I), (DF) and (T) and is conservative.
If there exists an increasing sequence {K,}°°, of compact sets such that U | K, = E

and MP» D, = K¢, are irreducible, then M has the following property:

For any v > 0 there exists a compact set K such that

(4.18)
SUP,ep Ex(exp(yok)) < oo.

Property (4.18) is said to be a uniform hyper-exponential recurrence ([22]). We
will give sufficient conditions for the part process M” being irreducible.
Noting that
pe(x,U) =0, Vt >0 <= P,(oy < o) =0,
we see that if M is irreducible, the semigroup {p; }+>0 is topological transitive; that is,

for all non-empty open sets U and = € F, there exists ¢t > 0 such that p,(z,U) > 0.
Therefore, Theorem 1.2 in Wu [22] leads us to:

Theorem 4.16. Suppose M satisfies (I), (DF) and (T) and is conservative. If
there exists an increasing sequence {K,}5°, of compact sets such that US| K, = FE

and MP» D, = K¢, are irreducible, then the uniform large deviation principle holds:
for each open set G of P,

P S .
h{gg}lf;log;gj P.(L; € G) > —;Ielglg(,u).
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4.2 Locally uniform lower bound

In this section, as an application of uniform LDP, we consider the locally uniform lower
bound of the large deviations for occupation times of symmetric Markov processes
with finite life time. We further consider the large deviation principle for symmetric
Markov processes conditioned on non-absorption up to t > 0.

Let M = (X;, P;) be the Markov process on E with the semigroup {p;}+>0. We

assume m(F) < co. We also assume that the semigroup {p;}+>o is ultra-contractive

(UC), that is, ||p]|1,00 = C¢ < oo. Here || - |[1,0 means the operator norm from
LY(E;m) to L™®(E;m).
Note that

Rlch(ﬂj) :/ eitpthc(ﬂf)dt
0
é oo
:/ e_tpthc(x)dt+/ e 'pilge(z)dt
0 1

) o0
g/ 6_tdt—|—/ e el 1,00 (KC)dt.
0 §

Indeed, we have last inequality from the following :

= /X 1xe(2)dm = m(K°).

1Pl e lloe < llpell1colllxells  and |1k

Since there exists J such that f(f e tdt < ¢/2 for all € > 0, we have

)
/ etdt =1—e7. (4.19)
0

If t > s, we have

HptfHoo = Hps ’pthfHoo
< |Ipsllcollpe—s fl11
< |IpsllvoollPe=slla |l f1l1-

Since ||pt—s|j11 < 1, we have
1Ptll100 < llpsll1e0  for £ > s, (4.20)
that is, C; is monotone decrease. Hence,
/ e el o (K)dt < / et Oy (KOt
5 5

= Cse*m(K°) < €/2, (4.21)
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for a sufficiently large compact set K. Combining (4.19) and (4.21), we then have the
tightness of M.

Lemma 4.17. If m(E) < oo and ||pt|l1,00 = Cr < 00, then M is tight.

Applying the uniform large deviation principle, Theorem 4.16, we show the locally
uniform large deviation principle and the conditional large deviation principle for the
part process MP on D in (4.10). By Lemma 4.6, we can find the bottom of the
spectrum Ay and a ground state ¢q that is strictly positive on E. We define the

semigroup {p{°}+>0 by

%p?wof)-

Let M% = (X,, P?) be the Markov process on D with the semigroup {p?°};s0.
Then, M? is ¢2m-symmetric, p{°1 = 1 and ¢Zm(D) = [, d5dm < co. We as-
sume that the semigroup {pP };>¢ is intrinsically ultra-contractive (IUC), that is, the

A
pf=et

semigroup {p{° }4>0 is ultra-contractive.
Let us denote by P(D) the set of probability measures on D. Note that for an
open set G C P(D)

1
P,(L, € Gt < —hat ( LeG>
= ) = B G
because )
Pa?o(Xt €G) = eiAQtQﬁ_P@P (Po(X1); Xy € G).
0
Since

S(r - f)¢3 (60f — P (60 f).601),,
(60f ~ P (00f). 00f),, + 7 (1= WP (éof). énf),,

D(of. dof) — / (60f)2dm as t — oo,

M H~|>—l wl»—

by definition of £, we have

E(F, f) = EP(dof. of) — Ao / (60f)2dm

For K C D being compact,

1
1 > o)
;éllf(Pm(Lt eG,t<Tp)>e (:L}gif(gbo( )) A J?f P> (L, € G).
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Then, by Theorem 4.16, we have

1
lim inf — log in}f{ P (L, € Gt <7p)> =Xy — inf &%(¢,0¢)
S

t —oo $2p2meG

=— inf EP(e,0).

?meG

Hence we have

Theorem 4.18 (locally uniform lower bound). For any open set G € (D),
1
N _ > _
hgg}f ; logggff( P.(L; € G;t <Tp) > ;gg Ieo(p). (4.22)
Here K is a compact set of D.

We now consider the locally uniform lower bound for symmetric Markov processes

conditioned on non-absorption up to ¢. Since

Px(Lt € G,t < TD)

Px(Lt S G’t < TD) = j2 (t > TD)

note that
log P.(L; € G|t < 7p) =log Po(L; € G;t < 1p) — log P.(t < Tp).

and

f P.(L = inf
Pt € Gl < o) = g (HUE IS

= SUDPgep P.(t < Tp)

By Theorems 4.3 and 4.18, we have

1 1 1
n logig}f{ P.(L, € G|t <Tp) > n logigif( P.(L, € Git <Tp) — Zlogilelg P.(t < Tp)

> — inf EP(u,u) — M.
u?meG

Let I, = I¢p + A\y. Hence we have the following conditional lower bound.

Theorem 4.19. For any open set G € Z(D),

N .
h{gg}lf;log églf( P,(L, € Gt <Tp) > —;Ielg I (). (4.23)
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4.3 An example — killed Brownian motion

In this section, applying the results obtained in the previous chapter to killed Brown-
ian motions, we give another proof of the main theorem in [3]. Let (P, X}) be a stan-
dard d-dimensional Brownian motion (d > 1) on {Q,.%;}, where Q = C([0, 00), R%)
is the family of all continuous maps from R, to R? and .%; = 0{X,;0 < s < t} is the
o-algebra generated by {X,;0 < s < t}. Denote by {P,;x € R?} the corresponding
Markov family. Let D be an open bounded connected set in R? and we set

XtD _ Xt7 lf ™D 2 t?
8, if T < t,

where 0 is an extra point and 7p is the first exit time of the domain D. In this
section, we simply write 7 for 7p. We call X the Brownian motion killed outside
D. Note that P,(7 > t) > 0 for any x € D. The state space of X is D U9 and the

transition function is
pP(z,B) = P,(X, € BT >1),t>0, v €D, Be %A(D), (4.24)

where Z(D) is the Borel o-algebra on D. The transition function has a density with

respect to the Lebesgue measure.

Proposition 4.20 (See [5, p.33]).
P.(X; € B;T>t) = / pP(t;z,y)dy, v € D, t >0, B € %(D) (4.25)
B

The density function pP(-,-) is symmetric continuous, and strictly positive on D x D.

Furthermore, it satisfies that
pP(z,y) = / P (x, 2)pP (2,y)dz, x,y € D, t > 1> 0. (4.26)
D
Let C5°(D) = {f; f € C=(R?) and the support of f is in D} . We define
9 9 P
= =Ff ... = d Af= — fi Cy° (D).
vf (ax1f7 7axdf> an f ;ax?lf(x>7 Orfe 0 ( )

Moreover, Let Hj(D) be the completion of C5°(D) with respect to the norm

1/2
1l = (/DfQ(I)d$+%/DVf-Vfdx) |
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Let L?(D) = L*(D;dx) be the real Hilbert space with inner product (f,g) =
[, fodx, f,g € L*(D). We can define a family of operators {p{’}i>o on L?(D) asso-
ciated with X as follows,

p f(x) = / pe (2, y) f(y)dy = Ex(f(Xe);7 > 1), t >0, € D, fe L*D). (4.27)
D
{pP}+>0 also has the strong Feller property, i.e.,
pi f € Cy(D), fe L*(D;dx), t >0,

where Cy(D) = {f : f is a real valued bounded continuous function on D}. We state

further properties of the semigroup.

Proposition 4.21 (See [5, p.33 and p.56]). {pP}i>0 is a strong continuous, sym-
metm'c, compact, and contraction semigroup on L*(D). The infinitesimal generator
is & = {f € HY(D) : Vf exists weakly and Af € L*(D)}. The corresponding

27

Dirichlet form E(-,-) is
&(f.9) =5 | VI Vads. f.9€D(E) = HY(D)

The followings are the eigenfunction expansion for the density pP of the killed

Brownian motion, and some estimates which are based on this expansion.

Proposition 4.22. (i) (See, [14, p.123]) The density pP has the following ezx-

pansion :

y) = Z exp(—Ant)Pn ()P0 (y),

where {\,} are the (nondecreasing) Dirichlet eigenvalues of % counting mul-
tiplicity, and ¢, are the corresponding eigenfunctions which form a complete

orthonormal system of L*(D) and satisfy

92 (x) < exp(Ane) (L); .

2me

Furthermore, for 0 < e <t,

> exp(—Ant)dn ()0 (y) _(m) Zexp Wt —€) < +oo.  (4.28)

Thus as ng — 00, y o EXD(=Ant)dn(2)Pn(y) converges to 0 absolutely and
uniformly on D x D.
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(i1) (See, [9, p.336]) A1 is simple, so A\y < A, forn > 1. and ¢; € C>®(D) with
© > 0.

From now, we study the large deviation principle for the killed Brownian motion.
Firstly, we define the Donsker-Varadhan I-function of the killed Brownian motion on
the domain D by

: duy1/2 1

0, otherwise.

The following is the known large deviation principle. An important point is that the

rate function I attains the unique minimum at pug

Theorem 4.23. (i) (See, [10, p.367]) I is a good rate function, i.e., for r €
[0,00), the level set W (r) = {p € P(D); () < r} is compact in P(D).

(11) (See, [10, p.367] and [9, p.3536]) I attains its unique minimum at po which is just
the mean ratio qusai-stationary distribution, and Ay = I(po) = inf,e, () I (1)

15 the first Dirichlet eigenvalue of —%.

(111) (See, [10, p.349]) (Lower bound) For any open set G € P(D) and v € P(D),

1 :
llgg}fglog P,(L e G, >1t)> —;Ielgl(,u). (4.30)

(iv) (See, [10, p.349]) (Uniform upper bound) For any set C € P(D),

1
limsup —logsup P.(L; € C,7 > t) < — inf I(u). (4.31)
t—o0 €D pnecC

We give the following slight generalization of the lower bound.

Theorem 4.24 (Local uniform lower bound). For any open set G € P(D) and
compact set K € D,

1
R S ‘ .
hgg}f ; 10g;2}f{ P.(Lie G, >t)> ;relgl(u) (4.32)

Proof. For any p € G, there exist € > 0 and f; € Cy(D) with |f;| < 1,1=1,2,...,n,
such that

Ue—{l/G'P(D):‘/fid(l/—,u)’ <ei=1,2--- ,n} C G.

If t > 2, we have for f € Cy(D) with |f| <1
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] [ @m0 - [ o)

_ %/ltf(ws)ds—%/otf(ws)ds
- ‘%/Olf(ws)ds— ﬁ/ltf(ws)ds

Let a = inf, yex pP(x,y) > 0. Combining the above with Theorem 4.23 and the

2
<-<
1

NN e

Markov property, we see that
..l .
liminf-log inf P.(L, € G, 7 > t)
t—oo ¢ zeK

1
Zliminfglog in}f{ Py(Li—y(0hw) € Us, 7(0hw) > (t —1),7 > 1)
TE

t—o00

N
:hggﬂ;log;g}f{/PXl(Lt_l S U;,T > (t — 1))1{T>1}dpar

1
:liminfglog in}f{/Py(Ltl €Us, 7> (t— )P (z, y)dy
Te

t—oo
oW1
thmf—log/ a-Py(Li—y €Us, 7> (t—1))dy
t—oo ¢ K 2
> —I(p).
We have the theorem. O

The following large deviation principle for the conditional process is a direct con-
sequence of Theorems 4.23 and 4.24. Let I, =1 — \q.

Theorem 4.25 (Conditional large deviation principle).

(i) (Lower bound) For any open set G € Z(D) and v € P(D),

o1 :
hgg}lf ;log P,(L; € Gt > t) > _,12217(“)' (4.33)

(ii) (Local uniform lower bound) For any open set G € P(D) and compact set
K C D,

1
P >
htrgg)lf ; log;él[f( P.(L;eCltr>1t)> lerelng(,u). (4.34)

(ii1) (Upper bound) For any closed set C € P(D) and v € P(D),

1
lim sup 7 log P,(Ly € C|7 > t) < —inf I(p). (4.35)

t—o0 pneC
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(iv) (Local uniform upper bound) For any closed set C' € P(D) and compact set
K C D,

1
limsup — log sup P, (L; € C|7 > t) < — inf I (u). (4.36)
t—o00 €K pnel

(v) I, is good and I.(p) = 0 if and only if p = po.
Proof. Note that
(i) For any initial distribution v,
log P,(Ly € AlT > t) =log P,(Ly € A, 7 > t) —log P,(T > t),
and by Theorem 4.23, lim;_, % log P,(T > t) = —\;.
(ii) For compact set K C D,

log inf P,(L; € C|t > t) >log inf P,(L, € C,7 > t) — logsup P,(T > t),
reK reK zeD

and

logsup P,.(L; € C|t > t) <logsup P.(L; € C,7 > t) —log inf P,.(T > t)
zeK z€D TeK

Then by using above results, we can easily show the desired assertions.

For 0 < s < t, let

Qlt = si.) = exp((t = ) 22 (o) (4.37)

Q(t; x,y) is the density of a probability transition function with respect to the Lebesgue
measure. Then we can construct a Markov process {Y; : 0 < z < oo} on C([0, 00), R%).
Let {Q.,z € RY} be the associated Markov family on C([0, o0), R%).

Finally, we prove the large deviation principle for the limiting process. The fol-
lowing lemma is used to compare the limiting process with the conditional process,

which is important in deriving the large deviation principle.

Lemma 4.26. For A € %,

exp(A1t)

1(2) E (1(zy); A, > 1), (4.38)

Qa(A) =
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Proof. Let A = Ay x Ay X --- x A for A; € B(D) and 0 =ty <t; < --- <t =t
From (4.37), we have

Qx<<Y207Y217 T 7}/;%) € A)

k
- / HQ(ti — tic1; Yim1, ¥i) 0z (dyo)dyy - - - dyy,

:/Hexp (AM(ti = ti1)) ?14:) pt oy (i1, vi)0a (dyo)dyy - - - dyi

¢1(yi-1)
exp(Ait)
B <(£U1) /¢1 Yk Hptz —ti—1 yl 1ay1)5 (dyo)dy1 d
exp(Ait)
= ———Eu(d1(); A, > 1),
o1 () (1(ze) )
The proof is completed by extending the above equality for any A € 7. 0

Lemma 4.27. For any open set O C D, if V is an open set in P(D), then
V NP(O) is open set in P(O).

Proof. It V. NP(O) = 0, it is open. Otherwise Vi € V N P(O), there exists a open
set U in P(D) as follows:

U:{VGP /fydx /fz dx <62,2—12 k}CV,

where f; € Cy(D). Since the function f; is restricted to O are also bounded and

continuous in O, we see that

@ )
is a open set in P(O). O
The following is an approximation result.

Lemma 4.28. Given p € P(D). If I(u) < oo, then for any ¢ > 0 there is an
open subset O of D with O C D, and a v(dx) = g*dz € P(O) with g € C*(D), such
that ||p — v var < € and |I(p) — I(v)| < e.

Proof. By definition of I and the assumption, I(p) = 3 [, Vf - Vfdx with f =
(912 ¢ H}(D). Thus by definition of H}(D), we can find f, € C°(D),n = 1,2, ...,

dx

such that [ f2dr =1 and

n—oo

i ([ fornte + 2 [ 901090 - ppa) =0
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Since

I = Lo f2dle = [ 1= filda.
D
we have the lemma. O
Now we can state the large deviation result for the limiting process.

Theorem 4.29 (Large deviation principle for the limiting process).

(1) (Local uniform upper bound) For any compact set K € D and closed set C' C
P(D),

1
lim sup i logsup Q. (L; € C) < — in(fJ I(p). (4.39)
pe

t—o0 zeK

(11) (Local uniform lower bound) For any compact set K € D and open set G C
P(D),

1
lim infg log in}f{ Q.(Ly € G) > — inf I.(p). (4.40)
re

t—00 neG

Proof. (i) Since ¢ is continuous, strictly positive and bounded above on D,

_ sup,ep i)

M = -
inf,ex ¢1(x)

is also strictly positive and finite. Thus by Theorem 4.23 and lemma 4.26, we
have

1
lim sup - log sup Q. (L; € C)

t—00 zeK
1 At
= lim sup - log sup {wEx(gbl(xt), L, eC,m> t)}
t—o0 zeK ¢1(x)
1
< limsup - log sup{ M exp(A\it)P,(L; € C,7 > t)}
t—o0 zeK
< —inf L .
< —Inf I-(p)

(ii) To prove the theorem, it is enough to show that for any u € G,
| )
hggf;log;g}f{ Qz(Ly € G) > I(p) + M.

If I(pn) = o0, it is trivial. Otherwise by Lemma 4.28, Ve > 0, there exists an
open subset O; of G with O; € G, such that y,(dz) = fidz with f; € C(0O;)



42

and |I(py) — I(i)| < e. We can choose another open subset O of G with O C G

and O U K C O. Thus,
_infeeo ¢1(x)

Sup,ex d1(x)

is strictly positive and finite. By combining the above with Theorem 4.24,
Lemma 4.26 and Lemma 4.27, we have that

NP S
hgg}f n log églf( Q. (L € G)

1 At
_hmmf;log 1nf{ ) (¢1(xt),Lt€G,T>t)}
1

t—o0 (Jj
= lim mf log inf ()\lt) E.(¢1(ze), Ly € GNP(O), 70 > t)
oo 1 gl‘EK ¢1( ) 1\4t )y e y 1O

< hm mf ! log mf {m exp(Mt)P(Ly € GNP(O), 70 > 1)}
> —I(,lh) + A1
> —(I(p) +€) + A,

where 7o = inf{t > 0; X;(w) € O°}. Since € is arbitrary, we have the theorem.
[
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Chapter 5

Appendix

5.1 LP-independence of spectral bounds

In this chapter, let C,,(X) be the set of continuous functions on F that have the limit
as ¢ — oo. For f € Cyu(X), put f(oo) = lim, o f(x). Under the assumptions (I),
(DF) and (C), we obtain the following results.

Theorem 5.1. Let p=pu" —pu= € Koo — Koo
(1) There exist constants C' and k(p) such that
1Pt lpp < Ce™ ™t 1 <Vp < oo, t > 0.
Here || - ||,, means the operator norm on LP(E;m).

(i1) p is a strongly continuous symmetric semigroup on LP(E;m) and the closed

form corresponding to p} is identical to (E*,D(E)).
(iii) For each f € By(E), pi' f € Co(E).

(iv) P (Cu(E)) C Cu(E) and lim, o p f(z) = f(00) for f € Cu(E).

Proof. The statements (i) and (ii) follow from results in [1]. From [4, Theorem 3],

the semigroup p} possesses the strong Feller property (iii).

(iv) By (i),

| Eo(exp(=AY) f(Xe)| < [Eu(exp(=AP)[V2 | EL (P (X))['2, for | € CulE),
and sup,., By (exp(—A*)) < co. Hence lim, o pf' f(x) = 0 from the assumption

(DF). Since f(z) — f(o0) € Co(E) and pff f(x) = pi' (f — f(00)) + f(o0)pi'L(x), it is
enough to show that

lim pil(z) = lim E,(exp(—A4})) = 1.
T—00

T—00
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Let 1 € Ko and K C E a compact set.

Ey(exp(Ai™)) =Eu(exp(A;™); ok > 1) + Ex(exp(Ai™); ok <)
=P, (0xg >t)+ E.(exp(A}*);0x <t),

where o = inf{t > 0: X; € F}. We have that P,(ox > t) converges to 1 as x — oo

from the assumption (DF). Indeed, let f be a strictly positive function in C (FE).
Then

At e)\t

Py(ox <t) < %Ex(e‘A“KGAf(XUK)) < —Gf(a).

where ¢ = inf,cx G f(z) > 0. Since

e)\(O'K*t) > 1 and G)\f(XUK)
- infmi)oo G)\f(ZC)
we can easily see the first inequality. Moreover, since

> 1 for o <t,

Bule 7 Gof(Xay) =Eule ™ [ N (X))
0

_ / e f(x)dt

0K

SG)\f(x)a

we have the second inequality.

In addition, since
Ey(exp(Al%); ok < t) < Ey(exp(Af) 2 Py(ok < )2
the left-hand side above converges to 0 as x — oo. Therefore, we have

lim E,(exp(A}%)) = 1.

T—00

By the definition of K,

lim sup E,(A{*°) = lim sup/ G(z,y)du(y) = 0. (5.1)

K1E 3¢ KTE 4eE

By Khasminskii’s lemma,

1
sup I, (exp(AL%)) < —.
xeg ( p( ! )) 11— SUPyecp ECC(AQLK )

From (5.1) and (5.2), we obtain

(5.2)

lim sup E, (exp(A}%9)) < 1.
ly sup L (exp( A1) <
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Since
limsup E, (exp(A})) =limsup E, (exp(AL~) exp(AL<))
—00 T—00
< lim sup(E, (exp(A7)) V2 E, (exp(AF*<))/?)
r—00
< sup E, (exp(A7"<°))1/?),
el
we have
lim inf E, (exp(—A})) > L > 1.
o limsup,_, . E.(exp(A})) —

Note that for p = pu* —p~ € Koo — Koo
E,(exp(— A7) < E,(exp(—AL)) < E,(exp(AL)),

we have

lim E,(exp(—A})) =

T—00

]

Let P(E) be the set of probability measures on E with the weak topology. We
define a function Igx on P(E) by

Igu(v) = { EWIVD =T de V] EDE),

, otherwise.
Let
D++(’H“) {¢ Ra97 a>£(p), g € Cu(E) with g > Je > 0},
where REf(x) = [;° e *p} f(x)dt. Here r(u) is the constant in Theorem 5.1(i). For

6 =Rige D++<’H“>, et

H'p=ad—g.
We define the I-function as follows:

o Moo
I,(v) = ¢6Dl+rf(7i“)/x 5 dv, v € P(E).

It follows that
Ien(v) =1,(v), veP(E).

We define a transition density p:(z, dy) on E by

pi(z, D) = py(x, D\ {o0}), x € D,
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and
1 ocoeD,

(00, D) = oo(D) = { 0. codE.

Let M = (P,, X;) be the Markov process on E,, with transition probability p;(z, dy).
M is an extension of M and oo is to be a trap. For pp = pum — p1= € Koo — Koo, We
define p}' and R* by

P f(x) = Ba(exp(— A1) f(X,)), BEf(z) = / Tt f()dr, e B(Ex).

0

Then, R¥ f(z) = REf(x) on v € E and R f(c0) = f(00). Let

Doy (H") ={¢ = Rhgia > r(n), g € C(Ex) with g > 0}.
By Theorem 5.1 (iv), for ¢ = Rtg € D, (H*)

lim ¢(z) = M (5.3)

T—00 6]

We define a function I, on P(E.), the set of probability measures on E,,, by

- . H,ob
I,(v)=— inf / Pldv, v € P(Ey),
H( ) €D+ (HH) J x ¢ ( )

where Ht¢ = aRtg — g for ¢ = REG € Dy (HH).
For ¢ € D, (H"), we define the multiplicative functional Nf5 by

Let us define the sequence of sets {K,}3°, by K, = {z € E;¢(z) > 1} and denote
by K? the fine interior of K,,. Let 7, be the first exit time from K?: 7, = inf{t >
0; X & K2}

Lemma 5.2. For each n

tATh 1 S ?:[u¢
No . —1= / ex (—/ X, du) dM*"®; P,-a.e., 5.4
AT 0 $(Xo) P o ¢ (%) (5:4)

where M{*? = e~ 4 ¢(X,) — d(Xo) — [y e HI¢(X,)ds.

Proof. The right-hand side of (5.4) is equal to

(b(;(o) /Ovt/\T: exp <_ /05 ﬁ;d)(Xu)du) (d(e‘Aggb(Xs)) B G_Agﬁ“qS(Xs)ds) '
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Since

d (eA“¢(X exp < Hugb )du>)

—ewp (- | W ) (dleFo(X)) e HO(X. i),

we have the lemma. O]

Since E,(M/*?) = 0 and M/** = M"% + =4 M}!"® 0 0,, M/*? is a martingale with
respect to P,. Here 6,, t > 0, is the shift operator satisfying X 06, = X, ; identically
for s,t > 0.
Indeed, for ¢ = Rt¢ € Do (H"), E,(M/?) is equal to
E, (eAi‘Rgg(Xt) — Rig(X,) — / e (aRhg — g)(Xs)d5> . (5.5)
0

By using definition of R% and the semigroup property of {p/'};=0,

E, (e Rig(X.)) =E, (e-f‘f Ex, ( / elastat >g(Xs>ds))
0
o —AM > —as, [
=FE, e ™ e “plg(X ds)
(e | (X)

_ / e oplh g(x)ds,
0

E, (Rig(Xo)) =E, (EX ( /0 T olastat >g<Xs>ds))

([ e o)

= / e “ptg(z)ds,
0

E, (/Ot e‘Agg(Xs)dS) = /Otp‘;g(x)d&

and
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Finally, by using integral by parts,

t _ t u o0
E, (/ e_AgaRZg(Xs)ds) =F, (/ e~ / akp’,:g(Xs)dkds)
0 0 0
t o0
_ / / aekemokpl g(x)dkds
/ae / akpkg )dkds

t
=e® / “Fphg(x)dk — / “Fplg(a )dk+/ phg(r)ds
t 0 0
[e'e) [e%e] t
=/0 e pl gz )dk—/o e “Fplg(x )dk+/0 phg(r)ds.

Hence, by combining above results, we see E,(M!"?) = 0.

Therefore Ny is a local martingale with NJ from Lemma 5.2. Then we have

() [ o)

L HED SUp,cp ¢()
sup L (exp (‘Ag _/o s <Xs)d3)) = Tfyep o(a)

Hence, for any Borel set C' of P(E.),

So, we see

1 7__[”
limsup — logsup E,(exp(—A}); Ly € C) < inf  sup (bdv
100 w€E $ED1 1 (FH) peC ¢

(5.6)

Note that H*¢/¢ € C(Es) and that P(E,,) is compact with respect to the weak
topology. We can obtain the following proposition from (5.6) in exactly the same way
as one in [§].

Proposition 5.3. Let p € Koo — K. Then
1 _
limsup - logsup E,(exp(—A4})) < — inf [,(v), = € E. (5.7)
t—00 z€E vEP(Ew)
Lemma 5.4. Forv € P(Ey) \ {0}, let 0(:) = v(-)/v(E) € P(E). Then
1(0) = 1) = 0(B)Ien(6).
Proof. By combining (5.3) and H ¢(z) = H'¢(x) onx € E, for ¢ = Rt € Do (HH),

H'p(z) = ad(x) — g(z) = 0, 2 — co.
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Therefore for v € P(Ew)

_ (1 1%
I,(v)=— inf / L (bdv =— inf / L ¢dv
o X

¢eDy1 (HH) Jx o) $ED 4 (HH) [0}

~ b w(X) /X H(Z%@:v(E)-fgﬂ(@).

¢ED 4 (HH)

]

Since there exists a one-to-one correspondence between P(Ew) \ {0} and (0, 1] x
P(E) as follows:

v EP(E) \ {0} — @(E),@(.) - ) € (0,1] x P(E),

and I,(0,) = 0, we see that

inf I,(v)= inf (n-Ign(v)) = inf (77- inf [gu(U)) . (5.8)

VEP(Eso) 0<n<1,veP(E) 0<n<1 vEP(E)

We define the LP-spectral bounds of {p}'}i~q by

o1
)‘p(ﬂ) = - tlgglo n log ||pg||p7p7 1 <p<o,

where ||p{||,, is the operator norm of pj’ from LP(E;m) to LP(E;m).

We then have

Corollary 5.5. For p € Koo — Koo,

Aoo(pt) > inf ('r]o inf [gu(v)> = inf (n-Aa(p)). (5.9)

— 0<n<i vEP(E) 0<n<1

Proof. Since sup,cy E.(exp(—A})) equals ||p}||co 00, the left-hand side of (5.7) equals
—Aso (). By combining Proposition 5.3 and (5.8), we have the first inequality.

By spectral theorem, Ay(u) is identical to the principal eigenvalue of the self-
adjoint operator H*. By also the variational formula for the principal eigenvalue, we
have

Ao(p) = U€17131(fE) Ien(v). (5.10)

Hence we have the second equality. O
If Ao(pe) <0, then infoc,<1 (17 Aa(p)) = Aa(p). So we have

Corollary 5.6. If Ao(1) <0, then

Aoo () > Aa(p)
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By using the symmetry and the positivity of p}’, we have

||pf”2,2 < Hngp,p < ||p5||00700a 1 <p<oo.

Therefore the following inequality holds generally:

Aso () < Xo(pt)

Hence we have

Theorem 5.7. Assume (I), (DF) and (C). Let 1 € Koo — Koo- If Ma(p) <0,
then
A1) = Aa(p), 1 < p < oo

Corollary 5.8. Assume (I), (DF) and (C). Then for p € Koo — Koo with Ag(p) <

1
tlim Zlog E, (exp(—AY)) = —inf {Eu(u,u);u € D(S),/ w*dm = 1} , T € L.
—00 E

Proof. In [19], they showed that for a symmetric Markov process with the assumptions
(1), (DF) and (C)

1
li{ninfg log E, (exp (—A})) > —Xao(u), x € E.
—00
On the other hand, we see from Theorem 5.7 that

1
lim ~ log B, (exp(—4£)) = — (s

5.2 (Gaugeability

In this section, we assume that M = (P,, X;) is an irreducible, transient, m-symmetric
Markov process on E. In [2], Chen defined the Green-tight class in slightly different

way as follows:

Definition 5.9. Suppose that p is a signed smooth measure whose associated
continuous additive functional is A. Let AT and A~ be the PCAFs with Revuz
measures put and p~. Let |[A| = AT + A~ and |pu| = pt + p~. A measure p is said
to be in the class K if for any € > 0, there are a Borel set K = K(e¢) of finite

|p¢|-measure and a constant ¢ = d(e) > 0 such that

m/awmmRMMg/mwmwke

el JK B

for all measurable sets B C K with |u|(B) < 4.
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However two definitions are equivalent under the strong Feller property ([13, Lemma
4.1]).

Suppose that p is a signed smooth measure such that u™ € K. Let AT and
A~ be the PCAFs corresponding to u™ and p~ respectively. Then A := AT — A~
is the continuous additive functional with Revuz measure u. We see that AZ“ is

P,-integrable. So the gauge function g,(x) := E,(exp(A¢)) is well-defined on E.
Theorem 5.10. For smooth measure p with = € Ko, the gauge function g, is

either bounded or identically infinite on E.

Definition 5.11. Let u be a signed smooth measure such that pu* is in K. We
say that p is gaugeable if the gauge function x — E,(exp(A¢)) is bounded on E.

By applying results in [16] to the 1-subprocess of M, we obtain

sup E,(e*) < oo if and only if A < . (5.11)
zeX

Theorem 5.12. Suppose that the constant function 1 is in K. Then Ag = M.
That is, the spectral radius X, is independent of p € [2, 0]

Proof. Note that A\, < Ay and hence it is enough to show that if A < A, then
A < M. For this, without loss of generality, we may assume 0 < A < X\y. Let € > 0
and ¢ > 1 be such that A + ¢ < Ay and )\%6 + é = 1. By definition of Ay, we have
|G -(rtoll2,2 < 00, where G_, = fooo e*psds. Since 1 € K, by Definition 5.9, there
exists an open set K of finite m-measure such that sup,.; Glge < (2A¢)~*. Since
1x € L*(E;m), the function

G,()\Jre)lK(lL‘) = Ex (/ 6(>\+6)81K(X5)d8)
0

is L?-integrable. Using the elementary inequality

6()\+e)a i 6()\+e)b > 6()\+e)(a—c) . 6()\+e)(b—c) fora>b>c > 07

we have

L+ (A4 6)G_pgoli(z) > E, (exp ((A +¢€) /OoolK(Xs)ds)) .

Now by Holder’s inequality;,

E.(eM) = E, (eXp ()\ /0 h 1Kc(Xs)ds> exp <>\ /0 h 1K(Xs)ds)>
(5 (o i)
< (E (exp (@ e / N 1K<Xs>ds)))”(””

< 21/q(1 + ()\ + G)G_()\+€)1K(.T)))\/(A+e).
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In the last inequality, we used Khasminskii’s inequality. Thus FE,(e*) < co m-a.e.
on E and therefore by Theorem 5.10, sup,. F.(e**) < co. This implies A < A, and
SO Ay = Aso. O

Theorem 5.13. Suppose that M satisfies (DF) and that for every e > 0, there
is a compact set K such that sup,cp G1lge(z) <e. Then 1 € K(M;), where My =
(Y:, P) and Yy is the 1-subprocess of X; with semigroup {e 'ps}i~o. In particular, this
implies that Ay = M.

Proof. First note that the strong Feller property implies that the resolvent kernel
G1(z,dy) is absolutely continuous with respect to m. Let GY be the Green function
for Y. Then clearly G¥ = G;. For any € > 0, let K be the compact set such that
sup,ep Gi1lge(x) < e. We claim that there is a constant 6 > 0 such that for any Borel
measurable subset B C K with m(B) < §. Suppose that this is not true. Then there
is a decreasing sequence of Borel measurable subsets By, of K with m(By) < 1/k such
that sup,cp Gilp, (z) > € for each k£ > 1. By the strong Markov property,

sup G11p, () = sup G115, ().

rel zeK
Since G11p, is a bounded continuous function and K is compact, there is z;, € K so
that

Gilp, (zr) =supGilp, (x) > e (5.13)

el
Taking a subsequence if necessary, we may assume that z, — zo € K. Since

G111, (xg) decreases to 0 as k 1 0, there is kg so that Gilg,, (x0) < €/3. By the conti-
nuity of z — G11p, (), there is a neighborhood U of zq such that sup,c; Gilp, (7) <
€/2. As x — xo, x € U when k > kq is sufficiently large and so

GllBk(:ck) < GllBO(xk) < 6/2,

which contradicts (5.13). This proves the claim and therefore 1 € K (M;). Now by
Theorem 5.12, the spectral radius A\,(M;) of M; is independent of p € [2, 00]. Since
Y; is the 1-subprocess of X;, \,(M;) = A, + 1. Thus the spectral radius A, of M is
independent of p € [2, o0]. O

We will give analytic characterizations of gaugeability in terms of the associated
bilinear forms by using the result of LP-independence of the spectral radius A, from
Theorem 5.12.

Theorem 5.14. Assume (I) and (DF). Let 1 be a positive measure in K. Then
1 1s gaugeable if and only if

inf {E(U,u);u € F with /Eu(x)Q,u(dx) = 1} > 1.
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Proof. Let 7, be the right continuous inverse of A}'; that is,
7, = inf{s : A¥ >t}

with the convention that inf() = co. Let S = {z € X : Py(1o = 0) = 1} be the fine
support of u and let S be the topological support of . The time-changed process
Y/ of X; by A is defined by Y} = X,,, whose state space is S. However, since
S C S modulo a set having zero capacity, the semigroup of Y* is u-symmetric and
determines a strongly continuous semigroup on L?*(S; 1) ([10, Theorem 6.2.1]). So this
time-changed process Y* is a pu-symmetric right process. Set Hgu(z) := Ex(u(X,y)),
where og = inf{t > 0: X, € S}. Then the Dirichlet form (£, F) of Y* on L*(S; ) is
given by

{ F = {p € L*(S;pn) : p = u p-a.e. on S for some u € F,},
é’\(gp, ) =E(Hgu, Heu), p € F and u € F, such that ¢ = u p-a.e. on S.

(5.14)
Here F, stands for the extended Dirichlet space of (€, F). Note that for every Borel

f=0,
E, (/Ooo f(Yﬁ)dt) —E, (/OOO f(XTt)dt) — E, (/OOO f(Xt)dA;‘>

_ / G, y)F(y)u(dy).

So the Green function of Y with respect to p is G(x,y). Hence the constant function
1 € K(Y*). Since A{ is the lifetime of the time-changed process Y*, by Theorem
5.12,

sup B, (") < oo if and only if Ay(Y") > 1.
RIS

Note that
Ao(YH) = inf {é\(go,go) cu € F with /cp(x)zu(da:) = 1} ,
S

which is equal to

~inf {E(U,u) . w € F with /Eu(x)Qu(dx) _ 1} |

The theorem is now proved. O
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5.3 A property of Legendre transform

In this chapter, we consider one of the basic properties of the Legendre transform.
The following theorem provides that there is a tangent line that never goes above the
graph at each point on the graph of a convex function. Let X be the locally convex,

Hausdorff topological (real) vector space.

Theorem 5.15 ([7]). Let f : X — (—00, 00| be a lower semi-continuous, convex
function and define g : X* — (—00, 0] by

g(A) =sup{x-(\,z)x — f(z) 1z € X}.
If f is not identically equal to oo, then g is never equal to —oo, and
f(x) =sup{x-\,z)x —g(\): A e X*}, z € X. (5.15)

Proof. The first step in the proof is to develop the geometric picture alluded to above.
To this end, we define

E(f)={(z,a) e X xR:a< f(x)}
and
E(f)={\Be X*"xR: f(z)) < x~(\,z)x — B Vr € X}.

It is then an easy matter to check from our assumption that £(f) is a non-empty,
closed, convex subset of X x R. Indeed, the closedness and convexity of £(f) come
from the lower semi-continuity and convexity of f; and it is clear that (xq, f(xo)) €
E(f), where x is any element of X for which f(x¢) < co. On the other hand, although
E*(f) is obviously closed and convex, it is less obvious that it is non-empty. To see
that £*(f) # 0, choose g € X as above and apply the Hahn-Banach Theorem to
find a (p, p,7) € X* x R x R with the properties that the closed affine half space

H(t,p.7) = {(2,€) € X X R : x-(p, 2)x — pt < 7} (5.16)
contains the set £(f) but not the point (g, f(zg) — 1). Then, since
x+(, @o)x — p§ < v for £ = f(zo)

while
x= (1, o) x — p(f(20) — 1) > 7,

we see that p > 0 and therefore that

oy o) : (g %) ) (5.17)
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Next, noting that 5 > g(f) for every (A, 5) € £*(f) and
(A, g(N) € EX(f), VA € X with g(\) < oo,

one sees that
g(\) =t {B: (A, B) € E(f)},

and therefore that is equivalent to

fl@)=sup{x-Nz)x —8:(\,8) € &E(f)},r e X. (5.18)

Since it is clear that f(z) > x«(\,z)x — B for any z € X and (\,3) € E*(f), we
will have proved (5.18) as soon as we show that, for each (z,a) & E(f), there is a
(A, B) € E(f) such that

x(\z)x — > a. (5.19)

Since (z,a) & E(f), the Hahn-Banach Theorem again provides the existence of
(uy p,7y) € X* x R x R so that the H(u,p,7) in (5.16)contains E(f) and (x,a) ¢
(1, p,7y). In particular, since y«{u,xo)x — p& < 7 for £ > f(xq), we know that p > 0.
Hence, for every 6 > 0,

p+0Xo v+ 005
p+d0  p+o

(s ) o= )eew

where (Mg, B5) is the element of £*(f) described in (5.17). (The introduction of 6 > 0
here is to take care of the case when the tangent hyperplane is vertical and therefore
p =0.) At the same time, for sufficiently small § > 0 one has that

v+ 05
p+0

Oy ) x — @ = —— (e (i 4+ Ao, 2)x — (p+ 8)a) > _ 5.

p+o
Hence, (5.18) holds with (X, 5) = (s, 8s) for any sufficiently small § > 0. O
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