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Abstract

Large-scale numerical computation is one of the most important techniques today. It has

been an essential key technology for various fields such as automobile, aircraft, biotechnology,

and pharmacy. Numerical computation especially allows the research or development to be

efficient by reducing complicated and expensive experiments for them. From requirements of

high-precision and large-scale for the numerical computation, there are strong demands of high-

performance and large-scale computation.

Since the computational requirements for large-scale numerical computation increased, only

supercomputers had met the requirements until recently. In addition to the performance, the

power efficiency of computing has got more important than before from the points of view

of economic efficiency and effect on the environment. Instead of general-purpose processors,

FPGA (field programmable gate array) are often used for high performance and power efficient

computing.

FPGA is a device which can be reconfigured with any circuits as we want. By using hardware

dedicated to a target application, FPGA achieves both high performance and high power effi-

ciency for computation. In addition, the computing performance of FPGA has grown rapidly in

recent years. Therefore, FPGA is now recognized to be a promising device for high performance

and power efficient computing.

Many studies employ stream computing to exploit the performance of FPGA, which pro-

cesses the data stream with a deep computing pipeline by efficient memory read and write.

However, the lack of memory bandwidth often prevents the dedicated hardware from achieving

the performance because of short supply of data. Since a higher memory bandwidth is required
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for high-performance computing, there is a large demand for memory bandwidth enhancement.

Since the memory bandwidth is not easy to be improved directly, bandwidth compression on

hardware has been proposed. The bandwidth compression reduce the required bandwidth of the

data stream, therefore, it improves the data supply to the dedicated hardware as if an available

bandwidth increases. Moreover, hardware implementation can operate fast and efficiency.

Despite of these advantages, there are few studies about the hardware-based bandwidth

compression for stream computing. Most of them are focused on data compression itself, and

the concrete reports on the bandwidth enhancement by the data compression are very rare.

Moreover, there is no example of the bandwidth compression for the hardware-based stream

computing. Since the purpose of the compression is a performance improvement of stream com-

puting, this dissertation shows the bandwidth compression hardware for a real-world application

in order to show that the bandwidth compression is useful.

In chapter 2, it describes the algorithm and hardware design of the data compression and

decompression. The compression algorithm for numerical data streams employs prediction-

based method which exploits continuity of the data. This chapter also shows designs and an

implementation of the data compressor and decompressor which realize the algorithm on FPGA.

The data compressor and decompressor achieve good compression performance for the numerical

data and they can achieve high-throughput processing. On the other hand, the area is still a

problem to apply to real-world numerical applications.

Chapter 3 shows solutions for the large area of data compression hardware. This chapter

presents a smaller hardware than the previous design which requires large hardware resource

so as to convert a variable-length compressed datum into a fixed-length output data block.

Although the amount of hardware resources is usually inversely proportional to the compres-

sion performance, the improved one achieves a large area reduction with a little decline of the

compression performance thanks to the adoption of a novel encoding. The proposed encoding

exploits uneven distribution of a predictive accuracy in the data compression, which is specific

to each data. Moreover, the proposed method can deal with various types of data by selecting

parameters at a design-time.

Chapter 4 describes the multiple-channel compressor in order to apply to real-world applica-
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tions. The proposed hardware achieves the bandwidth compression for multiple channels with

careful attention to the requirements from the numerical computation on FPGA. The improved

hardware allows us to implement several dozen compressors and decompressor at the same time

on a FPGA to handle multiple channels. The bandwidth compression achieves to enhance the

memory bandwidth up to 2.5 times of a physical bandwidth. The demonstration shows the per-

formance improvement of the computing by the enhancing the I/O bandwidth of the dedicated

hardware.

The contributions of the thesis are a proposition of the hardware-based bandwidth compres-

sor which improves the FPGA-based stream computing, and a presentation of the performance

improvement of the real-world application by the bandwidth compression.The bandwidth com-

pressor is high-throughput and small to apply to various applications on hardware. In addition,

there is no need to improve physically for the bandwidth enhancement. Therefore, the band-

width compressor is very useful for various cases of hardware-based computing. To achieve an

effective bandwidth compression, we design the hardware-based data compressor and decom-

pressor. The demonstration of the proposed method shows that the bandwidth compressor

improves the computation performance even if the available bandwidth is insufficient.
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Chapter 1

Introduction

1.1 Backgrounds

High-performance computing is a very important technology in today’s world. It deals with

huge and complicated calculations such as numerical simulation which often employs large-scale

and high-performance computers. For example, machine designs sometimes needs large-scale

numerical simulation based on fluid dynamics and material mechanics. It has be an essential

technology in other various fields, such as designing of buildings, developments of new medicines,

and analyses of natural phenomenon. Large-scale simulations require large amounts of opera-

tions and data transmissions to obtain productive results [1, 2, 3, 4]. Since they require long

computation time and large resource utilization, there is a strong demand for large-scale and

high-speed computation, especially for numerical simulations, such as computational fluid dy-

namics (CFD) or computational electromagnetics (CEM)[2, 5, 6, 7].

Supercomputers are generally used for large-scale computing. Recent supercomputers consist

of a large number of computing nodes connected by their interconnection network. For example,

K-computer developed by RIKEN consists of more than 80,000 computing cores [8] and Tofu

interconnect which is a six-dimensional torus network [9]. K-computer achieved a performance

of 8,162 TFLOPs in LINPACK benchmarks thanks to the large number of processors and the

efficient network architecture [10]. However, such many-node architectures require huge electric-

ity for large-scale computation. An energy consumption of K-computer was 9.899 MW when the

LINPACK benchmarks were measured [10]. If the power efficiency is not going to be improved

for successors of K-computer, the power consumption becomes more than 1000 MW for an ex-

ascale computing which is expected to be available around 2020 at latest [11, 12]. Therefore, it

is strongly required to reduce the power consumption of the high-performance computing.

On the other hand, high-performance computing often suffers from insufficient memory band-

width in general-purpose computers based on von Neumann architecture [13, 14, 15, 16]. The

arithmetic performance of a general-purpose processor cannot fully be exploited when memory
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CHAPTER 1. INTRODUCTION

reads and writes are required for many data per operation. [17]. Here the number of opera-

tions per unit data read from an external memory is referred to as an operational intensity. It

has been reported that insufficient memory bandwidth often limits the sustained performance

of many computing applications to a fraction, which is sometimes a few percent, of the peak

performance due to their low operational intensity. To alleviate the memory bottleneck, recent

general-purpose processors usually rely on a hierarchical memory system, which are composed

of multi-level cache memories. The memory system holds and reuses data read from an exter-

nal memory for reduction of data transfer between the processor and the memory. However,

the cache memory does not always work effectively for all kinds of applications because the

cache memories are designed for the average features of applications, and do not satisfy the

requirements of all the applications completely. Additionally, parallel computers, which is now

the mainstream of high-performance computing, become inefficient for particular applications

because an internode communication limits the entire performance. [18, 19]. Thus, it is getting

more and more difficult to exploit computing resources for performance especially in a large-

scale system due to the inefficiency caused by the limited memory bandwidth for a processor

and the communication overhead among nodes. Please note that the inefficiency arises out of

the general-purpose feature of the computers. For these reasons, general-purpose processors are

often hard to exploit their peak performance for large-scale computation because of their too

much flexibility.

There are alternative devices instead of general-purpose processors for large-scale numerical

computing. Because of the demand to reduce the power consumption and to enhance memory

bandwidth, power efficient devices with sufficient memory bandwidths are ideal for high perfor-

mance computing. For the numerical computing, graphics processing units (GPUs) have been

used in many studies and for practical applications. Although GPUs are originally designed

for image processing, they can achieve high performance for floating-point operations. Field

programmable gate array (FPGA) is also a power efficient device, and there are several stud-

ies which propose to use FPGAs for high-performance floating-point computation [20, 21, 22].

FPGA is a reconfigurable device on which we can implement various digital circuits, therefore,

it allows us to use an optimal circuit in accordance with a target computation. Both GPUs and

FPGAs are expected to achieve higher power efficiency than general-purpose processors.

Figs. 1.1 and 1.2 compare performances and power efficiencies among computational devices

of CPUs, GPUs and FPGAs [23, 24]. Fig. 1.1 shows processing performances and power

efficiencies of CPU, GPU, and FPGA for a random number generation, and Fig. 1.2 shows

power efficiencies of information filtering implemented in OpenCL. The results show that FPGAs

achieve the highest performance and efficiency in both cases. Compared with GPUs, FPGAs

are much more power efficient, while flexibility is also given for various computations by their
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Figure 1.1: Performance and power efficiency of
CPU, GPU, and FPGA for generating random
numbers.

Figure 1.2: Power efficiency of CPU,
GPU, and FPGA by OpenCL imple-
mentation.

reconfigurability. Moreover, FPGAs are recently getting higher performance even for numerical

computation, so that many studies are conducted for high-performance computing with FPGAs.

Thus FPGAs have both characteristics of high power efficiency and flexibility, which can be used

for high-performance but low-power computation of various applications.

Until 1990s, FPGAs had been originally and mainly used for a prototype implementation

or emulation of ASICs (Application specific Integrated Circuits), which are proprietary semi-

conductor chips fabricated for specific applications. Dedicate circuits implemented on ASICs

are very fast, small, and low power achieving high performance processing by an effective use

of hardware resources. However, their enormous initial cost, which is required for a photomask,

is an obstacle in making ASICs. To justify the fabrication of ASICs, they have a large demand

for mass production of the same chips from the economic viewpoint. In contrast to ASICs,

FPGAs do not have such high initial cost because it is possible to implement circuits on them

without any photomasks. Although FPGAs have higher cost per chip than ASICs in the case of

mass production, FPGAs have cost advantages for high-mix low-volume production with various

computing applications. In other word, the state-of-the-art semiconductor devices with a less

than 20 nm process rule are too expensive to fabricate. Furthermore, a long development term

makes ASICs weaker than FPGAs. Therefore, if extremely high performance and low power

processing is not necessary, FPGAs are feasible solutions better than general-purpose processors

including CPUs, DSPs, and GPUs.

Moreover, the potential performance of FPGAs has been improved drastically and the gap
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Figure 1.3: Number of DSP blocks and LEs in high-end FPGAs.

between FPGAs and ASIC are being reduced. Fig. 1.3 shows the technological advancement

of FPGAs. Stratix FPGA series are high-end FPGAs of Altera corporation which is one of

major FPGA vendors. DSP (digital signal processor) is a dedicated circuit which is generally

embedded in FPGA as high-speed integer multipliers while DSP blocks of the recent Stratix10

FPGAs have floating-point operation modes. LE (logic element) is a logic resource unit to

implement combinational circuits and sequential circuits. The increase of hardware resources on

FPGAs allows us to implement larger and more functional hardware than ever before. Therefore,

recent FPGAs are much more economical devices for dedicated processing than ASICs, and they

are also capable of low-power and high-performance computing.

To exploit the performance of FPGAs for high-performance computing, a stream computing

is one of the promising methods. With a sequence of data elements, referred to as a data stream,

stream computing continuously processes a large amount of data in the stream. In many real-

world applications such as CFD, high-performance computing requires to apply a certain process

to the entire data. The operations applied to each element of a data stream are referred to as

a processing kernel, or just a kernel. By pipelining a large kernel to increase a throughput

of stream computing, high-performance computation can be achieved with a data stream. In

FPGA-based stream computing, circuits of a deeply-pipelined kernel are usually implemented

on an FPGA with external memories. This study also implements direct memory access (DMA)

hardware modules to feed a data stream to the kernel pipeline by successively reading data from
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the memories. The data read from the memory is input into the kernel circuit, then the pipeline

processing is applied to them. Then the processing results are output as a data stream to be

written to the external memory. Customized kernel circuits allow the stream computing with

FPGAs to achieve power-efficient processing even at a high throughput. For a large FPGA,

we can also rely on coarse-grain parallelism to further increase performance as far as resources

on an FPGA allow. Moreover, stream computing is good at using memories efficiently. Its

successive data access allows us to exploit available bandwidth of DRAMs which are usually

used as external memories.

With a large amount of data to process, the performance of stream computing is deter-

mined almost exclusively by throughput because it is a pipeline process. When the number of

the pipeline stages is smaller enough than the number of data elements to be processed, the

throughput of pipeline is the most important factor for performance. The throughput of stream

computing is also determined by some factors such as operation frequency, I/O bit width of a cir-

cuit, and memory bandwidth. Since high throughput is required to achieve higher performance

in FPGA-based stream computing, these factors are keys to the performance improvement. Even

deeply pipelined custom circuits implemented on an FPGA, their peak performance can not be

fully exploited if the memory does not satisfy the bandwidth requirement of the pipeline.

Since a lot of computational elements can be implemented with today’s large FPGAs, it

is possible to apply higher parallelism with the elements to improve the overall performance.

However, with multiple cores on single FPGA, the parallel processing often requires wide memory

bandwidth. When the circuit on a FPGA requires greater bandwidth than an available memory

bandwidth, the computational performance is limited by the memory bandwidth because of

an insufficiency of a data supply from the memory. Along with the performance improvement

of FPGAs, the required bandwidth of the dedicated circuit has also been increasing, which

enhances an importance of the memory bandwidth in the entire performance [25]. Therefore, it

is impossible to improve the computational performance without sufficient memory bandwidth

even if we employ a high-performance FPGA with an appropriate circuit.
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1.2 Hardware-based bandwidth compression

There are several solutions to enhance the memory bandwidth of the FPGA-based stream com-

puting. The bandwidth is determined by two factors, an I/O bit width of both FPGA and

memory, and a data transmission rate of an I/O part. In general, it is difficult to directly im-

prove these factors because we need to improve physical layers of data transfer. Instead of trying

to improve the physical layers to directly increase the bandwidth, data compression which can

improve the bandwidth without any physical improvement is expected as an promising method.

Data compression is a technique to reduce an amount of digital data by exploiting redundancy

in data. Therefore, it is possible to enhance the memory bandwidth of FPGA-based stream

computing by compressing a transmission data stream between FPGA and a memory. The

compression of transmitted data reduces the memory bandwidth required for a computing ker-

nel on an FPGA. On the other hand, the data compression also requires some computational

cost as processing time and computational resources.

From the point of view of the entire performance, especially the processing time of the data

compression must be short enough not to extend the entire computational time. To satisfy

this requirement, some previous studies employed hardware-based data compression which pro-

cesses much faster than software processing by general-purpose processors. Therefore, this study

uses data compression hardware for preventing a performance decrement due to the insufficient

bandwidth. In this study, the bandwidth reduction by applying data compression technique as

bandwidth compression is referred. The hardware-based bandwidth compression reduces the

required bandwidth by a circuit designed specifically which processes within a very short period

of time.

The FPGA-based stream computing is very suitable for being applied the bandwidth com-

pression hardware to demonstrate its effectiveness. Hardware implementation is suitable for data

compression between a computing kernel on an FPGA and a memory. If we use a processor for

software compression out of the FPGA, it is impossible to compress the bandwidth between the

processor and the FPGA. Accordingly, it is feasible and most promising for us to implement

hardware for bandwidth compression between a computing kernel and a memory interface on an

FPGA. For applying the bandwidth compression to the memory bandwidth of this computing,

therefore, it is necessary to implement the compression hardware with a dedicated circuit which

performs specific computing on an FPGA.

Although bandwidth compression employs data compression, the purpose of the bandwidth

compression is not only to reduce an amount of data but also to reduce of required bandwidth. In

the FPGA-based stream computing, the bandwidth compression reduces the required bandwidth

of a transmitted data stream. The target of the bandwidth compression is a data stream of
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Figure 1.4: Stream computing. Figure 1.5: Stream computing with bandwidth
compression.

numerical computation in this study because the stream contains a large amount of data and

several variables, which often cause an increase in the required bandwidth. For applying to the

FPGA-based numerical computation, the bandwidth compression has several requirements as

follows:

1. Suitable compression performance.

2. Lossless data compression.

3. Processing for multiple channels.

4. High throughput compression.

5. Small hardware.

The first, second and third requirements are due to the numerical computation, and the fourth

and fifth are due to an operation of the hardware-based implementation. These requirements

are for applying to real-world numerical simulations which are used to solve actual problems.

This study describes such numerical applications as real-world applications, and sets them as

targets of the bandwidth compression.

Fig. 1.4 show an overview of the FPGA-based stream computing. This computing requires a

concurrent execution of the data transmission and the data processing. Since dedicated circuits

are usually pipelined, the stream computing requires sustained input and output of data streams.

The data stream alternates between the memory and the FPGA many times because the real-

world application usually requires an iterative computation.

To apply the bandwidth compression to Fig. 1.4, the data compression and decompression

hardware should be implemented as shown in Fig. 1.5. The bandwidth compressor has no choice
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but to implement on the FPGA. In addition, since the numerical circuit needs uncompressed

data to obtain exact results, the data decompression hardware is also needed. In Fig. 1.5,

an output stream from the dedicated circuit compress by the bandwidth compressor, and it is

transferred to the external memory. The memory stores the compressed data stream temporarily,

then it transfers the stream to the FPGA again. The transferred data stream is input to the

decompressor and reconstruct as uncompressed data, then the stream is input to the dedicated

circuit. The computing with the bandwidth compression repeats these series of operations until

the end of the computation.

Since the system shown in Fig. 1.5 reduces the required bandwidth, the effect of the band-

width compression depends on the performance of the data compression ratio strongly. The

performance of the data compression is represented by a compression ratio, Rcomp, which is

defined as

Rcomp =
Sorig

Scomp
, (1.1)

where Sorig and Scomp are the data sizes of original and compressed, respectively. The effect of

the bandwidth compression can be roughly estimated from the average of the compression ratio

of an entire data.

However, factors to determine the performance of the bandwidth compression are not only the

compression ratio. A hardware design, a property of data, and an implementation environment

such as performances of FPGAs and memories are also considered to affect the performance of the

bandwidth compression. Especially, since the bandwidth compression of multiple channels has

not been implemented and evaluated for the real-world application so far, concrete evaluations

have been required as actual cases of the bandwidth compression to find out characteristics

of this method. This study presents the multiple channels bandwidth compression for real-

world applications as an objective to be realized. In addition, this study also presents the area

reduction design of the bandwidth compressor which is essential for applying to the multiple

channels. Moreover, it shows a detailed design of the data compressor and decompressor used

for the bandwidth compression, the algorithm of which has been proposed in previous works

[26, 27].
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Figure 1.6: Huffman tree and Huffman coding.

1.3 Related work

The concept of the bandwidth compression is very important in data communication because

an amount of transmitted data increases rapidly in recent years. This trend is not only for

communication via the Internet but also for internode communications of large-scale parallel

computation and memory accesses in data intensive processing [28]. As mentioned in the pre-

vious sections, the bandwidth compression of data transfer to or from a memory is required to

be much faster and higher-throughput processing than the long-distance communication such

as the Internet. This requirement is the same for FPGA-based stream computing in the data

transmission between external memories and FPGAs. Therefore, the bandwidth compression

needs fast and high-throughput operations with an enough compression performance to improve

the performance.

In such a challenge, it is necessary to find out what is needed to realize by referring re-

lated studies. Following subsections describe related studies of the bandwidth compression by a

hardware implementation for numerical data. This section describes those studies dividing into

three fields, data compression algorithms for numerical data, data compressions on hardware,

and encoding methods of multiple channels. In addition, it describes previous studies of our

research group to clarify objects and tasks to achieve the bandwidth compression for real-world

applications.

1.3.1 Data compression algorithms for numerical data

Firstly, this subsection describes about the data compression algorithm. This study requires

the compression to be lossless, suitable for hardware implementation, and suitable for numerical

9



CHAPTER 1. INTRODUCTION

data streams.

Lossless data compressions are used for some kinds of data which require that decompressed

data are identical to original data [29, 30, 31]. For example, programs, text documents, and

numerical data with high accuracy correspond to this. Commonly used lossless data compression

formats are ZIP, gzip, LZH, which are based on LZ77 compression algorithm [32]. Lossless

compression generally exploits redundancy in data as a sequence of symbols. It is based on

information theory propounded by Claude Shannon [33]. In the information theory, concepts of

entropy and redundancy in the information are defined, which can be used to reduce the amount

of data without any loss of necessary information. Shannon-Fano coding [34] is a representative

method of entropy codings, and Huffman coding [35] which employs an optimal prefix code is

commonly used for lossless compression. Fig. 1.6 shows an example of Huffman tree which

is used in Haffman coding when it encodes data contain four symbols into binary codes. In

Haffman coding, symbols with higher occurrence frequencies are encoded into shorter bits to

increase the compression performance. Symbols are sorted in order of appearance frequencies,

and allocated from the shorter code in the order.

Considering the hardware implementation, there are some choices of lossless data compres-

sion. Typical techniques of the lossless data compression other than entropy codings are dic-

tionary methods, data transform, and prediction based methods. The entropy coding, such as

Huffman coding and arithmetic coding [36, 37], needs to regard individual data as symbols.

Therefore, entropy coding does not suit for data compression with too many symbols and with-

out meaningful probability deviation [38]. The dictionary method handles a string of symbols

to be applied to the entropy coding, which allows us to use variable-size codes by holding input

strings of symbols in a dictionary. The data transform method is intended to compress data of

two or three dimensional space. Most of other lossless compression algorithms are combination

of these techniques.

The efficient and effective lossless compression for large amount of data are required especially

in the fields of big data processing and deep learning. Maruyama et al. proposed lightweight

lossless data compression algorithms based on dictionary methods [39, 40]. Their methods are

general-purpose and used in online, which are able to apply to wide range such as text data

or scientific data. In addition, some of them have been implemented on FPGA [41], which are

applied to various data, such as English text, MIDI, and DNA gene. These studies shows a high

versatility in data compression, however, they do not suit for the bandwidth compression of

stream computing because they require too big hardware for implementation. Furthermore, the

methods are not suitable for compression of floating-point data in terms of compression ratio.

For compression of floating-point data in numerical computing, these techniques does not

suit to apply directly because it is difficult to obtain frequency of appearance in symbols or their
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sequences directly from such numerical data. Therefore, it is necessary to employ a different

method to compress floating-point data. Numerical floating-point data usually have numerical

continuity in a discretely represented data stream. The continuity appears in spatial and tem-

poral spreading quantities. The spatial continuity enable us to predict a particular datum by

a certain equation with adjacent data with some precision. Therefore, it is possible to com-

press the numerical data effectively by subtracting between the predicted and original value and

encoding the difference adequately.

Several studies have proposed compressions using hash tables to exploit fluctuation patterns

of data [42, 43], which use the dictionary method. Ratanaworabhan et al. proposed a data

compression for double precision floating-point numbers based on context-based prediction [42].

And Sukhwani et al. proposed an adaptive method which selects an optimal dictionary dynam-

ically [43]. Some studies employed predictors based on the numerical computing. Lindstrom et

al. and Ibarria et al. employed Lorenzo predictor which predicts the value of a computational

grid point in arbitrary dimension [44, 45]. Fout et al. proposed the adaptive predictor [38].

This compression selects the optimal predictor from among several options. Prediction-based

data compressions always calculates the difference or the XOR between the predicted and the

original data to reduce the data amount. The differences are encoded into shorter bit strings

than the original data. These studies achieve high compression ratios for numerical data on a

three dimensional or two dimensional computational grid. Although these algorithms achieve

effective data compressions, their implementations are mainly for software processing which does

not provide a sufficient throughput required for FPGA-based stream computing. This study em-

ploys an effective algorithm suitable for hardware-based bandwidth compression by extending

these algorithms. The detail of the algorithm is described in the next chapter.

1.3.2 Data compression on hardware

Secondly, this subsection describes the hardware-based data compression, which is necessary

for high-throughput compression in stream computing. The hardware-based data compression

has been researched in for various types of data, including audio [46], and video data [47].

The hardware compression techniques for audio and video data are already established and

are commonly used. As seen in these studies, these data compressions have achieved for lossy

data compression. There are also propositions for arbitrary data in a memory [48], and in

streaming transfer [49, 43]. These techniques cannot directly compress floating-point data at a

high compression ratio because they don’t exploit characteristics in numerical data.

For the compression of numerical data, there are only a few studies of hardware-based data

compression. Hardware-based decompression of double-precision floating-point was proposed

in [50]. This study employs some commonly-used algorithms and an original method which is
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based on the dictionary method. They also showed a hardware design of the decompressor.

Sakuwani et al. presented data compression hardware based on context-based prediction using

a hash table described above [43]. These studies show hardware designs for a small area with a

potentially high throughput. However, the compression ratio is relatively low. Moreover, there

was no complete design capable of bandwidth compression for real-world applications.

As other examples, Angulo et al.[51] presents a seismic data decompression on FPGA, which

requires high speed processing, and shows Keymeulen et al. lossless hyperspectral data com-

pression on FPGA to transmit through limited bandwidth [52]. These studies have reasons to

use FPGA, the former needs fast operations to minimize the damage, and the latter processing

are under unusual environments. Although these implementations are reasonable, they do not

suit for numerical data and stream computing. As another hardware based compression, Max-

eler Technologies provides by incorporating data compression system for high-level synthesis of

FPGA applications [53]. This data flow computing platform allows us to use lossless and lossy

data compression into application data flows. They also proposes hardware compressor and de-

compressor of run length encoding for the fast processing [54]. These proposals take advantages

of the FPGA, however, these are not able to enhance memory bandwidth effectively.

Our study requires both data compressor and decompressor for the stream computing, which

achieve both high compression ratio and high throughput.

1.3.3 Encoding multiple channels

Thirdly, this subsection describes related work on the serialization of multiple channels. In

particular, realistic applications use multiple variables in their computation, the bandwidth

compressor needs to compress multiple channels on hardware-based stream computing. Time-

division multiplexing (TDM) is commonly used to encode multiple channels into a single trans-

mission channel.

Some studies, such as multicore processing on FPGA, employed TDM to bundle multiple

channels [21]. On the other hand, to the best of our knowledge, there have been no study on

hardware-based encoding multiple channels with lossless data compressions. TDM allocates an

output bandwidth just equally to all channels. Therefore, the simple TDM cannot handle mul-

tiple channels which require different bandwidths when the compression ratio fluctuates among

the channels. In the prediction-based data compression, each channel has different compression

ratio. This means that the serialization which we employ is required to distribute an available

memory bandwidth to the channels according to their compression ratios. Therefore, this study

propose an original method to handle the multiple compressed channels so as to satisfy the

requirements of real-world applications.
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1.3.4 Previous work

A previous work already have been made, which is about data compression algorithm for the

numerical data stream. Katahira et al. proposed a data compression algorithm for floating-

point data stream, which achieved a comfortable compression performance for data of numerical

simulation [26]. The algorithm is simple enough to achieve high throughput by hardware im-

plementation. It is also possible to be implemented by a smaller hardware than other related

work above. Sano et al. proposed a high-throughput predictor for the prediction-based data

compression [27]. A prediction accuracy of the predictor is sufficient, and it is realized by very

small and fast hardware. In spite of these achievements, their works did not design a complete

data compressor and decompressor.

The dissertation presents an entire design of the FPGA-based bandwidth compressor. Al-

though the data compression algorithm is based on techniques that have been proposed so

far, this achieves a novel real-time bandwidth compression for multiple channels processing. It

presents complete design of the bandwidth compressor which can be applied to real-world nu-

merical applications on FPGA. It also shows a demonstration of the bandwidth compressor with

real-world application to improve the throughput and computational performance.
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1.4 Objectives

The objective of this dissertation is to present the bandwidth compression can be applied to

stream computation for real-world applications in order to improve its performance by enhancing

an effective bandwidth without any change of the physical layers. The bandwidth compression

provides us a trade-off between bandwidth improvement and hardware resource consumption.

To use this technique efficiently, the cost of the compression, that is especially a delay and an

area overhead, need to be as small as possible considering the finite hardware resources avail-

able on FPGA. The target of the bandwidth compression in this study is large-scale numerical

simulations, referred to as real-world applications in the text, which suffer from inefficiency due

to the limited memory bandwidth in software-based computation. We assume that this kind of

computation should be implemented with FPGA-based custom hardware for stream computa-

tion to exploit its potential of low-power but high-performance computation with state-of-the-art

FPGAs. The proposed technique for bandwidth compression allows FPGA-based stream com-

putation to achieve higher performance with improvement of an effective memory bandwidth.

There are requirements and problems to achieve the bandwidth compression. Following chap-

ters present their implementations and solutions, and finally demonstrates numerical computing

with the bandwidth compression for several benchmark computations.

Firstly, this thesis presents the data compression hardware for the bandwidth compression of

real-world applications. The data compression algorithm for the numerical data already has been

proposed in the previous work. This study realizes the data compressor and decompressor on

FPGA, and evaluate their performance. Based on the evaluation, it shows discussions whether

the implemented hardware is suitable for the bandwidth compression. As a result, the data

compression hardware has too large area to apply to the real-world applications, whose large

area prevent us from implementing with dedicated circuits on a recent FPGA. Moreover, the

hardware is just not able to deal with multiple channels.

The large area of the hardware must be solved to apply to real world applications. A cause

of this problem is an operation to convert from variable-length compressed data to fixed-length

output data blocks. This conversion is essential for exploiting an available bandwidth efficiently.

And the lossless data compression forces that each compressed datum has a variable length

of bits. To solve the problem, this thesis introduce a novel quantized encoding which reduce

the area of the hardware dramatically. The solution also exploits deviations of distribution of

prediction accuracies to prevent a decrement of the compression performance. Since the solution

provides a selectable design of the compressor, we are able to select its design depending on a

characteristic of data. As a result, this study presents an improved compressor which has a very

small area and a sufficient compression performance. The small compressor makes it possible to
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apply the bandwidth compression to the real-world applications.

The dedicated circuit on FPGA, which operates the real-world application, has multiple

channels corresponding to the variables in a simulation. There is a requirement of a multi-

channel bandwidth compressor which satisfy requirements of the numerical computing. This

thesis shows designs of a multi-channel serializer (MCS) and multi-channel deserizlizer (MCD)

to control the multiple channels. Then it is possible to assemble the bandwidth from the com-

pressor, decompressor, MCS, and MCD. For a demonstration of the bandwidth compressor, this

study applies it to a benchmark computing and evaluate the bandwidth and the computing per-

formance. The result shows that the bandwidth compression enhances the available bandwidth,

and improves the computing performance.

This paper is organized as follows. Chapter 2 shows data compression algorithm for numerical

data stream and design of the compressor and decompressor. The contributions of the chapter

are the complete designs of these hardware and finding out that the compressor cannot be applied

to real-world applications because of its hardware area. Chapter 3 presents area efficient data

compressor for a numerical data stream. The contributions of the chapter are introductions of

area-oriented designs of the data compressor and decompressor which enable us to select suitable

design depending on target data and available hardware area. Chapter 4 presents a multiple

channels bandwidth compressor for real-world applications. The contributions of the chapter

are the designs of the bandwidth compressor and an entire system, and the demonstration

of the bandwidth compression which improves the computing performance of the real-world

application. Finally, chapter 5 gives conclusions and future work.
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Chapter 2

Algorithm and hardware design of
data compression

2.1 Introduction

Data compression exploits the redundancy of data. In digital processing, data are represented

by fixed-length bit strings. The basic idea of lossless data compression is that the number of bits

is reduced to a minimum capable of holding the original information. Entropy coding is a typical

example thereof, which compresses data effectively in accordance with occurrence frequencies.

The lengths of lossless compressed data are generally variable as shown in Fig. 1.6, and the bit

lengths of compressed data can be longer than that of the original data when the occurrence

frequency of the symbol is very low. In data compressions of floating-point data, the entropy

coding does not work well because it is difficult to find the deviation of the symbol occurrence

when we regard each value as a symbol. The redundancy of numerical floating-point data is

different from such as integer or text data which we can compress a datum itself as a symbol. The

compression of numerical floating-point data requires a method based on a numerical continuity

rather than a deviation of the occurrence frequencies.

The numerical data often similar to image data because pixel data also have a certain level

of continuity. Although typical image compressions are usually lossy, there are some lossless

compression techniques which take advantage of the continuity [55]. Since the image compression

does not require strict conditions generally, they often employ high-compressive and complex

algorithms such as JPEG which consists of discrete cosine transform, quantization, and huffman

coding [56].On the other hand, the bandwidth compression for stream computing should not

employ such complex methods because of severe constraints in processing time. Moreover, an

algorithm for the bandwidth compression should also be so simple that it can be implemented

as small hardware.

Hardware-based stream computing on hardware employs a sequential memory access to
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exploit the peak bandwidth by simplifying operations. Since numerical computation needs

adjacent data on a computational grid, the data placement in the memory is based on the

arrangement of the computational grid. Our previous studies proposed the prediction-based

data compression for numerical data streams [26, 27]. They employed a simple polynomial for

the prediction in consideration of an implementation of a high-throughput and small hardware.

Since the prediction-based algorithm also achieved a good compression performance for practical

numerical data, this study also employ this algorithm.

We design the entire hardware of the data compressor and decompressor and evaluate them

for applying to the real-world applications. The compressor and decompressor are pipelined to be

high throughput, and the predictor can be implemented with very small area. In the evaluation,

the hardware achieves higher compression ratio than a general-purpose data compression format,

bzip2, for actual numerical data. The evaluation also shows that the hardware can operate about

200MHz for single-precision floating-point data, which is enough to apply real-world applications.

On the other hands, the areas of the compressor and decompressor are not enough small

to applying multiple channels computing. Since the prediction-based algorithm requires data

with continuities, data compression for multiple channels needs many hardware compressors

and decompressors. In addition, the bandwidth compressor is needs to be implemented with

dedicated numerical circuits. Therefore, the area of these modules should small.

This chapter presents data compression algorithm for numerical data streams in the stream

computing. We propose a prediction-based data compression algorithm which exploits numer-

ical continuity of floating point data. We show that the compression ratios are more than

three in this algorithm with a compression of real numerical data streams. We also show the

hardware designs of the data compressor and decompressor for implementing the proposed algo-

rithm. Evaluations show the data compression hardware is capable to operate at high operating

frequency, therefore, throughput of the hardware is also high. In addition, we develop a pa-

rameterized data compressor and decompressor and evaluate them. This evaluation shows that

the compressors and decompressors applied to multiple channels cause huge area overhead for

real-world numerical applications.

The objective of this chapter is to present entire hardware for the data compressor and

decmpressor and evaluate the implementation of the hardware. The implementation of these

modules should be high throughput and small hardware. For this goal, we employ the prediction-

based algorithm which has been proposed in our previous work and design the compressor

and decompressor. We also evaluate the algorithm and the hardware implementation of these

modules. The evaluation shows that the algorithm achieves sufficient compression performances

for numerical data and the implementation achieves high throughput. However, for applying it

to the multiple channels, the area must be a problem in our estimation. The contributions of
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this chapter are:

1. Entire designs of the compressor and decompressor.

2. Good compression performance of the algorithm.

3. High throughput of the hardware implementation.

4. Large area of the implementation.

The organization of the chapter is as follows. Section 2.2 describes the data compression

algorithm. Section 2.3 shows a principle of the prediction. Section 2.4 presents the entire

design of the data compressor and decompressor. Section 2.5 shows a parameterized designs. In

section 2.6, we evaluate the compression ratio, throughput and hardware area. Then section 2.7

presents the problem of the hardware implementation. Finally section 2.8 gives conclusions of

this chapter.
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2.2 Data compression algorithm for numerical data streams

This section describes the data compression algorithm in our previous work [26], which is suitable

for an FPGA implementation and applying real-world applications. In FPGA-based stream

computing, several studies showed that the achievable performance is limited by I/O bandwidth

instead of arithmetic performance of dedicated circuits, even if regularity of stream computation

exploits the physical bandwidth efficiently [57, 58]. Since it is not easy to drastically increase the

I/O bandwidth, future chips will be perpetually suffering from the insufficiency of bandwidth

for on-chip computing with remarkable increase of hardware resources on FPGA. To solve the

problem, we have proposed bandwidth enhancement by employing lossless data compression for

numerical floating-point data in our preceding research [27, 26]. The bandwidth compression

excludes of bits in data streams, which enables us to use the available bandwidth efficiently at

compressed bandwidth.

The lossless data compression guarantees complete reconstruction of original data, thus

causing no computational error unlike lossy compression. If data compression reduces the size of

data to 1/r of the original data on average by placing the compressor and decompressor to the

input and output of the dedicated circuit, the achievable bandwidth can be as r times wider than

the physical bandwidth. Although the decompressor and compressor slightly increase the delay,

stream computing is inherently tolerant to latency because stream computing is usually pipelined

with many stages. Therefore we focus on only throughput of compression and decompression

for high-performance stream computation.

2.2.1 Requirements for bandwidth compression

For bandwidth compression proposed in our preceding study, we made a choice of a data com-

pression algorithm based on the following requirements [26].

1. Lossless data compression,

2. Direct compression of numerical data,

3. Single-pass compression,

4. Acceptable compression performance,

5. High-throughput.

Data compression should be lossless so as to reconstruct the original data from compressed data

to avoid unnecessary errors. For the lossless and direct compression, the prediction-based lossless

algorithms [44, 59, 45, 42, 60] have been proposed, which achieve better compression ratios than

general-purpose compressors like BZIP2[61] for direct compression of floating-point data. In
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these algorithms, predictors calculate the values of the next input data by previous input data

in a sequence. Then they encode the difference between the predicted value and the actual input

value. The single-pass compression means that the entire data to compress cannot be traversed

in advance because it must process in the stream computing. The prediction-based compression

algorithms also satisfies the single-pass. For requirements of compression performance and high-

throughput, arithmetic predictors [44, 59, 45] is suitable to be employed. For these reasons,

we adopted prediction-based lossless compression with 1D arithmetic predictor to compress a

floating-point data stream directly [27, 26].

2.2.2 Prediction-based compression algorithm

Since our target application is mainly numerical simulations, the algorithm that we apply to

bandwidth compression directly compresses a sequence of IEEE754 floating-point data [27, 26].

Each IEEE754 datum represents the following number:

(−1)s2e−2ne−1−nm+1(2nm +m), (2.1)

where s, e and m show a sign bit, an exponent and an mantissa, respectively. For single (32 bit)

and double (64 bit) precision, (ne, nm) are (8, 23) and (11, 52), respectively.

We assume that a data stream represented by IEEE754 floating-point, S = {..., fi−2, fi−1, fi, ...},
is a target of the compression, where fi denotes the current input. generally, a data stream is

generated by traversing a 2D or 3D computational grid of an object space. For fi, the predic-

tor calculates a predicted value, pi, with some of the previous input data recorded in a buffer

memory. When the prediction is made with good accuracy, pi has a very similar bit pattern to

the fi. By a difference calculation or exclusive OR between pi and fi, we get a bit string where

a lot of bits from MSB are zeros. By encoding these zeros with their length, we can represent

the difference between the predicted value and the original value in fewer bits.

Predictor

The computational results of numerical simulation such as CFD have some spatial and temporal

continuity. Since these results are the solutions of the partial differential equations, we can find

continuity in discrete solutions on computational grids. Proposed prediction-based compression

generally exploit these continuity for accurate predictions, for example, [45] employ Lorenzo

predictor which is an extended parallelogram predictor as shown in 2.1. This predictor achieves

good compression performance [62], however, there is a problem for hardware implementations.

Since the stream computing employs a pipeline processing, it needs to hold consecutive data

which arranged in one-dimensional by scanning the computational grid. To hold these data, it

needs large buffer including the wasteful part shown in Fig. 2.2. Fig. 2.2 shows the case of two
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Figure 2.1: Lorenzo predictor.

dimensional grid, in addition, three dimensional computing requires to hold a huge number of

data, which causes too large buffer to implement on one FPGA.

Therefore, we employed one-dimensional polynomial function to calculate predicted values,

which requires only several recent input without the wasteful part of buffers. This is a technique

to predict using the continuity of only one direction regardless of the number of dimensions 2.3.

This prediction based on 1D polynomial functions allows us to assume that several consecutive

data can be well locally-approximated by polynomial functions, which is similar to the proposal

of [63]. Under this assumption, the polynomial predictors obtains good prediction for data given

by such computations.

Assuming that a numerical input sequence is S = {..., fi−1, fi}, and the next input is fi,
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following equations are used in the polynomial predictions.

pi =



fi−1 (n = 1)

2fi−1 − fi−2 (n = 2)

3fi−1 − 3fi−2 + fi−3 (n = 3)

4fi−1 − 6fi−2 + 4fi−3 − fi−4 (n = 4)

5fi−1 − 10fi−2 + 10fi−3 − 5fi−4 + fi−5 (n = 5)

6fi−1 − 15fi−2 + 20fi−3 − 15fi−4 + 6fi−5 − fi−6 (n = 6).

(2.2)

We also refer to each of the predictors as Constant, Linear, Quadratic, Cubic, Quartic, and

Quintic predictors for n = 1, 2, 3, 4, 5, and 6 respectively. Thus, the 1D polynomial prediction

pi of fi is formulated as

pi = c−1fi−1 + c−2fi−2 + ...+ c−nfi−n, (2.3)

where ck are coefficients. Higher order predictors in these require more data for calculations,
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Positive 0 0  0  1  0  1  1  0  0 ...  0  1  0  1  1  0  1

sign exponent mantissa

1 0  0  1  0  1  1  0  0 ...  0  1  0  1  1  0  1

Negative 1 0  0  1  0  1  1  0  0 ...  0  1  0  1  1  0  1

0 1  1  0  1  0  0  1  1 ...  1  0  1  0  0  1  0

Figure 2.4: Integer conversion of floating-point bit strings.

which causes both a more precise prediction and an increase of area. Note that we can apply

other extrapolation method by giving different coefficients.

Compared to higher-dimensional predictors such as Lorenzo predictor in hardware implemen-

tation, the 1D polynomial predictors require very few data to hold on the hardware. For example,

the 1D polynomial predictor requires only n buffers for any number of dimensions of the com-

puting. On the other hand, Lorenzo predictor requires Xres+2 for 2D, and XresYres+Xres+2

for 3D. Xres and Yres indicate resolutions of x and y direction, respectively. Therefore, the 1D

polynomial predictor has much higher adaptability than predictors tailored to the number of

dimensions.

Difference encoder

After the prediction, we encode the difference between pi and fi with its length of residual bits

(LRB) which shows the number of the remaining bits except successive zeros from MSB, and

the remaining bits themselves. We refer to the remaining bits as residual bits and denoted by r.

Many studies employed leading-zero count (LZC) which is the number of successive zeros from

MSB for prediction-based lossless algorithms [63, 44, 59, 42, 60]. We employ LRB in order to

simplify the processing at the decompression instead of LZC.

The prediction-based algorithms are classified into two groups for the encoding: arithmetic-

based one [44, 59, 45] and context-based one [42, 60]. The arithmetic-based algorithm uses

an arithmetic predictor to obtain the prediction by calculation. The context-based algorithm

uses a hash table to look up a datum that appeared after the same input phrase to predict the

next input. We select the arithmetic-based algorithm because it allows hardware to be faster

and smaller than that for the context-based algorithm. The hash table requires a large on-chip

memory and the memory update for every prediction limits an operating frequency.

We employ an integer prediction and subtraction for a small hardware and a high throughput.
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The integer-subtraction calculates the difference between pi and fi which are converted to un-

signed integers, therefore, the accurate prediction always give small difference even as converted

integers. The integer conversion is performed by flipping the sign bit for positive FP numbers,

or all bits for negative numbers [44] shown in Fig. 2.4. As a result, the positive and nega-

tive FP numbers are mapped continuously to the higher and lower space of unsigned integers,

respectively, as shown in Fig. 2.5.

We apply the integer conversion to the input data in advance before the prediction, therefore,

all numerical data are handled as unsigned integer. While pi and fi denote numerical values in

the floating-point format, P and F denote converted integers of p and f , respectively. Then we

compute the difference, D = P −F for P > F , or D = F −P for P ≤ F . Since an additional bit

is required to indicate a magnitude relation between P and F , we define an extra bit ex, where

ex =

{
1 for P > F

0 for P ≤ F.
(2.4)

As the results of the operations made at this moment, we have three bit strings which

are denoted by ex, LRB, and residual bits, respectively. We can reconstruct the original F

completely with these bit strings as ex,LRB, residual bits. Therefore, the compressor must send

these three bit strings every one of them. To output these bit strings with fixed bit-width,

the most simple and easy method is concatenating these bit string and cut out a output block

from the concatenated bit string according to the output width. Then the output stream from

the compressor contains these three bits completely. Although the decompressor receives the

compressed stream without any additional information of the length of each bit string, it can
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reconstruct the original data with expansions from the beginning of the stream because ex and

LRB have fixed length of bits. The decompressor can obtain the length of residual bits by

examining LRB. After the decompressor extracts residual bits, it reconstructs the original bit

string with an original bit length as D, then we employ the predictor again to calculate Pi which

is completely the same with the Pi in the compressor.

4-bit coding

The single-precision floating-point data consists of 32 bits per one datum. When we handle

32-bit datum, 4-bit coding achieves an effective data compression on hardware [42, 60, 27]. The

obtained LRB can be recorded as it is, however we used the 4-bit coding for easier handling

of a variable length of the residual. Here we assume that an FP number has 32 bits for single

precision. In this case, LRB can be 1 to 32, which is represented in 5 bits. The residual has LRB

bits. On the other hand, the 4-bit coding represents LRB with a multiple of 4. For example,

LRB = 15 naively gives 15 residual-bits. In the 4-bit coding, the LRB is truncated to 16, and

the residual becomes 16 bits being padded with unnecessary 0s. The 4-bit coding is expected

to have the advantage of 4-bit alignment that allowed us to more simply output residuals with

variable bit-length.

For IEEE754 single-precision floating-point data, the procedure of the integer subtraction

and the 4-bit coding is summarized as follows. We converted pi and fi to their unsigned integer,

P and F , respectively. We computed D by subtraction, and obtained ex = 1 or 0 for P > F

or not, respectively. Then we obtained the LRB of D. Instead of using 5 bits to represent the

LZC, we encode ⌈LRB/4⌉ with 3 bits so that the LZC is a multiple of 4. We padded necessary

0s to r. The length of encoded bits is (1 + 3 + 4⌈LRB/4⌉) for {ex,LRB, r}.
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2.3 Prediction based on 1D polynomial function

This chapter describes a derivation of 1D polynomial functions shown in equations 2.2. The

polynomial functions for the prediction are based on Lagrange interpolation. When (n=2) in

equations 2.2, the polynomial achieves a linear interpolation for the next value. Therefore, the

polynomials with (n+1) consecutive values achieve n-th order Lagrange interpolation.

Lagrange interpolation is defined as{
pn(x) =

∑n
k=0 akl

(n)
k (x)

l
(n)
k (x) =

∏n
i=0,i ̸=k

x−xi
xk−xi

(k = 0, 1, ..., n).
(2.5)

pn(x) is n-th order polynomial, and ak(k = 0, 1, ..., n) are coefficients of pn(x). l
(n)
k (x)(k =

0, 1, ..., n) are called Lagrange polynomials, which are n-th order polynomials and independent

of each other. With assuming l
(0)
0 (x) = 1, it has following properties,

l
(n)
k (xi) =

{
1 (i = k)

0 (i ̸= k).
(2.6)

Therefore, the following equation is satisfied.

pn(x) =

n∑
k=0

akl
(n)
k (x) = ai (i = 0, 1, ..., n). (2.7)

If it assumes ak = f(xk), we obtain Lagrange interpolation formula as

pn(x) =

n∑
k=0

f(xk)l
(n)
k (x) = ai. (2.8)

Please note that the order of the polynomial is at most n-th.

With Lagrange interpolation, the prediction is enabled by obtaining the coefficients ak for

various orders of polynomials. For example, 1-st order polynomial (n = 1) is described as

pn(x) = f(x0)
x− x1

+ f(x1)
x− x0
x1 − x0

. (2.9)

In addition, since it assumes that numerical data are sampled at equal interval, and assuming

(x0 − x1 = 1), we obtain the coefficients as shown in 2.2. Therefore, it is possible to obtain

predicted values by constant multiplications and simple additions. For the hardware implemen-

tation, Lagrange interpolation can be achieved by a smaller area of the hardware comparing

other interpolations such as Newton interpolation.
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Figure 2.6: Data compression algorithm. Figure 2.7: Data decompression algorithm.

2.4 Hardware design

Based on the compression algorithm mentioned above, we designed hardware compressor and

decompressor for a single channel of single-precision floating-point numbers [26]. Figs. 2.6

and 2.7 show the overviews of the data compression and the decompression. One datum in a

floating-point data stream is input to the compressor and it outputs a compressed data block

as a stream every clock cycle. We employ block coding to encode method for hardware data

compression because the output of the compressor needs to fit the I/O of the memory controller

on a FPGA. A compressed data block (CDB) is the output data block which contains a number

of compressed data, whose bit length is determined by an I/O bit width from or to the memory.

The decompressor receives the CDB, and extracts individual elements from the CDB, then it

operates in the same way as the compressor to reconstruct original data.

2.4.1 Compressor

Fig. 2.8 shows the overview of the compressor, which is pipelined and consists of several modules

which have their specific functions. The compressor is composed of binary translation unit

(BTU), a predictor with buffers, a difference-computing unit (DCU), an LRB unit (LRBU) and

a variable-to-fixed length converter (VFC). The input floating-point datum f is firstly converted

to an unsigned integer F by flipping the sign bit for a positive number or all bits for a negative

number. The converted integer is stored in the buffer. The buffer stores a necessary number of

previous inputs.

The predictor computes equations (2.2) to get P for the current input F s by integer operation.
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Figure 2.9: Hardware design of the de-
compressor.

Fig.2.10 shows the structure of the cubic predictor with n=4, which takes the last four inputs

from the buffer in parallel for the prediction. The predictor uses integer operations for prediction

with the cubic equation (2.2) instead of floating-point operations as described in section 2.2.

Since integer operations are less complicated than floating-point operations, integer operations

are more suitable for fast and small hardware implementations. Our preceding work [26] show

that the integer prediction provides approximately equal compression performance as that by the

floating-point prediction. A floating-point operation needs to divide bit strings of each datum

and operate separately because of its structure consisting of three parts, sign, exponent, and

mantissa. As shown in Fig. 2.4, converted bit strings still keep continuities as in floating-point,

which consists of sign, exponent, and mantissa from MSB. If there are no change in exponent

bits among the data used for prediction, the integer conversion has only a small impact on the

prediction because converted data have been kept the same magnitude relationships as in the case

of floating-point. In the case of numerical computing by CFD, the integer prediction achieves a

comparable performance that by the floating-point prediction because the computational results

do not have large fluctuation.

DCU computes the difference, D, between P and F by subtracting the smaller from the

larger after swapping P and F if necessary. DCU also outputs the exchange signal, ex, which
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Figure 2.10: Cubic predictor.

is asserted when P and F are swapped. LRBU computes (LRB) of D. Finally VFC outputs

words of compressed data, which are composed of {r,LRB, ex}.

2.4.2 Decompressor

Fig. 2.9 shows the overview of the decompressor. The decompressor consists of a fixed-to-variable

length converter (FVC), the predictor with the buffer, a data-reconstruction unit (DRU) and an

inverse binary translation unit (IBTU). The predictor and the buffer are the same as those of the

compressor. The decompressor outputs the original floating-point data stream with the input

of the compressed data stream. FVC generates D with ex, LRB and r. The predictor gives

prediction P with the previously decompressed numbers stored in the buffer. DRU reconstructs

the integer of the original data, F , with D, P and ex by performing the inverse operation of the

difference-computation. Finally IBTU converts F to its floating-point number f .

As shown in Figs. 2.8 and 2.8, the compressor and the decompressor are pipelined with the

four stages and the three stages, respectively, to process one floating-point datum every cycle at

a high operating frequency. The details of the units in the compressor and decompressor except

VFC and FVC were presented in [26].

30



CHAPTER 2. ALGORITHM AND HARDWARE DESIGN OF DATA COMPRESSION

32 3

B arrel S hifter

OR

[0][3:1][35:4]

68 68

3
4

+
32 0

-

pointer_

concat

8

lower

32bit
32bit right s hift

pointer_new 688

bu!er_new

32

(>31)

(>31)

8

bu!er_added

1 0
mux

mux
1 0

-

32 3

[0][3:1][35:4]

68 68

3
4

+
32 0

-

pointer_

concat

8

lower

32bit

pointer_new 688

bu!er_new

32

(>31)

(>31)

8

bu!er_added

1 0
mux

mux
1 0

D LRB/4 ex

Barrel shifter ODB

buffer pointer

OR

LRB/4

+

4

32-bit shifter

32-bit CDB

Figure 2.11: Variable-to-fixed length converter.

2.4.3 VFC and FVC

The variable-to-fixed length converter (VFC) and the fixed-to-variable length converter (FVC)

are designed to handle variable length compressed data. These modules are also important for

conversion between variable-length compressed and fixed-length CDBs. Therefore, both output

of VFC and input of FVC are intermittent due to generating and extracting CDBs. The following

sentences describe the detailed design and the behavior of VFC and FVC.

Fig.2.11 shows the design of the variable-to-fixed length converter (VFC) with 32-bit CDBs.

VFC consists of a 68-bit output data buffer (ODB) and a buffer pointer. The buffer pointer

specifies the number of bits accumulated in ODB at the moment. ODB accumulates the inputs

in ODB and outputs a 32-bit word when the buffer pointer is greater than or equal to 32.

VFC is in the stage 4 of the compressor. It receives ex and D from DCU and (LRB/4) from

LRBU, and outputs words of compressed data. The input is of 8 to 36 bits with a variable

length of a multiple of 4, while the output is a fixed 32-bit word. In order to decode compressed

data, our compression employs LRB to calculate compressed data length at the decompressor.

When the decompressor decodes compressed data, information of lengths of every compressed

datum is necessary. Because the CDBs are concatenated bit strings of several {ex, LRB/4 and

r}, the decompressor always finds LRB/4 and calculate the right length of the compressed data.

First, VFC concatenates ex, LRB/4 and D into a block, so that they are aligned from LSB to

MSB. Next, the block is shifted left so that the block exists in the next empty bits of ODB. The

shift amount is specified by Pointer. The shifted block is inserted into the next empty positions

of the present ODB by OR operation, giving buffer added. The width of the block is obtained
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with LRB/4, then pointer concat is computed by adding Pointer and the width of the block.

If pointer concat is greater than or equal to 32, the lowest 32 bits of buffer added are output

with a valid signal as the CDB. Simultaneously, Buffer added is shifted 32-bit right to form

Buffer new, which is used to update ODB for the next cycle. Pointer is also updated with the

value given by subtracting pointer concat with 32. Then the next datum is input to VFC. If

Pointer exceeds 67, ODB and the buffer pointer are not updated and a signal is output to stall

the entire pipeline of the compressor. When the last datum is input into VFC, ODB can have

remaining bits shorter than 32 bits. We flush them out at the end of compression with zeros

padded to form a 32-bit word.

Fig.2.12 shows the design of the fixed-to-variable length converter (FVC) with 32-bit CDBs.

FVC is in the first stage of the decompressor. It receives words of the compressed data con-

taining ex, (LRB/4) and residual bits, and outputs ex and D to DRU for each encoded number.

FVC consists of a 68-bit input data buffer (IDB), a buffer pointer and a Mask Generation Unit

(MGEN). Along with VFC, the buffer pointer indicates the number of bits accumulated in IDB.

IDB receives and accumulates the next word when the buffer pointer is less than 32. MGEN

makes a 32-bit mask to clear unnecessary bits from the output of D.

IDB stores ex, LRB/4 and residual bits for multiple compressed numbers. By reading LRB/4,

the length of the residual bits is computed. If the entire residual bits exist in IDB, they are output
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as D and IDB is shifted. Then the next input word is inserted into IDB.

The input word is shifted left so that it fits the next empty positions in IDB. The shift amount

is given with pointer reduced = (Pointer − bit length), where bit length is the length of residual

bits, (LRB/4), ex in Fig.2.12. If pointer reduced is less than 36, the shifted bits are inserted into

IDB by using OR operation, and the buffer pointer is updated with (pointer reduced + 32). In

order to extract D from IDB, it needs to get the bit length of each compressed data. Since the

bits of (LRB/4), ex are always at the LSB of IDB, we can directly read (LRB/4) and use it to

obtain the bit length of residual bits by computing (bit length−4). Then MGEN makes a 32-bit

mask with bit length. The 32-bit D is generated by performing AND operation with the mask

and the 32-bit of IDB [35:4].
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Figure 2.13: LZCU for 4 bits input.

2.5 Parametrized design of the compressor and decompressor

For the compressor and decompressor to be able to process various data and various lengths

of CDBs, we parameterize their design. Here we describe structures of the major components:

the predictor, VFC, FVC, and the LRBU. The other components are simple, and easy to be

parameterized.

As shown in Fig. 2.10, the width of the buffer and operators in the predictor is parameterized

with an input data width, w. Fig. 2.11 shows the structure of the VFC. The VFC converts

variable-length inputs to w-bit fixed-length outputs by using the pointer and the buffer. The

pointer manages the MSB position of the data in the buffer. According to the pointer, the left

barrel shifter adjusts the bit position where the input is inserted in the buffer. The VFC is

composed of the two data-paths to update the pointer and the buffer, respectively. Here we

define three parameters, w0, w1, and w2, which are the length of the raw LRB, width of the

buffer, and the length of concatenated data of D, and LRB/4, and ex. They are obtained by

the following equations: w0 = log 2w, w1 = 2w + w0 − 1, and w2 = w + w0 − 1.

Fig. 2.12 shows the FVC in the decompressor, which also has the pointer and buffer for

conversion. The pointer is updated according to the update status of the buffer. The data in

the buffer is shifted by the right barrel shifter when a datum is output from the buffer. The

FVC is also parameterized with the parameters, w, w0, w1, and w2.

To generate LRB, we employ LZC unit which generates LZC of bit strings, then we obtain
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Figure 2.14: LRB unit for 16-bit input.

LRB by subtracting of (w − LZC). We designed LRBUs for various bit width by combinating

several 4-bit LZC unit, called LZCU4 as shown in Fig. 2.13. The LZCU4 has a 4-bit input and

outputs of 2-bit lzc and 1-bit non-zero (nZero) signal. We built an LRBU for a 16-bit input,

called LRBU16, with five LZCU4s as shown in Fig. 2.14. In the LRBU16, we also have the

leading-segment selector for 4 (LSS4) to select one from four lzc from the four LZCU4s. The 4-

bit lzc of the LRBU16 is generated by concatenating the 2-bit lzc from the second-stage LZCU4

and the LSS4. Thus we can compose a four times wider LRBU by combining four LRBUs. We

also employ an LSS2 and two LRBU16s for a 32-bit LRBU, and a LSS4 and four LRBU16s

for 64-bit LRBU. We realize wider input LRBUs in the same way as mentioned above. LSS

provides an overall LZC in LRBU, which counts the successive zero bits from MSB to LSB.

LZCU is designed for 2- and 4-bit inputs, and LSS is designed for two and four input LZC,

which cope with various data types by combining these modules. Therefore, it is possible to

apply the LRBU to various data which have powers of 2 bits.

The parameterized design allows us to apply the data compressor and decompressor to real-

world implementations on FPGA because the bit length of CDBs must be the same with I/O bit

width of a memory controller. Since required length of a CDB is determined by specifications

of memory and FPGA, the parameterized design can be applied to various systems on different

devices. Moreover, it can handle a variety of data type such as double-precision floating-point
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Figure 2.15: Leading-segment selector for 4 inputs.

as well as single-precision.
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2.6 Evaluation of the compressor and decompressor

The proposed data compressor and decompressor need to satisfy the requirements described in

section 2.2. Therefore, we evaluate the hardware implementation of the compressor and de-

compressor in terms of the compression ratio, the hardware area, and the maximum operating

frequency (Fmax). In related studies and our preceding studies, the entire designs were not pre-

sented, especially the output formats were ignored. An appropriate output format is necessary

to exploit an available bandwidth by the compressed data. Therefore, the data compression

mentioned in previous sections is unique and essential for the bandwidth compression. To apply

to the bandwidth compression, we need to evaluate the hardware implementation of the data

compressor and decompressor. Firstly, we evaluate the hardware with 4-bit coding which de-

signed for single-precision floating-point data and output 32-bit CDBs, in which we measure the

compression ratio, hardware area, and Fmax. Then we also evaluate the parameterized design

with various CDB sizes in terms of the area and Fmax.

We implement the compressor and the decompressor in the FPGA-based prototype system

as shown in Fig. 2.16. The system consists of the PCI-Express Gen.2 x4 controller, the two

external memory controllers, and the compressor and the decompressor with Altera Stratix IV

FPGA on DE4 development board. The FPGA is one of the 40-nm series, which has 182400

ALUTs (adaptive lookup tables), which are logic cells to realize various logic circuits. Since

the prototype system is designed just for verification and experiments, non-compressed data are

read and written from/to the external memories to evaluate the performance of the compression

and hardware.

We also evaluate the performance of the hardware with various data widths and CDB widths

with the parameterized design. We set that both of the input and output widths of the com-

pressor and decompressor are the same as 32, 64, 128, and 256 bits.

The prototype implementation is controlled by a software on the host PC. A data stream to

compress is transmitted between the two external memory. Every processes for the stream is

pipelined on FPGA. We used Altera’s Qsys system integration tool [64] to generate the proto-

type implementation with the I/O controllers. The compressor and the decompressor operate

at 125MHz. We implemented the four-stage compressor and the three-stage decompressor de-

scribed above for IEEE754 single precision floating-point numbers. The compressor and the

decompressor operate at 125MHz. The implemented circuits are written in Verilog-HDL, and

compiled with Altera’s Quartus II software ver.11.1 where “Speed” option is specified.
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Figure 2.16: Prototype implementation of the compressor and decom-
pressor.

Table 2.1: Resource usage of the polynomial predictor.
Polynomial order Logic cells Registers

n=1 33 32

n=2 97 64

n=3 223 96

n=4 252 128

n=5 406 160

n=6 560 192

2.6.1 Prediction accuracy and area of predictor

First, we evaluate the prediction accuracy which affects the compression performance for a nu-

merical data set of a real-world simulation. The predictor employs the 1D polynomial functions

as shown in Eq. (2.3). We evaluate the predictors from 0-th to 5-th which are shown in Eq.

(2.2) to investigate the prediction accuracy and the circuit area to select a predictor. We use the

computational results of the two dimensional lattice Boltzmann method (2DLBM), which is one

of the CFD schemes. The 2D-LBM data are obtained at 120,000 time steps on 1600x960 lattice.

We predict single-precision floating-point data of 2D-LBM computational results in every 5000

time steps by these six predictors.

Fig 2.17 shows the graph of an average LRB in each time step. Since LRB influences
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Figure 2.17: LRB of 2D-LBM Data Compression.

the length of a compressed datum, the prediction with small LRB leads the high compression

performance. The shorter the residual bits are, the higher the compression ratios are obtained

with in the encoding. The result shows that the predictor with n = 4 achieves the most accurate

prediction. The higher order predictions have tendency to achieve higher accuracy. However,

with n = 6 and n = 5, they are not shorter than n = 4. These higher order predictions achieve

more consistent performance than lower order predictions. The prediction functions are based

on the assumption that the data obey the (n−1)-th order function, thus the predicted values are

on the function. Since the higher order functions are likely to be affected by small fluctuations,

the prediction accuracy is not so high with a higher order function.

Table 2.1 shows the resource usage of these six predictors on a FPGA, which are almost

in proportion to the order of predictors. In the result, the area of predictor is small giving an

insignificant effect to the area of the entire system. From these points of view, we employ cubic

(n = 4) predictor with emphasis on compression performance considering the balance between

the prediction accuracy and the area.

2.6.2 Resource consumption

Table 2.2 shows the resource consumption of the proposed compressor and the decompressor

which employ the 4-bit coding with 32-bit output CDBs. The compressor uses only 909 ALUTs

and 612 dedicated registers, which correspond to 0.5 % and 0.34 % of the total resources on

EP4SGX230 FPGA, respectively. The biggest module in the compressor is VFC, which uses
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Figure 2.18: Resource usages of the parameterized compressor and decompressor.

313 ALUTs (0.17 %) and 110 registers (0.06 %). The decompressor is also very small, which

consumes only 822 ALUTs and 439 registers which are 0.45 % and 0.24 % of the total resources,

respectively. FVC is the largest module in the decompressor, using 428 ALUTs (0.23 %) and

106 registers (0.058 %).

These results show that the compressor and decompressor are so small that they account

for less than 1 % of the total resources of this FPGA, which are less resources than those of

[43]. In addition, they require no block memory and no DSP block. This is very important

for auxiliary utilization of compression because such embedded hard macros should be used by

major computing modules.

Fig. 2.18 shows resource usage of the compressors and decompressors with various data

widths in the parameterized design. The data width shows input and output bit widths of the

compressor and decompressor, and the input and output widths of both modules are the same.

The “others” in the graph means other than shown in graph such as pipeline registers and some

logics to connect the modules. The result shows that the number of ALUTs increases almost

linearly. In the case of 32-bit width, the compressor and decompressor use 764 and 689 ALUTs,

respectively, which corresponds to only 0.42% and 0.38% of the total ALUTs. This 32-bit

hardware is very small, however, the wider the data width are, the larger the hardware area is.

64-bit width hardware is still small, consuming only about 2% of the total ALUTs, while the 256-
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Table 2.2: Resource consumption of the compressor and decompressor.

Modules ALUTs Dedicated registers Block memory bits

Compressor 909 (0.50%) 612 (0.34%) 0 (0.0%)

Predictor 195 (0.11%) 132 (0.72%) 0 (0.0%)

LRBU 4 (0.002%) 0 (0.0%) 0 (0.0%)

VFC 313 (0.17%) 110 (0.060%) 0 (0.0%)

Others 278 (0.15%) 204 (0.11%) 0 (0.0%)

Decompressor 822 (0.45%) 439 (0.24%) 0 (0.0%)

Predictor 228 (0.12%) 132 (0.072%) 0 (0.0%)

FVC 428 (0.23%) 106 (0.058%) 0 (0.0%)

Others 66 (0.036%) 35 (0.019%) 0 (0.0%)

Stratix IV EP4SGX230 182400 182400 14625792

bit designs require 3.87% and 4.33% ALUTs for the compressor and decompressor, respectively.

The important modules for the hardware area is VFC and FVC, which occupy more than half

area in the compressor and decompressor in the case of 128 and 256-bit, respectively. Other

modules are less affects by the data width with the exception of the predictor which is much

smaller than VFC and FVC.

The number of registers also increases as bit width increases. However, their numbers are

moderate prepared to the ALUTs. The predictor is the largest module in terms of the number

of registers in many cases, because the predictor requires four data buffer to hold previous data

for the cubic prediction.

This result shows that the bit width of the input and output strongly affect the area. For

real-world applications, the input of the compressor is usually 32 or 64-bit width, and output is

wider than input in many cases. Therefore, the output width, which is the same with the length

of CDB, is considered to affect the entire hardware area. We discuss and evaluate this impact

in the next chapter.

2.6.3 Throughput

Fig. 2.19 shows the maximum operating frequencies of the parameterized compressors and

decompressors. Both hardware can operate at higher than 232MHz and 201MHz for both 32-bit

and 64-bit, respectively, while the frequencies decreases as increasing data widths. In the 256-bit

case, frequency higher than 120MHz is still available for both compression and decompression.

This result shows that we can apply this compressor and decompressor to dedicated circuits

whose Fmaxs is lower than the compressor and decompressor.

Table 2.3 shows latencies of pipeline stages. The compressor has a critical path in the stage 4

including VFC for 32-bit and 64-bit, while the stage 1 including the predictor becomes a critical
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Figure 2.19: Maximum operating frequencies of the parameterized com-
pressor and decompressor.

Table 2.3: Critical path delay and maximum frequency (Fmax) of each pipeline stage.

Compressor Decompressor

Stage 1 Stage 2 Stage 3 Stage 4 Stage 1 Stage 2 Stage 3

Delay of critical path [ns] 4.141 3.946 3.596 4.045 4.550 5.052 3.439

Fmax [MHz] 241.5 253.4 278.1 247.2 219.8 197.9 290.8

path for 128-bit and 256-bit. This is because the latency of the adders in the predictor gets

longer than that of the barrel shifter in VFC for wider bits. On the other hand, the decompressor

has a critical path in the stage 2 with the predictor for shorter bits, while the stage 1 including

FVC gets to have a critical path for 256-bit. This is because the stage 2 has a long critical-path

for the DRU, buffers, and the predictor. In both hardware, the feedback loop is responsible

for increasing of delay, the stage 1 of the compressor and the stage 2 of the decompressor. To

improve the throughput of the hardware, we need to employ faster predictor, or redesign without

the feedback loops.

2.6.4 Compression ratio

To confirm that the data compression have effect for real-world numerical data, we evaluate

the compression performance of the hardware by using 2DLBM data For verification, we used

the computational results of the 2DLBM [26]. Each computational result is composed of nine
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Figure 2.20: Numerical simulation of 2DLBM.

variables, each of which contains 800× 480 floating-point numbers in single precision. Then we

evaluated a compression ratio which is defined with Rcomp = (Size of original data)
(Size of compressed data) . Figs.2.20

is numerical data of the results of 2DLBM for evaluation. The average compression ratio is

Rcomp = 3.7 in this evaluation, where most of floating-point numbers are compressed at the

ratio of 4 while some few numbers intermittently have lower ratios from 2 to 3. Since the

theoretical maximum compression ratio is 32/8 = 4 in this algorithm, this result shows the

compression is very effective for the 2DLBM data. The compression of the stream data means

that the compressor and decompressor reduce a required bandwidth.

Finally, we measure compression ratios for 32 and 64-bit data which correspond to single-

precision and double-precision of floating-point data, respectively. For evaluation, we used the

test data and the CFD data shown in Figs. 2.21 and 2.22, and we do not employ the 4-

bit coding which affects only a 32-bit compression. The test data are obtained by sampling

a simple function, fi = sin
(

2παx2

327682

)
+ β, at 32768 points. We used GNU MPFR (multiple-

precision floatin-point computations with correct rounding) library [65] to compute it for 32-bit

and 64-bit floating-point numbers. The CFD data are obtained by a CFD which computes the

fluid dynamics in 2D Laval nozzle. The data are of a 101 × 301 orthogonal grid in generalized

curvilinear coordinates. This CFD data contain velocity, pressure, tempreture and specific heat

value at constant pressure as variables. We also measure the compression ratios by bzip to
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Figure 2.21: Test data generated by sam-
pling a function for β = 1.

Figure 2.22: CFD result of a 2D Laval noz-
zle. The color bar shows velocities and
pressures.

compare to the hardware compressor.

Fig. 2.23 shows the result. The compression ratios of the test data tend to be higher for

smaller α and β, because such parameters make smaller prediction errors between adjacent

samples in compressing the test data. As a result, the 32-bit and 64-bit compressions achieve

the maximum compression ratio of 3.9 and 5.2, respectively. Since the theoretical maximum

compression ratios are 4.57 and 8 for 32 and 64-bit data compression, respectively, this results

shows that the compression performs well especially in 32-bit data. On the other hand, the

CFD data compression is not effective, which are 3.1 and 1.8 for 32-bit and 64-bit compressions.

This is due to the less continuity in the CFD data than the test data because of the curvilinear

grid and numerical discontinuity points by shock waves. These ratios are not so high, but our

compression technique is still effective in such disadvantageous cases. In all cases, our compressor

achieves equal or better ratios than those by the bzip2, a general-purpose software compressor.

Since these bit widths are commonly used in numerical computation, the hardware-based data

compression is especially useful for bandwidth compression in typical computation with single-

precision or double-precision floating-point data streams.

44



CHAPTER 2. ALGORITHM AND HARDWARE DESIGN OF DATA COMPRESSION

6

5

4

3

2

1

0
32bit 64bit 32bit 64bit

α=1, β=1

α=1, β=10

α=2, β=10

CFD data

Bit width

C
o

m
p

re
ss

io
n

 r
at

io

compressor bzip2

Figure 2.23: Data compression ratios of 32 and 64-bit floating-point data by the
compressor and bzip2.

2.7 Problems of the previous design

The last section presents the evaluations of the data compressor and decompressor. The results

shows that the throughput is sufficiently high because the compressor and decompressor can

operate more than 200 MHz for single-precision 32-bit data. In addition, the compression ratio

is also high especially for single-precision data, and is almost the same in performance with

bzip2 for double-precision data by more simple algorithm.

On the other hand, in the area evaluation, both the compressor and decompressor require

more than 7,000 ALUTs with the 256-bit I/O design. Therefore, a pair of the compressor and

decompressor needs about 15,000 ALUTs, which is much more than registers required. Since we

need a lossless compression, it is necessary to apply one pair of the compressor and decompressor

to a single channel in the FPGA. According to the studies of FPGA-based stream computing

[66, 22, 58], the numerical computing is required to process in multiple channels. Therefore,

the bandwidth compressor for n channels processing requires n× 15000 ALUTs at least, which

limits to apply the compression to computing with many channels.

The number of the channels is determined by computations themselves, especially by the

number of variables and the parallelism of the circuit. Since we cannot determine the number of
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channels, the bandwidth compressor must be designed specifically for an objective application,

including the number of channels. However, the limitation of the design caused by area prevents

to apply the bandwidth compressor to various applications. For example, the Stratix IV has

182,400 ALUTs on which we can implement up to twelve pairs of the compressor and decom-

pressor without any modules. The implementation needs modules for computational cores, an

encoder and a decoder to handle multiple channels for the numerical computing at least. From

this point of view, the areas of the compressor and decompressor are too large to apply to real-

world applications on available FPGAs. We will discuss this problem and give the solutions in

chapter3.

Moreover, the Compressor and decompressor need to control for multi-channel operations.

The real-world applications in this dissertation have multiple variables which correspond to

the multiple channels. These variables needs to be calculated synchronously in hardware with

multiple channels. On the other hand, a compression ratio of each channel is different and also

fluctuating. Therefore, the compression of multiple channels needs to deal with these fluctuating

compression ratio and guarantee the synchronized processing on the dedicated circuit. We will

give the solutions and show the hardware implementation of the multi-channel compression in

chapter4.
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2.8 Conclusions

The objective of this chapter is to evaluate the data compressor and decompressor on hardware

for applying to the real-world applications. For them, we have described the data compression

algorithm which proposed in our preceding work, and presents the hardware designs and the

evaluation of the hardware implementation.

The algorithm is based on the prediction of the next input value. Since the floating-point

data are not suitable for compressions based on the occurrence frequencies of symbols such as an

entropy coding, we employed the algorithm which consists of the prediction and the subtraction.

The prediction is carried out by 1D polynomial function, which achieves good performance for

the numerical data by exploiting their continuities. The prediction-based compression satisfies

the requirements of the bandwidth compression on FPGA, such as small latency and enough

compression ratio.

We have also shown the hardware designs of the compressor and decompressor. They are

pipelined in 4 and 3 stages, respectively, and consist some modules such as the predictor, VFC,

and FVC. The parameterized designs of these modules allow us to apply to various data including

single and double precision floating-point data.

By implementing the compressor and decompressor on FPGA, we evaluated the resource

utilization, frequency, and compression ratio. The compression ratios in the evaluation are

3.1 and 1.8 for 32 and 64-bit CFD data, respectively. And proposed hardware achieves higher

compression ratios than bzip2 which is a general-purpose data compression method. In addition,

the maximum operating frequencies are more than 200 MHz in the cases of 32 and 64-bit

data compression, which are sufficient to operate on the FPGA. With 32-bit width design, the

compressor and decompressor require small area thanks to 4-bit coding.

These results showed that the data compressor for single and double-precision floating-point

numbers is very useful for FPGA-based bandwidth compression. On the other hand, the large

area of the hardware in the cases of wide data widths had a possibility that we cannot apply

the bandwidth compression with a large number of channels. And we also needed to design the

hardware for multiple channels including the compressor and decompressor for the real-world

applications.
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Chapter 3

Area efficient data compressor for
stream computing

3.1 Introduction

Chapter2 described a lossless compression algorithm for a floating-point data stream in numer-

ical computing, and we designed high-throughput pipelined compressor and decompressor. The

hardware implementation achieves good compression performance and high-throughput process-

ing. However, the hardware area becomes a problem when we try to use the compressor and

decompressor to real-world numerical applications.

Since the numerical simulation generally computes complex phenomena based on governing

equations with multiple variables, its stream hardware requires multiple channels [57, 67]. In

addition, to increase the performance of FPGA-based computing, we need more channels which

accommodate multiple cores to exploit coarse-grain parallelism. Since each of the compressor

and decompressor can handle only a single channel, we need plenty of the compressor and

decompressor modules for FPGA-based high-performance stream computing. For example, 2D

CFD with LBM, 2D-LBM, needs 10 variables to compute on each cell [58, 27]. Therefore, the

parallel processing of 2D-LBM requires (parallelism×10) compressors and decompressors, which

are the same as the total number of the channels. Accordingly, we need smaller compressors

and decompressors to save the area for such auxiliary hardware.

Moreover, there is another factor that a CDB which is an output data block from the

compressor needs to be the same width as the output port of FPGA. Recent FPGAs have wide

I/O bit widths such as 256 or 512-bit, which causes further area increasing, and also have a large

numbers of resources to allow us highly parallel computing. Therefore, we need new method

to reduce the area of the compressor and decompressor with little decrease in compression

performance.
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Figure 3.1: Areas and maximum frequencies of the data compressor with various
numbers of channels.

To reduce the area of each the compressor and decompressor, we propose an area-oriented

encoding. In this chapter, we analyze the cause of this large area. This detailed analysis of

the hardware points out that the VFC and the FVC are largely responsible for most of the

area consumption. The VFC and the FVC are both modules to convert between variable-length

compressed data and fixed-length CDBs. Since the compressor generates a fixed-length CDB

in contrast, we need to concatenate compressed data to generate CDBs. The VFC gives the

concatenation of variable-length compressed data, and the FVC extracts individual compressed

data from concatenated data blocks. Since the VFC and FVC are area-consuming, we improve

their structure and designs with the newly proposed encoding method. Our approach is based on

the idea of 4-bit coding but further simplifies of hardware processing more than the naive 4-bit

coding. We propose the limited-LRB (l-LRB) and the improved CDB for area improvement,

design new hardware compressor and decompressor, and evaluate their area and compression

performance.

This chapter presents a design of very small compressor and decompressor as an area-oriented

design which are realized a drastic reduction of the hardware area with a slight decrease of the

compression performance. It shows the ideas and specifications of the l-LRB and an improved

CDB for reduction of the area of VFC and FVC. Along with this, we show the area-oriented

algorithm and design, which simplifies the operations and limits the range of possible values of

LRB. We also show an estimation of the compression ratio with modeled LRB distributions which

represent the characteristics of the various data. The evaluation shows that the compressors
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Figure 3.2: Areas and maximum frequencies of the data compressor with various
lengths of CDBs.

and decompressors are sufficiently small to apply to dozens channels like real-world numerical

applications.

The objective of this chapter is proposing new encoding method for area saving to apply

to the real-world applications which requires multiple channels. For this goal, we present the

detailed analysis of the area of the compressor and decompressor. And we shows the new encod-

ing method, design the improved compressor and decompressor based on the new encoding, and

evaluate the proposed hardware for their area and compression performance. The contributions

of this chapter are:

1. Detailed analysis of the previous hardware,

2. Proposing new encoding method,

3. Designing hardware based on new encoding,

4. Evaluation of proposed compressor and decompressor.

The organization of the chapter is as follows. Section 3.2 describes the causes of the large

area. Section 3.3 proposes the new encoding method. Section 3.4 shows the design of the

improved compressor and decompressor. Section 3.5 presents evaluations. In section 3.6, we

discuss about a selection of design for various applications. Finally section 3.7 gives conclusions

of this chapter.
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Figure 3.3: Area and Frequency of decompressor.
Figure 3.4: Breakdown of re-
source usage of a compressor

3.2 Causes of the large area problem

In the previous chapter, . the evaluation results are good for the compression performance and

the throughput, however, the area becomes a problem when we apply the data compression for

real-world applications. Fig. 3.1 shows the area and maximum frequency of the data compression

hardware for various numbers of the channels when the length of CDB is 512 bits. The area

becomes bigger as the number of channels increases. On the other hand, the maximum frequency

stays almost constant.

Fig. 3.2 also shows the area and maximum frequencies of the compressor for various lengths

of CDBs when the number of channels is 10. In contrast to Fig. 3.1, the area increases and the

maximum operating frequency decreases as the output block size increases.

These results show that the maximum operating frequency is determined mainly by the bit

width, not by the number of channels. The usage of ALUTs is much bigger than registers, and

the compressors uses about 25% of the total ALUTs in Stratix IV when the number of channels

is 10 and the output block size is 512. Fig. 3.4 shows the breakdown of ALUT usages by VFCs

and others for various output block size. As the length of CDB increases, the amount of ALUTs

for the compressor also increases due to the growing VFC. In contrast, the other parts of the

compressor do not increase the area significantly. These results show us that the length of CDB

is the major factor in determining area of the compressor.

Fig. 3.3 shows an evaluation result of the decompressor for 10 channels with various CDB

sizes. The result denotes the same tendency of the compressor, however, we found that the

area of the decompressor is significantly larger than the compressor. This is because that the

decompressor contains two barrel shifters which are used for variable length shifts while the

compressor contains only one barrel shifter.
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Figure 3.5: Generating CDB by concatenating compressed data.

3.2.1 Impact of the number of channels on area

The numerical computing requires multiple compressors and decompressors for the bandwidth

compression of multiple channels. Therefore, the resource consumption of the compressors

and decompressors increase in proportion to the number of channels as shown in Fig. 3.1.

In the previous design of the preceding study, the number of ALUTs required per channel is

about 10,000 with 512-bit CDBs, which allow us to implement only 18 pairs of the compressor

and decompressor on Stratix IV FPGA. In terms of application to real-world problems, the

hardware area of the previous design is too large to make sufficient room for computing hardware

to be implemented with on state-of-art FPGAs. Therefore, the area of the compressor and

decompressor should be as small as possible.

Additionally, since the bandwidth compression improves the performance of applications

which requires wider bandwidth than available bandwidth, the bandwidth compressor is required

to be sufficiently small as compared with the dedicated numerical circuits. For example, when the

I/O width of the FPGA is wout bits and the data width is w bits, the bandwidth compression

needs more than wout
w channels to produce an effect. Therefore, the bandwidth compression

consistently improves a marginal performance of the FPGA-based stream computing rather

than increases a general performance. Hence the more channels the dedicated circuit has, the

more effective the bandwidth compression becomes. Since we cannot choose the number of

channels freely, it is impossible to reduce the area by the reduction of channels. To reduce the

area of the bandwidth compressor, we have no choice but to reduce the area of the compressor
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Figure 3.6: Structural overview of an 8-bit barrel shifter.

and decompressor themselves.

3.2.2 Impact of the length of CDB on area

Figs. 3.2 and 3.4 show that the number of ALUTs increases with the length of CDB mainly

due to the increasing ALUTs of the VFC. On the other hand, the cause of the increase of used

ALUTs is the VFC as is clear from Fig. . In the case of the VFC in Fig. 2.11 with 32-bit CDB,

it contains a 68-bit buffer as an output data buffer (ODB), which concatenates {r,LRB, ex} of

the successive compressed data. The length of ODB is more than twice of the length of the

CDB. Since the VFC concatenates compressed data as a bit string and isolates a CDB from the

bit string in ODB as shown in Fig. 3.5, the ODB has to have enough bit width so that any bits

are not lost. In the case of the 32-bit CDB, the ODB needs 68 bits so that it always holds the

compressed data which have up to 36 bits. Therefore, with 512-bit CDBs, the ODB needs to

have 550 bits at least, such along buffer requires a huge barrel shifter.

A barrel shifter makes an arbitrary shift by combining 2n-bit shifts. The structural overview

of an 8-bit input barrel shifter is shown in Fig. 3.6. For 8-bit input, the barrel shifter contains

a three stages which correspond different shift amounts from each other, 4-bit, 2-bit, and 1-bit

shift, respectively. It can achieve 1 to 8-bit shifts by combining of 4, 2, and 1-bit shifts. Since

every stage of the barrel shifter requires 8 multiplexors, there are 24 multiplexors in the 8-bit

input barrel shifter. Therefore, the number of multiplexors for an n-bit shifter is of O(nlog2n).

Fig. 3.7 shows the increasing number of multiplexors in a n-bit barrel shifter. As shown in the

54



CHAPTER 3. AREA EFFICIENT DATA COMPRESSOR FOR STREAM COMPUTING

Figure 3.7: Hardware cost of a barrel shifter.

graph, we need much more multiplexors in the barrel shifter according to increase of n. According

to this theory, a 550-bit barrel shifter needs 10240 multiplexors. Actually, an optimization in a

compiler reduces the resource usage of the barrel shifter, which exploits that the input is 38 bits

at a maximum. Even so, a wide barrel shifter still requires a large amount resources.

The VFC contains one barrel shifter while the FVC contains two barrel shifters. Since the

FVC has two barrel shifters for IDB update and shift input data, the FVC needs more resources

than the VFC. Therefore, to reduce the hardware area of the compressor and decompressor, it

is necessary to make the barrel shifters smaller. To make the barrel shifters smaller, we can rely

on either splitting the operation or reducing bit width. However, the barrel shifters cannot be

pipelined to divide the process because the VFC and FVC contain feedback loops. Moreover,

we cannot divide the available bandwidth by a partitioning CDB in each channel because of

fluctuations of the compression ratios in channels.

Thus the encoding method and the structure of the previous design .are not suitable for

small implementation To solve the problem, we need to improve VFC and FVC especially. We

propose the solution of this problem in the next section.
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Figure 3.8: LRB distribution of 2D LBM data.

3.3 Area-oriented encoding

Since the previous design requires too many resources to apply to the real-world applications,

we need to reduce the area of the compressor and decompressor drastically. Several researches

proposed n-bit encoding which handles the residual bits in units of n bits to simplify the process

[42, 60]. Our preceding study also proposed the naive 4-bit encoding in order to easily handle

variable-length compressed bits [68]. The n-bit encoding limits the length of residual bits to be

in multiples of n. Our preceding use n = 4 for compression of only a single precision floating-

point data which allows the compressed bit to be of multiples of 4 bits. By limiting the length

of the residual bits to 4n, LRB is expressed in 3 bits. With one more additional bit for ex, the

set of the residual bits, LRB, and ex fits the 4-bit alignment. We generalize and further simplify

this approach for other lengths of an input datum to reduce the area of the compressor and

decompressor.

The idea of the bandwidth compression means that we accelerate the computing at the ex-

pense of an extra hardware resource. In terms of the compression performance, it also obtains

good performances by using large hardware resources generally. Therefore, it is believed that

the reduction of area involves a decline of the compression performance. So we should employ
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Figure 3.9: LRB distribution of numerical data with an unstructured grid.

an area reduction method which does not decrease the compression performance too much.

Following subsections show area reduction methods which are based on the idea of n-bit encod-

ing and exploiting deviations of the numerical data to reduce the degradation of compression

performance.

3.3.1 Uneven distribution of LRB in numerical data

We have found that compression of typical data gives uneven distribution of residual length,

which exist in a certain ranges. The length of residual bits, LRB, indicates the prediction

accuracy in the compression, which depends on the characteristic of data. Generally, the the

characteristic of data is influenced by computation itself and computational grid.

Figs. 3.8 and 3.9 show examples of LRB distribution. In these graph, the smaller LRBs

show that the prediction accuracy is higher. In the Fig. 3.8, a computational grid is large and

orthogonal, which allows the prediction more accurate because the data get closer to constant.

On the other hand, in Fig. 3.9, since a computational grid is small, and containing rapid change

of physical quantities given by such as a shock wave, the distribution of the LRB becomes

bigger than that of Fig. 3.8 because of inaccuracy of the prediction. The LRB distributions are

different depending the continuity of the data, however, in both cases, LRBs are clustered in

certain regions.

Therefore, we should exploit these deviations to keep the compression performance with the
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reduction of the areas. The uneven distribution of LRB means that we can reduce a complexity

of the encoding because there are some regions both in Figs. 3.9 and 3.8 where the compression

does not affect because the LRBs are almost non-existent. On the other hand, we focus to

compress effectively the regions in which the LRB is many such as the colored area in Figs. 3.8

and 3.9. With this concept, we propose for an area-efficient encoding method which limits the

possible values of LRB.

3.3.2 Limited LRB

First, instead of a variable bit length, we use only three lengths to express the residual length to

make the bit string of LRB shorter. We refer to these selected lengths as limited LRB (L-LRB).
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We make the three lengths in multiple of 2 like 2, 4, and 32. Let L1, L2, and L3 denote the three

lengths that L1 ≤ L2 ≤ L3. Fig.3.10 shows the detail of L-LRB. We make L3 the same length

as the original data to keep the entire bits without lossy compression when LRB ≥ L2. When

L1 ≤ LRB ≤ L2, we keep L2 bits including the original residual and padded zeros. Or when

LRB ≤ L1, we keep L1 bits including padded zeros. This L-LRB approach gives additional

zeros in stored data, however requires only 2 bits to encode the three lengths, resulting in much

simplified hardware.

The L-LRB allows us to employ much smaller barrel shifters than the previous encoding. We

select L1, L2, L3 to have the big greatest common divisor (GCD) for an effective area reduction.

In this case, since the GCD works as n in n-bit encoding, the lengths of the bits in the ODB

are always multiple of the GCD. Therefore, we can handle the ODB with small barrel shifters

because the shift amount for the CDB generation always becomes the multiples of the GCD.

When we denote the GCD of L1, L2, L3 with wGCD, the number of required multiplexors in

the barrel shifter becomes wGCD times smaller than the original.

3.3.3 Improved CDB

Second, we split the fields of CDBs into the field of L-LRB and ex, and the field of the residual

bits as shown in Fig. 3.11(b). Fig. 3.11(a) is an original method which is referred to as the

performance-oriented encoding thereafter. This is because the L-LRB and ex have a fixed bit-

length of 3, where 2 for L-LRB and 1 for ex. Since sets of LRB and ex are at a fixed location,

simple hardware with multiplexors can be used to extract one of them. On the other hand,

the residual field is occupied with multiples of the greatest common divisor (GCD) of the three

lengths. For example, the number of bits is multiple of 2 for lengths of 2, 4, and 32.

Regarding the hardware, this improvement can reduce the amount of its resources dramat-

ically, as described in the next section. We employ a barrel shifter to generate CDB with

compressed bits, which can shift input data for any shift amounts in one clock cycle. Barrel

shifters require many multiplexers when the shift amounts can take the wide range of values.

The number of multiplexors is now given by (ws log2ws), where ws is the width of data to be

shifted. For example, the I/O data width of FPGAs is 512 bits which causes that the CDB has

512-bit length to exploit physical bandwidth. Therefore, the range of possible shift amounts is

from 1 to 512. On the other hand, in this reformation, the number of multiplexers decreases to

1/d, where d is GCD of the selected values. So the reformation reduces this range of possible

shift amounts. As a result, it also reduces the usage of multiplexers. We call this area effective

approach as area-oriented encoding method.

The area-oriented encoding method is generalized with parameters as follows. The size of

each field is optimized depending on the combination of the selected residual lengths. Let wout
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denotes the bit width of the CDB, and wI , wLe, and wre denote the widths of the fields of

indication, L-LRB with ex, and residual, respectively. The indication field contains a channel

number to indicate the channel in which the CDB is generated. These parameters have to satisfy

the following conditions.

wI + wLe + wre = W. (3.1)

(LL−LRB + Lex + LRmin)Ncomp < W − wn. (3.2)

The LL−LRB, Lex, and LRmin are the bit length of the LRB, ex, and the residual bits, respec-

tively. Ncomp is the number of the compressed data that can exist in CDB. We set the maximum

Ncomp under the above conditions. In the case that wout = 512,　wI = 5, LL−LRB = 2, Lex = 1,

and LRmin = 2, we can define that wLe = 285, wre = 222 and Ncomp = 95.
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Figure 3.12: Variable to fixed length converter(VFC).

3.4 Hardware design of area-oriented data compression

The area-oriented encoding reduces the area by avoiding inefficient coding and simplifying the

hardware operation. Since VFC and FVC occupy most of the hardware resources of the com-

pressor and decompressor, we focus on improvement of VFC and FVC. Especially, we try to

reduce the hardware of shift operation, which requires huge barrel shifters to shift according

to an accumulating buffer to concatenate in the original design. With the proposed encoding

method, we improve them by removing the barrel shifters from FVC, and dividing and reducing

the size of the barrel shifter in VFC.

3.4.1 Improved VFC

VFC contains a buffer for accumulating of variable-length bit strings with a large barrel shifter

to generate CDBs. Fig. 3.12 shows the area efficient design of the improved VFC. The area-

oriented design has two smaller barrel shifters for the residual and LRB-Ex in the CDB instead

of one large barrel shifter shown in Fig. 2.11. Both accumulation buffers, for residual and LRB-

Ex, are controlled by the buffer pointers and these barrel shifters. The pointers used for input

and output controls to indicate the position of the next coming bit-string in the buffer.

The two buffers operate in the same way. Firstly, the input bit strings are shifted according
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to the pointer’s values. The shifted bit strings are concatenated with the existing bits in the

accumulation buffers by OR operation. The length of each buffer is the same with the length

of the corresponding field in CDB. Therefore, the output CDB is the concatenated bit strings

from these buffers with the channel number. If the pointer shows that the buffer cannot accept

any more inputs, the VFC asserts an output request signal to the following bundler, at the same

time, it stops accepting input until the buffer becomes free. VFC actually outputs CDB when

it receives an output request signal from the down stream.

3.4.2 Improved FVC

Fig.3.13 shows the structure of FVC. FVC extracts the ex and difference from the received

CDB. It has also the two buffers to store CDBs, one is for the ex and LRB, and the other is for

the residual bits. For the naive coding method, the original FVC needs two barrel shifters to

update the buffers and input control. On the other hand, the proposed encoding method does

not require the barrel shifters because requiring a small number of fixed shifters.

The improved FVC has two buffers which are identical with those of the improved VFC.

The three bits from LSB of LRB-Ex buffer are always ex and LRB for the next reconstruct

datum. Ex is output directly, and LRB is used to a reconstructing difference. With the LRB

information, FVC generates masked bits to reconstruct the difference. The masked bits are used

to extract w bits from the LSB of the residual buffer, w is the bit length of original data, then

it generates the difference by AND operation. Since the length of residual bits is limited to
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the selected three values, FVC needs only three fixed shifters to update of the residual buffer.

Then FVC selects a correct shifted bit string by LRB value. The improved FVC does not have

pointers to indicate the bit amounts of the buffers because LRB can show the end of CDBs

directly. As mentioned before, although two bits LRB can express four different values of the

residual length, one of them is used for the control, which describes the end of CDB. If the next

LRB is 00, FVC allows to input because there is no data in current buffers. Then if the next

LRB is not 00, FVC allows to output and disallows to input.

3.4.3 Simplification of the processing in VFC and FVC

We make another effort to reduce the area of the improved VFC and FVC. In the improved

designs, we have only two medium barrel shifters in the improved VFC and no barrel shifter

in the improved FVC. As described in section 3.2, the number of multiplexors in the barrel

shifter is represented as w log2wbuff , where w is the data word of the computing and wbuff

is the length of the buffer. As this formula shows, the barrel shifter becomes smaller when we

divide the buffer and handle each divided region separately. Fig. 3.14 shows the improved buffer

operation. We divide the buffer into multiple regions, each of which length is w1, and we employ

the two pointers to indicate the amount of bits in the buffer. It is necessary that w1 is larger

than residual bits so as to adopt a fixed-length shifter. With this improvement, the barrel shifter

in the VFC becomes smaller by taking over a part of the shift operation with the fixed shifters.

63



CHAPTER 3. AREA EFFICIENT DATA COMPRESSOR FOR STREAM COMPUTING

3.5 Evaluation

In this chapter, we proposed the area-oriented encoding method for the data compression ac-

cording to various cases. We describe the previous original method as performance-oriented

after this. We expect that the performance-oriented encoding achieves better compression per-

formance with larger area than the area oriented. On the other hand, the area-oriented may

also reduce the compression performance. Therefore, we investigate the trade-off between the

compression performance and the area in a quantitative way. Since the performance of data

compression depends on data themselves, evaluation only with some specific numerical data sets

is insufficient. To understand a tendency of the compression performance for various data sets,

we model the LRB distribution of a numerical data set and investigate the relationship between

compression performance and the statistical features of the data set.

We focus on the encoding method of data compression in terms of hardware area and com-

pression performance. In this evaluation, we compare the performance-oriented and the area-

oriented designs to show which is more suitable to be implemented for real-world applications

with FPGA. We show that the proposed area-oriented encoding method can obviously reduce

the area compared to the performance-oriented. Furthermore, we compare the compression

performances to evaluate a trade-off between the area and the compression performance.

Since it is difficult to evaluate the compression performance qualitatively by experiential

evaluations with practical numerical data sets, we obtain the compression performance by a

distribution model of residual lengths which is represented by canonical distribution. To model

the LRB distributions, we employ a canonical distribution where probability density is clustered

as the examples above.

We use the data modeled with the canonical distribution of LRBs as is shown in Fig. 3.15 (a)

so as to estimate compression performance with various L-LRBs. A probability density function

of canonical distribution is given as follows:

1√
2πσ2

exp(−(x− µ)2

2σ2
),

where σ is an expectation, and µ is a standard deviation. We estimate compression ratios for

the performance-oriented method and area-oriented encoding methods with three combinations

of L-LRBs, (2, 4, 32), (4, 8, 32), and (8, 16, 32). We use of single-precision floating-point data,

that have the modeled distribution of LRBs These selected sets of values correspond to 2-bit,

4-bit, and 8-bit encoding which are the GCDs of their values respectively.

3.5.1 Compression ratio

Figs. 3.15 (b), (c), and (d) show the compression performances of the proposed encoding method

when µ is 1, 3, and 5. The x-axis shows expectations, σ, and the y-axis shows compression ra-
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Figure 3.15: Evaluation of Area Efficient Compressions by LRB Distribution Model.

tios. As a matter of course, smaller LRBs raise the compression ratio, and the area-oriented

design with L-LRB encoding is effective with smaller µ when the LRB distribution has a higher

deviation. In every case, the performance-oriented encoding method achieves the best compres-

sion performance overall. However, the area-oriented encodings achieves higher compression

ratio in several cases when the encoding exploits the deviation adequately. In conclusion, the

area-oriented encoding method is effective for distribution with strong deviation. Moreover, an

effective range of the compression decreases as smaller L-LRBs are selected.

Fig. 3.16 shows the compression ratios for real-world numerical data as shown in Figs. 3.8

and 3.9. The 2D-LBM data are computed using an orthogonal grid with a high resolution. In

contrast, the nozzle data are obtained by using an unconstructed grid with a low resolution.

Therefore, their LRB distributions have completely different characteristics. Accordingly, the

graph also shows the huge difference as the compression performances. The 2D-LBM data

are compressed very well in all cases. Especially, (2,4,32) and (4,8,32) shows better compression

performances than the performance-oriented encoding method. On the other hand, for the nozzle

data on the course grid, encoding with (8,16,32) gives a slightly higher compression ratio. This
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Figure 3.16: Compression ratios for real-world numerical data.

evaluation shows that we should select the encoding method of the data compression depending

on the objective data.

3.5.2 Hardware area

We also evaluate the hardware area of the compressor and the decompressor for a single channel

with the several L-LRBs of parameterized implementations [69]. Fig. 3.17 shows the hardware

area in usages of logic elements, shown as ALUTs (adaptive look up table) which are logic

units on Altera’s FPGA, and registers. The results of the area-oriented designs show that they

require much smaller area than the performance-oriented design. For the number of registers,

every case of the area-oriented design shows the unchanged result because the number of registers

is not affected by the length of CDB. On the other hand, the numbers of logic elements in the

compressors have different characteristics from our expectation where it is determined only by

the greatest common divisor of selected values. The largest area among the three cases is required

for (4, 8, 32), while we expected that (2, 4, 32) would require the largest area because its GCD is

the smallest of the three. The results of the decompressors show that the area-oriented designs

dramatically reduce the area, because there are no barrel shifter in the area-oriented designs

compared to the performance-oriented which has two barrel shifters.
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3.5.3 Area efficiency for compression performance

To evaluate area-performance efficiency, we calculate a compression ratios per resource usages.

The evaluation investigates compression ratios per one ALUT and one register with µ = 1 and

5. Although this is not a quantitative and absolute indicator because it can not always be

an accurate evaluation when the compression ratio is less than 1, it can be used for relative

comparison under the equal condition.

Figs. 3.18 and 3.19 show the area efficiency of encoding cases of L-LRB and performance-

oriented for ALUTs. “Perform” in the legend shows the result of the performance-oriented

encoding method. Both graphs shows that the encoding with (8,16,32) achieves the highest area

efficiency in most cases. In addition, with an extremely high prediction accuracy, the encoding

with (2,4,32) and (4,8,32) achieves high area efficiencies in the case that µ = 1. According

this results, we should employ the area-oriented encoding with (8,16,32) as L-LRB when we

emphasize the efficiency of ALUT consumption. Figs. 3.20 and 3.21 show the area efficiency for

registers. Similar to the results for ALUTs, they show that the encoding with (8,16,32) achieves

the highest area efficiency.

Based on these results and discussions, we decide to employ (8, 16, 32) the area-oriented

design with for FPGA-based implementation and demonstration, because it has the smallest

area and relatively good compression performance for a wide range of LRB distribution.
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Figure 3.18: Area efficiency by compression ratio per ALUTs (µ = 1).

3.6 Discussion for Optimal L-LRB Selection

This section provides criterions for selecting an optimal L-LRB in accordance with the target

applications and implementation environments. In the area-oriented design we must select L-

LRB for lengths of residuals. A selection of L-LRB is initially for reducing area of the bandwidth

compressor, moreover, it also exploits the deviation of the distribution of prediction accuracies

so that the improved encoding prevent a significant drop in performance. However, since this

deviation is data-dependent, it needs some statistical information of the target data to determine

the selection of suitable L-LRB in advance.

To provide users a guidance for LLRB selection according to the target data, this section

evaluates and discusses distributions of compression performance by using the distribution model

of prediction accuracies in section 3.5. It also shows estimations of the areas for selected L-

LRBs. Since there are some constraints for FPGA applications due to the environment such as

required compression performance and limitation of available resource, compression users select

an optimal design for the target by reference to the data given in this section.

Firstly, we shows area estimations of the compressor and decompressor. The L-LRB has

different impacts on the area of the compressor and decompressor. This method reduces the

area by reducing barrel shifters in the compressor. On the other hand, the decompressor with

L-LRB has multiple fixed shifters instead of two large barrel shifters.

Fig. 3.22 shows the numbers of required multiplexors for the barrel shifter of the residual

field shown in Fig. 3.11(b) in the compressor. The resource usage of the compressor depends

heavily on the greatest common divisor (GCD) of the selected L-LRB because the shift amounts
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Figure 3.19: Area efficiency by compression ratio per ALUTs (µ = 5).

of the barrel shifter are always multiples of the GCD. It should select a large GCD for a small

compressor. On the other hand, the number of selected L-LRB does not affect too much for

the compression ratio because the barrel shifter in the compressor is unaffected other than the

shift amount. The length of LRB is determined by the selected number of L-LRB, it has two

bits when it selects three or less numbers, or it has three bits when it selects more than four

numbers. There are almost no differences between the 2-bit LRB and the 3-bit LRB, as the

aforementioned theory tells.

Fig. 3.23 shows the numbers of required multiplexors for the shifters in the decompressor.

The area-oriented design has no barrel shifter in the decompressor, and employ multiple fixed

shifters as alternated. Since the number of the shifters is as high as the selected L-LRB, the

number of required multiplexors increases with increasing of the number of L-LRB. Basically the

area of the shifters bears a proportionate relationship to the number of L-LRB, the relationship

disappears when the number of bits in LRB changes. These graphs describe that it should select

small number of L-LRB with large GCD of the selected L-LRB so that we obtain small hardware

implementations.

Second, we evaluate the compression performance for various LRB distributions. Figs. 3.25-

3.35 shows distributions of data compression ratios for various selected L-LRBs, and Fig. 3.24

shows by the original encoding. In these pictures, the vertical axis represent standard deviations

and the horizontal axis represent expected values or means of LRB distributions. The small

vertically-long boxes in the graphs show the clusters of the mean and the standard deviation.

The color intensity shows the compression ratio for the corresponding LRB distributions.
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Figure 3.20: Area efficiency by compression ratio per registers (µ = 1).

It evaluates compression ratio with three, four, or five selected L-LRBs. The distributions of

LRB are determined by the properties of data as shown in Figs. 3.8 and 3.9. A picture with large

area that is colored indicates that selected L-LRB effects for a variety of data. These results

show that the compression performances are greatly changed by selection of L-LRBs. With

selecting small L-LRB such as two, the compression performances in a small region in the lower

left corner are very high. On the other hand, with large L-LRB, the largest the compression

performance is not so high, however, the compression is effective for a large region. The original

one achieves effective data compressions for the largest region and also high compression ratio.

For the standard deviation, area-oriented designs tend to achieve good compression performance

with small standard deviation. Therefore, the L-LRB, especially with selecting small L-LRB, is

effective when the deviations of LRB distribution is very strong.

For these results, we obtain the criteria for selecting L-LRB. If a large amount of hardware

resource is available, it should select the original encoding which achieves the most effective

compression for a wide region. If we can use an insufficient hardware resource, it should employ

the area-oriented design and select L-LRBs according to LRB distribution. As shown in last

section, the LRB distribution is determined by the environment of computation. Therefore, if

you suspect that the LRB distribution have strong deviation such as shown in Fig. 3.8, you

should select small L-LRBs which is very effective for a small region of the results. On the

other hand, when the LRB distribution does not have very strong deviation such as shown in

Fig. 3.9, you should select large L-LRBs such as 8, 16, 32 which achieves sufficient compression

performances for a large region.
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Figure 3.21: Area efficiency by compression ratio per registers (µ = 5).

In addition, the number of selected L-LRB does not affect for the compression performance.

We expected that many L-LRBs increases the compression performance because it can provide

suitable compression to a large region. However, the results deny this expectation, in which

compression ratios are differ little from the cases with fewer selected L-LRBs. This is because

that a lot of selected L-LRB cause increase of bits for LRB. For example, it needs two bits for

LRB with three L-LRBs, on the other hand, with four L-LRBs, LRB needs three bits. Therefore,

the latter needs one extra bit per one compressed datum. From the result, this study employ

selecting three L-LRBs for the hardware implementation.
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Figure 3.22: Required multiplexors for the barrel shifter in the compresser.

3.7 Conclusions

In this chapter, we proposed the area-oriented encoding method to reduce the hardware area so

as to apply the bandwidth compressor to real-world applications with a lot of stream channels.

Since the hardware-based numerical applications requires multiple channels processing, we need

to apply the compressors and decompressors to every channels one to one. Therefore, the area

of the compressor and decompressor should be small, in addition, we need a flexible design in a

variety of conditions. We should use the hardware resources mainly for the computation itself

rather than the bandwidth compression.

Since the reason of the huge hardware area is the number of possible LRB values, we proposed

L-LRB to limit the possible range of LRB to reduce it. In addition, to simplify the hardware

processing, we improved the structure of CDB. Through these improvements, we reduce the

hardware area of VFC and FVC especially. Their improved designs allow us to select the optimal

design in accordance with a purpose. We also optimized the structure of VFC by splitting the

barrel shifter to further reduce the area.

In the evaluation, we found the decrease of the compression ratio with the area-oriented

design. On the other hand, the evaluation with data generated by numerical simulations, which

are of real-world applications, shows that the proposed encoding method is effective for various
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Figure 3.23: Required multiplexors for shifters in the decompresser.

types of data. The improved design achieves to reduce the hardware area dramatically. We made

sure that the area-oriented design overcome the performance-oriented design in compression ratio

per area. Moreover, we also made sure that the area-oriented design can be applied to various

data with different characteristics by properly.

With these results and discussions, we conclude that the proposed encoding design and its

new hardware design provide us efficient and feasible solution for bandwidth compression to be

applied to FPGA-based high-performance stream computation. In the next chapter, we will

apply the new compressor and decompressor to real-world numerical applications with FPGA.
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Figure 3.24: Distribution of compression ratios with the original encoding.
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Figure 3.25: Distribution of compression ratios with l-LRBs {2, 4, 32}.
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Figure 3.26: Distribution of compression ratios with l-LRBs {2, 8, 32}.
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Figure 3.27: Distribution of compression ratios with l-LRBs {2, 16, 32}.
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Figure 3.28: Distribution of compression ratios with l-LRBs {4, 8, 32}.
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Figure 3.29: Distribution of compression ratios with l-LRBs {4, 16, 32}.
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Figure 3.30: Distribution of compression ratios with l-LRBs {8, 16, 32}.
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Figure 3.31: Distribution of compression ratios with l-LRBs {2, 4, 8, 32}.
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Figure 3.32: Distribution of compression ratios with l-LRBs {2, 4, 16, 32}.
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Figure 3.33: Distribution of compression ratios with l-LRBs {2, 8, 16, 32}.
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Figure 3.34: Distribution of compression ratios with l-LRBs {4, 8, 16, 32}.
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Figure 3.35: Distribution of compression ratios with l-LRBs {2, 4, 8, 16, 32}.
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Chapter 4

Multiple-channel bandwidth
compressor for real-world
applications

4.1 Introduction

The goal of this study is to accelerate FPGA-based numerical computation for real-world ap-

plications by enhancing the memory bandwidth with our bandwidth compression technique.

Since we solved the area problem in chapter3, now we are ready to apply our bandwidth com-

pression to increase the performance of stream computing on FPGA. This chapter presents the

idea and design of multi-channel data compression and decompression. There are also several

requirements for handling the multi-channel of numerical stream. There are some studies about

parallelized data compression, using segment parallel prediction [27], for audio compression [70],

and EEG (electroencephalogram) compression [71].

First, the numerical computing requires synchronization among channels because each of all

channels is required to give one datum for a unit computation. For example, LBM computation

for a cell requires one scalar datum from each of 10 channels [22]. Therefore, the input data for

the numerical core are also required synchronization. On the other hand, since the compression

ratios of channels can be different from others, it is difficult to keep the synchronization if we

equally read CDBs among all channels. Such a channel that has a low compression ratio can

fail to output a decompressed datum.

Second, since a transmission path to a memory is usually given a single channel, we have

to bundle multiple compressed channels into a single channel. In decompression, we have to

distribute single channel from the memory to the multiple channels. This is because an external

memory which is usually implemented with DRAMs. DRAMs are good at regular and successive

access for a single channel.

In this chapter, we develop modules which are called a multi-channel serializer (MCS) and
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a multi-channel deserializer (MCD) to satisfy these requirements. MCS serializes the multiple

channels into a single channel, and MCD deserializes the single channel to the multiple channels.

We present the approach to handle multiple channels with uneven compression ratios, and then

describe the hardware design and its behavior of MCS and MCD.

Finally, we apply the bandwidth compressor to real-world numerical application on FPGA.

The compressor internally enhances the effective memory bandwidth, which leads to improve-

ment of computing performance. For evaluation, we implement a prototype system with our

multi-channel bandwidth compressor and decompressor with numerical computing module on

an FPGA. The evaluations show not only the area of entire system, but also the bandwidth

enhancement and computing performance with the bandwidth compression. The contributions

of this chapter are

1. Multi-channels data compression method,

2. Designs of MCS and MCD,

3. Entire design of the bandwidth compressor,

4. Evaluation with real-world application.

The organization of the chapter is as follows. Section 4.2 describes the requirements of

multi-channel compression and proposes the method. Section 4.3 shows the hardware design of

multi-channel bandwidth compressor. Section 4.4 presents evaluations and demonstration the

bandwidth compression with real-world application. Finally section 4.5 gives conclusions of this

chapter.
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Figure 4.1: Bandwidth Compression in stream computing.

4.2 Multi-channel bandwidth compressor

The bandwidth compressor presented in previous chapters handles only a single channel of a

numerical data stream. To apply it to a real-world application which has multiple variables, we

need to handle multiple channels and compress them simultaneously. Since each channel has

its own data continuity, it is natural to apply the data compressor and decompressor to each

channel and perform compression of all channels in parallel as shown in Fig.4.1.

On the other hand, it is favorable to use a single DMA (direct memory access) module to

read and write an external memory in terms of hardware-resource consumption and efficient

utilization of a memory bandwidth. Multiple DMAs for one FPGA can be inefficient due to

some loss of available memory bandwidth for access conflicts. Thus we need to encode and

decode CDBs of channels to and from a single data stream for an external memory.

In addition, the memory bandwidth is not so constant especially transmitting a large amount

of data. Fig 4.2 shows the actual memory bandwidth with various stride width accesses. The

model of the memory is DDR3-1600, which can achieves 12.8 GB/s for its peak. However, the

result shows that the peak memory bandwidth cannot be achieved easily, and the bandwidth

largely reduces when the stride width is large. With the sequential access, the result does

not effect for the performance, however, for large scale numerical computing, especially three

dimensional, the stride access is necessary, which causes a decrease of performance. Therefore,

the bandwidth compression is required to increase practical performances.

We achieve this function by introducing time-division multiplexing (TDM). In this section,

we propose a multi-channel serializer (MCS) and a deserializer (MCD) to serialize and deserialize

CDBs, respectively. Considering the requirement of synchronous inputs to a computing core and
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Figure 4.2: Memory bandwidth for various stride widths.

uniformity of compression ratios among channels, we need to deploy an appropriate mechanisms

to MCS and MCD. In the following subsections, we describe a model of a compressed bandwidth

for multiple channels, a basic idea and a hardware design of MCS and MCD.

4.2.1 Bandwidth of stream computing

For stream computing with bandwidth compression, we can expand a memory bandwidth for

computing according to a compression ratio. Let Wmem and Rav denote an available memory

bandwidth and an average compression ratio. The maximum expanded bandwidth is theo-

retically given with WmemRav. Hence we should design a computing hardware core so that

it can operate with the maximum expanded bandwidth to fully utilize the available memory

bandwidth. Or the computing performance is limited by the memory bandwidth or the core

itself.

Here we give a model to distinguish performance limitation. as shown in Fig.4.1. Let a

computing core have Nch channel for inputs and outputs. Each channel has a width of B bits

and operates at a frequency of F [Hz]. Then the bandwidth required by the core, Wreq, is given

as

Wreq = NchBF [bits / s]. (4.1)

For the most efficient design of the core, we balance the required bandwidth with the expanded
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Figure 4.3: Input data format of stream computing with/without bandwidth compression.

bandwidth so that

Wreq = WmemRav. (4.2)

If Wreq < WmemRav, a performance bottleneck is in the core itself. If Wreq > WmemRav,

the sustained performance is limited by the memory bandwidth, and therefore we cannot fully

exploit the peak performance of the core.

When we know the average compression ratio for computation, we can estimate the necessary

number of channels to fully utilize both the memory bandwidth and the peak performance of

the core. By substituting Eq.(4.1) to Eq.(4.2), we obtain

Nch =
WmemRav

BF
, (4.3)

which means that we can exploit more parallelism with more channels for a higher compression

ratio. We also obtain

Rav =
NchBF

Wmem
, (4.4)

which means that a higher compression ratio is required for a smaller memory bandwidth avail-

able.
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4.2.2 Scheme of multi-channel compression

Fig.4.3(a) shows an input data format to the computational core with raw data streams, which

our proposed bandwidth compression targets at. The input data streams are sequentially stored

in a memory region. Fig.4.3(a) shows an array of a structure, where data elements such as

xi, yi, ... are packed into a group first, and then the groups are arranged in a certain order. The

array is efficiently read by using a single DMA controller. Since the width of read data can be

different from that of the inputs to a computing core, it requires a width conversion. Then, the

input words are sent to the core by multiple channels, where the elements of the channels are

synchronously consumed for computation. We also convert their width with another converter

for an output data stream to be written to the external memory.

On the other hand, Fig.4.3(b) shows an input data format for compressed stream computing,

where we apply the single decompressor and compressor to each channel. Furthermore, we deploy

a multi-channel serializer (MCS) and a multi-channel deserializer (MCD) to read/write CDBs

by a single data stream from/to an external memory. We give a CDB the same bit-width as

that of the memory interface, so that we can read or write one CDB every cycle. The read

CDB is deserialized and distributed to its corresponding channel. Since one CDB consists of

compressed data of one channel, it cannot input to the core until all the channels have CDBs to

satisfy the requirement of synchronous input in every channel. Once all the decompressors have

their CDBs, they start decoding the original data elements to be fed to the computing core.

The output elements of the core are separately compressed into CDBs. The output CDBs are

then serialized into an output data stream by MCS.

Here, due to ununiformity of compression ratios among channels, we have to make a suitable

mechanism for MCD and MCS to adequately distribute frequencies to transmit CDBs among

channels. Or we would fail in synchronously feeding all the data elements to the core every

cycle. Let’s assume that some channel has a lower compression ratio than the others. A CDB

generated for such a channel contains a smaller number of original elements than CDBs for

other channels do. Therefore we need more CDBs for the channel to decode the same number

of original elements as those for the other channels. Thus, if we simply apply a round-robin

method to equally distribute a memory bandwidth to the channels, we can have an insufficient

number of CDBs for some channels due to ununiformity of compression ratios. Instead of such

a naive approach, we propose MCS and MCD to adaptively distribute the bandwidth according

to the compression ratios of the channels.
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Figure 4.4: Approaches to encode multiple streams.

4.2.3 Output arrangement

Numerical computing circuits require data of the same grid point to be inputted at the same

time. The round-robin arrangement of blocks shown in Fig. 4.4a cannot satisfy this require-

ment. Let’s suppose that compressed data of each stream are decomposed into blocks with the

size of 256 bits. In the case of compressing 32-bit floating-point datum, the minimum and max-

imum sizes of compressed datum are 6 bits and 38 bits, respectively. Accordingly, each 256-bit

block can contain 7 to 42 compressed floating-point data. Since the round-robin arrangement

uniformly distributes the bandwidth of the channel to nstr streams, the decompressor with the

low compression ratio consumes the block data more quickly than that of a highly-compressed

stream. Decompressing 7 data takes only 7 cycles while 42 data require 42 cycles. Therefore, we

must allocate the bandwidth to each stream so as to transmit data before compression equally

in every stream.

To meet this requirement among streams with different compression ratios, we need to allo-

cate wider bandwidth to streams with lower compression ratios. We can give a higher priority to

a less compressed stream, so that more blocks of the stream are adaptively selected and trans-

mitted. Therefore, the order of output must be determined by the compression ratios instead

of round-robin. Without round-robin arrangement, some information is necessary for received

blocks to be correctly distributed to their destination decompressors. We add the stream num-

ber to the output blocks, and the output stream becomes as shown in Fig. 4.4b. The block size,

wout, should be big in order to increase the proportion of compressed data. Therefore, we set

the block size, wout, as the output width of the FPGA.
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4.3 Hardware design

MCS and MCD serializes and deserializes CDBs for multiple channels into a single data stream

for an external memory. MCS operates like a multiplexor with a selection controller. MCD is a

demultiplexor to distribute an input CDB to its corresponding channel according to the channel

indication field shown in Fig.3.11(b).

For MCS and MCD, we employ a tree structure for high-throughput and scalable hardware

by localizing control. Fig.4.5 shows the structure of MCS, which consists of 4-channel selectors as

common units. The 4-channel selector forms one pipeline stage. It is an example for 64 channels,

where 21 selectors give three pipeline stages in a tree. We have also designed selectors for 2 and

3 channels, therefore, it can manage a wide range of numbers of channels by a combination of
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these selectors.

The 4-channel selector selects and outputs one among four inputs with its internal controller.

In order to control selection on a time-bases, we design MCS with the following mechanism.

First, once we get multiple output request inputs at a time, they go to a selection process while

the other input ports are locked until all the request inputs are output. Suppose we have three

request inputs at port 1, 3, and 4. For these three, we select and output one by priority of port

numbers. In this example, we sequentially output the words of input ports 1, 3, and 4. When

the first input words are all output in three cycles, all the input ports are released for the next

inputs.

In the case of a 512-bit CDB, a compressor generates CDBs at intervals of 11 or more cycles

because each CDB can contain at least 11 data elements. This means that we commonly have

request inputs only for a few ports, rather than having full inputs to all the ports. Thus MCS

can normally transmit CDBs of input port as they arrive, resulting in more bandwidth for ports

required. When multiple ports have inputs occasionally, they are prioritized to avoid uneven

selection frequencies.

Fig. 4.6 shows the structure of MCD, which is a distribution tree with 8-channel demulti-

plexors. The mechanism of MCD is straight forward. Input CDBs are demultiplexed by using

a channel number recorded in the indication field of the CDB. The control logic of MCD is

also localized to each selector. MCD also contains multistage FIFOs in every output channel

to guarantee synchronous outputs. Therefore, in our design, all compressors and decompressors

also process synchronously to keep the synchronous input to the computational core.

87



CHAPTER 4. MULTIPLE-CHANNEL BANDWIDTH COMPRESSOR FOR
REAL-WORLD APPLICATIONS

D
M

A
 c

o
n

tr
o

ll
e

r

External Memory 1 External Memory 2

Host

Memory Controller Memory Controller

PCIe I/OFPGA

Width
converter

..
.

Decompressors

MCD

cores

D
M

A
 c

o
n

tr
o

ll
e

r

..
.

Compressors

MCS

Width
converter

Computing

Figure 4.7: Entire system implemented on FPGA.

4.4 Evaluation and demonstration

We show an actual implementation of multi-channel bandwidth compression with a numerical

computation on a FPGA. We employ a numerical core of 2-dimentional Lattice Boltzmann

Methods (2D-LBM) [22] to implement with the multi-channel bandwidth compressor. The 2D-

LBM is one of computational fluid dynamics (CFD) methods which computes fluid dynamics by a

movement of particles. It contains nine variables as particle distribution functions for nine spatial

directions, hence one 2D-LBM core has ten channels, of which nine channels are for numerical

data and one channel is for attribute data. We show the computational throughput exceeds the

memory bandwidth by the bandwidth compression for the LBM numerical data. Additionally, we

also evaluate an impact of the bandwidth compressor by measuring computational performance

of a real application with or without the numerical core.

4.4.1 Implementation

We design and implement the entire system for numerical stream computation with the band-

width compression, shown in Fig. 4.7. In this implementation, since a memory has uncompressed
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Figure 4.8: Stratix V FPGA board using by the implementation.

data at the beginning, it needs the route without compression and decompression to divert the

data stream at the beginning and the end of the computation. First, we input original data

without decompressions into the core. Then, the data always pass through the compressors and

decompressors except the first and last iterations. In the last iteration, it outputs computed

data stream without the compression to check the result.

We implemented this system with ALTERA Stratix V FPGA which is on TERASIC DE5-

NET development-board shown in Fig 4.8. All the logics are written in Verilog- HDL, and

compiled with ALTERA Quartus II compiler ver.14.1. The FPGA contains 234,720 adaptive

logic modules (ALMs) and 939,000 registers. In the demonstration, numerical data are repre-

sented by 32-bit single precision floating-point, and the input and output width of FPGA is

512-bit, thus w = 32 and wout = 512. For the evaluation, we implement two cycle counter

modules to record a number of cycles. The bandwidth calculated by the recorded data in the

cycle counters which can record a number of operating cycles and validation cycles. Therefore,

we can infer the actual bandwidth from the data and a width of the data path between the

decompressors and compressors. We also measure the actual compression ratio in the operation.

The operating frequency of the core and bandwidth compressor is 150 MHz. The employed

memories have the peak bandwidth of approximately 8.0 GB/s, which is actually measured on

the implemented system.

Table 4.1 shows resource utilization of the entire system and individual modules. The table
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Table 4.1: Resource usage of the numerical cores with bandwidth compression
Cores Module ALMs Registers Block memory bits DSP blocks

1 (10 chs.) – 109630 (47%) 160824 (17%) 157747 (3%) 48 (19%)
Comp. and MCS 12848 (5.3%) 19748 (2.1%) 20380 (0.04%) 0 (0%)

Decomp. and MCD 7826 (3.3%) 19343 (2.1%) 40640 (0.1%) 0 (0%)
Computational core 32717 (13.9%) 61907 (6.6%) 1042986 (2.0%) 48 (18.8%)

2 (20 chs.) – 152317 (65%) 219135 (23.3%) 2229043 (4%) 96 (38%)
Comp. and MCS 21333 (9.1%) 21601 (2.3%) 40960 (0.1%) 0 (0.0%)

Decomp. and MCD 10993 (4.7%) 17304 (1.8%) 81280 (0.2%) 0 (0.0%)
Computational core 58785 (25.0%) 87939 (9.4%) 1078166 (2.0%) 96 (37.8%)

3 (30 chs.) – 195151 (83%) 302751 (32%) 2252422 (4%) 144 (56%)
Comp. and MCS 30582 (13.0%) 31356 (3.3%) 61440 (0.1%) 0 (0.0%)

Decomp. and MCD 16231 (6.9%) 25511 (2.7%) 121920 (0.2%) 0 (0.0%)
Computational core 75013 (32.0%) 147790 (15.7%) 1039178 (2.0%) 144 (56.3%)

shows the usages of ALMs (adaptive logic modules), registers, block memory, and DSP blocks,

and the values in parentheses are the percentages to the total available resources. It shows

that the resource usage of the bandwidth compression increases in proportion to the number

of channels. With the area-oriented design, we can implement up to three LBM cores which

include 30 channels to compress and decompress separately on the FPGA. Therefore, the scale

of which can be implemented in a FPGA is limited by the number of ALMs.

4.4.2 Bandwidth enhancement

We conduct experiments on memory bandwidth enhancement without LBM computation cores.

We increase the number of channels 10 by 10, and stream the result of the 2D LBM computation

to each set of 10 channels. Fig. 4.11 shows the enhanced bandwidth between the compressors and

the decompressors. Since the evaluation does not use the computational core, every 10 channels

data of input are the same, which are the interim results of 2D LBM computation. The graph

shows bandwidth in a vertical axis, and a number of channels in a horizontal axis. Black circles

with outlined lines show theoretical maximum bandwidths with actual compression ratios, which

is calculated by (Compression ratio × Available memory bandwidth). White circles and black

lines show achieved bandwidth calculated from the measured values on the cycle counters. The

available memory bandwidth is 8.0 GB/s, which is shown as the horizontal broken line.

In the case of 10 channels, a required memory bandwidth is (4Byte×10×150MHz = 6.0GB/s)

which is narrower than the available memory bandwidth, therefore, the compression is not

necessary. On the other hand, when the required bandwidth is wider than 8.0 GB/s a available

memory bandwidth, with greater than 13 channels on 150 MHz, the bandwidth compressor

enhances the available memory bandwidth in this case. The compression ratio on the operation

is 2.59 and it is close to theoretical maximum compression ratio, 2.6875. In the best case, 50

channels, it achieves 2.33 times wider than the available memory bandwidth. Therefore, the
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Figure 4.9: Computational result of 2D LBM simulation for a sudden expansion chamber with
an obstacle.
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Figure 4.10: Computational grid and grid point of 2DLBM.

bandwidth compression achieves great effect in this demonstration.

Under the compression ratio as 2.59, the theoretical maximum bandwidth is approximately

20.7 GB/s. Since the maximum bandwidth is fixed, the bandwidth increases up to 35 channels

and becomes flat thereafter, in an ideal case. The result roughly shows this tendency, however,

the bandwidth decreases between the case of 50 and 60 channels. This bandwidth decrement is

caused by a large number of channels. Too many channels cause an increase of pipeline stalls

in MCS and decompressors. Since the computational core requires that all channels have input

data consistently, it also needs to stall the pipeline if there are any channels with no input data.

We allocate some FIFOs to prevent such stalls, however, these stalls occur by uneven output

among the channels, regardless of the design and compression algorithm.
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Figure 4.11: Bandwidth enhancement by compression.

4.4.3 Demonstration with numerical computation on FPGA

Finally, we demonstrate the numerical computation with bandwidth compression on a FPGA.

We evaluate computing performances of 2D fluid simulation by LBM with the bandwidth com-

pression. The 2DLBM core contains 10 channels, 9 of them are probability distribution density,

and the other is an attribution of the grid point. Fig. 4.10 shows the computational grid and

grid point of the 2DLBM. The demonstration uses one, two, or three LBM cores which have 10,

20, or 30 channels respectively. We implement the system as shown in Fig. 4.7. As is the case

with actual numerical computing, the demonstration calculates and updates values in multiple

iterations. This means that we need to repeat calculations as many as a required iterations.

Other conditions are the same as the above evaluations.

An application of the demonstration is a flow simulation of abrupt pipe expansion and a

cylinder shown in Fig. 4.9. In the demonstration, we use a DSL-based LBM calculation module

represented in [72]. This module can calculate a single data stream in parallel. It contains n

cores, and each of them receives every n-th data. For example, in the case of n = 2, there are

two cores in the module, and the module receives data of two continuous grid points at the same

time. Each core receives every second data in the data stream and calculates independently.

Table 4.2 shows the average computing performances of 20,000 iterations with and without

the bandwidth compression. We obtain the performance by,

(Performance) = nNFlopsFGHzRop [GFLOP/s]. (4.5)
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Table 4.2: Computational performance with/without compression

Cores Compression performance

(channels) (GFlop/s)

1 (10) No 19.64

Yes 19.43

2 (20) No 26.24

Yes 34.45

3 (30) No 26.27

Yes 45.51

where n is number of cores in parallel, and NFlops and FGHz are the number of Floating-point

operators in one core and the operating frequency, respectively. Rop is an operating rate of cores,

which is obtained by number of operating cycles and validation cycles measured by the cycle

counter. Our LBM core has NFlops = 131 and FGHz = 0.15. Table 4.2 also shows a required

memory bandwidth in each case. They are almost close the bandwidth enhancement shown

in Fig. 4.11, therefore, the computational performance is improved by exploiting the extended

bandwidth.

The result shows that the bandwidth compression improves the performance in two and three

cores. In the case of one LBM core, the bandwidth compression does not work because required

memory bandwidth is narrower than the physical bandwidth. When the required bandwidth is

wider than the physical bandwidth in the case of two and three cores, the results of without

compression are almost the same because of the limitation of available memory bandwidth. On

the other hand, it also shows the cases with the compression achieve performances that exceed

the limit of physical bandwidth. The bandwidth compressor improves the performances about

31.3% for 20 channels and 73.2% for 30 channels. Although these results depend on compression

ratios, it demonstrates that it is possible to realize a performance beyond the bandwidth limit.

Therefore, the result shows that the bandwidth compressor improve the performance of custom

stream computing.
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4.5 Conclusions

This chapter shows the bandwidth compression for real-world numerical application on FPGA.

With small compressor and decompressor proposed in chapter3, We implement and demonstrate

the bandwidth compressor for real-world applications.

The multi-channel compression for numerical computing requires to keep the synchronized

processing in the numerical computing core. To handle the problem, we designed and imple-

mented the MCS and MCD which are encoding multiple channels into a single channel and

decoding a single channel into multiple channels, respectively. We employ the area-oriented

compressor and decompressor which allow us to implement with a large number of channels.

The encoding in MCS employ the determination of output order in accordance with the com-

pression ratio of the channel. Since the output order is dynamically changed, we also employ

the indication bits to be distributed to the correct channel.

With prototype implementation, we demonstrated that the bandwidth compressor allows to

stream data at a bandwidth higher than the memory bandwidth available. We made sure that the

custom stream computing of 2D-LBM achieves 1.73 times higher performance which is provided

by the bandwidth enhancement. In this demonstration, the bandwidth compressor achieves the

memory bandwidth enhancement and the improvement of computational performance by the

bandwidth enhancement. If the compression ratio is Rcomp, the bandwidth compressor can

enhance the memory bandwidth up to Rcomp times theoretically. Although the result shows

this tendency, the bandwidth compression for too many channels reduce the effect because there

are many stalls in the hardware to allocate data correctly.

The results of the evaluation and demonstration shows that the proposed bandwidth com-

pressor enable to improve the numerical applications on FPGA with insufficient bandwidth.

Future FPGAs will have much more resources and wider memory bandwidth. Even in such

case, the bandwidth compression is often effective because the increase of cores on FPGA also

enlarges required memory bandwidth.
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Conclusions

This dissertation presents the practical bandwidth compression for insufficient memory band-

width of real-world numerical applications on FPGA. There are huge demands to improve com-

puting performance for large-scale numerical simulations. The bandwidth compressor improves

the performance of FPGA-based stream computing for such real-world applications, which has

both high power efficiency and high performance. The compression reduces the required band-

width of computation by employing data compression technique. Since there are many appli-

cations that require more than available memory bandwidth, the bandwidth compressor is very

useful and applicable to various computing problems.

The objective of this study is performance improvement of the FPGA-based stream comput-

ing for practical applications by bandwidth compression. We target numerical simulation with

a computational grid, which is referred to as real-world application in this dissertation. For

this goal, we consider several requirements due to the numerical computation and the hardware

implementation. We divide the objective into the three major challenges: design and evaluation

of the data compression hardware, improvement of the data compression hardware for flexi-

bility and smaller area, and design of multi-channel synchronization hardware for bandwidth

compression in real-world applications.

In chapter 2, we investigated applicability of the previous data compression that is proposed

in our preceding study, and point out their problems in using them to high-performance com-

putation for real-world applications. For data compression of numerical floating-point data,

our preceding study proposed the prediction-based algorithm instead of general purpose com-

pression such as entropy coding and prefix coding. The prediction exploits the continuity of

the numerical data which we can suppose that the data sequences follow the one dimensional

polynomial function. The algorithm is composed of the prediction and the subtraction, both of

which are processed in unsigned integer operations to reduce computational cost. We designed

and implemented the data compressor and decompressor and evaluated them in terms of the

compression ratio, the hardware area, and the maximum operational frequency. We made sure
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that they achieve good compression performance and high throughput, however, they have too

big area to be implemented with FPGA-based stream computation of real-world applications.

Based on the results and discussions, we summarized the requirements for improvement of the

data compressor and decompressor for practical applications, which are hardware-area reduction

and multi-channel synchronization.

In chapter 3, we improved the data compressor and decompressor to reduce the hardware

area. First of all, we investigated the cause of the hardware area growth. The hardware mainly

consumed for the data conversion from variable-length compressed data to fixed-length com-

pressed data blocks (CDB). The variable-to-fixed and fixed-to-variable length conversions re-

quires big barrel shifters to concatenate compressed data into CDB and extract a datum from

CDB. To reduce the area, we focused on the length of residual bits (LRB) which is a part of the

compressed data to indicate the length of residual bits by subtractions to indicate the length

of residual bits for the decompression. Based on the fact that the size of the barrel shifters are

strongly affected by the dynamic range of LRB, we proposed the quantized encoding method

with limited LRB (L-LRB). The L-LRB exploits the deviation of LRB distribution, which is

given by the data and prediction accuracy, to reduce the series of the barrel shifters at the

limited sacrifice of compression performance. For L-LRB, we also improved the structure of the

CDB to simplify the processing in variable-to-fixed length converter (VFC) and fixed-to-variable

length converter (FVC). Both L-LRB and CDB improvement reduced the area of the compressor

and decompressor dramatically. In addition, we generalized the encoding method with L-LRB

by introducing parameters. We provide a criterion to select a set of appropriate parameters

according to the statistical characteristic of target data.

In chapter 4, we proposed the mechanism to allow bandwidth compression to synchronously

handle multiple channels of compressed data with ununiform compression ratios, and demon-

strated improvement of computational performance with the prototype system of our proposal.

With small and high-throughput data compressor and decompressor presented in chapter 3, we

designed bandwidth compressor for real-world applications using multiple channels. We designed

MCS (multi-channel serializer) and MCD (multi-channle deserializer) to handle multiple chan-

nels. MCS and MCD control the input and output of CDBs in order to keep the synchronization

for stream computing. Through a demonstration with the dedicated 2D-LBM core, we made

sure that the bandwidth of the I/O port of the core is improved. Simultaneously, we made sure

that the computational performance is also increased even if the available memory bandwidth

is insufficient without bandwidth compression. Finally the bandwidth compressor achieved 1.73

times higher performance than the implementation without the compression.

In summary, the dissertation presents that proposed bandwidth compressor can improve the

computational performance of the FPGA-based stream computing. Even if the I/O bandwidth
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can not physically increased, the bandwidth compressor provides the solution to enhance the

bandwidth in exchange for small hardware resource. The new generation FPGAs will have the

much larger amount of hardware resources but the growth of I/O bandwidth will be relatively

small. In such cases, the bandwidth compression technique presented in this study is useful

for more applications to enjoy the hardware resources for high-performance computation with

the physically-limited I/O bandwidth. improvement because the proportion of the hardware

resource to the memory bandwidth will not change dramatically. In addition, the bandwidth

compression can be used for not only the memory system but also the inter communication

network. We are sure that the proposed technique push the FPGA-based high-performance

computation to more popular and feasible solutions.
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