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Locally stationary spatio-temporal processes

Yasumasa Matsuda∗ Yoshihiro Yajima†

Abstract

This paper proposes a locally stationary spatio-temporal processes to analyze the motivating
example of US precipitation data, which is a huge data set composed of monthly observations
of precipitation on thousands of monitoring points scattered irregularly all over US conti-
nent. Allowing the parameters of continuous autoregressive and moving average (CARMA)
random fields by Brockwell and Matsuda [2] to be dependent spatially, we generalize lo-
cally stationary time series by Dahlhaus [3] to spatio-temporal processes that are locally
stationary in space. We develop Whittle likelihood estimation for the spatially dependent
parameters and derive the asymptotic properties rigorously. We demonstrate that the spatio-
temporal models actually work to account for nonstationary spatial covariance structures in
US precipitation data.

Keywords: CARMA kernel, Compound Poisson, Locally stationary process, Seasonal ARmodel,
Spatially dependent spectral density function, Spatial nonstationarity, Whittle likelihood esti-
mation.

1 Introduction

Figure 1 shows the locations of monitoring stations scattered all over US continent on which
monthly precipitation has been observed since 1895. The huge spatio-temporal data set of US
precipitation is the motivating example in this paper to let us consider nonstationary spatio-
temporal models. US precipitation data has the following features: First, thousands of monitoring
points are scattered irregularly over US continent while temporal observations are sampled in
usual discrete time points. Secondly the space time covariance is obviously nonstationary. More
precisely the covariance depends on space, although it may not critically on time. Thirdly data
size of US precipitation is huge, namely, more than one hundred thousands even for three years
period. Spatio-temporal models that account for the features are required for the analysis of US
precipitation data.

Continuous autoregressive and moving average (CARMA) random fields, which were pro-
posed by [2] as stationary spatial model defined on Rd, d ≥ 2, shall be extended for the mo-
tivating example. Extensions to spatio-temporal random fields with stationary temporal and
nonstationary spatial covariances are to be tried to describe spatially dependent behaviors in
US precipitation data. Stationary temporal extension can be done easily by discrete ARMA time
series models, while nonstaionary spatial extension requires some careful considerations.
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Figure 1: The locations of weather stations in US continent, on which monthly precipitation has
been recorded since 1895.

Nonstationary spatial models have been attracting great interests in spatial statistics areas,
since it is usual to find nonstationary features in environmental data whose covariances depend
not only on lags but also on locations (Sampson [11]). Kernel-based methods by Fuentes [5], basis
function approach by Nychka et al. [9], convolution models by Higdon [7], spatial deformation
methods by Guttorp and Sampson [6] are the typical researches proposing nonstationary spatial
models. Although all of the approaches work well to express nonstationary spatial covariances
in theoretically sophisticated ways, they have often difficulties in conducting estimation and
kriging for huge spatial data sets, which are often the case recently because of rapid progress of
data collecting technology such as remote sensing data by satellites. US precipitation is a typical
case of huge spatio-temporal data set that requires nonstationary spatial covariance models.

Locally stationary processes, proposed by Dahlhaus [3], are nonstationary time series by
allowing parameters to be dependent on time. Dahlhaus [3] succeeded in estimating the time
dependency of parameters by the frequency domain based method and derived the asymptotic
properties rigorously. His essential idea that makes it possible to establish the asymptotic theories
is in the expression of the time dependency of parameters θ, which is denoted as as θ(t/T ) for
sample size T . Similar researches in prior to his paper expressed time dependent parameters as
θ(t), for which asymptotic arguments were difficult to formulate (Priestley [10]).

Extending locally stationary time series by Dahlhaus [3] to random fields, we propose locally
stationary spatio-temporal processes. CARMA random fields with spatially dependent parame-
ters are special cases of locally stationary spatio-temporal processes with separable covariances
given by the product of stationary temporal and locally stationary spatial covariances. Follow-
ing Dahlhaus [3] in estimation, we develop Whittle likelihood estimation for spatially dependent
parameters in locally stationary spatio-temporal processes. To establish asymptotic theories for
the estimation, we need to generalize a asymptotic scheme for time series to that for spatio-
temporal data. Extending the so called mixed asymptotics in spatial data (Stein [12]) to that
for spatio-temporal data, in which sample size and sampling region jointly diverge, we derive
the asymptotic properties rigorously.
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The striking features of locally stationary spatio-temporal CARMA random fields are as
follows: First, the parameters are efficiently estimated by minimizing Whittle likelihood which
requires no matrix operations. Secondly, asymptotic theories for Whittle estimations are estab-
lished under the asymptotic scheme regarded as an extension of mixed asymptotics in spatial
statistics literature. Thirdly, kriging and forecasting, which usually require huge matrix inver-
sions for large spatial data set, are conducted with light computational burdens. Applying an
approximation to the kriging procedure in Brockwell and Matsuda ([2]), we conduct efficient
kriging that does not require matrix inversions. Finally, locally stationary CARMA models pro-
vide an easy way of simulating spatio-temporal data with spatially nonstationary and temporally
stationary covariances. Simulating spatial data with nonstationary covariances is also possible
as a part of simulating spatio-temporal data.

We use the following notation. For A = (A1, A2), s = (s1, s2), [0, A] = [0, A1] × [0, A2],
|A| = A1 ×A2, s/A = (s1/A1, s2/A2).

2 Locally stationary random fields

2.1 Extension of stationary CARMA random fields

CARMA random fields were introduced by Brockwell and Matsuda [2] as stationary models
over Rd, d ≥ 2. We shall extend them to spatio-temporal models with spatially nonstationary
and temporarily stationary covariances. Consider CARMA random fields driven by a compound
Poisson sheet on R2,

X(s) =
∑
j

g(θ, s− ej)Zj , s ∈ R2, (1)

where g(θ, s) is a CARMA kernel with parameters θ, ejs are knot points distributed randomly
over R2 and Zjs are independent and identical random variables with mean 0 and variances τ2.
Here we normalize the CARMA kernel g(s) to satisfy g(0) = 1. Let n(dx) be the number of
knot points contained in the region dx ∈ R2. Then we normalize them to satisfy E(n(dx)) =
var(n(dx) = dx. The two normalizations are necessary in order to guarantee the identifiability
for τ2.

We shall begin from the stationary temporal extension of CARMA random fields by a discrete
ARMA model. Extending iid variables Zjs to stationary time series Zjt by discrete ARMA
models, which is defined by

ϕ (B)Zjt = ψ (B)σεjt, (2)

where εjts are mutually independent and identically distributed random variables with mean 0
and variance 1, and ϕ and ψ are autoregressive and moving average polynomials given by

ϕ (B) = 1− ϕ1B − · · · − ϕpB
p,

ψ (B) = 1 + ψ1B + · · ·+ ψqB
q,

where B is the backward shift operator defined by BZjt = Zj,t−1, we have temporally extended
CARMA random fields expressed by

X(s, t) =
∑
j

g (θ, s− ej)Zjt, s ∈ R2, t = 1, 2, . . . ,

3



which provides separable space time covariances that are stationary both in space and time.
Next let us try a nonstationary extension. Allowing the parameters θ, ϕ, ψ and σ to depend

spatially on s, we have the spatially nonstationary model denoted as

X(s, t) =
∑
j

g (θ(s), s− ej)Zjt(s), s ∈ R2, t = 1, 2, . . . , (3)

where Zjt(s) is the stationary ARMA time series generated by (2) with spatially dependent
parameters ϕ(s), ψ(s) and σ(s).

Inference for the spatially dependent parameters θ(s), ϕ(s), ψ(s), σ(s) in (3) are inconsistent,
since the domains of the parameter diverges as the observation regions [0, A] for s in X(s, t)
tends to be large. Consistent estimation for the spatially dependent parameters requires finer
samples over the domain as the sample size tends to be large. Following Dahlhaus (1997), we
replace the spatial dependencies for the parameters with the local dependencies defined by
θ(s/A), ϕ(s/A), ψ(s/A), σ(s/A), which leads to the expression,

XA(s, t) =
∑
j

g
(
θ
( s
A

)
, s− ej

)
Zjt

( s
A

)
, s ∈ [0, A], t = 1, 2, . . . . (4)

We call it the locally stationary spatio-temporal CARMA processes in the followings. We shall
apply the spatio-temporal model to US precipitation data later in Section 4 in order to check
empirically if it can actually catch the spatially nonstationary behaviors.

2.2 Locally stationary spatio-temporal processes

Here we generalize the locally stationary spatio-temporal CARMA processes in (4) to locally
stationary spatio-temporal processes. Dahlhaus [3] proposed locally stationary processes to ex-
press nonstationarity with valid asymptotic theories. Here we extend the one for nonstationary
time series to that for spatio-temporal data. We consider the cases when locally stationary in
space but stationary in time that include (4) as a special case.

Definition 2.1. A spatio-temporal process XA(s, t), s ∈ [0, A] ⊂ R2, t = 1, 2, . . . is called a
temporally stationary and spatially locally stationary process with transfer function K, if there
exists a representation

XA(s, t) =

∫
R2

∫ π

−π
K
( s
A
, ω, λ

)
exp(iω′s+ iλt)dξ(ω)dζ(λ), (5)

where ξ(ω) and ζ(λ) are mutually independent stochastic processes on R2 and [−π, π] with
ξ(ω) = ξ(−ω) and ζ(λ) = ζ(−λ) , respectively, and satisfy

cum(dξ(ω1), . . . , dξ(ωk)) = η

(
k∑

i=1

ωi1

)
η

(
k∑

i=1

ωi2

)
ak(ω1, . . . , ωk−1)dω1 · · · dωk−1,

cum(dζ(λ1), . . . , dζ(λk)) = η

(
k∑

i=1

λi

)
bk(λ1, . . . , λk−1)dλ1 · · · dλk−1,

where cum is the cumulant function, a1 = b1 = 0, a2 = b2 = 1, |ak(ω1, . . . , ωk−1)| ≤ constk,
|bk(λ1, . . . , λk−1)| ≤ constk for k ≥ 3 and η(x) =

∑∞
j=−∞ δ(x+2πj) for the Dirac delta function

δ.
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Let us define spatially dependent spectral density function by, for u = s/A,

f(u,ω, λ) =

lim
A→(∞,∞)

(2π)−3

∫
R2

∞∑
k=−∞

cov(XA(s+ h/2, t), XA(s− h/2, t− k)) exp(−ih′ω − ikλ)dh

= |K(u, ω, λ)|2.

Then the spatio-temporal CARMA model in (4) is a special case in (5) in the sense that the
spatially dependent spectral density is expressed by

|g̃sp(u, ω)|2 × |g̃tmp(u, λ)|2

where

g̃sp(u, ω) =
1

2π

∫
R2

g(θ(u), s) exp(−iω′s)ds,

g̃tmp(u, λ) =
σ(u)√
2π

ψ(u, exp(−iλ))
ϕ(u, exp(−iλ))

.

In other words, the model in (4) is regarded as the separable case when the transfer function is
given by

K(u, ω, λ) = g̃sp(u, ω)× g̃tmp(u, λ)

Example 2.2. Consider an example for (4) when CARMA(2,1) is temporally extended by a sea-
sonal AR polynomial (1−ϕ1(u)B)(1−ϕ2(u)B12). CARMA(2,1) kernel (see eq. (31) in Brockwell
and Matsuda [2]) is expressed as

g(u, s) = (1− θ3(u)) exp(θ1(u)||s||) + θ3(u) exp(θ2(u)||s||), θ1(u) < θ2(u) < 0.

Hence the transfer function in (5) is expressed as the product of

g̃sp(u, ω) = (1− θ3(u))θ1(u)
{
||ω||2 + θ1(u)

2
}−3/2

+ θ3(u)θ2(u)
{
||ω||2 + θ2(u)

2
}−3/2

and

g̃tmp(u, λ) =
σ(u)√
2π

1

(1− ϕ1(u) exp(−iλ))(1− ϕ2(u) exp(−12iλ))
.

Finally we comment on the method to simulate spatio-temporal data that follows (5). Simu-
late bivariate standard normal numbers ωj overR

2 and uniform random numbers λk over [−π, π].
Let ϕ(·) be the bivariate standard normal density function and suppose the transfer function
is expressed by K(·) = K1(·) + iK2(·) for real-valued functions K1,K2. Simulate zero-mean iid
variables εj and zk with variances 1/ϕ(ωj) and one, respectively. Then generate spatio-temporal
data by

XA(s, t) =2
∑
j

∑
k

{
K1(s/A, ωj , λk) cos(ω

′
js+ λkt)−K2(s/A, ωj , λk) sin(ω

′
js+ λkt)

}
× εjzk, s ∈ R2, t = 1, 2, . . . ,

which are simulated spatio-temporal data with the spatially dependent spectral density |K(u, ω, λ)|2.
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3 Estimation of parameters

3.1 Whittle likelihood

Suppose we have observed spatio-temporal data XA(sp, t), p = 1, . . . , N, t = 1, . . . , T that fol-
low locally stationary models in (5) with the spatially dependent spectral density function
f(u, ω, λ) = |K(u, ω, λ)|2, which is expressed as f(θu, ω, λ) with spatially dependent parame-
ters θu. Our aim is to estimate θu for a fixed u ∈ [0, 1]2 in a nonparametric way that would
not specify any parametric form for the dependency of θ on u. In other words, we assume para-
metric function for the spectral density with parameter θ that may depend u, but do not give
any parametric form for the functional form of θ(u). We assume that all the observation points
{sp} ⊂ [0, A].

Let B = (B1, B2) and let wsp(x) and wtmp(x) be tapers defined on [−1/2, 1/2]2 and [0, 1],
respectively. Then the local discrete Fourier transform and periodogram for u ∈ [0, 1]2 is defined
by

dB(u, ω, λ) =
(2π)−3/2|A|
N
√
T |B|

N∑
p=1

T∑
t=1

XA(sp, t) exp(−iω′sp − iλt)wsp

(
sp −Au

B

)
wtmp

(
t

T

)
,

IB(u, ω, λ) = |dB(u, ω, λ)|2.

Let h(x) be a probability density function over [0, 1]2. We assume that sps are independently
and identically distributed over [0, A] with the density |A|−1h(s/A). Under conditions that will
be clarified later, we find that IB(u, ω, λ) is biased unlike discrete time series case, and that

EIB(u, ω, λ) → Cuf(u, ω, λ) + C̃uku(λ),

as A = (A1, A2) → (∞,∞), where the second term is the bias term and

Cu = h(u)2
∫
[−1/2,1/2]2

wsp(x)
2dx

∫
[0,1]

wtmp(x)
2dx,

C̃u = (2π)−2N−1|A|h(u)
∫
[−1/2,1/2]2

wsp(x)
2dx

∫
[0,1]

wtmp(x)
2dx,

k(u, λ) =

∫
R2

f(u, α, λ)dα

Noticing that f(u, ω, λ) = f(θu, ω, λ), k(u, λ) = k(θu, λ), we propose to estimate θu by minimiz-
ing Whittle likelihood function with respect to θ, which is defined by

lw(θ) =∫
D

∫ π

−π

{
IB(u, ω, λ)

Cuf(θ, ω, λ) + C̃uk(θ, λ)
+ log(Cuf(θ, ω, λ) + C̃uk(θ, λ))

}
dωdλ, (6)

where D is a compact and symmetric region on R2 such that −ω ∈ D whenever ω ∈ D.
Regarding Cu, C̃u as nuisance parameters and concentrating out Cu from the function, we have
the concentrated likelihood

lc(θ) = log

{
1

2π|D|

∫
D

∫ π

−π

IB(u, ω, λ)

f(θ, ω, λ) + ck(θ, λ)
dωdλ

}
+

1

2π|D|

∫
D

∫ π

−π
log {f(θ, ω, λ) + ck(θ, λ)} dωdλ, (7)
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where c = C̃u/Cu > 0, the nuisance parameter. Minimizing lc(θ) with respect to θ and c for a
fixed u, we estimate θu by θ̂, which means that the dependencies of θu on u are estimated in the
nonparametric way.

Notice that lc(θ) cannot identify the scale parameter σ2u when f(u, ω, λ) is given by σ2uf0(u, ω, λ),
as it is seen easily that lc(θ) does not depend on σ2u. Hence Whittle estimation proposed here just
provides the estimators only for the parameters included in f0(u, ω, λ). In addition, lc in which
the periodogram is replaced with the modified one multiplied with any constant would provide
exactly the same values of the estimators by the same reason. In Example 2.2, all the parameters
except for σ(u)2 are identifiable by the likelihood lc and can be estimated by minimizing it.

Remark 3.1. In practice, the integration in (7) should be replaced with the Riemannian sum-
mation. Let ωj , λj be jth element in the set of Fourier frequency

{(2πp1/A1, 2πp2/A2), 2πq/T |p1, p2, q = 0,±1,±2, . . .}.

Namely, the parameter θ is estimated practically by minimizing

l̃c(θ) = log

M−1
∑

(ωj ,λj)∈D×[−π,π]

IB(u, ωj , λj)

f(θ, ωj , λj) + ck(θ, λj)


+M−1

∑
(ωj ,λj)∈D×[−π,π]

log {f(θ, ωj , λj) + ck(θ, λj)} ,

with respect to θ, where M is the cardinality of the Fourier frequencies included in D× [−π, π].

3.2 Assumptions

One of the advantage of employing locally stationary models is in making it possible to establish
the asymptotic properties of the Whittle estimator. The followings are the assumptions required
to derive them. The first and second assumptions specify the asymptotic scheme in which the
estimator is consistent and asymptotic normal, which is the mixed asymptotics where the sample
size and sampling region diverge jointly.

(A1) Suppose XA(s, t) follows locally stationary processes in (5) with the spatially depen-
dent spectral density function f(u, ω, λ) = |K(u, ω, λ)|2, and is observed on (sp, t), p =
1, . . . , N, t = 1, . . . , T, sp ∈ [0, A]. sp, p = 1, . . . , N are written as

sp = (A1εp1, A2εp2)
′,

where εp = (εp1, εp2) is a sequence of independently and identically distributed random
vectors with a probability density function h(x) over the compact region [0, 1]2.

(A2) We assume Aj , Bj , j = 1, 2, N and T are the functions of k such that Aj = Aj(k), Bj =
Bj(k) → ∞, N = Nk → ∞ and T = Tk → ∞ as k → ∞. N−1

k |Ak| → 0, Bj(k)/Aj(k) → 0,√
Tk|Bk|Bj(k)

−2 → 0,
√
T−3
k |Bk| → 0 and

√
Tk|Bk|Bj(k)/Aj(k) → 0 for j = 1, 2 as

k → ∞.

(A3) The spatially dependent spectral density function f(u, ω, λ) is an integrable, bounded and
twice partially differentiable function with respect to ω ∈ R2, λ ∈ [−π, π], and partially
differentiable with respect to u ∈ [0, 1]2.
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(A4) The tapers wsp(x), x ∈ [−.5, .5]2 and wtmp(x), x ∈ [0, 1] are twice partially differentiable
functions when they are regarded as functions over R2 and R, respectively.

(A5) We fit, for a fixed u ∈ [0, 1]2, the parametric spectral density f(θu, ω, λ), θu ∈ Θ, a compact
subset in Rd. f(θu, ω, λ) is positive on Θ×D× [−π, π] and twice differentiable with respect
to θu for (ω, λ) ∈ D× [−π, π]. θ1(u) ̸= θ2(u) implies that f(θ1(u), ω, λ) ̸= f(θ2(u), ω, λ) on
a subset of D × [−π, π] with positive Lebesgue measure. The true parameter denoted by
θ0(u) lies in the interior of Θ, namely f(θ0(u), ω, λ) = f(u, ω, λ).

3.3 Asymptotic results

Consider the asymptotic results under the scheme in (A1) and (A2). Let θ̂k(u) be the estimator
minimizing lc(θ) in (7) for a fixed u ∈ [0, 1]2 under the asymptotic scheme in (A1) and (A2) for
k = 1, 2, . . ..

Theorem 3.2. Under Assumptions A1-A5,

(a) For a fixed u ∈ [0, 1]2 such that h(u) > 0, θ̂k(u) converges to θ0(u) in probability as k → ∞.

(b) For a fixed u ∈ [0, 1]2 such that h(u) > 0,√
Tk|Bk|

(
θ̂k(u)− θ0(u)

)
→ N

(
0, bw (Γ0u − Φ0u)

−1 (2Γ0u +∆0u) (Γ0u − Φ0u)
−1
)
,

in distribution as k → ∞, where Γ0u = Γ(θ0(u)),Φ0u = Φ(θ0(u)),∆0u = ∆(θ0(u)) with

bw =

{∫ ∫
|wsp(x)|4|wtmp(y)|4dxdy

}{∫ ∫
|wsp(x)|2|wtmp(y)|2dxdy

}−2

,

Γ(θ) = (2π)−3

∫
D

∫ π

−π

(
∂ log f(θ, ω, λ)

∂θ

)(
∂ log f(θ, ω, λ)

∂θ

)′
dωdλ,

Φ(θ) = (2π)−3(2π|D|)−1

∫
D

∫ π

−π

(
∂ log f(θ, ω, λ)

∂θ

)
dωdλ

∫
D

∫ π

−π

(
∂ log f(θ, ω, λ)

∂θ

)′
dωdλ,

∆(θ) = (2π)−3

∫
D

∫ π

−π

∫
D

∫ π

−π

(
∂ log f(θ, ω1, λ1)

∂θ

)(
∂ log f(θ, ω2, λ2)

∂θ

)′

× a4(ω1,−ω1, ω2)b4(λ1,−λ1, λ2)dω1dλ1dω2dλ2.

The asymptotic variance is different from the popular one in discrete time series models
(Dunsmuir[4]). Precisely, Φ(θ) in the asymptotic variance disappears in the cases of discrete time
series models, since the integration of logged spectral density is the constant, i.e., the logged
innovation variance (see Theorem 5.8.1 in Brockwell and Davis[1]). It is different also from the
one in Matsuda and Yajima[8], which employs the non-concentrated Whittle likelihood in (6).
The non-concentrated likelihood estimator does not include Φ(θ) in the asymptotic variance.
Hessian matrices between (6) and (7) correspond in the cases of discrete time series, while they
do not in our cases, which is the reason for the difference.

4 Empirical studies

We apply locally stationary spatio-temporal CARMA models in (4) to US precipitation data, the
motivating example for the temporal and nonstationary extensions of CARMA random fields, in
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Figure 2: Estimated values for the smoothness parameter θ3(u) in the CARMA(2,1) kernel
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Figure 3: Estimated values for the autoregressive parameter ϕ1(u) in the seasonal AR model

order to check empirical properties of Whittle likelihood estimation and forecasting performances
based on the identified model. US precipitation data is the monthly weather station data for
the continental US from 1895 through 1997, which is available in the web page of Institute for
Mathematics Applied to Geosciences (IMAG):

http://www.image.ucar.edu/Data/US.monthly.met/USmonthlyMet.shtml
We downloaded monthly total precipitation observed in the weather stations for 48 months

period from January, 1994 till December, 1997. They are regarded as a spatio-temporal data,
namely monthly observations of spatial data. Precisely, total millimeters of precipitation during
the month in the weather station were recorded with the longitude and latitude. See Figure 1
in Section 1 for locations of weather stations, which are seen to be irregularly spaced all over
US continent. We transformed the longitudes and latitudes to rectangular coordinates with one
unit of 100 kilometers to identify the locations of weather stations.

We fit the locally stationary spatio-temporal CARMA(2,1) model introduced in Example 2.2,
where θ3, the smoothness parameter and ϕ, ψ, the AR parameters, are designed to be dependent
spatially. The other two of θ1 and θ2 were fixed as 3.80 and 0.56, which were estimated by the
usual Whittle estimation, which are obtained by minimizing (7) in which the periodogram was
modified with the one for the spatial weight wsp = 1. The samples for 36 months from Jan. in
1994 to Dec. in 1996 were used for conducting the estimation minimizing the Whittle likelihood
function in (7), where the weight wsp(x) = exp(−x2/82), wtmp(x) = 1 were employed. The
estimated spatial dependency of the parameters, which were smoothed figures of the estimators
in 27 mesh points over [0, 1]2, are depicted in Figures 2-4.

We find that the estimators caught the spatial dependencies of the three parameters well in
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Figure 4: Estimated values for the seasonal autoregressive parameter ϕ2(u) in the seasonal AR
model

the nonparametric way. Figure 2 of the smoothness parameter shows that smoothness of covari-
ances decreases over the range in the Rocky mountains in comparison with that in plain fields,
which appeals to our intuitive observations of spiky behaviors of precipitations in mountainous
areas. Figures 3 and 4 show that seasonal (12 moth lag) correlations are more obvious than
one month lag correlations. Figure 4 demonstrates that the seasonal correlations become higher
gradually from east to west in US continent. In the east coast area, even negative seasonal
correlations are found.

Finally, we conduct one, two and three months ahead forecasts for the samples from Jan. till
Dec. in 1997 by the identified spatio-temporal CARMA(2,1) model based on the samples till Dec.
1996. Table 1 shows the MSEs of the forecasts for precipitation in 100 randomly selected stations
from the ones in 1997, where the two benchmarks are the three year averages of precipitation on
the previous and same months in the past years. For example, the two benchmark forecasts in
March, 1997 are three year averages of precipitation in February, 1995-1997 and those of March,
1994-1996.

The forecasts by the identified spatio-temporal CARMA model are constructed as follows.
Suppose we construct one step ahead forecast for XA(w, t + 1) at a location w by the samples
XA(sj , k), j = 1, . . . , N, k ≤ t. By (4), we have, for It being the information generated by
XA(s, k), s ∈ [0, A], k ≤ t,

E(XA(w, t+ 1)|It) =
∑
j

g(w/A,w − ej)E(Zj,t+1(w/A)|It)

=
∑
j

ϕ1(w/A)g(w/A,w − ej)Zj,t(w/A) +
∑
j

ϕ2(w/A)g(w/A,w − ej)Zj,t−11(w/A)

= ϕ1(w/A)XA(w, t) + ϕ2(w/A)XA(w, t− 11). (8)

When Zjt(w/A) is not zero mean, the forecast should be modified with

µ(w/A) + ϕ1(w/A)(XA(w, t)− µ(w/A)) + ϕ2(w/A)(XA(w, t− 11)− µ(w/A)),

where µ(w/A) is the temporal mean of XA(w, t). XA(w, t) and µ(w/A), when there are no
observations at w, should be estimated with

X̂A(w, t) =
∑
j

cj(w)XA(sj , t) and µ̂(w/A) =
1

36

36∑
k=1

X̂A(w, t+ 1− k),
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MSE

month bmrk1 bmrk2 1step 2step 3step

Jan. 25.2 21.9 24.8 27.2 27.1
Feb. 86.1 46.4 37.4 34.9 33.0
Mar. 22.9 30.6 19.2 20.5 19.7
Apr. 42.8 38.3 36.6 33.9 35.0
May 15.1 16.3 16.9 16.9 17.1
Jun. 26.8 26.3 28.9 30.8 31.3
Jul. 23.8 22.9 21.5 20.4 20.3
Aug. 15.2 17.0 19.3 20.1 20.1
Sep. 28.8 23.9 22.5 22.6 22.9
Oct. 22.5 18.4 15.7 15.7 15.8
Nov. 19.5 21.1 18.7 18.1 17.9
Dec. 21.6 43.7 26.4 28.3 28.4

average 29.2 27.2 24.0 24.1 24.0

Table 1: Comparisons of MSEs among the forecasts for US monthly precipitation in 1997 by
CARMA(2,1) and two benchmarks identified by the samples from Jan. 1994 till Dec. 1996,
where 100 stations were randomly chosen for the precipitation to be predicted. The three year
averages of precipitation on the previous and same months in the past three years (1994-1996)
are adopted as the benchmark1 and 2, respectively. By the identified CARMA, we conduct the
1, 2 and 3 step forecasts. For example, the two benchmark forecasts in March, 1997 are three
year averages of precipitation in February, 1995-1997 and those of March, 1994-1996.

respectively, where cj(w) = {
∑

k g(w/A,w−sk)}−1g(w/A,w−sj), the identified CARMA kernel

normalized to let the total summation to be 1. It is found by (4) that X̂A(w, t) is the estima-
tor obtained by replacing the knots {ej} with {sj} and Zjt(w/A) with XA(sj , t), which is an
computationally feasible approximation for the exact kriging E(XA(w, t)|XA(sj , t), j = 1, 2, . . .)
that can work for huge data set. Multi-step (h-step, say) ahead forecasts for XA(w, t + h) are
constructed recursively for h = 2, 3, . . . by replacing the unobserved values of h − 1 step ahead
in (8) with the predicted values.

First we found from Table 1 that MSEs of multi-step ahead forecasts by the CARMA(2,1)
model are not necessarily larger than those of one step ahead forecasts. This may be because of
the weaker lag one temporal correlation than seasonal correlation demonstrated by the estima-
tion results shown in Figures 3 and 4. Comparing MSEs of the two benchmarks with those of
CARMA (2,1) forecasts, we observe that the spatio-temporal CARMA (2,1) models can catch
the temporal correlations jointly with nonstationary spatial correlations, which results in the
improvement of forecasts over the benchmarks.

5 discussion

This paper has proposed locally stationary spatio-temporal processes to describe the empirical
properties of US precipitation data, the huge set of spatio-tempotal data. Extending station-
ary CARMA random fields on R2 to spatio-temporal models with spatially nonstationary and
temporarily stationary covariances, we have locally stationary spatio-temporal CARMA pro-
cesses, which are moreover generalized to locally stationary spatio-temporal processes. Following
Dahlhaus[3], we estimate the spatially dependent parameter by minimizing Whittle likelihood
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and derive the asymptotic properties rigorously. Applications them to US precipitation data
demonstrate that the nonstationary features of temporal and spatial covariances are accounted
well by the locally stationary CARMA(2,1) model.

The critical restriction of spatio-temporal CARMA processes is that the covariances are con-
fined to separable ones given by the products of spatial and temporal covariances. Nonseparable
extensions that can express fruitful class of covariance structures are our next target. One more
interesting extension is to allow Lévy sheets that drive CARMA random fields to have infinite
variances, which makes it possible to express several varieties of spiky behaviors in spatial data.
New parameter estimation method over Whittle estimation, which may not work for the infinite
variance cases, is required Its asymptotic properties are important issues that attract empirical
as well as mathematical interests.

6 Sketch of the proof

This section shows the outline of the proof for Theorem 1. Complete proof is available on request
from the first author. Proof of Theorem 1 (a)

Let θ1(u) ̸= θ0(u) for a fixed u ∈ [0, 1]2 such that h(u) > 0. By Lemmas 3 and 6 in Matsuda
and Yajima[8], we have

lc(θ1(u)) →

log

{
1

2π|D|

∫
D

∫ π

−π

f(θ0(u), ω, λ)

f(θ1(u), ω, λ)
dωdλ

}
+

1

2π|D|

∫
D

∫ π

−π
log {f(θ1(u), ω, λ)} dωdλ

+ Const(u) := l∞(θ1(u)),

in probability as k → ∞. By the identifiability condition in (A5) and Jensen’s inequality, we
have

l∞(θ1(u))− l∞(θ0(u)) =

log

{
1

2π|D|

∫
D

∫ π

−π

f(θ0(u), ω, λ)

f(θ1(u), ω, λ)
dωdλ

}
− 1

2π|D|

∫
D

∫ π

−π
log

{
f(θ0(u), ω, λ)

f(θ1(u), ω, λ)

}
dωdλ

> 0.

It follows that, for any positive constant K(θ0(u), θ1(u)) that is less than l∞(θ1(u))− l∞(θ0(u)),

lim
k→∞

P {lc(θ0(u))− lc(θ1(u)) < −K(θ0(u), θ1(u))} = 1.

For any δ > 0, there is an Hk,δ of the form

δ

(
C1

∫
D

∫ π

−π
IB(u, ω, λ)dωdλ

)−1{
C2

∫
D

∫ π

−π
IB(u, ω, λ)dωdλ+ C3

}
such that, for any θ1(u) and θ2(u) that satisfy ||θ1(u)− θ2(u)|| < δ,

|lc(θ2(u))− lc(θ1(u))| < Hk,δ,

because, letting a(θ, λ) = bk(θ, λ) and θ∗ be the mean value between (θ1(u) and θ2(u), we have

|lc(θ2(u))− lc(θ1(u))| ≤
(∫

D

∫ π

−π

IB(u, ω, λ)

f(θ∗, ω, λ) + a(θ∗, λ)
dωdλ

)−1

×
∫
D

∫ π

−π
IB(u, ω, λ)

∣∣∣∣ 1

f(θ2(u), ω, λ) + a(θ2(u), λ)
− 1

f(θ1(u), ω, λ) + a(θ1(u), λ)

∣∣∣∣ dωdλ
+ |log{f(θ2(u), ω, λ) + a(θ2(u), λ)} − log{f(θ1(u), ω, λ) + a(θ1(u), λ)}| .
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And it is easily seen from the form of Hk,δ that there exisrs a δ > 0 such that

lim
k→∞

P (Hk,δ < K(θ0, θ1)) = 1.

Applying lemma 2 of Walker[13], we have the consistency.
Proof of Theorem 1 (b)
By Taylor series expansion,

0 =
√
Tk|Bk|

∂lc(θ0(u))

∂θ
+
∂2lc(θ

∗)

∂θ∂θ′

√
Tk|Bk|

(
θ̂u − θ0(u)

)
,

where θ∗ is the mean value between θ0(u) and θ̂u. Hence

√
Tk|Bk|

(
θ̂u − θ0(u)

)
=

(
−∂

2lc(θ
∗)

∂θ∂θ′

)−1

×
{√

Tk|Bk|
∂lc(θ0(u))

∂θ

}
.

Then by Lemma 7 in Matsuda and Yajima[8],

√
Tk|Bk|

∂lc(θ0(u))

∂θ

=
√
Tk|Bk|(2π|D|)−1

∫
D

∫ π

−π
C−1
u {IB(u, ω, λ)− EIB(u, ω, λ)}

∂f−1(θ0(u), ω, λ)

∂θ
+ op(1)

→ N
{
0, (2π)6(2π|D|)−2bw (2Γ0u +∆0u)

}
.

By the consistency of θ̂u,

−∂
2lc(θ

∗)

∂θ∂θ′
= −(2π|D|)−1

∫
D

∫ π

−π

{
C−1
u IB(u, ω, λ)

∂2

∂θ∂θ′
f−1(θ∗, ω, λ)

}
dωdλ

+ (2π|D|)−2

∫
D

∫ π

−π

{
C−1
u IB(u, ω, λ)

∂

∂θ
f−1(θ∗, ω, λ)

}
dωdλ

∫
D

∫ π

−π

{
C−1
u IB(u, ω, λ)

∂

∂θ
f−1(θ∗, ω, λ)

}′
dωdλ

+ (2π|D|)−1

∫
D

∫ π

−π

{
f(θ∗, ω, λ)

∂2

∂θ∂θ′
f−1(θ∗, ω, λ) +

∂

∂θ
f(θ∗, ω, λ)

∂

∂θ′
f−1(θ∗, ω, λ)

}
dωdλ+ op(1)

→ −(2π)3(2π|D|)−1
(
Γ0u − (2π|D|)−1Φ0u

)
.
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