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1. SUMMARY 

 

Increased detections of enterovirus D68 (EV-D68) have been reported from many 

parts of the world, which pose a significant health threat since the virus is reported to be 

associated with severe respiratory illness and neurological complications such as acute 

flaccid paralysis (AFP). However, the reasons for increasing detection of EV-D68 are still 

unclear. 

In the Philippines, the increased number of cases with EV-D68 among patients with 

acute respiratory infections had been described in previous reports during 200820112,3. To 

monitor the continuous evolution of EV-D68 in the country, I followed up the study 

conducted among pediatric patients hospitalized with severe acute respiratory infection 

(sARI) from August 2012 to February 2014, which included the cases in areas affected by the 

typhoon Haiyan (Yolanda) in November 2013. EV-D68 was screened by polymerase chain 

reaction (PCR) using 5’untranslated region (UTR)-specific primers. The genetic evolution 

was further analyzed by nucleotide sequencing based on partial viral capsid protein (VP) 1. I 

identified 20 EV-D68-positive cases among 1,854 hospitalized patients with sARI. The 

detection rate of EV-D68 in this study was 1.0% (20/1,854). Interestingly, thirteen EV-D68-

positive cases were detected after the typhoon. Next, phylogenetic tree was constructed to 

compare the VP1 gene sequences of the EV-D68 strains, which showed that the samples were 

divided into two distinct sublineages: A11 (in lineage 3) and PL13 (in lineage 2). All EV-

D68-positive samples collected before May 2013 were classified into the A11 sublineage, 

which also consisted of strains from Thailand and China collected in 2011 and 2012. 

However, EV-D68-positive samples after October 2013 formed a distinct sublineage, PL13. 

Although the strains in the PL13 sublineage were closely related to the strains collected in
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Thailand in 2011. This sublineage was clearly distinct. This study showed that EV-D68 has 

been circulating in the population, and more positive cases were found in the areas devastated 

by typhoon.  

When combined with the previous studies, four outbreaks of EV-D68 had been 

identified in the Philippines during 20082015. This study also aimed to gain insight into 

molecular characteristics of EV-D68 that have been circulating in the Philippines since 2008 

and to infer its genetic relationship with viruses from other countries in Asia and other 

regions. I conducted molecular analyses of 442 sequences of VP1 collected from the 

Philippines and other countries in Asia, and other regions from 1962 to 2015. Phylogenetic 

analysis of these sequences revealed that most of recent large outbreaks occurred from 2012 

to 2015 in North America, Europe, and Asia were caused by viruses in lineage 2. Most of 

Asian viruses in lineage 2 were clustered separately from North American and European 

viruses. EV-D68 sequences identified in the Philippines were similar to sequences from other 

countries mainly in Asian (e.g. China, Hong Kong, Japan, and Taiwan). However, the lineage 

3 includes sequences from different countries in different regions during 20072015. 

Significant clustering by continent was observed in lineage 2 than in lineage 3. Whole 

genome analysis indicated that capsid VP1 of the viruses showed the most variable protein in 

which particular residues on antigenic BC and DE loops of the recent lineage 2 viruses were 

influenced by positive selection without statistical significance. The viruses in lineage 2 had 

genetic changes during its expansion in recent years. This study revealed changing trends of 

virus population size for each lineage in Asia from 2005 to 2015.  Lineage 1 viruses exhibited 

increasing trend in genetic diversity since 2005. Lineage 2 viruses showed fluctuating pattern 

in genetic diversity while lineages 3 viruses maintained its high genetic diversity throughout 

the period.  
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2. INTRODUCTION 

 

Acute respiratory infection (ARI) is one of the most common illnesses throughout the 

world and presents the major cause of morbidity and mortality of all ages. The ARI can be 

caused by a variety of pathogens, including bacteria and viruses. Among respiratory RNA 

viruses, a significant increase of enterovirus D68 (EV-D68) have been reported from many 

parts of the world, which pose a significant health threat since the virus is reported to be 

associated with severe respiratory illness and neurological complications such as acute 

flaccid paralysis (AFP). With the recent improvement of molecular techniques, several 

studies have revealed a high genetic diversity of the viral genes. However, it is still unknown 

if any virological factors are involved in increased detection and association with more severe 

illness. Therefore, it is necessary to understand molecular mechanism that might be 

responsible for changing epidemiology and pathogenesis of the virus. 

 

Virological characteristics 

Virion structure and genome organization 

 Enterovirus D68 (EV-D68) strains (designed as the Fermon, Rhyne, Franklin, and 

Robinson strains) were first isolated from four pediatric patients hospitalized with lower 

respiratory tract infections in California, United States in 1962. All patients had clinical and 

x-ray evidences of pneumonia and bronchiolitis. Four viruses were then investigated for their 

characteristics and the virus, represented by Fermon virus, was found to be antigenically 

distinct from currently known enteroviruses and other respiratory viruses. The novel 

picornavirus associated with respiratory infection was subsequently proposed in 19675. 
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 EV-D68 particle is a spherical, non-enveloped with the size of about 30 nanometers in 

diameters as observed under an electron microscope (Figure 1A and 1B). Since the virus 

particles lack a lipid envelope, its infectivity is insensitive to organic solvents6. In general, 

enteroviruses (EVs) carry a positive single-stranded ribonucleic acid (RNA) genome, 

approximately 7,500 nucleotides in length that encodes structural proteins VP1 to VP4 and 

non-structural proteins 2A, 2B, 2C, 3A, 3B, 3C, and 3D (Figure 2). Genomic RNA is 

covalently linked at the 5’end to a protein called VPg (virion protein, genome linked)7,8. In 

poliovirus, the VPg was reported as a primer for RNA synthesis1,9. The 5’ untranslated region 

(UTR) of EVs is long (approximately 600 to 1,200 nucleotides depending on the virus) and 

highly structured which contains sequences that control genome replication and translation7. 

The 5’UTR contains an internal ribosomal entry site (IRES) that directs translation of the 

messenger RNA (mRNA) by internal ribosome binding6. In addition, the 5’UTR is relatively 

conserved genomic region among EVs so that is used as a target region for molecular 

screening by reverse transcription-polymerase chain reaction (RT-PCR). The majority of the 

EV-D68 detections reported in the recent years, which also included EV-D68 reported in the 

Philippines, were based on positive results from RT-PCR and DNA sequencing by using 

primers specific for the 5’UTR of the virus8,10-15. The P1 region encodes the viral capsid 

proteins. The capsid of EV-D68 is comprised of four structural proteins of which the shell is 

formed by VP1, VP2, and VP3 while VP4 lies on an internal surface (Figure 3). The VP1 

capsid is generally considered as the most variable protein of the enterovirus genome6. It 

forms an eight stranded, antiparallel -barrel (also known as a -barrel jelly roll) of B, C, D, 

E, F, G, H, and I (Figure 4). The variable BC and DE loops of VP1 protein are recognized as 

the neutralized antigenic sites of the virus which can be exposed to the host immune system 

and influence pathogenesis or immune respond to infection6. The P2 and P3 regions encode 
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proteins involved in protein processing (2Apro, 3Cpro, 3CDpro) and genome replication (2B, 

2C, 3AB, 3CDpro, 3Dpol)6 (Figure 2).  

 

Classification 

 EV-D68 is a member of the Enterovirus genus of the Picornaviridae family. The 

genus Enterovirus is mainly divided into 12 species, including EV species A (EV-A), EV-

B, EV-C, EV-D, EV-E, EV-F, EV-G, EV-H, EV-J, Rhinovirus A (RV-A), RV-B and RV-C 

by Picornaviridae study group (available at http://www.picornaviridae.com/enterovirus/ 

enterovirus.htm, accessed by October, 2016). At present, EV-D consists of 5 serotypes, 

including EV-D68, EV-D70, EV-D94, EV-D111 (from both humans and chimpanzees), 

and EV-D120 (from gorillas), as shown in Table 1. Moreover, human rhinovirus 87 

(HRV87) was confirmed to share both biological and molecular properties to EV-D6816 

and was then reclassified as a strain of EV-D68 by Picornaviridae study group (available at 

http://www.picornaviridae.com/enterovirus/ev-d/ev-d.htm). Due to the fact that EVs are 

genetically and antigenically diverse, serotypes have been commonly determined by 

neutralization tests using polyclonal antibodies. More recently, the RT-PCR and genomic 

sequencing is used as a common method to determine serotypes and further genetic 

characterization. Especially, VP1 region is commonly used to determine serotypes and 

genotypes of EVs17,18. Molecular analyses based on VP1 nucleotide sequences among the 

more recently circulating EV-D68 strains revealed 3 major genetic groups. The genetic 

groups of EV-D68 in this study are designated as lineages 1, 2, and 3 based on the 

previously published classification19. Multiple nucleotide alignment of VP1 region showed 

that  all the lineage 3 strains exclusively had a deletion of 3 nucleotides coding for an 
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amino acid (Asparagine; N) at the nucleotide positions 28062808 in VP1 region (Figure 

5B), corresponding to the Fermon strain (Figure 5A).  

 Regarding to the 5’UTR of the EV-D68, the genetic variation has been reported 

between the end of IRES and the polyprotein open reading frame (ORF) among viruses in 3 

genetic groups1,10,20,21. Viruses belonged to lineages 1 and 2 (Figure 5C) were reported to 

have nucleotides deletions at positions 681704 (24-nucleotides deletion) and 721731 (11-

nucleotides deletion) while lineage 3 (Figure 5B) had 24-nucleotides deletion only at 

positions 681704 comparing to the Fermon strain (Figure 5A).   

 

Acid sensitivity 

 EV-D68 was initially reported as an acid stable virus5. However, the virus was later 

reported with acid sensitive feature which was confirmed by similar experiments16. 

Accordingly, a study conducted by Oberste et al.13 in 2004 shown that EV-D68 isolates 

(Fermon; the prototype strain, MN89; Minnesota 1989, MN98; Minnesota 1998, MD02-1; 

Maryland 2002, TX01; Texas 2001, and TX02; Texas 2002) grew poorly at 37°C relative to 

growth at 33°C and the virus titres were reduced by incubation at pH3.0. In contrast, the 

control virus (Echovirus 11) grew equally well at 33°C and 37°C and the virus titre was not 

affected by treatment at pH3.0. Likewise, these characteristics are found in common among 

Cardioviruses, enteroviruses (except rhinoviruses) hepatoviruses, and parechoviruses of the 

Picornaviridae family which are acid stable and maintain infectivity at pH values of 3.0 and 

lower6. The acid lability and temperature sensitivity of EV-D68 shared common biological 

characteristics with rhinovirus, which is a well-known cause of respiratory infection9,13,16. 

Differences in pH stability influence the sites of replication of the virus6. These shared 

features might underlie mechanisms for their respiratory tract tropism1. 
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Neutralizing antigenic site  

 Basically, the surface of viral capsid contains the major neutralization antigenic sites 

which consisted of the amino acid residues that are recognized by antibodies that block viral 

infectivity6. Several reports have identified various amino acid sequences located in BC and 

DE loops which are associated with antigenic epitopes among enteroviruses22-26. Studies on 

antigenic variation of enterovirus A71 (EV-A71) have shown that amino acid changes in 

residues on antigenic sites might lead to viral structure changes, resulting in binding 

alteration22,26,27. Regarding to EV-D68, the previous study showed that the antibody level 

against EV-D68 collected from pregnant women serum in Finland in 1983, 1993, and 2002 

had decreased by times, suggesting for a possible antigenic drift among the circulating EV-

D68 strains28. An accumulation of amino substitutions on predicted antigenic sites has been 

noted between the Fermon virus and circulating strains from 1989 to 201529-36. A study37 in 

2015 showed a difference in neutralization titres of Fermon antiserum against different EV-

D68 strains (14-18949, 14-18952, and 14-18953 of lineage 2), which were isolated from 

outbreaks in the United States in 2014. This evidence suggests that antigenic epitopes of 

Fermon strain differed from the EV-D68 strains that have been co-circulating in the epidemic 

areas. 

 

Global distribution of EV-D68   

 EV-D68 was first reported in 1962 in the United States5. Since then, the virus was 

found in a few numbers of clinical cases. Only 26 EV-D68 cases were detected from 

enterovirus surveillance in the United States during 1970200517. Until late 2000s, evidences 

of respiratory infection associated with EV-D68 have been more frequently reported from 

different part of the world, including China38,39, England8, France40, Gambia21, Italy41-43, 
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Japan19,20,44, Netherlands33,45, New Zealand46, Philippines2,3, Senegal21, South Africa21, 

Thailand31, and United States21,47, as summarized by Imamura and Oshitani1 (Table 2). 

However, an increase of EV-D68 might be affected by reporting bias or improvement of 

molecular detection method. Retrospective studies had been conducted by testing EV-D68 in 

stored respiratory samples collected in the Netherlands during 1994201033 and in Japan 

during 2005200919. The report from the Netherlands revealed that EV-D68 positive samples 

were less than 10 cases per year between 1994 and 2009 while a total of 24 EV-D68 positive 

samples were detected solely in 201033. An increasing trend of EV-D68 was also reported in 

Japan that EV-D68 was found in 10 samples in 2005, 1 sample in 2006, 2 samples in 2007, 2 

samples in 2009, and 40 samples in 201019. Therefore, the findings from both studies 

confirmed the actual increase of EV-D68 in recent years.  

During 20132014 in the North America, the outbreaks of EV-D68 associated with 

respiratory illness in the United States and Canada was reported with more than 1,000 

confirmed cases48. Like polioviruses (PVs) and EV-A71, EV-D68 also occasionally infects 

central nervous system (CNS), resulting in acute flaccid-like symptom which can lead to 

death. Neurological diseases-associated with EV-D68 infection such as AFP and Guillain-

Barre syndrome (GBS) have been occasionally reported from England49, France50, Norway51 

and United States, in which such severe cases were found especially among children ages 

under 5 years old52. The findings emphasized that the virus is not only an emerging 

respiratory pathogen but also a major concern due to EV-D68-associated acute flaccid 

myelitis during the post eradication of poliovirus.  

Recent epidemiological surveillance demonstrated that EV-D68 lineages 2 and 3 were 

responsible for the global EV-D68 outbreak during 201320144,10,14,30,31,34,36,53. The European 

surveillance showed a co-detection of lineages 2 and 3 viruses across 12 countries during 
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JulyDecember in 2014. But majority viruses belonged toEV-D68 lineage 2, which was 

genetically related to the North America strains detected between 2013 and 201434. Co-

circulation of EV-D68 lineages 2 and 3 has also been documented recently in various 

countries in Asia4,10,30,31. The genetic changes of these recently circulating viruses compared 

to the prototype Fermon strain have been noted27,29,34,35,52, indicating that EV-D68 has been 

constantly evolving. The recent large outbreaks with more severe complications including 

acute flaccid myelitis that occurred in the North America, Europe, and Asia have raised the 

question of whether viral mutations are responsible for the increased in incidence and 

severity. However, it is still unknown if any virological changes such as antigenicity, viral 

fitness and pathogenesis had recently occurred.  

In the Philippines, studies on respiratory viruses have been conducted among 

patients with severe acute respiratory infection (sARI) and influenza-like illness (ILI). 

Rhinovirus and respiratory syncytial virus were commonly detected viruses in these 

studies15. EV-D68 was detected unexpectedly by PCR targeting for 5’UTR of rhinoviruses 

and it was then confirmed by sequence identity to previously reported EV-D68. From the 

study, EV-D68 was revealed to be a possible causative agent for 21 cases with severe 

respiratory illnesses during mid May 2008mid May 2009 with two deaths2. Continuous 

monitoring of the virus identified subsequent outbreaks of EV-D68 especially among 

severe cases3,4. These findings confirm the public health impact of EV-D68 in the 

Philippines. Therefore I did further molecular characterization of EV-D68 in the 

Philippines. In total, four outbreaks of EV-D68 had been identified in the Philippines 

during 20082015 (Figure 6). EV-D68 lineages 2 and 3 viruses had been co-circulating in 

2008 and 2011. Thereafter, the re-emergence of individual EV-D68 lineage was 

documented; lineages 3 virus was reported during November 2012May 2013 and a large 
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number lineage 2 virus was reported during October 2013March 2014. Moreover, 

sporadic cases of lineages 2 and 3 viruses were found during late 2015. In previous studies, 

the distribution of all three major lineages (lineages 1, 2, and 3) had been documented in 

Japan (20052010)19, Italy (20082012)41-43 and the Netherlands (20112014)33,35, 

indicating continuous co-circulation of EV-D68 in countries. Also, evolutionary analyses 

revealed sequences diversity among the emerged viruses21,31,54, leading to the identification 

of novel clades in recent years14,36. Therefore, genetic analysis of EV-D68 collected in 

different periods of time would provide better understanding on the molecular evolution of 

the virus.  
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3. OBJECTIVES 

 

In order to draw the overall picture of EV-D68 in this Philippines, this study aimed to 

gain insight into molecular characteristics of EV-D68 in the Philippines and to infer its 

genetic relationship with viruses from other countries in Asia and other regions. This study 

also aimed to reveal evolutionary dynamics of EV-D68 in Asia over the past 10 years. 
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4. METHODOLOGIES 

 

4.1 Sample collection 

A total of 1,854 nasopharyngeal swabs (NPS) were collected from patients 

hospitalized with severe acute respiratory infection (sARI) from 3 hospitals in the 

Philippines; Eastern Visayas Regional Medical Center (EVRMC; Tacloban City, Leyte), 

Biliran Provincial Hospital (BPH; Naval, Biliran), and Ospital ng Palawan (ONP; Puerto 

Princesa City, Palawan) between September 2012 and February 2014.  

This study was approved by the Ethics Committee of Tohoku University Graduate 

School of Medicine, Japan and the Institutional Review Board of the Research Institute for 

Tropical Medicine, Philippines. The written informed consent was obtained from parents or 

guardians of all children involved in the study.  

 

4.2 Molecular detection and DNA sequencing  

Viral genome extraction was conducted using the QIAamp Viral Mini Kit (Qiagen) 

and complementary DNA (cDNA) was then synthesized by RT reaction using M-MLV and 

random primers (Invitrogen) according to the manufacturer’s instruction (Invitrogen). All 

samples were tested for respiratory viruses, including EV-D68, adenovirus, cytomegalovirus, 

human metapneumovirus, influenza virus, parainfluenza virus, respiratory syncytial virus, 

rhinovirus, and other enteroviruses (including coxsackievirus, echovirus, and poliovirus), by 

PCR using previously described methods15. EV-D68 was detected by a primer pair DK00112 

and DK00411 targeting 5’UTR of rhinoviruses and enteroviruses genome. The PCR products 

were purified using QIAquick PCR Purification Kit (Qiagen) and sequenced using Big Dye 

Terminator version 3.1 cycle sequencing kit and Genetic Analyzer 3730 (Applied 
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Biosystems, Foster City, the United States). EV-D68 from clinical samples in the Philippines 

was confirmed based on a high sequence identity shared with those of EV-D68 reference 

strains available in GenBank database using NCBI BLAST program 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM). All EV-D68 samples were further 

characterized to determine genetic lineages by PCR and sequence analysis targeting partial 

VP1 using two primer pairs of EV68-VP1F and EV68-VP1R2, and VP1-RCF and 48513. 

Also, all EV-D68 samples were chosen for a whole genome sequencing using genes-specific 

primers as shown in Table 3. 

 

4.3 Phylogenetic analyses of EV-D68 

     4.3.1 Molecular characterization of EV-D68 in the Philippines from 2008 to 2015  

 In order to determine the relationship of EV-D68 sequences in the Philippines, I re-

analyzed the Filipino sequences collected during 200820112,3 with the additional sequences 

obtained from EV-D68 samples during 20132015. 

A phylogenetic tree based on the genetic sequences of partial VP1 regions (546 

nucleotides) was inferred using the maximum-likelihood method based on the Tamura 3-

parameter (T92) model with gamma (G) distribution implemented in Molecular Evolutionary 

Genetics Analysis version 6 (MEGA6) software55.   

 

    4.3.2 Genetic relationship between EV-D68 detected in the Philippines and worldwide 

strains from 1962 to 2015  

  This analysis included a total of 442 partial VP1 sequences (546 nucleotides), which 

consisted of 52 sequences from Philippines during 20082015 and 390 sequences (selected 

based on sampling dates and locations, as shown in Table 4) from other countries during 
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19622015, as of July 2016. Maximum-likelihood phylogenetic trees were constructed under 

T92 + G model implemented in MEGA6 software55. Statistical support was evaluated by 

bootstrap analysis with 1,000 replicates and bootstrap values of over 80% are shown at nodes.  

To investigate if there is clustering of EV-D68 sequences by place or time, I further 

analysed the spatial (continent and country) and temporal (year) distribution of EV-D68 

circulating worldwide which were calculated by using the association index (AI)56 and 

parsimony score (PS)57 available in Bayesian Tip-Significance Testing (BaTS) software58. 

The posterior sets of trees (PSTs) were constructed by using the previous VP1 dataset. This 

analysis was run for 50 million (of all lineages), 30 million (of lineage 2), and 15 million (of 

lineage 3) generations with subsampling every 50000, 30000, and 15000 iterations, 

respectively. The average standard deviation of split frequencies value was less than 0.1, 

indicating convergence and the first 10% of tree states were then removed as burn-in. The 

strength of phylogenetic clustering by traits was indicated by the index ratio of estimated the 

observed to expected (null) values.  

 

4.4 Evolutionary analyses of EV-D68 in Asia 

To determine the genetic relationship of EV-D68 circulating in Asia, a total of 266 

partial VP1 sequences (546 nucleotides) from 7 countries and regions were collected from 

GenBank as of July 2016. The dataset consisted of sequences from Japan (n = 77, 

20052015), Taiwan (n = 35, 20072014), Philippines (n = 52, 20082015), China (n = 37, 

20082015), Thailand (n = 6, 20092011), Hong Kong (n = 54, 20102014), and Malaysia 

(n = 5, 2012). A phylogenetic tree was constructed using the maximum-likelihood method 

based on T92 + G model implemented in MEGA655.   
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 To further investigate the phylodynamics of EV-D68 circulating in Asia, the temporal 

change in genetic diversity of the virus was estimated using the strict molecular clock with 

Gaussian Markov random-fields (GMRF) Bayesian skyride model59 as a tree prior as 

implemented in the BEAST package60. The most appropriate model was selected based on 

the lowest value of the Akaike’s information criterion through Markov chain Monte Carlo 

(AICM), which provides a better fit to the data. Bayesian Markov chain Monte Carlo 

(MCMC) chains were run for 100 million generations with subsampling every 10000 

iterations under the General Time Reversible (GTR) + G substitution model. A 10% burn-in 

was removed. All effective sample size (ESS) values were more than 300, which indicated 

sufficient mixing to achieve convergence. The uncertainty of the estimates was shown by 

95% highest-posterior density (HPD) intervals by using Tracer ver1.6. The outputs were then 

generated to describe the population dynamics of EV-D68 in Asia over time. 

 

4.5 EV-D68 whole genome sequence analysis  

The phylogenetic relationships of EV-D68 genome were constructed from partial 5’ 

UTR and complete sequence of individual gene, including VP1, VP2, VP3, VP4, 2A, 2B, 2C, 

3A, 3B, 3C, and 3D.  A total of 67 randomly selected sequences (registered sequences in 

GenBank as of July 2016) were used in this analysis. To evaluate sequence variability of 

whole EV-D68 genome, 11 datasets of protein-coding genes (VP1-VP4, 2A-2C, and 3A-3D) 

were used and consensus sequences were generated by using Consensus Maker 

(http://www.hiv.lanl.gov/content/sequence/CONSENSUS/consensus.html). Deduced amino 

acid sequences were analysed further in MEGA6 software. Sequence variability scores per 

coding protein were calculated relative to individual protein consensus sequence obtained 

from each dataset. In addition, complete VP1 amino acid sequence was used to evaluate the 
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amino acid variability within VP1 capsid protein by Shannon entropy (Hx) analysis. This 

analysis was implemented in BioEdit software61. The score of zero (0) indicated a complete 

conserved amino acid at individual site in VP1 capsid while a value of greater than 0.2 was 

considered variable.  

 

4.6 Selection analysis  

The previous datasets of whole sequences were used to define the selective pressure 

on specific codons across the whole genome of EV-D68 circulating worldwide. The ratio of 

non-synonymous to synonymous (dN/dS) substitution per site (ɷ value) was determined 

using the single likelihood ancestor counting (SLAC) method implemented in the Hypothesis 

testing using the Phylogenies (HYPHY) package62. The amino acid position, in which ɷ 

value is higher than 1, is considered to be a positively selected site. The significant level for 

selections was accepted at p-value <0.05.  For each codon site, the difference (dN-dS) is 

indicated instead of  dN/dS value because there is a possibility of dS value of zero (0), which 

results an undetermined ratio62. Codons with normalized dN-dS value higher than 0 were 

considered as positive selected. 

 

4.7 Mapping of amino acid substitutions on the VP1 protein model. 

      The structure of full-length VP1 protein was inferred based on the Fermon strain 

(4WM8)63 as a modelling template in this study. The individual amino acid sequences were 

subjected into SWISS-MODEL homology modelling sever (http://swissmodel.expasyorg/ 

workspace/index.php?func=modelling_simple1&userid=USERID&token=TOKEN) in order 

to generate the Protein Data Bank (PDB) file. PyMOL software (http://www.pymol.org) was 



17 
 
used to visualize and map the amino acid mutations on the antigenic BC and DE loops of 

VP1 protein. 
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5. RESULTS 

 

5.1 EV-D68 detection 

A total of 1,854 NPS collected from hospitalized patients with severe acute 

respiratory infection (sARI) between September 2012 and February 2014 were tested for the 

presence of respiratory viruses. In this study, EV-D68 was detected at 1.0% (20 of 1,854). 

The most common viral pathogen identified among sARI cases was respiratory syncytial 

virus (29.3%), followed by rhinovirus (14.0%) and influenza virus (5.1%). Among three 

study sites (Leyte, Billiran, and Palawan islands), interestingly, thirteen EV-D68 positive 

cases were found after the typhoon hit (Figure 7 and Table 5). The ages of EV-D68-positive 

patients ranged from 1 month to 4 years (median, 14 months).  

In terms of coinfection, this study found 3 cases positive for both EV-D68 and 

respiratory syncytial virus. One patient (2 months of age) coinfected with the viruses died 

during the study period. All the other patients who were infected with EV-D68 recovered. 

During this study period, 35% (7 of 20) of EV-D68-positive sARI patients exhibited 

wheezing.  

 

5.2 Molecular characterization of EV-D68 in the Philippines from 2008 to 2015 

To understand the genetic relationship of EV-D68 in the Philippines, VP1 sequences 

identified in the Philippines during 20082015 were analyzed. Phylogenetic analysis showed 

that EV-D68 sequences in the Philippines were classified into two lineages, lineages 2 and 3. 

None of EV-D68 sequence belonging to lineage 1 was detected in this study (Figure 8). The 

Filipino sequences obtained in 2008 and 2011 formed a distinct cluster in lineage 2 while the 

recent EV-D68 sequences obtained from 2012 to 2015 were divided into two distinct 
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sublineages, including A11 (in lineage 3) and PL13 (in lineage 2). All EV-D68-positive 

samples collected before May 2013 were classif.ied into the A11 sublineage, which also 

consisted of strains from Thailand and China collected in 2011 and 2012. However, EV-D68-

positive samples after October 2013 formed a distinct sublineage, PL13. Although the strains 

in the PL13 sublineage were closely related to the strains collected in Thailand in 2011, this 

sublineage was clearly distinct. Notably, I found amino acid substitutions in the predicted 

antigenic sites of the VP1 gene in the PL13 sublineage: threonine (T) to alanine (A) at 

position 98 (T98A) in the BC loop and methionine (M) to valine (V) at position 148 

(M148V) in the DE loop.  In contrast, any of these amino acid substitutions were not 

observed among lineage 2 sequences identified in 2008 and 2011 in the Philippines. Sporadic 

cases of lineages 3 viruses were detected recently in 2015. These lineage 3 sequences were 

more closely related to sequences identified in France and Spain in 2014, and Philippines in 

2011 than those sequences in A-11 sublineage.  

 

5.3 Genetic relationship between EV-D68 detected in the Philippines and worldwide 

strains from 1962 to 2015  

A total of 52 EV-D68 sequences of partial VP1 gene from the Philippines between 

2008 and 2015 were analyzed along with 390 sequences from 23 countries and regions in 

Africa, Asia, Europe, North America, and Oceania from 1962 to 2015. Phylogenetic analysis 

of these sequences revealed that recent EV-D68 strains were classified into three major 

genetic groups; lineages 1, 2, and 3 (Figure 9A).  

Most of recent large outbreaks occurred from 2012 to 2015 in North America, 

Europe, and Asia were caused by viruses in lineage 2. Distribution of multiple EV-D68 

lineages was observed in many countries, for instance lineages 1, 2 and 3 in Italy, Japan, and 
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the United States; lineages 2 and 3 in China, France, Netherlands, Philippines, Spain, Taiwan, 

and Thailand. In this analysis, each of lineages 2, and 3 was further divided in to various 

sublineages which were named after continents, including Asia (AS), North America (NA), 

Europe (EU), and worldwide (W). Sequences from the Philippines were divided into 4 

sublineages; AS07 and AS13 of lineage 2 and W07 and W08 of lineage 3 (Figure 9A).  

Within lineage 2 (Figure 9B), EV-D68 identified in the Philippines in 2008 and 2011 

were classified into the AS07 sublineage, which also includes sequences from Taiwan 

detected between 2007 and 2008. Sequences of lineage 2 identified during 20132015 in the 

Philippines were classified as AS13, which includes sequences from other countries mainly 

in Asian and some sequences from Canada. Most of Asian viruses in lineage 2 were clustered 

separately from North American and European viruses, which formed distinct clusters as 

NA14 and EU09 sublineages, respectively.  

In addition, the lineage 3 viruses in the Philippines collected in 2008, 2012, and 2013 

were classified into W08 sublineage while the viruses collected in 2011 and 2015 were 

clustered in W07 sublineage (Figure 9C). Two lineage 3 viruses (TTa-11-Ph224 and TTa-11-

Ph272) detected in 2011 clustered with viruses from Europe and Oceania (New Zealand), 

while other two strains, TB8-15-Ph508 and TB9-15-Ph380 (in the yellow box), detected in 

2015 formed a distinct genetic group, which shared only 93% identity with the viruses 

detected in 2011 (Figure 9C). The W07 and W08 sublineages of lineage 3 included sequences 

from different countries in different regions during 20072015. Furthermore, analysis of 

spatial and temporal structures of EV-D68 showed a significant clustering by continent in 

lineage 2 which was more strongly observed than in lineage 3 (AI, p<0.01; PS, p<0.01).  

However, a strong temporal clustering was not observed in this study (Table 6). 
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5.4 Evolution of EV-D68 in Asia 

 In this study, I analysed 266 VP1 sequences (546 nucleotides) of EV-D68 collected 

from China, Hong Kong, Japan, Malaysia, Philippines, Taiwan, and Thailand during 

20052015 (Table 7). EV-D68 sequences consisted of lineage 1 (n = 51), lineage 2 (n = 

145), and lineage 3 (n = 70). As shown in Figure 10, phylogenetic tree showed the obvious 

clustering by countries. To further investigate the evolution dynamic of EV-D68 lineages 

circulating in Asia, the strict clock model with GMRF Bayesian skyride prior was performed 

to determine the changes in genetic diversity or population size of virus through times. The 

evolutionary tree (Figure 11E) and the GMRF skyride plots show the continuous expansion 

of lineage 1 since 2005, which was detected in Japan for the first time in Asia. However, it 

was not detected after 2010 (Figure 11A and 11B). The trend of lineage 2 showed fluctuation 

in genetic diversity over time with the highest peak in 2014 (Figure 11C), when the 

significant increase of EV-D68 cases in North America and Europe was also observed. On 

the other hand, the high genetic diversity of lineage 3 was relatively constant over the same 

time period (Figure 11D). 

  

5.5 EV-D68 whole genome sequence analysis 

Phylogenetic trees of EV-D68 that were constructed from a total of 67 sequences of 

all genes showed a similar pattern of lineage clustering with VP1 (Figure 12). Analysis of 

deduced amino acid sequence of EV-D68 genome showed that VP1 protein is the most 

variable protein (amino acid positions 553861) (Figure 13A) with the highest substitution 

density of 27.8% compared to other proteins, which ranged from 1.2 to 22.7% (Table 8). Two 

amino acid sites, 98 in BC loop (T98A) and 148 in DE loop (M148V), had highest frequency 

of amino acid substitution, which were mainly observed among lineage 2 viruses detected in 
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recent years (Figure 14). In addition, Shannon entropy analysis of VP1 amino acid residues 

further supported the high genetic variability accumulating on antigenic BC and DE loops 

(Figure 13B).  

 

5.6 Evolutionary selection 

Using the previous dataset of 67 whole genome sequences, the ratio of dN/dS 

substitution (ɷ) was calculated. Using the SLAC method, result showed that the evolution of 

EV-D68 is driven by strong purifying selection (ɷ < 1), with mean dN/dS values ranged from 

0.03 to 0.10 in all lineages (Table 9). Codon with normalized dN-dS values higher than 0 was 

considered as positive selected. In antigenic BC and DE loops of VP1 region, residues 97 

(BC loop), 103 (BC loop), 141 (DE loop) and 148 (DE loop) were found under positive 

selection without statistical significance (p < 0.05) (Figure 15). 

 

5.7 Amino acid diversity among recently circulating strains compared to the prototype 

Fermon virus 

      The VP1 protein structure of EV-D68 showed amino acid variability in antigenic BC 

and DE loops that are located on the external surface of the capsid complex when compared 

to the Fermon virus (Figure 16). At least 5 amino acid substitutions were found on each 

antigenic loop (indicated in yellow). Notably, the amino acid substitutions at positions 98 of 

BC and 148 of DE loops (indicated in red) were found among viruses in lineages 2 in recent 

years. 
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5.8 Nucleotide sequence accession numbers 

Nucleotide sequences of EV-D68 identified in the Philippines (20122015) and 

Sendai, Japan (2015) reported in this study were deposited in the GenBank database under 

accession numbers AB992413AB992443 and KX789218KX789267. 
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6. DISCUSSION 

 

The recent increase of EV-D68 cases worldwide including severe complications 

emphasizes the importance of deeper understanding of the molecular evolution of the virus. 

This study described the molecular characteristics of EV-D68 detected in the Philippines and 

their relationship with viruses in other countries especially in Asia.  

In this study, the detection rate of EV-D68 was found at 1%, which is slightly 

different from previous reports at 2.6% in 20082 and 0.23% in 20113. During the study 

period, Typhoon Haiyan (Yolanda), which hit the Philippines on 8 November 201364, caused 

extensive damage to large areas of the country, including some of study sites. The study sites 

included EVRMC in Tacloban City, which is located on Leyte Island, one of the 

municipalities most severely damaged by the typhoon. It should be noted that research 

projects were temporarily discontinued after the typhoon; thus, samples were unable to be 

collected continuously in this region. Among twenty EV-D68-positive cases during 

20132014, thirteen cases were observed after the typhoon hit (Table 5). It is, however, 

unclear whether the typhoon had any impact on EV-D68 circulation. Infectious disease 

outbreaks after major disasters have been reported. For example, a huge outbreak of cholera 

was documented after the earthquake in Haiti in 2010, which is believed to have been 

introduced to the country by the relief teams65.  Factors including population displacement, 

inadequate basic needs and sanitations facilities after natural disasters are likely to favor for 

disease transmission66.  

 Phylogenetic analysis of EV-D68 identified 3 major lineages 1, 2, and 3 in different 

countries and regions. This study found the strong geographic clustering in lineage 2 viruses 

but not in lineage 3 viruses. Within lineage 2 (Figure 9B), phylogenetic analysis showed that 
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viruses in AS07 sublineage include strains detected in Taiwan between 2007 and 200867 and 

the Philippines in 2008 and 20113. These AS07 viruses were the first lineage 2 viruses that 

were identified during 20072008. It is possible that these viruses may be the origin of the 

recent expansion of lineage 2. However, it is difficult to draw any conclusions regarding the 

location of the emergence of lineage 2 viruses due to the small number of registered 

sequences before 2010. Sequences in lineage 2 showed strong geographic clustering with 

most sequences in AS13 were detected in Asia, most of NA14 in North America and most of 

EU09 in Europe. This suggests that a strong geographic clustering of lineage 2 viruses might 

reflect the recent expansion of these viruses in Asia, Europe, and North America. However, 

this analysis found small clusters of sequences from Japan and North America which 

grouped together with European (EU09), sequences from France grouped with North 

American (NA14), and sequences from Canada68 grouped with Asian (AS13) sublineages, 

suggesting an inter-regional transmission. In addition, phylogenetic analysis showed the 

presence of two sublineages in lineage 3; W07 and W08 (Figure 9C). Most of viruses in the 

W07 sublineage were detected before 2012 while many viruses in the W08 sublineage were 

detected during 20122014. The W08 sublineage was recently proposed as the novel genetic 

group by another classification system36, known as clade D. In this study, Filipino sequences 

identified in 2008, 2012, and 2013 of W08 sublineage were also classified into the clade D, 

which had unique residues, 92T in BC loop and 143N and 148V in DE loop, when compared 

to clade A36 or W07 sublineage of lineage 3. This result indicates a distinct in genetic 

diversity of EV-D68 lineage 3 circulating worldwide.  

 Selective pressure analysis of whole genome sequences showed that the viral 

evolution was under strong purifying selection (p < 0.05). A high degree of amino acid 

conservation implies that EV-D68 is likely to maintain its proteins structure and function. In 
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general, genes encoding structural proteins that contain important domains such as 

neutralizing epitopes and antigenic sites are more considered across the viral genome. In this 

study, VP1 protein showed the highest frequency of mutations among protein-coding genes 

(Figure 13) and four positions in antigenic sites of VP1 region, including residues 97, 103, 

141, and 148 were under positive selection (without statistical significance) (Figure 15). The 

result is consistent with one previous study in Hong Kong in which residues 97 of BC loop 

showed the similar finding30. In other studies, selection analyses of each lineage showed that 

substitutions under selective pressure were found frequently among viruses in lineage 232 or 

clade B36 and could differentiate this lineage/clade from others. These observations clearly 

indicate the evolution by increased mutations among the outbreak EV-D68 strains. In 

addition, amino acid substitutions, T98A and M148V, in VP1 are localized in antigenic BC 

and DE loops (Figure 14), which are considered for receptor interaction and neutralizing 

immunogenicity32,63. These two amino acid mutations were detected among the recently 

expanding lineage 2 viruses which were clustered in AS13, NA14, and EU09 sublineages 

(Figure 9B). The M148V substitution was observed commonly in AS13, NA14, and EU09 

sublineages, which is consistent with other reports30,34,36. It is of note that amino acid 

substitution in antigenic BC and DE loops of VP1 had the effect on neutralization activity 

among enteroviruses. A single amino acid mutation of VP1 protein at position 84 (BC loop) 

of coxsackie B4 virus24 and at positions 98 (BC loop), 145 (DE loop) and 165 of EV-A7122 

led to neutralization reduction against patients’s antisera. Amino acid changes in these 

residues possibly caused the antigenic changes of viruses which might explain for the 

impaired reactivity with the specific antibodies. Regarding to EV-D68, previous studies 

showed the differences in neutralization titres of Fermon antiserum against EV-D68 lineages 

1, 2, 332 and the United States outbreak strains37. In addition, another report showed that 
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there is a limited cross reactivity against antisera generated for EV-D68 lineages 1, 2, 3 

collected from Yamagata prefecture in Japan in 2010 and Philippines in 201132. These 

evidences indicate that the recent strains are antigenically different from the prototype 

Fermon virus and also are antigenically diversified. Therefore, antigenic variations might be 

one of the possible reasons for its expansion in recent years.  

 Several studies have investigated whether genetic changes among recent EV-D68 

could possibly be associated with more severe clinical manifestations and 

complications14,27,52,53. Neurological diseases-associated with EV-D68 infection such as 

AFP and Guillain-Barre syndrome (GBS) have been reported from France50, Norway51, 

United Kingdom49, and United States52. AFP was mainly associated with clade B1 (lineage 

2) viruses and some amino acid substitutions that have been found as neurovirulence 

mutations of polioviruses were identified52. In addition, some predicted mutations were 

suggested to alter the protease cleavage efficiency that might be a potential factor for an 

increasing rate of EV-D68 replication14. However, these possible associations have not 

been confirmed to date. It is possible that other factors such as antigenic change and 

different virus fitness might also play a significant role. 

 In this study, phylodynamic analysis showed the changing trends of virus population 

size of each lineage in Asia from 2005 to 2015. In other studies, the overall trend of 

population size of EV-D68 appeared to increase as three lineages had emerged and spread 

rapidly in the Netherlands33 and worldwide21 during 2010 which are concordant with result in 

this study. It suggests that the evolutionary pattern of EV-D68 in Asia represents the global 

trend. All findings clearly imply large outbreaks that had occurred in recent years. In Asia, 

phylodynamics analysis identified 4 peaks of viral population in lineage 2, which is 

consistent with increased detection of EV-D68 in Philippines2 and Taiwan67 in 20072010,  
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China39, and Hong Kong30 in 20112012, Philippines in 20134, and China10, Hong Kong30, 

Taiwan53, and Japan (unpublished) in 20142015 (Figure 11A and 11C). However, this 

phenomenon was not observed in lineage 3. Previously, the trend of worldwide lineage 3 was 

found to increase in genetic diversity21. The discrepancy might be caused by the analyzed 

dataset. This study analyzed only strains from Asia while the previous study analyzed strains 

from over the world which contained several sequenced strains identified from other 

countries outside Asia, including Gambia, Senegal, South Africa, and United States. A large 

proportion of these strains might reflect the increasing trend in worldwide dataset. The 

lineage 3 viruses in Asia may have been continuously circulating in the population and have 

maintained their high genetic diversity over time. In some countries, EV-D68 lineage 1 was 

the most predominant virus, for instance in Japan during 2005201019,20. This coincides with 

the sharp increase in genetic diversity in 2010 (Figure 11A and 11B). EV-D68 lineage 1 was 

also detected in Italy in 200843. Thereafter, detection of EV-D68 lineage 1 had been rarely 

reported worldwide. There is only one lineage 1 virus detected after 2010: (CA/RESP/09-

871) from the United States in 2013. Phylogenetic tree showed that lineage 1 strains detected 

in Japan, Italy and the United States shared high homology based on VP1 sequences (Figure 

9A). To summarize, the temporal structure of EV-D68 at the early period might be 

represented by the spread of lineage 1 virus. The fluctuated trends, which were mainly 

triggered by large scale outbreaks of lineage 2 and sustained circulation of lineage 3 viruses, 

were then observed during 20102015. These finding indicated that EV-D68 from Asian 

countries exhibited dynamics changes in genetic diversity of multiple EV-D68 lineages over 

time.    

Limitations of this study include the discrepancy of sampling time period and 

surveillance system among countries. In this study, the lineage replacement is not clearly 



29 
 
observed. It is possible that lineage 1 viruses circulate at subclinical level, which may explain 

its non-detection in recent outbreaks. However, this possibility remains to be elucidated. 

Long-term observation of EV-D68 in different geographic regions with improved laboratory 

diagnostic may contribute a clearer picture of genetic distribution and evolutionary dynamics 

of EV-D68 worldwide.  

 In conclusion, this study highlights on the molecular characteristics of worldwide 

EV-D68 and provides the better understanding on the evolutionary mechanisms associated 

with the global spread of multiple lineages in recent years. High frequency of genetic 

mutations within predicted antigenic sites may play an important role among epidemic strains 

circulating in communities. This study also revealed the dynamic signature among EV-D68 

lineages in Asia over time.  
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7. CONCLUSION 

 

This study reported the increasing number of EV-D68 cases, in particular, after the 

typhoon Haiyan hit the country during 20132014. Furthermore, phylogenetic analysis 

showed an expansion of lineage 2 and 3 viruses across countries in recent years. EV-D68 

lineage 2 identified in the Philippines in 2008 and 2011 formed a unique cluster while others 

identified during 20132015 were genetically related to strains from other countries mainly 

in Asia. A strong spatial clustering was found among lineage 2 viruses by continent. But such 

a pattern was not observed for viruses in lineage 3. This study described the evolutionary 

dynamics of EV-D68 circulating in Asia over a decade. GMRF skyride coalescent analysis 

revealed an early expansion of lineage 1. Genetic diversity of lineage 2 viruses was 

fluctuating, while that of lineage 3 viruses was stable. These finding indicated that EV-D68 

from Asian countries exhibited dynamics changes in genetic diversity of multiple EV-D68 

lineages over time. Whole genome analyses of selected viruses identified frequent amino acid 

substitutions in BC and DE loops of VP1 which are considered for receptor interaction and 

neutralizing immunogenicity. This study provides a better understanding on EV-D68 

evolution in the recent years. Further research on the interplay between genetic diversity and 

virus antigenic variation and evolutionary dynamics of EV-D68 in different countries will 

advance current knowledge of potential mechanism that might be responsible for changing 

epidemiology and pathogenesis of the virus so that better control strategies can be 

established. 
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9. FIGURES 

 

 

1A 1B
 

 

Figure 1 Electron micrograph of EV-D68 particles. A thin section of EV-D68 (Fig 1A and 

1B) showing the numerous, spherical viral particles. The images are kindly contributed by 

Cynthia S. Goldsmith and Yiting Zhang, CDC (available at http://www.cdc.gov/non-polio-

enterovirus/resources-ev68-photos.html). 
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Figure 2 Organization of picornavirusb genome. Viral genomic RNA has a viral protein 

(VPg) at the 5’ untranslated region (UTR) containing the internal ribosomal entry site (IRES), 

the protein coding regions, the 3’ UTR containing a pseudoknot, and the poly(A) tail. Coding 

regions for the viral proteins are indicated. The P1 region encodes the structural polypeptides. 

The P2 and P3 regions encode the nonstructural proteins associated with replication6.  

 

Notes:  

aL (Leader protein) is found in other genus e.g. erboviruses, cardioviruses, and aphthoviruses 

which also belong to Picornaviridae family. 

bPicornavirus is a virus belonging to the Picornaviridae family, including enterovirus D68 

(EV-D68). 
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Figure 3 Schematic of enterovirus capsid showing the packing of VP1 (blue), VP2 (yellow), 

VP3 (red) on the surface. VP4 (green) is on the inner capsid (adapted from6). 
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Figure 4 The ribbon diagram of VP1 -barrel jelly roll in EV-D68. One of the sheets is 

composed of the antiparallel strands BIDG and the other by the antiparallel strands CHEF 

(adapted from63 reconstructed by using PyMOL software).  
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A) Fermon virus 

 

 

B) Lineage 3 virus 

 

 

C) Lineages 1 and 2 viruses 

 

 

 

Figure 5 Genome structure of EV-D68 lineages 1, 2, and 3. The genome structures of the 

Fermon strain (Fig 5A), lineage 3 (Fig 5B), and lineages 1 and 2 (Fig 5C) of EV-D68 are 

demonstrated. Each genome region is indicated with a bar, and nucleotide positions of these 

regions are annotated with numbers below the bar (adapted from1).  
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Figure 8 A phylogenetic tree of EV-D68 strains in Philippines from 2008 to 2015 and 

reference strains. Significant mutations (T98A and M148V) mentioned in the body are shown 

in red letters at nodes. Filled circles with different colors indicate strains collected from our 

study sites, including Leyte; TTa and TEv, Biliran; TBp, and Palawan; TOp, in 2008 (blue), 

2011 (green), 2012 (wheat), 2013 (purple), 2014 (red), and 2015 (olive).  
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Figure 9A The phylogenetic relationship of worldwide EV-D68. Three major lineages 1, 2, 3 

and sublineages are indicated at a vertical blanket at the right side with names. Significant 

mutations (T98A and M148V) are shown in red letters at nodes. Bootstrap values of > 80% 

(in 1000 tests) are shown. The continents/countries/regions (AS; Asia, EU; Europe, NA; 

North America, W; worldwide) included in this analysis are differentiated by colors.  
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Lineages 1, 2, and 3 
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Lineage 2 (enlarged) 

 

 

Figure 9B The phylogenetic relationship of worldwide lineage 2 viruses. Four sublineages, 

including AS07, AS13, NA14, and EU09 of lineage 2 are indicated. 
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Lineage 3 (enlarged) 

 

 

Figure 9C The phylogenetic relationship of worldwide lineage 3 viruses. Two sublineages 

(W07 and W08) of lineage 3 are shown. Within W07 sublineage, sequences of TB8-15-

Ph508 and TB9-15-Ph380 are shown in yellow box. 
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Figure 10 The phylogenetic relationship of EV-D68 in Asia. EV-D68 lineages 1, 2, 3 are 

indicated at a vertical blanket at the right side with names. Bootstrap values of > 80% (in 

1000 tests) are shown. Asian countries/regions included in this analysis are differentiated by 

colors.  
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Figure 11 Phylodynamics of EV-D68 in Asia. Phylodynamics plots (Fig 11A to 11D) and 

Bayesian tree (Fig 11E) of EV-D68 lineages 1, 2, and 3 circulating in Asia from 2005 to 

2015 are indicated. The dash and solid lines indicate mean values and the upper and lower 

95% HPD values, respectively. The temporal distribution of EV-D68 in Asia is also indicated 

(Fig 11A). The countries and regions included in this study are differentiated by colors. 
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Figure 12 Phylogenetic trees of individual genes of EV-D68 genome using Maximum 

likelihood method. Each cluster of lineages 1, 2, and 3 was indicated in blue, brown, and 

green, respectively. The Philippines strains were marked with gray dots. 
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Figure 12 (continued) 
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Figure 12 (continued) 
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Figure 12 (continued) 
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Figure 12 (continued) 
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Figure 12 

 



64 
 
Figure 13 EV-D68 amino acid sequence variability in whole genome and Shannon entropy 

of VP1 protein. A number of substitution per site was calculated per strains relative to the 

consensus sequences generated from individual gene of worldwide strains. VP1 coding 

protein was indicated in the yellow box (Fig 13A). The VP1 dataset was further analysed to 

point out the genetic variability located on antigenicity BC and DE loops of EV-D68 as 

shown by Shannon entropy of VP1 protein (Fig 13B). 
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10. TABLES 

 

Table 1. Enterovirus species D (EV-D). 

 

Types Prototype 

strains 

Geographic

al region 

Illnesses in person 

with prototype 

Accession 

number 

EV-D68 Fermon  California Lower respiratory  AY42653113 

 (human)  illness  

EV-D70 J670/71 Japan and  Acute hemorrhagic  D0082069 

 (human) Singapore conjunctivitis  

EV-D94 E210 Egypt Detected in sewage DQ91637670 

 (human)    

EV-D111 KK2640 Cameroon none JF41693571 

 (chimpanzee)    

 17-04 Democratic Acute flaccid  EF12724972 

 (human) Republic of paralysis  

  Congo   

EV-D120 MB6201 Cameroon none KF04008073 

 (gorilla)    

 MB6128 Cameroon none KF04008173 

 (gorilla)    
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Table 3 Primers used for whole EV-D68 genome amplification and DNA sequencing. 

 

   Nucleotide positions correspond to the prototype Fermon virus (AY426531).  

 

Genes/ 

Regions 

Primer 

name 
Sequence (5’-3’) Position References 

5’UTR DK001 CAAGCACTTCTGTTTCCC 164-181 12 

DK004 CACTACTTTGGGTGTCCGTG 540-559 11 

5UTRF CCATGGAGCAAGTGCTCAC 475-493 This study 

VP4R GACCCATCAAAATTRACT 877-894  

VP4 VP4F GGACCCATCAAAATTCACTG 876-895 2 

VP2R CAATATTTCCACATCAATGG 1451-1470  

VP2 VP2F CCAGGGTTCGATGATATCATG   1360-1380  

VP3R GACATACAGTTAGACGGGCC 1942-1961  

VP3 VP3F GCACATTCCAGGGCAGGTCC 1785-1804  

VP1RFH GATTAACGCCCGAACTTGGTG 2469-2489  

VP1 VP1F ACCATTTACATGCAGCAGAGG 2393-2413  

485 GTNGAYTGGCANTCAGATGT 3406-3425 13 

VP1R TTGTCCATTTGAAAAAGTTCTTGTC 2683-2707  

VP1RCF GACAAGAACTTTTTCAAATGGAC 2683-2705 This study 

2A 2AF ATGTRGAYTGGCAATCAGAYGT 3404-3425  

2BR  GGYATTCCYTATGTACCTAGACAG 4030-4053  

2B 2BF  ACACTAGCATTGYTGGGATGC 3961-3981  

2CR  GGCTCAATACATGCACCAACA 4726-4746  

2C 2CF  ATCCAGATGGGAATGACAT 4595-4613  

3AR  ACTCTACAAGCCATTGCCA 5233-5251  

3AB 3AF  AGTTAGGGATTATTGCCAA 5142-5160  

3CR  CCAGTTGGACAAGTCACTAAC 5719-5739  

3C 3CF  TATGAGGATGATTACAATGACGC 5653-5675  

3DR1  TATGGAGTTGACYTACCTT 6355-6373  

3D 3DF1  GATTCCCTTACTTRCTACAAG 6263-6283  

3DR2  TGGATTAGTAATGACACCAGC 6963-6983  

3’UTR 3DF2  ATGGTGGAATGCCCTCTGGT 6761-6780  

3UTR  AATTTTGGTCACTTGGGGGC 7347-7367  
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Table 4 Accession numbers of VP1 sequence used in this study. 

Strains  Accession numbers 

09-115 UK 2009 JQ586224 

09-398 UK 2009 JQ586226 

09-56 UK 2009 JQ586221 

09-85 UK 2009 JQ586222 

09-86 UK 2009 JQ586223 

10-260 UK 2010 JQ586230 

10-268 UK 2010 JQ586231 

10-283 UK 2010 JQ586232 

1703-Yamagata Japan 2007 AB667895 

1737-Yamagata Japan 2008 AB667899 

1833-Yamagata Japan 2008 AB667898 

1939-Yamagata Japan 2010 AB614406 

1946-Yamagata Japan 2010 AB614408 

1975-Yamagata Japan 2010 AB614409 

1976-Yamagata Japan 2010 AB614410 

1980-Yamagata Japan 2010 AB614411 

1981-Yamagata Japan 2010 AB614412 

1989-Yamagata Japan 2005 AB667885 

1989-Yamagata Japan 2010 AB614413 

1991-Yamagata Japan 2005 AB667886 

2034-Yamagata Japan 2010 AB614414 

2035-Yamagata Japan 2010 AB614427 

2037-Yamagata Japan 2005 AB667887 

2037-Yamagata Japan 2010 AB614428 

2038-Yamagata Japan 2005 AB667888 

2043-Yamagata Japan 2005 AB667889 

2050-Yamagata Japan-2005 AB667890 

2052-Yamagata Japan 2010 AB614429 
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Table 4 (continued) 

Strains  Accession numbers 

2062-Yamagata Japan 2005 AB667891 

2070-Yamagata Japan 2010 AB614416 

2071-Yamagata Japan 2010 AB614417 

2076-Yamagata Japan 2010 AB614440 

2079-Yamagata Japan 2010 AB614418 

2082-Yamagata Japan 2010 AB614430 

2086-Yamagata Japan 2010 AB614433 

2093-Yamagata Japan 2010 AB614441 

2101-Yamagata Japan 2010 AB614434 

2116-Yamagata Japan 2010 AB614435 

2118-Yamagata Japan 2007 AB667897 

2124-Yamagata Japan 2005 AB667892 

2145-Yamagata Japan 2010 AB614431 

2146-Yamagata Japan 2010 AB614436 

2150-Yamagata Japan 2010 AB614419 

2155-Yamagata Japan 2010 AB614420 

2158-Yamagata Japan 2010 AB614421 

2161-Yamagata Japan 2010 AB614437  

2163-Yamagata Japan 2010 AB614432 

2166-Yamagata Japan 2010 AB614438 

2167-Yamagata Japan 2010 AB614439 

2174-Yamagata Japan 2010 AB614442 

2192-Yamagata Japan 2010 AB614422 

2218-Yamagata Japan 2005 AB667893 

2251-Yamagata Japan 2005 AB667894  

2256-Yamagata Japan 2010 AB614443 

2311-Yamagata Japan 2006 AB667896 

2336-Yamagata Japan 2010 AB614444 

ARI192 USA 2009 JX101786 
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Table 4 (continued) 

Strains  Accession numbers 

TX02-1 USA 2002 AY426495 

BCH895A China 2008 KF726085 

BJ-5234 China 2011 JQ924864 

Fermon USA 1962 AY426531 

CA62-1 USA 1962 AY426486 

CA62-2 USA 1962 AY426487 

CA62-3 USA 1962 AY426488 

CQ5585 China 2011 JX898785    

CQ5759 China 2011 JQ924867 

CQ5914 China 2012 JX898786 

GA420 Gambia 2008 JX101790 

GA421 Gambia 2008 JX101791 

GA424 Gambia 2008 JX101792 

GA427 Gambia 2008 JX101793 

GA431 Gambia 2008 JX101794 

ID72 Spain 2013 KF254913 

ITA/19962/08 Italy 2008 KC763160 

ITA/20528/12 Italy 2012 KC763162 

ITA/24281/08 Italy 2008 KC763168 

ITA/26505/08 Italy 2008 KC763171 

JPOC10-200 Japan 2010 AB601872 

JPOC10-290 Japan 2010 AB601882 

JPOC10-373 Japan 2010 AB601873 

JPOC10-378 Japan 2010 AB601883 

JPOC10-396 Japan 2010 AB601884 

JPOC10-402 Japan 2010 AB601874 

JPOC10-404 Japan 2010 AB601885 

JPOC10-412 Japan 2010 AB601875 

JPOC10-441 Japan 2010 AB601876 
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Table 4 (continued) 

Strains  Accession numbers 

JPOC10-445 Japan 2010 AB601877 

JPOC10-471 Japan 2010 AB601878 

JPOC10-573 Japan 2010 AB601879 

JPOC10-616 Japan 2010 AB601880 

JPOC10-618 Japan 2010 AB601881 

MD02-1 USA 2002 AY426491 

MD02-2 USA 2002 AY426492 

MD99 USA 1999 AY426499 

MN89 USA 1989 AY426489 

MN98 USA 1998 AY426497 

MO00 USA 2000 AY426493 

NL 200912598 Netherlands 2009 JF896311 

NL 200913563 Netherlands 2009 JF896308 

NL 200914918 Netherlands 2009 JF896310 

NL 200914986 Netherlands 2009 JF896309 

NL 201011288 Netherlands 2010 JF896311 

NL 201011595 Netherlands 2010 JF896304 

NL 201012159 Netherlands 2010 JF896293 

NL 201012233 Netherlands 2010 JF896298  

NL 201012462 Netherlands 2010 JF896291 

NL 201012463 Netherlands 2010 JF896296  

NL 201012472 Netherlands 2010 JF896300  

NL 201012493 Netherlands 2010 JF896301   

NL 201012584 Netherlands 2010 JF896299 

NL 201012721 Netherlands 2010 JF896294  

NL 201012756 Netherlands 2010 JF896295 

NL 201012867 Netherlands 2010 JF896307 

NL 201012910 Netherlands 2010 JF896290 

NL 201013226 Netherlands 2010 JF896287  
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Table 4 (continued) 

Strains  Accession numbers 

NL 201013230 Netherlands 2010 JF896306 

NL 201013352 Netherlands 2010 JF896289  

NL 201013421 Netherlands 2010 JF896312 

NL 201013557 Netherlands 2010 JF896302   

NL 201014502 Netherlands 2010 JF896292    

NL 201014542 Netherlands 2010 JF896288 

NY93 USA 1993 AY426490 

NYC369 USA 2009 JX101803 

NYC394 USA 2009 JX101804 

NYC399 USA 2009 JX101805 

NYC403 USA 2009 JX101806 

NYC409 USA 2009 JX101808 

NYC435 USA 2009 JX101809 

NYC442 USA 2009 JX101807 

NYC458 USA 2009 JX101810 

NYC465 USA 2009 JX101811 

NYC496 USA 2009 JX101812 

NYC567 USA 2009 JX101813 

NYC817 USA 2009 JX101814 

NZ-1507 New Zealand 2010 JQ713904  

NZ-183 New Zealand 2010 JQ713905   

NZ-358 New Zealand 2010 JQ713906   

NZ-404 New Zealand 2010 JQ713907 

NZ-435 New Zealand 2010 JQ713909 

NZ-481 New Zealand 2010 JQ713910 

NZ-539 New Zealand 2010 JQ713911 

NZ-541 New Zealand 2010 JQ713912 

NZ-571 New Zealand 2010 JQ713913 

SA1354 South Africa 2000 JX101802 
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Table 4 (continued) 

Strains  Accession numbers 

SA402 South Africa 2000 JX101795 

SA498 South Africa 2000 JX101796 

SA551 South Africa 2000 JX101797 

SA553 South Africa 2000 JX101798 

SA563 South Africa 2000 JX101799 

SA726 South Africa 2000 JX101801 

SA792 South Africa 2000 JX101800 

SEN03 Senegal 2010 JX101787 

SEN30 Senegal 2010 JX101788 

SEN37 Senegal 2010 JX101789 

SO9277 Spain 2012 KF254920 

SO9288 Spain 2012 KF254922 

SO9336 Spain 2012 KF254917 

SO9406 Spain 2012 KF254924 

SO9411 Spain 2012 KF254921 

SO9493 Spain 2012 KF254918 

SO9770 Spain 2013 KF254914 

TH B1512 Thailand 2009 JQ411802 

TH CU101 Thailand 2011 JQ411804 

TH CU124 Thailand 2011 JQ411807 

TH CU134 Thailand 2011 JQ411803 

TH CU54 Thailand 2011 JQ411805 

TJ-3395 China 2010 JQ924862  

TOp-13-Ph086 Philippines 2013 AB992427    

TOp-13-Ph364 Philippines 2013 AB992432  

TOp-13-Ph396 Philippines 2013 AB992433 

TOp-13-Ph397 Philippines 2013 AB992434  

TOp-13-Ph415 Philippines 2013 AB992435  

TOp-13-Ph416 Philippines 2013 AB992436 
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Table 4 (continued) 

Strains  Accession numbers 

TOp-14-Ph009 Philippines 2014 AB992440 

TTa-08-Ph343 Philippines 2008 AB817702     

TTa-08-Ph451 Philippines 2008 AB817703   

TTa-08-Ph513 Philippines 2008 AB817704 

TTa-08-Ph519 Philippines 2008 AB817705 

TTa-08-Ph561 Philippines 2008 AB817707 

TTa-08-Ph560 Philippines 2008 AB817706 

TTa-08-Ph597 Philippines 2008 AB817708 

TTa-08-Ph608 Philippines 2008 AB817709 

TTa-11-Ph224 Philippines 2011 AB861413 

TTa-11-Ph272 Philippines 2011 AB817714 

TTa-11-Ph245 Philippines 2011 AB817711 

TTa-11-Ph257 Philippines 2011 AB817712 

TTa-11-Ph269 Philippines 2011 AB817713  

TTa-11-Ph344 Philippines 2011 AB861414 

TTa-11-Ph395 Philippines 2011 AB817716     

TEv-13-Ph397 Philippines 2013 AB992429  

TBp-13-Ph417 Philippines 2013 AB992430  

TTa-13-Ph137 Philippines 2013 AB992425 

TTa-13-Ph096 Philippines 2013 AB992424 

TBp-13-Ph209 Philippines 2013 AB992428  

ILI-13-Ph137 Philippines 2013 AB992413 

TTa-13-Ph162 Philippines 2013 AB992426 

TBp-13-Ph440 Philippines 2013 AB992431 

TTS-13-Ph031 Philippines 2013 AB992414 

TTS-13-Ph034 Philippines 2013 AB992415 

TTS-13-Ph095 Philippines 2013 AB992416 

TTS-13-Ph096 Philippines 2013 AB992417 

TTS-13-Ph106 Philippines 2013 AB992418 
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Table 4 (continued) 

Strains  Accession numbers 

TTS-13-Ph128 Philippines 2013 AB992419 

TTS-13-Ph139 Philippines 2013 AB992420 

TTS-13-Ph148 Philippines 2013 AB992421 

TTS-13-Ph154 Philippines 2013 AB992422 

TOp-13-Ph418 Philippines 2013 AB992441 

TTS-14-Ph021 Philippines 2014 AB992437 

TTS-14-Ph026 Philippines 2014 AB992438 

TTS-14-Ph028 Philippines 2014 AB992439 

TEv-14-Ph032 Philippines 2014 AB992442 

TEv-14-Ph043 Philippines 2014 AB992443 

ILI-14-Ph023 Philippines 2014 AB992423 

ILI-14-Ph037 Philippines 2014 KX789243 

TOp-15-Ph068 Philippines 2015 KX789231 

TOp-12-Ph146 Philippines 2012 KX789232 

TTa-13-Ph173 Philippines 2013 KX789246 

TB9-15-Ph380 Philippines 2015 KX789238 

TB8-15-Ph508 Philippines 2015 KX789239  

TU-15-Sendai725 Japan 2015 KX789221  

TU-15-Sendai727 Japan 2015 KX789224  

TU-15-Sendai728 Japan 2015 KX789223 

TU-15-Sendai729 Japan 2015 KX789222 

SMC-15-Sendai902 Japan 2015 KX789226  

SMC-15-Sendai908 Japan 2015 KX789225 

SMC-15-Sendai823 Japan 2015 KX789264  

SMC-15-Sendai830 Japan 2015 KX789265  

SMC-15-Sendai876 Japan 2015 KX789266 

SMC-15-Sendai881 Japan 2015 KX789267 

US/MO/14-18947 USA 2014 KM851225 

US/MO/14-18948 USA 2014 KM851226 
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Table 4 (continued) 

Strains  Accession numbers 

US/MO/14-18949 USA 2014 KM851227 

US/MO/14-18950 USA 2014 KM851228 

US/KY/14-18951 USA 2014 KM851229 

US/IL/14-18952 USA 2014 KM851230 

US/KY/14-18953 USA 2014 KM851231     

US/CO/14-94 USA 2014 KP100793  

US/CO/13-60 USA 2013 KP100794 

US/CO/14-86 USA 2014 KP126912 

US/CA/14-6092 USA 2014 KP100792 

US/CA/14-6103SIB USA 2014 KP100795 

US/CA/14-R1 USA 2014 KP126909 

US/CA/14-R2 USA 2014 KP126908 

US/CA/14-6100 USA 2014 KP100796 

US/CA/14-6067 USA 2014 KP126910 

WI00 USA 2000 AY426494 

TX99 USA 1999 AY426498 

TX03 USA 2003 AY426500 

VH110070195 Spain 2014 KP122208  

VH110073590 Spain 2014 KP090456 

VH100096404 Spain 2014 KP090457 

VH110075023 Spain 2014 KP090458 

VH110078432 Spain 2014 KP090459 

NY120 USA 2014 KP745751 

NY124 USA 2014 KP745752 

NY126 USA 2014 KP745753 

NY130 USA 2014 KP745754 

NY153 USA 2014 KP745755 

NY160 USA 2014 KP745756 

NY210 USA 2014 KP745757 
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Table 4 (continued) 

Strains  Accession numbers 

NY263 USA 2014 KP745758 

NY275 USA 2014 KP745759 

NY278 USA 2014 KP745760 

NY305 USA 2014 KP745761 

NY309 USA 2014 KP745762 

NY314 USA 2014 KP745763 

NY316 USA 2014 KP745764 

NY326 USA 2014 KP745765 

NY328 USA 2014 KP745766 

NY329 USA 2014 KP745767 

NY73 USA 2014 KP745768 

NY74 USA 2014 KP745769 

NY77 USA 2014 KP745770 

CF253080 France 2014 LN681316 

CF254007 France 2014 LN681317 

CF211059 France 2014 LN681318 

CF219068 France 2014 LN681319 

CF259061 France 2014 LN681320 

CF235016 France 2014 LN681321 

CF266150 France 2014 LN681322 

CF272004 France 2014 LN681323 

CF276018 France 2014 LN681324 

CF279027 France 2014 LN681325 

CF287055 France 2014 LN681326 

CF287062 France 2014 LN681327 

CF289007 France 2014 LN681328 

CF294025 France 2014 LN681329 

CF295086 France 2014 LN681330 

CF298012 France 2014 LN681331 
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Table 4 (continued) 

Strains  Accession numbers 

CF300005 France 2014 LN681334 

CF302003 France 2014 LN681335 

CF307029 France 2014 LN681336 

CF311065 France 2014 LN681337 

CF314027 France 2014 LN681338 

VERS290059 France 2014 LN681339 

VERS290090 France 2014 LN681340 

ITA/18641/08 Italy 2008 KC763157 

ITA/19179/08 Italy 2008 KC763158 

ITA/26868/08 Italy 2008 KC763172 

ITA/22516/12 Italy 2012 KC763164 

ITA/24518/12 Italy 2012 KC763169 

ITA/23695/12 Italy 2012 KC763167 

ITA/27708/08 Italy 2008 KC763173 

ITA/31742/10 Italy 2010 KC763174 

ITA/33658/10 Italy 2010 KC763175 

ITA/33707/10 Italy 2010 KC763176 

ITA/34800/10 Italy 2010 KC763177 

ITA/19391/12 Italy 2012 KC763159 

ITA/20260/08 Italy 2008 KC763161 

ITA/22289/08 Italy 2008 KC763163 

ITA/22719/08 Italy 2008 KC763165  

ITA/23352/08 Italy 2008 KC763166 

ITA/26423/08 Italy 2008 KC763170 

L2610020652 Denmark 2014 KP729103 

L2620000697 Denmark 2014 KP729104. 

L2620023301 Denmark 2014 KP729105 

L2630000505 Denmark 2014 KP729106 

L2630003743 Denmark 2014 KP729107 
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Table 4 (continued) 

Strains  Accession numbers 

V14021246 Denmark 2014 KP729108 

V14021393 Denmark 2014 KP729109 

08T31952 Denmark 2008 KR108018 

L2510014597 Denmark 2013 KR108021 

10T62302 Denmark 2011 KR108019 

L21442092 Denmark 2010 KR108020 

L2640002876 Denmark 2014 KR108022 

L2640003884 Denmark 2014 KR108023 

EV-D68/Haiti/1/2014 Haiti 2014 KT266905 

2011-21282 China 2011 KT285320 

2014-R1357 China 2014 KT280496 

2014-R1153 China 2014 KT280497 

2013-0720-6 China 2013 KT280504  

2011-21186 China 2011 KT280503 

2014-R1011 China 2014 KT280498  

2014-R970 China 2014 KT280499  

2014-R0672 China 2014 KT280500  

2011-21286 China 2011 KT306743 

2012-12225 China 2012 KT285319 

2013-1017-26 China 2013 KT280501  

2013-0825-6 China 2013 KT280502 

CA/AFP/11-1767 USA 2013 KM892501 

TW-01166 Taiwan 2007 KP657701  

TW-05745 Taiwan 2007 KP657702 

TW-09669 Taiwan 2007 KP657703 

TW-11406 Taiwan 2007 KP657704 

TW-08683 Taiwan 2008 KP657705 

TW-09064 Taiwan 2009 KP657707 

TW-08202 Taiwan 2008 KP657706 
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Table 4 (continued) 

Strains  Accession numbers 

TW-11134 Taiwan 2009 KP657708  

TW-01557 Taiwan 2010 KP657709 

TW-00588 Taiwan 2010 KP657710  

TW-03137 Taiwan 2010 KP657711 

TW-01788 Taiwan 2010 KP657712   

TW-02378 Taiwan 2010 KP657713   

TW-02755 Taiwan 2010 KP657714  

TW-09384 Taiwan 2011 KP657715  

TW-10368 Taiwan 2011 KP657716 

TW-13025 Taiwan 2011 KP657717 

TW-03243 Taiwan 2012 KP657718 

TW-04017 Taiwan 2012 KP657719 

TW-02722 Taiwan 2013 KP657720 

TW-00943 Taiwan 2013 KP657721   

TW-00297 Taiwan 2014 KP657722  

TW-00344 Taiwan 2014 KP657723 

5533 Israel 2014 KP317481 

5876 Israel 2014 KP317480 

HEV044008 Kenya 2008 KJ472878 

HEV085008 Kenya 2008 KJ472880 

HEV156010 Kenya 2010 KJ472882  

HEV124010 Kenya 2010 KJ472883 

HEV126010 Kenya 2010 KJ472884 

HEV137010 Kenya 2010 KJ472885 

HEV196011 Kenya 2011 KJ472886  

HKSH012 Hong Kong 2014 KT762415 

HKSH013 Hong Kong 2014 KT762416 

HKSH024 Hong Kong 2014 KT762427 

HKSH023 Hong Kong 2014 KT762426 
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Table 4 (continued) 

Strains  Accession numbers 

HKSH022 Hong Kong 2014 KT762425   

HKSH009 Hong Kong 2014 KT762412  

HKSH008 Hong Kong 2014 KT762411 

HKSH007 Hong Kong 2014 KT762410 

HKSH006 Hong Kong 2014 KT762409 

HKSH005 Hong Kong 2014 KT762408  

HKSH004 Hong Kong 2014 KT762407 

HKSH003 Hong Kong 2014 KT762406 

HKSH002 Hong Kong 2014 KT762405 

HKSH001 Hong Kong 2014 KT762404 

MEX/DF/2014-InDRE2351 Mexico 2014 KT825142 

MEX/DGO/2014-InDRE2271 Mexico 2014 KT803995 

Ontario/C818712/2014 Canada 2014 KT835408  

Ontario/C818710/2014 Canada 2014 KT835407 

CA/BC/14-334 Canada 2014 KT873664 

CA/BC/14-166 Canada 2014 KT873670 

CA/BC/14-200 Canada 2014 KT873671 

CA/BC/14-275 Canada 2014 KT873652 

CA/BC/14-306 Canada 2014 KT873650 

CA/BC/14-244 Canada 2014 KT873649 

CA/BC/14-265 Canada 2014 KT873648 

CA/BC/14-193 Canada 2014 KT873638  

CA/BC/14-165 Canada 2014 KT873630 

CA/BC/14-251 Canada 2014 KT873631 

CA/BC/14-289 Canada 2014 KT873632 

CA/BC/14-215 Canada 2014 KT873633  

CA/BC/14-259 Canada 2014 KT873634 

CA/BC/14-239 Canada 2014 KT873554 

CA/BC/14-291 Canada 2014 KT873551 
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Table 4 (continued) 

Strains  Accession numbers 

CA/BC/14-053 Canada 2014 KT873550 

CA/BC/14-264 Canada 2014 KT873549 

CA/BC/14-076 Canada 2014 KT873548 

CA/BC/14-229 Canada 2014 KT873540 

CA/BC/14-288 Canada 2014 KT873539 

CA/BC/14-321 Canada 2014 KT873555 

CA/BC/14-214 Canada 2014 KT873556 

CA/BC/14-212 Canada 2014 KT873562 

CA/BC/14-103 Canada 2014 KT873563 

CA/BC/14-184 Canada 2014 KT873565 

CA/BC/14-197 Canada 2014 KT873570 

CA/BC/14-207 Canada 2014 KT873574 

CA/BC/14-142 Canada 2014 KT873595 

CA/BC/14-162 Canada 2014 KT873599 

CA/BC/14-322 Canada 2014 KT873604  

CA/BC/14-299 Canada 2014 KT873605 

CA/BC/14-309 Canada 2014 KT873613 

CA/BC/14-331 Canada 2014 KT873577  

CA/BC/14-104 Canada 2014 KT873583  

CA/BC/14-283 Canada 2014 KT873590 

CA/BC/14-335 Canada 2014 KT873592 

CA/BC/14-102 Canada 2014 KT873594 

CA/BC/14-325 Canada 2014 KT873536 

CA/BC/13-150 Canada 2014 KT873535 

CA/BC/14-339 Canada 2014 KT873537 

12MYKL1213 Malaysia 2012 KR018811 

12MYKL1236 Malaysia 2012 KR018812  

12MYKL1307 Malaysia 2012 KR018813 

12MYKL1501 Malaysia 2012 KR018814 
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Table 4  

Strains  Accession numbers 

12MYKL1607 Malaysia 2012 KR018815 

TW 02809 Taiwan 2014  KT711087 

TW 00880 Taiwan 2014  KT711078 

TW 00898 Taiwan 2014  KT711082 

TW 02512 Taiwan 2014  KT711086 

TW 00893 Taiwan 2014  KT711079 

TW 02809 Taiwan 2014  KT711087 

TW 00880 Taiwan 2014  KT711078 

TW 00898 Taiwan 2014  KT711082 

TW 02512 Taiwan 2014  KT711086 

TW 00893 Taiwan 2014  KT711079 

CF267090 France 2014 LN626610 

CA/RESP/09-871 USA 2013 KM892497 
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Table 9 Mean dN/dS values of whole EV-D68 genome using the SLAC method.            
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