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Magnetic resonance imaging (MRI), as a non-invasive 3D imaging of inside structures of objects, is a well developed and
widely used instrument in biology and medicine fields for human disease detection. However, owing to the sensitivity
limitations of conventional inductive techniques, the 3D imaging spatial resolution of MRI is limited to several tens to
hundreds of micrometer scales. With the emergency of scanning probe microscopy (SPM) techniques including scanning
tunneling microscope (STM), atomic force microscope (AFM), and so on, the information of material surface can be obtained
with ultra-high precision through detecting the local interaction between the sample and a probe. Based on this ultra-high force
sensitivity of the probe, which is demonstrated in AFM, the resonant magnetic force from nuclear or electronic spins can be
detected by a micro-fabricated sensitive cantilever. The concept of magnetic resonance force microscopy (MRFM), as a promising
MRI combined with AFM technology, wes firstly proposed by Sidles in 1991. This technique utilizes a small magnetic tip and an
ultra-sensitive cantilever to detect the densities of spins or radicals through a non-invasive method in a nanometer scale.

Within several decades, great efforts have been performed to further improve the detection theory and exciting progresses
have been achieved to further demonstrate appealing applications related to electron or nuclear spins. The experimental
demonstration of MRFM was firstly reported by Rugar et al. in 1992. The first MRFM image of 1, 1-Diphenyl-2-picrylhydrazyl
radical (DPPH) samples was obtained in 1993. One-dimensional nuclear magnetic resonance (NMR) imaging of semiconductor
GaAs with 170 nm slice separation was demonstrated in 2003. The detection of an individual electron spin was realized with a
spatial resolution of 25 nm in one dimension in 2004. Simultaneously, the 3D images of two DPPH particles were reconstructed
with a spatial resolution of ~1 pm in 2004. In 2009, 3D image of tobacco mosaic viruses with resolution down to ~4 nm was
detected by IBM research group. More recently in 2015, a 210 nm-wide and 32 um-long silicon nanowire probe with a silicon
mirror using a silicon-on-insulator wafer was fabricated with atto-newton sensitivity for MRFM force detection by our
laboratory fellow, and scanning measurement for 3D imaging of radicals based on ESR was demonstrated. Until now, MRFM
has been applied to various fields including physics, chemistry, biology and material science as an effective characterization method, with
many improved aspects like using arharmonic modulation to eliminate the measurement noise, developing an ultra-sensitive
cantilever for force detecting, and so on. However, this thesis is mainly focused on other two aspects of MRFM to further
improve the performances of miniature MRFM system.
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Firstly, back to the detection principle of MRFM, this technique uses an ultra-sensitive cantilever to detect the interacting
force. But, we should know that the resolution of a cantilevered force sensor is limited by the detectable minimum force originated in
thermomechanical noise. To further improve the detectable minimum force of MRFM  system, usually, the measurements should be
performed at low temperatures. Therefore, micrascanners in MRFM for cryogenic measurements require large stroke at low temperatures
with small affections to thermal variation. The performance of microscanners should be considered for the application of MRFM at
cryostat measurement. Piezoelectric actuators are widely used at low temperatures; however, the full range displacement of piezoelectric
actuators decreases from ~40 pm at 300 K down to~12 pm at 170 K and ~3 pum at 1.8 K. The displacements are not enough for 3D imaging
of biological species like cells. Thermoelectric actuators are driven by thermal stress, but the actuator elements are heated up due to Joule
heating; therefore, its use at cryogenic applications is not basically suitable. Electromagnetic actuators cannot be applied to the MRFM system
due to the leakage of magnetic field into the measurement system. In terms of magnetic force measurements for MRFM, electrostatic
comb-drive actuation would be the most applicable method due to its high flexibility for system integration and relatively large
actuation displacement at low temperatures. Based on conventional planar microfabrication technologies, electrostatically
driven stages with large in-plane displacements can be obtained, but it is difficult to obtain large out-of-plane motion. To
construct the electrostatic 3D XY Z-microstage with ability of producing large motions into XYZ directions, an independent
motion mechanism to generate out-of-plane actuation force should be added.

Recently, a force-conversion mechanism with leaf springs inclined to the substrate has been utilized to transform the
in-plane motion into out-of-plane motion. However, the coupled motions exist in this conversion mechanism. In order to
achieve independent out-of-plane motion, the XYZ-microstage constructed with independent in-plane and out-of-plane
actuators is a more attractive candidate. More recently, a 3-axis nanopositioning electrostatic microstage is fabricated with the
parallel-plate structure as the out-of-plane actuation. Also, a SOI bulk micromachined XYZ-microstage is developed with
comb-drive actuator in out-of-plane direction. However, the obtained out-of-plane displacements of these two electrostatic
XYZ-microstages cannot meet our requirements for large 3D scanning of biological species. Normally, using monolithic wafer
to realize the 3D XYZ-microstage needs to overcome the limitation of the out-of-plane motion space. Simultaneously, the
out-of-plane deflection of the support springs from planer microfabrication is strongly constrained by the thickness of the
device material layer in the formula of spring constant, and also the crosstalk problem happens easily due to the coupling
connection between the in-plane and out-of-plane actuation units.

Microassembly technology in 3D microstructures catches burgeoning attention, because it can break through the conventional planar
microfabrication processes to realize more functional devices. Here, a chip-level microassembly technology is proposed to fabricate
the comb-drive X'YZ-microstage, which is constructed with a comb-drive XY-microstage, two comb-drive Z-actuators and
silicon based substrate. The movements of the XYZ-microstage are produced by the XY-microstage into in-plane directions and by the
Z-actuators with large displacement into out-of-plane direction, respectively.

The components of comb-drive Z-actuators, comb-drive XY-microstage and silicon base substrate are designed with the
detailed dimensions, respectively. To choose the suitable substrate material for comb-drive XYZ-microstage at cryostat
applications, two Kinds of material substrate with silicon bonded onto glass and SOI wafer are used to fabricate the comb-drive
Z-actuators. The capacitive sensing also with comb-drive configuration is added in the comb-drive Z-actuator to measurement
the actuation displacement. The comb-drive XY-microstage is composed of two frames: an external stationary frame and an
internal movable frame. The centre plate is supported by the internal support springs connected to the internal frame and the
internal frame is supported by the external support springs connected to the external frame. The centre stage can be actuated
with less crosstalk into X- and Y-directions. Two kinds of support springs including serpentine spring and folded-flexure
spring structures are adopted in comb-drive XY-microstages, to demonstrate that the high stiffness ratio of support springs
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plays an important part to achieve a large displacement.

Two kinds of comb-drive Z-actuators with the same designs are fabricated from silicon bonded onto glass and SOI wafer,
respectively. The actuation performances of comb-drive Z-actuators integrated into cryostat are evaluated at room and low
temperature through displacement sensor. It is demonstrated that the Z-actuator fabricated from SOI wafer possesses good
actuation performance at low temperature (96 K), due to its homogenous structure to decrease the difference of expansion
coefficients between two kinds of materials. The XY-microstage with folded-flexure spring as support spring can achieve large
displacements, due to its large stiffness ratio of support springs. The crosstalk problem of comb-drive XY-microstage is
resolved by adding some gaps for insulation in the handle layer. As the microassembly process, the comb-drive Z-actuators are
vertically mounted on the grooves of silicon base substrate and kept in place by the support base block. Then, the
XY-microstage is mounted onto the Z-actuators. The small pillars supported by mechanical springs in Z-actuator chips are
inserted into the holes of XY-microstage. The conductive glue is used to hold the assembled structure of X'YZ-microstage after
curing, and also to achieve the electrical connections between the pillars in Z-actuators and the outer driving source of the
XY-microstage. Therefore, all the bonded wires can be arranged together on Z-actuator chips, for the application of actuation
voltages. This assembled comb-drive XY Z-microstage with a size of 12.4x15.6x16.9 mm? can produce large displacements of
25.2 (49.2) um in X direction, 20.4 (27.9) um in Y direction and 58.5 (50.5) um Z direction. It is demonstrated that the
assembled comb-drive XY Z-microstage is a promising 3D scanning stage with large displacements and less crosstalk for the
application of MRFM at cryogenic environment.

To perform the MRFM experiment at room and low temperature environment, the characteristically assembled comb-drive
XYZ-microstage glued with a sample of DPPH, a RF coil to excite electron spin resonant in the DPPH sample, a sensitive
cantilever sensor with a small magnet to detect the magnetic resonance force, a fiber-optic interferometer to detect the vibration
of the cantilever are integrated into the vacuum chamber of cryostat. At room temperature, the electron spin resonance (ESR)
magnetic signals can be observed with the applied RF field from 950 to 1050 MHz when the positions of the DPPH sample are
actuated to ~4 and ~12 pm displacements in Z direction, respectively. The measured magnetic resonance forces at the peaks are
calculated to be 1.3x10% and 1.19x10"" N, and the spin densities at the corresponding peaks are estimated to be ~1.75x10°
spins/um?®and ~1.61x108 spins/um?, respectively. Consequently, the developed comb-drive XYZ-microstage can be applicable
to MRFM measurement. Then, the vacuum chamber with a vacuum of ~8.6x10* Pa in the cryostat is cooled down using
liquid N. However, when the temperature of the vacuum chamber is cooled down to 94.3 K, the interference signals of laser
1310 nm and 1550 nm are confused. The possible reason is that the water vapor molecular remaining in the chamber would be
frozen onto the cantilever surface, which would make the stiffness of the cantilever harder. We can say that this is the equipment
problem. If the vacuum system is improved, the problem can be avoided.

Normally, high vacuum environment for the resonant detection should be maintained in MRFM measurement, to decrease
the air damping and increase the sensitivity of the cantilever sensor. The test objects of the sensitive cantilever are strongly
constrained, because the test objects like cells should be kept in the standard atmospheric pressure environment. Therefore,
vacuum packaging of the sensitive cantilever with an independent vacuum micro-chamber is a promising method to separate
the vacuum environment between the cantilever sensor and test objects. Here, the second aspect in this thesis is focused on
developing a vacuum packaged cantilever magnetic sensor, to construct the measurement setup of MRFM and also to realize
the MRFM measurement at standard atmospheric environment.

Wafer-level bonding technology, including anodic bonding, eutectic bonding, thermocompression bonding, glass frit
bonding, are very significant techniques for the devices which require to be packaged in vacuum, such as accelerometers,
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pressure sensors, gyroscopes and infrared microbolometer. Considering the possible influences to the bonding wafers which
have already contained the fabricated small structures during the bonding process, two kinds of bonding methods including
Au-Au thermocompression bonding and anodic bonding are used to realize the vacuum packaged cantilever magnetic sensors.
Based on microfabrication technology, two kinds of vacuum packaged cantilever magnetic sensors are fabricated, respectively.
The relationship of pressure versus quality (Q) factor of the cantilever is calibrated by laser Doppler vibrometer before the
bonding process. By contrasting the measured dependence of Q factor with pressure, the packaged vacuum of cantilever
magnetic sensors based on Au-Au thermocompression bonding and anodic bonding are determined to be in the range of
1.7x10° ~ 2.4x10° Pa and 7.3x10? ~ 1.0x10° Pa, and the force sensitivity of the cantilever sensors are estimated to be 1.4x1013
NAHz and 1.1x10"3 N/AHz, respectively.

To demonstrate the sensitivity of the vacuum packaged cantilevers to magnetic field intensity, a permanent magnet with
non-uniform magnetic field is placed near the magnetized particle mounted on the cantilever tip. When the generated magnetic
force is acted on the cantilever tip through the magnetic particle, the resonant frequency of cantilever will be varied, due to the
changing of the effective spring constant. The magnetic field gradient can be mapped by the changing of resonant frequency. It
is demonstrated that the vacuum packaging magnetic cantilever sensor based on anodic bonding are sensitive in the range from
~0to ~ 15.4 mT/mm and the precision of the magnetic field measurement can reach to ~ 4x10° T.

The MRFM measurement setup is established at atmospheric environment with the vacuum packaged cantilever magnetic
sensor based on anodic bonding, ~1x1 mm? DPPH radical, a RF coil for spin resonance and a coil for magnetic field
modulation with SmCo magnet to enhance the anharmonic modulation. The resonant amplitude of the cantilever is varied with
the applied magnetic field of modulation coil. The precision of the magnetic field measurement can reach to ~2.4x10° T. The
ESR magnetic resonance signals are observed with the applied RF field from 500 to 1000 MHz. The measured amplitude at
the peak is 7.6 nm and the corresponding force is calculated to be 9.2x102N. The spin density at the peak is estimated to be
~1.5x10% spins/cm?,

Finally, two aspects of MRFM measurement are achieved in this thesis, to improve the sensitivity of cantilever sensor and to
enlarge the measurement objects. It is demonstrated that the developed comb-drive XYZ-microstage is a promising 3D
scanning stage with large displacements and less crosstalk for the application of MRFM at cryogenic environment and the
developed vacuum packaging technology is an effective method to improve the sensitivity of the cantilever magnetic sensor
and gives more possible applications of MRFM at various ambient conditions.
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