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Introduction: Calcium-aluminum-rich inclusions 

(CAIs) are thought to be the oldest solids [e.g., 1] and 
the key to understanding of physicochemical conditions 
in the early Solar System. Ultrarefractory (UR) miner-
als enriched in Sc, Zr, and/or Y rarely occur both in the 
melted and unmelted CAIs, thought to have formed at 
higher temperature compared to normal CAI minerals 
(e.g., melilite, spinel and Al-Ti-diopside).  Therefore, 
UR phases can potentially provide constraints on high 
temperature processes occurred in the nebula gas. 
However, it has not been well constrained whether UR 
minerals formed from a gas or a melt [e.g., 2, 3]. In 
addition, the origin of heterogeneous oxygen isotopic 
composition observed in some UR-phase-rich inclu-
sions [e.g., 3, 4] is poorly understood. 

Here we report petrology, mineral chemistry and 
oxygen isotopic compositions of the ultrarefractory 
phase bearing CAI R3C-01 from Roberts Massif 
(RBT) 04143 (CVred; [5]).  

Sample and Analytical Methods: Petrology and 
mineralogy of the CAI R3C-01 in a thin section of 
RBT 04143 was studied using FE-SEM at Tohoku 
University (TU). Quantitative X-ray microanalyses of 
CAI minerals and X-ray elemental mapping were per-
formed at TU and Korea Polar Research Institute with 
FE-EPMAs using WDS detectors. Grain boundaries of 
minerals were determined by crystal orientation map-
ping with EBSD system equipped with the TU FE-
SEM. Oxygen isotopic compositions of individual 
minerals and quantitative oxygen isotope images 
(isotopographs) in R3C-01 were obtained with the iso-
tope microscope system at Hokkaido University, con-
sisting of the Cameca ims-1270 and SCAPS ion imager. 
Analytical conditions are similar to those in [6]. 

Results: Ultrarefractory phase bearing CAI R3C-
01 is an irregular-shaped, compound inclusion that 
consists of five lithological units. All units consist of 
melilite, spinel, perovskite and Al-Ti-rich pyroxene 
with various modal abundances. Outer margin of the 
inclusion is surrounded by Wark-Lovering (WL) rim 
and forsteritic (mostly Fa<1) olivine rim. Some olivine 
grains from the outermost part of the rim have low-iron, 
manganese-enriched (LIME) compositions. R3C-01-u1 
is the largest unit of R3C-01, consisting of fine (< 50 
µm) grains of melilite, spinel, minor perovskite, Al-Ti-
rich pyroxene (Figs. 1 and 2), and refractory metal 

nuggets (not shown). Anorthite replacing melilite as 
thin layers (< 10 µm) at some boundaries between WL 
rim and the outer margin of R3C-01-u1 is the only sec-
ondary phase in this inclusion. Other secondary phases 
such as nepheline, sodalite and hydrous silicates are 
not observed. Some spinel grains form framboids en-
closing melilite (Fig. 1). Chemical compositions of 
spinel and perovskite in R3C-01-u1 are similar to those 
in normal refractory inclusions [e.g., 7]. Reversely-
zoned, Åk-rich melilite (typically Åk15-20 in the core 
and Åk5 at the rim) and unzoned Åk-poor melilite (typ-
ically Åk5) are heterogeneously distributed in the inclu-
sion (Fig. 2). Most Al-Ti-rich pyroxenes in R3C-01-u1 
are adjacent to perovskite and/or spinel. They are Sc-
poor, Al-Ti-rich diopside (grossmanite (CaTi3+AlSiO6) 
[8] and kushiroite (CaAlAlSiO6) [9]) with 0.1-0.5 wt% 
Sc2O3 and 0.2-1.4 wt% V2O3. On the other hand, some 
Al-Ti-rich pyroxene grains isolated in reversely-zoned 
melilite are Ti-V-rich davisite (CaScAlSiO6) [10], 
highly enriched in Sc and V (6.2-8.9 wt% Sc2O3 and 
2.2-3.7 wt% V2O3). Ti-V-rich davisite were not ob-
served in other units of R3C-01. 

Oxygen isotopographs of R3C-01-u1 minerals 
show that the CAI is mostly composed of two isotopi-
cally distinct regions: 16O-poor (−20 ≤ δ18O ≤ 0‰) 
region that consists of reversely-zoned melilite (Åk15-20 
at core to Åk5 at rim) and Ti-V-rich davisite; and 16O-
rich (−50 ≤ δ18O ≤ −40‰) region that consists of 
unzoned, gehlenitic melilite (Åk5), Al-Ti-rich diopside 
and spinel (Fig. 2). The δ18O values change sharply at 
the grain boundaries between 16O-rich and 16O-poor 
melilites. These two chemically and isotopically dis-
tinct regions distribute randomly in this inclusion.  

Discussion: Heterogeneous distribution of oxygen 
isotopic compositions have been often observed in 
coarse-grained CAIs from CV3 chondrites and FGIs 
from higher petrologic type chondrites [11; references 
therein]. Such oxygen isotopic heterogeneities are con-
sidered to be resulted from isotope exchange with 16O-
poor gas during nebular reheating processes and/or 
with 16O-poor fluid during fluid-assisted thermal met-
amorphism on the chondrite parent bodies [e.g., 11]. 

Sharp changes of δ18O values at grain boundaries 
(Fig. 2) suggest that this inclusion have never experi-
enced partial melting that could result in oxygen iso-
tope variation within a single crystal [12]. Presence of 
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reversely zoned melilite, that cannot be explained by 
crystallization from a melt [13], is also inconsistent 
with partial melting. This inclusion may have escaped 
from parent body alteration, given (1) the lack of alter-
ation products including alkali- and/or iron-bearing 
phases [e.g., 14] and (2) presence of LIME olivine, 
which is easily lost during parent body metamorphism 
[15]. In addition, oxygen isotope compositions of meli-
lite do not correlate with the distance from the outer 
margin of the inclusion as reported in some CV CGIs 
[16, 17]. The random distribution of 16O-rich regions 
and 16O-poor regions and abrupt changes of δ18O val-
ues at the grain boundaries in the CAI are inconsistent 
with gas-solid exchange and subsequent diffusion of 
oxygen isotopes during nebular reheating events [16, 1 

Fig. 1. Combined elemental map in Mg (red), Ca 
(green), Al (blue) and Ti (pink) Kα X-rays image of 
R3C-01-u1. The analysis areas for isotopography (Fig. 
2) are also shown by white circles. 
 

7]. Therefore, it is suggested that oxygen isotopic com-
positions of minerals in the CAI have never been modi-
fied by these processes. 

We argue that isotopically and mineralogically dis-
tinct two regions in R3C-01-u1 have condensed sepa-
rately from different gaseous reservoirs, and subse-
quently aggregated to form the inclusion. Occurrence 
of 16O-poor Ti-V-rich davisite in 16O-poor reversely-
zoned melilite suggests that Ti-V-rich davisite con-
densed prior to condensation of reversely-zoned meli-
lite from 16O-poor nebular gas. Alternatively, Ti-V-rich 
davisite could be relict that originated from an UR or 
normal CAI [18]. However, lack of other possible 16O-
depleted relict grains in R3C-01-u1 and absence of 
davisite with similar chemical composition in previous-
ly-studied inclusions might be inconsistent with this 
scenario. In any cases, it is suggested that spatially 
and/or temporally distinct 16O-rich and 16O-poor gase-
ous reservoir may have existed in the period of CAIs 
and UR phase formation. 
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Fig. 2. BSE image, EBSD crystal 
orientation map of melilite, Åk con-
tent map of melilite and δ18O 
isotopograph. Dav = Ti-V-rich da-
visite; di = Al-Ti-rich diopside; mel 
= melilite; sp = spinel. 
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