
 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 Data Science and Service Research 

Discussion Paper  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion Paper No. 78 

 

Spatial GARCH Models 

Takaki Sato 

Yasumasa Matsuda 

 

March , 2018 

Center for Data Science and Service Research 

Graduate School of Economic and Management 

Tohoku University 

27-1 Kawauchi, Aobaku 

Sendai 980-8576, JAPAN 

 



Spatial GARCH Models

Takaki Sato ∗ Yasumasa Matsuda †

Abstract

This study proposes a spatial extension of time series generalized autoregressive conditional het-
eroscedasticity (GARCH) models. We call the spatial extended GARCH models as spatial GARCH
(S-GARCH) models. S-GARCH models specify conditional variances given simultaneous observations,
which constitutes a good contrast with time series GARCH models that specify conditional variances given
past observations. The S-GARCH model are transformed into a spatial autoregressive moving-average
(SARMA) model and the parameters of the S-GARCH model are estimated by a two step procedure.
First step estimation is the quasi maximum likelihood (QML) estimation method and consistency and
asymptotic normality of the proposed QML estimators are given. Second step is estimation of an inter-
cept term by the estimator derived from another QML to avoid bias in first step and consistency of the
estimator is shown. We demonstrate empirical properties of the model by simulation studies and real
data analyses of land price data in Tokyo areas. We find the estimators have small bias regardless of
distributions of error terms from simulation studies and real data analyses show that spatial volatility
in land price has global spillover and volatility clustering, namely units with higher spatial volatility are
clustered in some specific districts like time series financial data.

Keywords: GARCH model, Spatial ARMA model, Quasi maximum likelihood, areal data, spatial volatil-
ity.

1 Introduction

Volatility models for time series financial data have developed with their application in academia and the
financial industry. The seminal work by Engle (1982) introduces the autoregressive conditional heteroscedas-
ticity (ARCH) model and Bollerslev (1986) proposes a extension known as the generalized ARCH (GARCH)
model. These models are widely used to model and forecast volatility of univariate time series data for
calculation of the price of options or value at risk of a financial position in risk management. Subsequently,
Multivariate extensions of univariate models are proposed by Bollerslev et al (1988), Bollerslev (1990) and
Engle and Kroner (1995) for modeling dynamic relationships between volatility of multiple asset returns.
A major challenge of multivariate volatility modeling is to overcome the curse of dimensionality; there are
n(n + 1)/2 variances and covariances for n-dimensional asset return series. One solution for the problem is
consider simpler structures of covariance matrices to reduce parameters.

The ideas of spatial econometrics have been applied to volatility models in recent years. Two main
objectives of the applications are to reduce parameters in covariance matrices and to extend time series
volatility models to spatial models for spatial data. Caporin and Paruolo (2008) and Borovkova and Lopuhaa
(2012) have applied the ideas of spatial econometrics to time series multivariate GARCH models from the
former view point. On the other hand, Yan (2007) and Robinson (2009) have done a spatial extension of
stochastic volatility models which are another kind of volatility models and Sato and Matsuda (2017) have
extend time series ARCH models to spatial ARCH (S-ARCH) models from both view points.

This paper aims to extend S-ARCH models to spatial generalized ARCH (S-GARCH) models. The S-
GARCH model have two interesting features. Firstly, volatility at a point or an area in map is specified
by surrounding observations in the S-ARCH model, whereas that of the S-GARCH model is characterized
by surrounding observations and volatility. Thus, the S-GARCH model captures global spatial spillover in
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volatility in spatial data. Secondly, the S-GARCH model can be transformed into a spatial autoregressive
moving average (SARMA) model. This means the existence condition of the S-GARCH model are easily
established.

Parameters in the S-GARCH model are estimated by the quasi-maximum likelihood (QML) estimation
method and we show the QMLE estimators have consistency and asymptotic normality. Two estimation
methods are basically used in spatial econometrics literature. First one is the moment method. Kelejian and
Robinson (1993) and Kelejian and Prucha (1997, 1998) propose two stage least squares estimation methods
and Lee (2007) propose the generalized method of moments (GMM) for spatial autoregressive (SAR) models
and spatial autoregressive models which also have a spatial autoregressive process in disturbances (SARAR).
Moreover, Dogan and Taspinar (2013) consider the GMM methodology for spatial autoregressive models
with moving average disturbances (SARMA). Second one is the QML estimation method. Lee (2004), Yu et
al (2008), Su and Yang (2015) propose the QML estimation method for SAR models and spatial dynamic
panel (SDP) models and also Yang (2015) shows M-estimator based on the QML for SDP models which have
spatial autoregressive process in both dependent variables and disturbances. However, asymptotic properties
of the QML estimator for SARMA models has not been discussed. As mentioned above, S-GARCH models
can be transformed into SARMA models. Therefore, we show asymptotic properties of the QML estimator
for SARMA models.

This paper proceeds as follows. Section 2 introduces the S-GARCH model and discusses characteristics
of the model. Estimation methods for the model and asymptotic properties of the estimators are derived in
Section 3. Section 4 examines empirical properties of the model by applying to simulated and land price data
in Tokyo area. Section 5 concludes the paper. All the proofs are collected in the Appendix.

2 Model specification

We consider the S-GARCH model of the form

yi =
√
hiεi,

log hi = λ

n∑
j=1

wi,j log hj + ρ

n∑
j=1

wi,j log y
2
j + α+ z′

iδ,

i = 1, . . . , n,

where yi is an areal data,
√
hi is volatility, εi is an independent and identically distributed (i.i.d) random

variable with zero mean and variance 1, zi is (k × 1) non-stochastic regressors, and wi,j is a spatial weight
which is predetermined and quantifies a closeness from area i to area j. Parameters in this model are
(λ, ρ, α, δ′)′. Scalar parameters λ and ρ characterizes the simultaneous effect, α is an intercept term and δ is
usual regression coefficients.

The S-GARCH model is different from the time series GARCH model is the following two points. First
one is a description of volatility. Spatial volatility in the S-GARCH model is described by observations
and volatility at all other units, on the other hands time series volatility is defined by past observations
and volatility following the flow of time. Although the descriptions of time series and spatial volatility are
different, we have found in this paper that they have the similar properties. For instance, volatility clustering
exists, namely large changes tend to be followed by large changes and small changes tend to be followed by
small changes. This is a stylized feature of financial time series data and land price data also has the similar
property that a large change at one area leads to large changes at surrounding areas.

Second one is the log transformation of volatility. Log transformation is used to ensure the existence of
areal data yi. If we define non logarithmic volatility, it would be difficult to guarantee the existence condition
unlike that of time series GARCH models that can be derived from Markov process theories (Fan and Yao
(2003)). On the other hand, the log transformation of volatility makes it much easier to show the existence
condition because the S-GARCH model can be transformed into the spatial autoregressive moving average
(SARMA) model as shown below and the existence condition of the SARMA model is already known.

Let us introduce the following SARMA transformation of the S-GARCH model. Denoting log y2 = (log y21 ,
. . . , log y2n)

′, logh = (log h1, . . . , log hn)
′, log ε2 = (log ε21, . . . , log ε

2
n)

′, Zn = (z1, . . . , zn)
′,1n = (1, . . . , 1)′ and

In is a n× n identity matrix, the model has the following vector form representation,
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log y2 = logh+ log ε2 (1)

logh = λWn logh+ ρWn log y
2 + α1n + Znδ, (2)

where Wn is a spatial weight matrix whose elements are wi,j . From (2),

logh = (In − λWn)
−1(ρWn log y

2 + α1n + Znδ),

By substituting (2) into (1),

log y2 = (In − λWn)
−1(ρWn log y

2 + α1n + Znδ) + log ε2,

(In − λWn) log y
2 = ρWn log y

2 + α1n + Znδ + (In − λWn) log ε
2,

log y2 = λWn log y
2 + ρWn log y

2 + α1n + Znδ + (In − λWn) log ε
2. (3)

This is the SARMA model and the existence condition holds when |λ|+ |ρ| < 1.

3 Estimation

We consider the estimation of the parameters (λ, ρ, α, δ′)′ and the asymptotic properties of the estimators.
Parameters are estimated by a two step procedure. First step is the estimation of (λ, ρ, δ′)′ by the QML
estimation method. The proposed QML estimator are consistent and asymptotically normal. However, log ε2

in (3) is not zero mean error terms. Thus, the estimator for α in the first step has bias, therefore we need
to estimate α by another method. In second step, α is estimated with consistent estimator derived from the
QML based on the likelihood different from the one in the first step.

3.1 First step estimation

Parameters λ, ρ and δ are estimated in first step by the QML estimation method.
To apply the QML estimation method, we need to modify the error term because the mean of log ε2 in

(3) is not zero as already mentioned. From (3),

α1n + (In − λWn) log ε
2 = α1n + (In − λWn){log ε2 − E(log ε21)1n + E(log ε21)1n},

= {α+ (1− λ)E(log ε21)}1n + (In − λWn){log ε2 − E(log ε21)1n}.

Noting that intercept term has a bias by (1− λ)E(log ε21).
Denoting Yn = log y2, Xn = [1n,Z], Vn = {log ε2 − E(log ε21)1n} and β = ({α + (1 − λ)E(log ε21)}, δ′)′,

the model has the following representation,

Yn = λWnYn + ρWnYn +Xnβ + (In − λWn)Vn, (4)

where Vn is already zero mean processes.
Now, let us consider the QML estimation of (4). Regarding v′is as independent Gaussian variables with

mean zero and variance σ2, the likelihood function of (4) is

logLn(ψ) = −n
2
log(2πσ2)− V ′

n(θ, β)Vn(θ, β)

2σ2
− log |Rn(λ)|+ log |Sn(θ)|, (5)

where θ = (λ, ρ)′, ψ = (β′, σ2, θ
′)′, Rn(λ) = In − λWn, Rn = In − λ0Wn, Sn(θ) = In − λWn − ρWn,

Sn = In − λ0Wn − ρ0Wn and Vn(θ, β) = R−1
n (λ)[Sn(θ)Yn − Xnβ]. The QML estimator is the extreme

estimator derived form the maximization of (5).
It is convenient to work with the concentrated likelihood by concentrating β and σ2 out for computation

and asymptotic analysis on the estimator. From the first order condition of (5), the concentrated QML
estimators of β and σ2 is

β̂n(θ) = (X ′
nR

′−1
n (λ)R−1

n Xn)
−1X ′

nR
′−1
n (λ)R−1

n (λ)Sn(θ)Yn,
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σ̂2
n(θ) =

V̂ ′
n(θ)V̂n(θ)

n
,

where V̂n(θ) = R−1
n (λ)[Sn(θ)Yn −Xnβ̂n(θ)]. The concentrated likelihood function of θ is

logLn(θ) = −n
2
(log(2π) + 1)− n

2
log σ̂2

n(θ)− log |Rn(λ)|+ log |Sn(θ)|. (6)

The QML estimator θ̂n maximizes the concentrated likelihood function (6) and the QML estimators of β and

σ2 are β̂n(θ̂n) and σ̂
2
n(θ̂n), respectively.

For our analysis of the asymptotic properties of first step estimators, we need the following assumptions:

Assumption 1. The disturbances {vi}, i = 1, . . . n are i.i.d. across i with zero mean, variance σ2
0 and

E|vi|4+η <∞ for some η > 0.

Assumption 2. The elements wn,ij of Wn are nonnegative and row normalized and the column sums of Wn

are uniformly bounded.

Assumption 3. The space Θ is compact, and the true parameter θ0 lies in its interior.

Assumption 4. The matrix Sn, Sn(θ), Rn, and Rn(λ) are uniformly bounded both row and column sums
and nonsingular.

Assumption 5. The elements of Xn are uniformly bounded constants. The limn→∞
1
n (X

′
nR

′−1
n (λ)R−1

n (λ)Xn)
exists and is nonsingular.

Assumption 6. 0 ≤ cy ≤ infθ∈Θ γmin(V ar(Sn(θ)Yn)) ≤ supθ∈Θ γmax(V ar(Sn(θ)Yn)) ≤ cy <∞.

Assumption 7. 0 ≤ cr ≤ infλ∈Λ γmin(R
′−1
n (λ)R−1

n (λ)) ≤ supλ∈Λ γmax(R
′−1
n (λ)R−1

n (λ)) ≤ cr <∞

Assumption 8. limn→∞
1
nβ

′
0X

′
nS

′−1
n S′

n(θ)R
′−1
n (λ)MnR

−1
n (λ)Sn(θ)S

−1
n Xnβ0 ̸= 0,

where Mn = In −R−1
n Xn(X

′
nR

′−1
n (λ)R−1

n (λ)Xn)
−1X ′

nR
′−1
n .

To derive the consistency of the QML estimators, we need to show the identification of θ0. Define
Qn(θ) = maxβ,σ2 E(logLn(ψ)). The optimal solutions of this maximization problem are given by

β∗
n(θ) = (X ′

nR
′−1
n (λ)R−1

n Xn)
−1X ′

nR
′−1
n (λ)R−1

n (λ)Sn(θ)E(Yn),

σ2∗
n =

1

n
E(V ′∗

n (θ)V ∗
n (θ)),

where V ∗
n (θ) = R−1

n (λ)[Sn(θ)Yn −Xnβ
∗
n(θ)]. Therefore,

Qn(θ) = −n
2
(log(2π) + 1)− n

2
log σ2∗

n (θ)− log |Rn(λ)|+ log |Sn(θ)|,

and identification of θ0 is based on 1
nQn(θ).

Consistency of the QML estimators θ̂ follows from the uniform convergence of 1
n logLn(θ) − 1

nQn(θ) to
zero on Θ and identification of θ0.

Theorem 1. Under Assumptions 1-8, θ0 is globally identifiable and θn is a consistent estimator of θ0.

To derive the asymptotic distribution of the QMLE ψ̂n, we need to make the Taylor expansion of
∂
∂ψ logLn(ψ̂) = 0 at ψ0. The first-order derivatives of the log-likelihood function at ψ0 are

1√
n

∂ logLn(ψ0)

∂β
=

1

σ2
0

√
n
X ′
nR

′−1
n Vn,

1√
n

∂ logLn(ψ0)

∂σ2
=

1

2σ4
0

√
n
(V ′
nVn − nσ2

0),

1√
n

∂ logLn(ψ0)

∂ρ
=

1

σ2
0

√
n
β′
0X

′
nS

′−1
n W ′

nR
′−1
n Vn +

1

σ2
0

√
n
(V ′
nR

′
nS

′−1
n W ′

nR
′−1
n Vn − σ2

0tr(S
−1
n Wn)),
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1√
n

∂ logLn(ψ0)

∂λ
=

1

σ2
0

√
n
β′
0X

′
nS

′−1
n W ′

nR
′−1
n Vn +

1

σ2
0

√
n
(V ′
n(R

′
nS

′−1
n W ′

nR
′−1
n −W ′

nR
′−1
n )Vn − σ2

0tr(S
−1
n Wn) + σ2

0tr(R
−1
n Wn)),

where tr(·) denote the trace of a matrix.
These involve linear and quadratic function of Vn. The asymptotic distribution of these score functions

are derived from the central limit theorems for linear-quadratic forms in Kelejian and Prucha (2001).
The variance matrix of 1√

n
∂
∂ψ logLn(ψ0) is

E

(
1√
n

∂ logLn(ψ0)

∂ψ

1√
n

∂ logLn(ψ0)

∂ψ′

)
= −E

(
1

n

∂2 logLn(ψ0)

∂ψψ′

)
+Ωψ,n,

where −E
(
1
n

∂2

∂ψψ′ logLn(ψ0)
)
is the average Hessian matrix and Ωψ,n is a symmetric matrix and both are

given in Appendix A. When Vn is normally distributed, Ωψ,n = 0.
The score function and Hessian matrix have proper asymptotic behavior, therefore we have the following

theorem.

Theorem 2. Under Assumptions 1-8,

√
n
(
ψ̂n − ψ0

) d−→ N
(
0,Σ−1

ψ +Σ−1
ψ ΩψΣ

−1
ψ

)
,

where Σψ = − limn→∞E
(
1
n

∂2

∂ψψ′ logLn(ψ0)
)
and Ωψ = limn→∞ Ωψ,n. Σψ and Ωψ assume to exist and −Σψ

to be positive definite, sufficiently large n. When errors are normally distributed,
√
n
(
ψ̂n−ψ0

) d−→ N
(
0,Σ−1

ψ

)
.

3.2 Second step estimation

Let us consider the estimation of α in the second step. As we mentioned, β1 = {α+ (1− λ)E(log ε21)} in the
first step has the bias. Therefore, we need to estimate α separately.

We regard εi in (3) as independent Gaussian variables, not log ε2i . Then, log ε2i follows a log chi-squared
distribution on 1 degress of freedom (Lee 2012, p379). The probability density function of log ε2i is given by

f(x) =
1√
2π

exp

(
−1

2
exp(x) +

1

2
x

)
. (7)

For notational purposes, we define ϕ = (λ, ρ, α, δ′)′, Yn = log y2 and U = log ε2. Then, from (3),

Un(ϕ) = R−1
n (λ)(S(θ)Y − α1n − Znδ),

= R−1
n (λ)(S(θ)Y − Znδ)−

α

1− λ
1n,

= C − α

1− λ
1n,

where C = R−1
n (λ)(S(θ)Y − Znδ).

Therefore, the likelihood function based on the density (7) is

logLn(ϕ) =
n

2
log 2π −

n∑
i=1

{
−1

2

exp(Ci)

exp( α
1−λ )

+
1

2

(
Ci −

α

1− λ

)}
− log |Rn(λ)|+ log |Sn(θ)|,

where Ci is the i-th element of C.
Differentiating it with respect to α, the concentrated QML estimator of α given λ, ρ and δ is

αn(λ, ρ, δ) = (1− λ) log

(
1

n

n∑
i=1

exp(Ci)

)
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Finally, substituting the proposed QML estimator (λ̂, ρ̂, δ̂′) in the first step for (λ, ρ, δ′)′, we propose

α̂n = (1− λ̂) log

(
1

n

n∑
i=1

exp
[{
R−1
n (λ̂)(S(θ̂)Yn − Znδ̂)

}
i

])
, (8)

as an estimator for α.
The estimator α̂n has consistency.

Theorem 3. Under Assumptions 1-8, α̂n is a consistent estimator of α0.

4 Empirical analysis

We examine the empirical properties of the S-GARCH model by applying to simulated and land price data
in Tokyo areas. Monte Carlo experiments are carried out to investigate the finite sample performance of the
proposed estimators.

4.1 Simulation studies

To investigate finite sample properties of the proposed estimators, we use the following data generating
process:

yi =
√
hiεi,

log hi = λ

n∑
j=1

wi,j log hj + ρ

n∑
j=1

wi,j log y
2
j + α+ xiβ,

where xi’s are randomly generated form independent normal distributions and the spatial weights matrix is
generated according to Rook contiguity and row normalizing. The error, εi, distributions are (i) standard
normal distributions, (ii) chi-squared distributions with 3 degrees of freedom and (iii) log normal distribu-
tions. Let ϕ = (λ, ρ, α, β)′. We choose ϕ10 = (0.9, 0.05, 0.5, 1)′, ϕ20 = (0.45, 0.45, 0.5, 1)′, ϕ30 = (0.05, 0.9, 0.5, 1)′

and n = 100 or n = 400. Each set of Monte Carlo results is based on 1000 samples and the parameters are
estimated by the two step procedure.

The empirical means and square root of mean squared errors (RMSE) for the proposed estimators are

reported in Table 1. The results show the estimators in the firs step, (λ̂, ρ̂, β̂′)′ are nearly unbiased and not
sensitive to the choice of the error distributions. On the other hand, the second step estimator, α̂ depends
on true parameters and the error distribution. Small λ may be attributed to the poor performance of the
estimator because 1− λ̂ in (8) effects on estimated errors from true value as shown in the proof of Theorem
3. Moreover, as the error distribution is more discrepant from the Gaussian distribution, the estimator has
bigger bias and less efficiency. However, the empirical performances of the estimator improve as n becomes
larger.

4.2 Land price data analysis

We apply the S-GARCH model to land price data in Tokyo area
Let us introduce land price data used in this section. We use prefectural land price research as land

price data. The Japanese Ministry of Land, Infrastructure, Transport, and Tourism publishes land prices on
sampling points scattered irregularly all over Japan in the form of price per m2 in July. We focus on the land
prices over Tokyo area (Tokyo, Kanagawa, Saitama, Chiba, Tochigi, Ibaraki, Gunma) observed form 2009 to
2014. The log returns of the land prices are averaged in municipal units. Therefore, our data set consist of
344 discrete unit’s average log returns from 2010 to 2014.

Before application of the S-GARCH model, we remove spatial correlations in data with the spatial au-
toregressive (SAR) model year by year. This modification is similar to that we apply the ARMA model to
data before fitting the GARCH model to remove correlation in time series analysis. The SAR model is

yi = ζ + κ

344∑
j=1

wi,jyj + ui,t, ui,t ∼ i.i.d(0, τ2).

6



where W = (wi,j) is given the first-order contiguity relation that takes 1 when two units have a common
boarder.

We apply the S-GARCH model to the residuals obtained after fitting the SAR model year by year, where
the same spatial weight matrix as one in the SAR model was employed. Explanatory variables are intercept
term and each unit’s area. Areas of observations are included to hold Assumption 8 which is important for
the identification uniqueness. Table 2 shows the estimated values of λ, ρ, α and β. Here, α and β is intercept
and the coefficient of logarithm of areas, respectively. The standard errors of λ̂ and ρ̂ are derived in Theorem
2 by replacing the population moments with the corresponding sample moments. Figure 1 express the spatial
volatility evaluated by

log ĥ = (In − λ̂Wn)
−1(ρ̂Wn log y

2 + α̂1n + xβ̂),

where x is the vector of the areas of observations.
we find estimates of spatial correlation of volatility, λ, are significant after the Great East Japan Earth-

quake in 2011 until 2013 from Table 2. This may show that volatility in land prices have strong correlation
when a big event occurs. The effects from simultaneous returns, ρ, are not large and this is similar to em-
pirical results of the time series GARCH model. The sum λ̂+ ρ̂ takes near 1 values between 2011 and 2013.
Thus, volatility is persistent to far areas and may generate volatility clustering. From Figure 1, not only the
volatility of costal area which hit by the Tsunami but also that of near Fukushima areas is high. This may be
caused as the result of Fukushima nuclear accident. Moreover, we find the volatility clustering as explained
above. Therefore, volatility in land price takes similar behavior to that of time series financial data like stock
price. In addition, we can find volatility in land price has global spillover from figure 2. The model fitting
of the S-GARCH model to the data is better than that of the S-ARCH model. The estimated volatility of
the S-ARCH model makes small clusters. On the other hand, that of the S-GARCH model generates large
clusters. This result shows that the estimated volatility is globally strongly spatially correlated.

5 Conclusion

We have proposed a spatial generalized autoregressive conditional heteroskedasticity (S-GARCH) model as
extension of a spatial autoregressive conditional heteroskedasticity (S-ARCH) model (Sato and Matsuda
(2017)) to evaluate spatial volatility. The S-GARCH models can be expressed in the form of a spatial
autoregressive moving average (SARMA) model and we propose the two step estimation procedure to estimate
the parameters in the model. The quasi maximum likelihood (QML) estimators in each step have desired
asymptotic properties. Finite sample performances of the estimators are reasonably good from Monte Carlo
experiments. We find volatility in land prices is similar behavior to that of time series data from real data
analysis.

For future research, we describe possible extensions. We used the first-order contiguity relations to make
the spatial weight matrix. The choice of spatial weight matrices is important matter in empirical analysis.
Thus, applying other spatial weight matrices can improve our volatility analysis using the S-GARCH model.
Moreover, spatiotemporal extension of the S-GARCH model which considers effects from both space and
time would make it possible to analyze volatility structures in more detail.
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Table 1: The empirical means and square root of mean squared errors (RMSE) of the estimators.
normal chi(3) log normal
n=100 n=400 n=100 n=400 n=100 n=400

ϕ Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

0.9 0.029 0.082 0.007 0.029 0.032 0.078 0.009 0.030 0.031 0.080 0.009 0.029
0.05 -0.039 0.069 -0.009 0.026 -0.040 0.066 -0.010 0.027 -0.038 0.068 -0.011 0.026
0.5 0.039 0.378 0.006 0.105 0.015 0.310 -0.003 0.100 -0.037 0.310 -0.018 0.101
1.0 0.021 0.188 0.009 0.089 0.023 0.176 0.004 0.082 0.020 0.173 0.004 0.077

0.45 -0.060 0.238 -0.015 0.098 -0.065 0.243 -0.015 0.103 -0.053 0.224 -0.016 0.097
0.45 -0.001 0.155 0.002 0.072 0.002 0.159 0.002 0.075 0.002 0.151 0.003 0.073
0.5 -0.014 0.292 -0.002 0.092 -0.054 0.313 -0.007 0.113 -0.277 0.595 -0.086 0.255
1.0 0.034 0.232 0.012 0.113 0.044 0.229 0.018 0.109 0.041 0.216 0.007 0.103

0.05 -0.027 0.139 -0.011 0.080 -0.023 0.141 -0.011 0.079 -0.029 0.132 -0.013 0.079
0.9 -0.011 0.108 0.002 0.069 -0.017 0.115 0.002 0.068 -0.006 0.108 0.003 0.068
0.5 -0.431 0.829 -0.100 0.240 -0.627 1.089 -0.114 0.295 -1.009 1.660 -0.313 0.630
1.0 0.013 0.236 0.007 0.114 0.022 0.228 0.006 0.109 0.007 0.215 0.004 0.105

Note: ϕ = (λ, ρ, α, β)′

Table 2: Estimated values and standard errors of λ and ρ and estimated values of α and β in the S-ARCH
model and the S-GARCH model applied to the residuals by fitting the SAR model to log returns of land
priced data year by year.

S-ARCH S-GARCH
2010 2011 2012 2013 2014 2010 2011 2012 2013 2014

λ̂ 0.772 0.845 0.874 0.893 0.601
se(λ) 0.206 0.139 0.128 0.100 0.415
ρ̂ 0.240 0.244 0.274 0.279 0.184 0.110 0.076 0.059 0.060 0.104
se(ρ) 0.083 0.081 0.082 0.083 0.084 0.077 0.055 0.048 0.045 0.086
α̂ 0.569 -0.518 -0.606 -0.193 -0.804 0.162 -0.121 -0.130 -0.021 -0.412

β̂ -0.022 0.212 0.232 0.109 0.225 -0.001 0.052 0.049 0.025 0.120
AIC 1538.7 1481.7 1549.8 1573.8 1537.7 1536.6 1475.3 1547.9 1570.4 1537.9
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Figure 1: The identified volatility in 2010 and 2011. Notice that the great earth quake occurred in 2011.

Figure 2: A comparison between the estimated volatility of the S-ARCH model and that of the S-GARCH
model.

A Hessian, average Hessian and symmetric matrix Ωψ,n

The Hessian matrix Hn(ψ) ≡ ∂2

∂ψ∂ψ′ logLn(ψ) has the elements:

Hββ′ = − 1

σ2
X ′
nR

′−1
n (λ)R−1

n (λ)Xn,

9



Hβσ2 = − 1

σ4
X ′
nR

′−1
n (λ)V (θ),

Hβρ = − 1

σ2
X ′
nR

′−1
n (λ)R−1

n (λ)WnYn,

Hβλ =
1

σ2
X ′
nR

′−1
n (λ)(W ′

nR
′−1
n (λ)Vn(θ) +R−1

n (λ)WnVn(θ)−R−1
n (λ)WnYn),

Hσ2σ2 =
n

2σ4
− V ′

n(θ)Vn(θ)

σ6
,

Hσ2ρ = − 1

σ4
Y ′
nW

′
nR

′−1
n (λ)V (θ),

Hσ2λ =
1

σ4
(V ′
n(θ)− Y ′

n)W
′
nR

′−1
n (λ)Vn(θ),

Hρρ = − 1

σ2
Y ′
nW

′
nR

′−1
n (λ)R−1

n (λ)WnYn − tr(S−1
n (θ)WnS

−1
n (θ)Wn),

Hρλ =
1

σ2
Y ′
nW

′
nR

′−1
n (λ)(W ′

nR
′−1
n (λ)V (θ) +R−1

n (λ)WnVn(θ)−R−1
n (λ)WnYn)− tr(S−1

n (θ)WnS
−1
n (θ)Wn),

Hλλ =
1

σ2
(Y ′
n − V ′

n(θ))W
′
nR

′−1
n (λ)(2W ′

nR
′−1
n (λ)Vn(θ) +R−1

n (λ)WnVn(θ)−R−1
n (λ)WnYn)

+tr(R−1
n (λ)WnR

−1
n (λ)Wn)− tr(S−1

n (θ)WnS
−1
n (θ)Wn).

The average Hessian matrix Σψ,n ≡ −E
(
1
n

∂2

∂ψψ′ logLn(ψ0)
)
has the elements:

Σββ′ =
1

nσ2
0

X ′
nR

′−1
n R−1

n Xn,

Σβσ2 = 0,

Σβρ =
1

nσ2
0

X ′
nR

′−1
n R−1

n WnS
−1
n Xnβ0,

Σβλ =
1

nσ2
0

X ′
nR

′−1
n R−1

n WnS
−1
n Xnβ0,

Σσ2σ2 =
1

2σ4
0

,

Σσ2ρ =
1

nσ2
0

tr(WnS
−1
n ),

Σσ2λ =
1

nσ2
0

tr(WnS
−1
n −WnR

−1
n ),

Σρρ =
1

nσ2
0

β′
0X

′
nS

′−1
n W ′

nR
′−1
n R−1

n WnS
−1
n Xnβ0 +

1

n
tr(R′

nS
′−1
n W ′

nR
′−1
n R−1

n WnS
−1
n Rn + S−1

n WnS
−1
n Wn),

Σρλ =
1

nσ2
0

β′
0X

′
nS

′−1
n W ′

nR
′−1
n R−1

n WnS
−1
n Xnβ0 +

1

n
tr(R′

nS
′−1
n W ′

nR
′−1
n R−1

n WnS
−1
n Rn + S−1

n WnS
−1
n Wn)

− 1

n
tr(R′

nS
′−1
n W ′

nR
′−1
n R−1

n Wn + S−1
n WnR

−1
n Wn),

Σλλ =
1

nσ2
0

β′
0X

′
nS

′−1
n W ′

nR
′−1
n R−1

n WnS
−1
n Xnβ0 +

1

n
tr(R′

nS
′−1
n W ′

nR
′−1
n R−1

n WnS
−1
n Rn + S−1

n WnS
−1
n Wn)

− 2

n
tr(R′

nS
′−1
n W ′

nR
′−1
n R−1

n Wn + S−1
n WnR

−1
n Wn) +

1

n
tr(R−1

n WnR
−1
n Wn +W ′

nR
′−1
n R−1

n Wn).

The symmetric matrix Ωψ,n has the elemetns:

Ωββ′ = 0,

Ωβσ2 =
µ3

2nσ6
0

X ′
nR

′−1
n 1n,

Ωβρ =
µ3

nσ4
0

n∑
i

{(R−1
n Xn)i}′(R−1

n WnS
−1
n Rn)ii,
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Ωβλ =
µ3

nσ4
0

n∑
i

{(R−1
n Xn)i}′(R−1

n WnS
−1
n Rn −R−1

n Wn)ii,

Ωσ2σ2 =
µ4 − 3σ4

0

4σ8
0

,

Ωσ2ρ =
µ3

2nσ6
0

β′
0X

′
nS

′−1
n W ′

nR
′−1
n 1n +

µ4 − 3σ4
0

2nσ6
0

tr(S−1
n Wn),

Ωσ2λ =
µ3

2nσ6
0

β′
0X

′
nS

′−1
n W ′

nR
′−1
n 1n +

µ4 − 3σ4
0

2nσ6
0

tr(S−1
n Wn −R−1

n Wn),

Ωρρ =
2µ3

nσ4
0

n∑
i=1

(R−1
n WnS

−1
n Xnβ0)i(R

−1
n WnS

−1
n Rn)ii +

µ4 − 3σ4
0

nσ4
0

n∑
i=1

{(R−1
n WnS

−1
n Rn)ii}2,

Ωρλ =
µ3

nσ4
0

n∑
i=1

(R−1
n WnS

−1
n Xnβ0)i(2R

−1
n WnS

−1
n Rn −R−1

n Wn)ii

+
µ4 − 3σ4

0

nσ4
0

n∑
i=1

(R−1
n WnS

−1
n Rn)ii(R

−1
n WnS

−1
n Rn −R−1

n Wn)ii,

Ωλλ =
2µ3

nσ4
0

n∑
i=1

(R−1
n WnS

−1
n Xnβ0)i(R

−1
n WnS

−1
n Rn −R−1

n Wn)ii

+
µ4 − 3σ4

0

nσ4
0

n∑
i=1

{(R−1
n WnS

−1
n Rn −R−1

n Wn)ii}2,

where µ3 and µ4 are the third and fourth moments of vis, respectively, (R
−1
n Xn)i is the i-th row of (R−1

n Xn),
(R−1

n WnS
−1
n Xnβ0)i is the i-th element of (R−1

n WnS
−1
n Xnβ0) and (R−1

n WnS
−1
n Rn)ii, (R

−1
n WnS

−1
n Rn−R−1

n Wn)ii
and (2R−1

n WnS
−1
n Rn−R−1

n Wn)ii are the (i, j)th element of (R−1
n WnS

−1
n Rn), (R

−1
n WnS

−1
n Rn−R−1

n Wn) and
(2R−1

n WnS
−1
n Rn −R−1

n Wn), respectively.

B Some useful Lemmas

Lemma B.1 (Proposition 8.4.13, Bernstein (2009)). Let A and B be matrices. We use γmax and γmin to
denote the largest and smallest eigenvalues of a matrix. If A is symmetric and B is positive semi definite,
then

γmin(A)tr(B) ≤ tr(AB) ≤ γmax(A)tr(B).

Lemma B.2 (Lee, 2002, p.256; Lee, 2004, p1918). Let {An} and {Bn} be two two sequences of n×n matrices
that are uniformly bounded in both row and column sums and the elements of an n× n matrix {Cn} be O(1)
uniformly. Then

1. the sequence {AnBn} are uniformly bounded in both row and column sums,

2. the elements of CnBn have the uniform order O(1), and

3. the elements of An are uniformly bounded and tr(An) = O(n).

Lemma B.3 (Lee, 2004, p1918). The elements, the v′is of Vn are assumed to be i.i.d. with zero mean and
a finite variance and the fourth moment of the v′s is assumed to exist. Suppose that An is a square matrix
with tis column sums being uniformly bounded and elements of the n×K matrix Zn are uniformly bounded.
Let {Bn} be uniformly bounded either in row or column sums and their elements bn,ij have O(1) uniformly
in i and j. Then

1. 1√
n
Z ′
nAnVn = Op(1) and

2. 1
nE(V ′

nBnVn) = O(1) and 1
n [V

′
nBnVn − E(V ′

nBnVn)] = op(1).

11



C Proofs of Theorems 1-3

C.1 Proof of Theorem1

The consistency of θ̂ will follow from the uniform convergence of 1
n (logLn(θ) − Qn(θ)) to zero on Θ and

the uniqueness identification condition that, for any ϵ > 0, lim supn→∞ maxθ∈Nc
ϵ (θ0)

1
n (Qn(θ)−Qn(θ0)) < 0,

where N c
ϵ (θ0) is the complement of an open neighborhood of θ0 in Θ of diameter ϵ (Theorem 3.4 of white

(1994)).

C.1.1 Proof of the uniform convergence of 1
n (logLn(θ)−Qn(θ))

First, we shall prove the uniform convergence of 1
n (logLn(θ)−Qn(θ)) to zero on Θ. The proof follows from:

(a) infθ∈Θ σ
∗2
n (θ) is bounded away from zero,

(b) supθ∈Θ |σ̂2
n(θ)− σ∗2

n (θ)| = op(1),

(c) supθ∈Θ | 1n (logLn(θ)−Qn(θ))| = op(1).

Proof of (a) By the definition of V ∗
n (θ),

V ∗
n (θ) = R−1

n (λ)(Sn(θ)Yn −Xnβ
∗
n(θ)),

= R−1
n (λ)Sn(θ)Yn −R−1

n Xn(X
′
nR

′−1
n (λ)R−1

n (λ)Xn)
−1X ′

nR
′−1
n (λ)R−1

n (λ)Sn(θ)E(Yn),

= R−1
n (λ)Sn(θ)Yn − PnR

−1
n (λ)Sn(θ)E(Yn),

= MnR
−1
n (λ)Sn(θ)Yn + PnR

−1
n (λ)Sn(θ)(Yn − E(Yn)),

where, Pn = R−1
n Xn(X

′
nR

′−1
n (λ)R−1

n (λ)Xn)
−1X ′

nR
′−1
n and Mn = In − Pn.

From the orthogonality between the two symmetric idempotent matrices Mn and Pn, we have,

σ∗2
n (θ) =

1

n
E(V ′∗

n (θ)V ∗
n (θ)),

=
1

n
E[Y ′

nS
′
n(θ)R

′−1
n (λ)MnR

−1
n (λ)Sn(θ)Yn + (Yn − E(Yn))

′S′
n(θ)R

′−1
n (λ)PnR

−1
n (λ)Sn(θ)(Yn − E(Yn))],

=
1

n
E(Y ′

n)S
′
n(θ)R

′−1
n (λ)MnR

−1
n (λ)Sn(θ)E(Yn) +

1

n
tr(R′−1

n (λ)R−1
n (λ)V ar(Sn(θ)Yn)).

The matrix Mn is positive semi definite because Mn is a symmetric idempotent matrix (Lemma 14.2.14
of Harville (1997)). Thus, the first term is nonnegative uniformly in θ ∈ Θ.

Because the matrix V ar(Sn(θ)Yn) is symmetric and γminV ar(Sn(θ)Yn) > 0 from the assumption, the
matrix is positive semi definite (Theorem 3.25 of Schott (2005)). By Lemma A.1, the second term is

1

n
tr(R′−1

n (λ)R−1
n (λ)V ar(Sn(θ)Yn)) ≥ 1

n
γmin(R

′−1
n (λ)R−1

n (λ))tr(V ar(Sn(θ)Yn)),

≥ 1

n
crcy,

> 0,uniformly in θ ∈ Θ.

It follow that infθ∈Θ σ
∗2
n (θ) is bounded away from zero.

Proof of (b) Noting that

V̂n(θ) = R−1
n (λ)(Sn(θ)Yn −Xnβ̂n(θ)),

= R−1
n (λ)Sn(θ)Yn −R−1

n Xn(X
′
nR

′−1
n (λ)R−1

n (λ)Xn)
−1X ′

nR
′−1
n (λ)R−1

n (λ)Sn(θ)Yn,

= MnR
−1
n (λ)Sn(θ)Yn.

Hence,

σ̂2
n(θ) =

1

n
V̂ ′

n(θ)V̂n(θ),
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=
1

n
Y ′
nS

′
n(θ)R

′−1
n (λ)MnR

−1
n (λ)Sn(θ)Yn.

It follows that

σ̂2
n(θ)− σ∗2

n (θ) =
1

n
Y ′
nS

′
n(θ)R

′−1
n (λ)MnR

−1
n (λ)Sn(θ)Yn − 1

n
E
(
Y ′
nS

′
n(θ)R

′−1
n (λ)MnR

−1
n (λ)Sn(θ)Yn

)
− 1

n
E
(
(Yn − E(Yn))

′S′
n(θ)R

′−1
n (λ)PnR

−1
n (λ)Sn(θ)(Yn − E(Yn))

)
,

= (Q1 − EQ1)− EQ2,

where, Q1 = 1
nY

′
nS

′
n(θ)R

′−1
n (λ)MnR

−1
n (λ)Sn(θ)Yn and EQ2 = 1

nE
(
(Yn−E(Yn))

′S′
n(θ)R

′−1
n (λ)PnR

−1
n (λ)Sn(θ)(Yn−

E(Yn))
)
.

To show the result, it sufficient to show Q1 − EQ1
p−→ 0 and EQ2 −→ 0, uniformly in θ ∈ Θ.

First, we show that Q1 − EQ1
p−→ 0 uniformly in θ ∈ Θ. By Theorem 1 of Andrews (1992), the

uniform convergence of Q1 − EQ1 to zero in probability follows from the pointwise convergence for each
θ ∈ Θ and stochastic equicontinuity of Q1, i.e., for any ϵ > 0, there exists a positive number δ such that
lim supn→∞ P (supθ∈Θ supθ′∈B(θ,δ) > ϵ) < ϵ, where B(θ, δ) denote a closed ball in Θ of radius δ ≥ 0 centered
at θ.

First of all, the pointwise convergence of Q1 − EQ1 will be shown. We have, by the identity: Yn =
S−1
n Xnβ0 + S−1

n RnVn,

Q1 =
1

n
(S−1
n Xnβ0 + S−1

n RnVn)
′S′
n(θ)R

′−1
n (λ)MnR

−1
n (λ)Sn(θ)(S

−1
n Xnβ0 + S−1

n RnVn),

=
1

n
(β′

0X
′
nS

′−1
n S′

n(θ)R
′−1
n (λ)MnR

−1
n (λ)Sn(θ)S

−1
n Xnβ0 + 2β′

0X
′
nS

′−1
n S′

n(θ)R
′−1
n (λ)MnR

−1
n (λ)Sn(θ)S

−1
n RnVn

+V ′
nR

′
nS

′−1
n S′

n(θ)R
′−1
n (λ)MnR

−1
n (λ)Sn(θ)S

−1
n RnVn),

= Q1,1(θ) + 2Q1,2(θ) +Q1,3(θ),

where Q1,1(θ) =
1
n (β

′
0X

′
nS

′−1
n S′

n(θ)R
′−1
n (λ)MnR

−1
n (λ)Sn(θ)S

−1
n Xnβ0),

Q1,2(θ) =
1
n (β

′
0X

′
nS

′−1
n S′

n(θ)R
′−1
n (λ)MnR

−1
n (λ)Sn(θ)S

−1
n RnVn) and

Q1,3(θ) = 1
n (V

′
nR

′
nS

′−1
n S′

n(θ)R
′−1
n (λ)MnR

−1
n (λ)Sn(θ)S

−1
n RnVn). The two terms Q1,2(θ) and Q1,3(θ) are

stochastic.
For the second term, the column sums of S′−1

n S′
n(θ)R

′−1
n (λ)MnR

−1
n (λ)Sn(θ)S

−1
n Rn are uniformly bounded

from assumption 3 and Lemma 2 and E(Q1,2(θ)) = 0. Thus, the pointwise convergence ofQ1,2(θ)−E(Q1,2)(θ)
follow from Lemma 3. Similarly, the column sums of R′

nS
′−1
n S′

n(θ)R
′−1
n (λ)MnR

−1
n (λ)Sn(θ)S

−1
n Rn are uni-

formly bounded and the pointwise convergence of Q1,3(θ) − E(Q1,3)(θ) follows from Lemma 3. Therefore,

Q1 − EQ1
p−→ 0, for each θ ∈ Θ.

Next, we show that Q1 is stochastic equicontinuous. We have by the mean value theorem:

Q1,ℓ(θ1)−Q1,ℓ(θ2) =
∂

∂θ′
Q1,ℓ(θ̄)(θ2 − θ1),

≤ sup
θ∈Θ

∣∣∣∣ ∂∂θ′Q1,ℓ(θ)

∣∣∣∣(θ2 − θ1),

where ℓ = 1, 2, 3 and θ̄ lies between θ1 and θ2. For stochastic equicontinuous, it suffices to show that
supθ∈Θ

∣∣ ∂
∂θ′Q1,ℓ(θ)

∣∣ = Op(1) by Theorem 21.10 of Davidson (1994). Let Π1 be S
′−1
n S′

n(θ)R
′−1
n (λ)MnR

−1
n (λ)Sn(θ)S

−1
n ,

Π2 be β
′
0X

′
nS

′−1
n S′

n(θ)R
′−1
n (λ)MnR

−1
n (λ)Sn(θ)S

−1
n Rn and Π3 beR

′
nS

′−1
n S′

n(θ)R
′−1
n (λ)MnR

−1
n (λ)Sn(θ)S

−1
n Rn.

The partial derivatives ∂
∂θ′Π1,ℓ take simple form and consequently ∂

∂θ′Π1,ℓ are also uniformly bounded in both

row and column sums. ForQ1,1, for any θ, the elements of β′
0X

′
n
∂
∂θ′S

′−1
n S′

n(θ)R
′−1
n (λ)MnR

−1
n (λ)Sn(θ)S

−1
n and

Xnβ0 are uniformly bounded. Thus, there exists constants c1 and c2 such that |{β′
0X

′
n(

∂
∂θ′S

′−1
n S′

n(θ)R
′−1
n (λ)Mn

R−1
n (λ)Sn(θ)S

−1
n )}i|≤ c1 and |(Xnβ0)i| ≤ c2 where {β′

0X
′
n(

∂
∂θ′S

′−1
n S′

n(θ)R
′−1
n (λ)MnR

−1
n (λ)Sn(θ)S

−1
n )}i and

(Xnβ0)i are the i-th elements of each vector. It follows that
∣∣ ∂
∂θ′Q1,1

∣∣ ≤ c1c2 = O(1). For Q1,2, for any θ,∣∣ ∂
∂θ′Π1,2,i

∣∣ ≤ c3 where ∂
∂θ′Π1,2,i is the i-th element of ∂

∂θ′Π1,2. Therefore, from Lemma B.3, P
(∣∣ ∂
∂θ′Q1,2

∣∣ >
M

)
≤ P

(∣∣ 1
n

∑n
i=1 c3vi

∣∣ > M
)
= O

(
n−

1
2

)
. For Q1,3, for any θ,

∣∣ ∂
∂θ′Π1,3,ij

∣∣ ≤ c4 where where ∂
∂θ′Π1,3,ij is the
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(i, j)th element of ∂
∂θ′Π1,3. Thus, from Lemma B.3, P

(∣∣ ∂
∂θ′Q1,3

∣∣ > M
)
≤ P

(∣∣ 1
n

∑n
i=1

∑
j=1 c4vivj

∣∣ > M
)
=

O(1). Thus, supθ∈Θ

∣∣ ∂
∂θ′Q1,ℓ(θ)

∣∣ = Op(1) It follow that Q1 is stochastic equicontinuous. Hence, by Theorem

1 of Andrews (1992), Q1 − EQ1
p−→ 0 uniformly in θ ∈ Θ.

Secondly, we show that EQ2 −→ 0, uniformly in θ ∈ Θ. There exist cx such that
0 < cx ≤ infλ∈Λ γmin

(
1
nX

′
nR

′−1
n R−1

n X
)
from assumption. By Assumption, Lemma 1 and 2 and theorem 3.4

of Schott (2005), We have,

EQ2 =
1

n
E
(
(Yn − E(Yn))

′S′
n(θ)R

′−1
n (λ)PnR

−1
n (λ)Sn(θ)(Yn − E(Yn))

)
,

=
1

n
tr(R′−1

n (λ)PnR
−1
n (λ)V ar(Sn(θ)Yn)),

=
1

n
tr(R′−1

n (λ)R−1
n Xn(X

′
nR

′−1
n (λ)R−1

n (λ)Xn)
−1X ′

nR
′−1
n R−1

n (λ)V ar(Sn(θ)Yn)),

≤ 1

n
γ−1
min(X

′
nR

′−1
n R−1

n X)γ2max(R
′−1
n (λ)R−1

n (λ))γmax(V ar(Sn(θ)Y ))tr(X ′
nXn)),

=
1

n
γ−1
min

(
X ′
nR

′−1
n R−1

n X

n

)
γ2max(R

′−1
n (λ)R−1

n (λ))γmax(V ar(Sn(θ)Y ))
1

n
tr(X ′

nXn)),

≤ 1

n
c−1
x c2rcy

1

n
tr(X ′

nXn)),

= O
(
n−1

)
Hence, EQ2 −→ 0, uniformly in θ ∈ Θ.

Therefore, supθ∈Θ |σ̂2
n(θ)− σ∗2

n (θ)| = op(1), completing the proof of (b).

Proof of (C) We show that supθ∈Θ

∣∣ 1
n (logLn(θ)−Qn(θ))

∣∣ = op(1). Note that

1

n
(logLn(θ)−Qn(θ)) = −1

2
(log σ̂2

n(θ)− log σ∗2
n (θ)).

By the Taylor expansion,∣∣log σ̂2
n(θ)− log σ∗2

n (θ)
∣∣ = 1

σ̃2
n(θ)

∣∣σ̂2
n(θ)− σ∗2

n (θ)
∣∣,

where σ̃2
n(θ) lies between σ̂2

n(θ) and σ∗2
n (θ). From the proof (a) and (b), it follow that σ̂2

n(θ) is uniformly
bounded away from zero on Θ. Moreover, σ̃2

n(θ) is also uniformly bounded away from zero on Θ because
σ̃2
n(θ) exists between σ̂

2
n(θ) and σ

∗2
n (θ) and thereby 1

σ̃2
n(θ)

is uniformly bounded. As σ̂2
n(θ)− σ∗2

n (θ) coverges

in probability to zero uniformly on Θ, | log σ̂2
n(θ)− log σ∗2

n (θ)| = op(1) uniformly on Θ.
Consequently, supθ∈Θ

∣∣ 1
n (logLn(θ)−Qn(θ))

∣∣ = op(1).

C.1.2 Proof of the identification uniqueness condition

Secondly, we shall prove the identification uniqueness condition. The proof follow from:

(i) 1
nQn(θ) is uniformly equicontinuous on Θ.

(ii) Show some properties of an auxiliary model.

(iii) Show that the identification uniqueness condition holds.

Proof of (i) We show that 1
nQn(θ) =

1
2 (log 2π+1)− 1

2 log σ
∗2
n (θ)− 1

n log |Rn(λ)|+ 1
n log |Sn(θ)| is uniformly

equicontinuous on Θ. It is sufficient to show that partial derivatives of each term are uniformly bounded. The
uniform continuity of log σ∗2

n (θ) on Θ follows because 1
σ∗2
n (θ) is uniformly bounded since σ∗2

n (θ) is uniformly

bounded away form zero on Θ. For 1
n log |Rn(λ)|, d

dλ
1
n log |Rn(λ)| = 1

n tr(R
−1
n (λ)Wn). From assumption and

Lemma 2, the elements of R−1
n (λ)Wn are uniformly bounded. Thus, 1

n tr(R
−1
n (λ)Wn) = O(1) from Lemma

2. Similarly, ∂
∂θ

1
n log |Sn(θ)| = O(1). Hence, 1

nQn(θ) is uniformly equicontinuous on Θ.
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Proof of (ii) It is useful to establish an auxiliary process:

Yn = λWnYn + ρWnYn +Rn(λ)Vn,

where Vn ∼ N(0, σ2
0In). The log-likelihood function of the above auxiliary process is given by

logLp,n(θ, σ
2) = −n

2
log(2π)− n

2
log(σ2(θ))− log |Rn(λ)|+ log |Sn(θ)| −

1

2σ2
Y ′
nS

′
n(θ)R

′−1
n (λ)R−1

n (λ)Sn(θ)Yn.

Let Ep be the expectation under this auxiliary process. Define Qp,n(θ) = maxσ2 Ep(logLp,n(θ)). The
optimal solutions of this maximization problem is

σ2
n(θ) =

1

n
Ep(Y

′
nS

′
n(θ)R

′−1
n (λ)R−1

n (λ)Sn(θ)Yn),

=
σ2

n
tr(RnS

−1
n S′

n(θ)R
′−1
n (λ)R−1

n (λ)Sn(θ)S
−1
n Rn).

Hence,

Qp,n(θ) = −n
2
log(2π + 1) +

n

2
log σ2

n(θ)− log |Rn(λ)|+ log |Sn(θ)|.

By Shannon-Kolmogorov Information Inequality (Ferguson (1996), p113), Qp,n(θ) ≤ Qp,n(θ0) for all
θ ∈ Θ. This implies that 1

n (Qp,n(θ)−Qp,n(θ0) ≤ 0 for all θ ∈ Θ.

Proof of (iii) We show that the identification uniqueness condition holds by contradiction.

1

n
(Qn(θ)−Qn(θ0)) = −1

2
log σ∗2

n (θ)− log |Rn(λ)|+ log |Sn(θ)| −
(
−1

2
log σ2

0 − log |Rn|+ log |Sn|
)

=

(
−1

2
(log σ2

n(θ)− log σ2
0)−

1

n
(log |Rn(λ)| − log |Rn|) +

1

n
(log |Sn(θ)| − log |Sn|)

)
− 1

n
(log σ∗2

n (θ)− log σ2
n(θ)),

=
1

n

(
Qp,n(θ)−Qp,n(θ0)

)
− 1

2
(log σ∗2

n (θ)− log σ2
n(θ)).

Moreover,

σ∗2
n (θ)− σ2

n(θ) =
1

n
β′
0X

′
nS

′−1
n S′

n(θ)R
′−1
n (λ)MnR

−1
n (λ)Sn(θ)S

−1
n Xnβ0.

Mn is positive semi definite and thereby σ∗2
n (θ)− σ2

n(θ) ≥ 0. This implies − 1
2 (log σ

∗2
n (θ)− log σ2

n(θ)) ≤ 0.
Now, suppose that the identification uniqueness condition does not hold. Then, there exists an ϵ > 0 and a

sequence {θn} in N c
ϵ (θ0) such that limn→∞

1
n

(
Qn(θ)−Qn(θ0)

)
= 0. By the compactness of N c

ϵ (θ0), there ex-
ists a convergent subsequence {θnm

} of {θn} with the limit θ+ of θnm
being in N c

ϵ (θ0). This implies that θ+ ̸=
θ0. As 1

nQn(θ) is uniformly equicontinuous, limnm→∞
1
nm

(
Qnm

(θ+) − Qnm
(θ0)

)
= 0. Because 1

n

(
Qp,n(θ) −

Qp,n(θ0)
)
≤ 0 and − 1

2

(
log σ∗2

n (θ)−log σ2
n(θ)

)
≤ 0, this is possible only if limnm→∞

1
nm

(
Qnm(θ+)−Qnm(θ0)

)
=

0 and− 1
2

(
log σ∗2

n (θ)−log σ2
n(θ)

)
≤ 0. However, limn→∞

1
nβ

′
0X

′
nS

′−1
n S′

n(θ)R
′−1
n (λ)MnR

−1
n (λ)Sn(θ)S

−1
n Xnβ0 ̸=

0 from the assumption in Theorem 3.1 . Thus, − 1
2

(
log σ∗2

n (θ)− log σ2
n(θ)

)
< 0 and consequently

limnm→∞
1
nm

(
Qnm

(θ+) − Qnm
(θ0)

)
̸= 0. This is a contradiction. Therefore, the identification uniqueness

condition must hold.
The consistency of θ̂ follow form uniform convergence and the identification uniqueness condition. This

completes the proof of the theorem.

C.2 Proof of Theorem 2

We have by the Taylor expansion,

0 =
1√
n

∂ logLn(ψ̂n)

∂ψ
,
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=
1√
n

∂ logLn(ψ0)

∂ψ
+

(
1

n

∂2 logLn(ψ̄n)

∂ψ∂ψ′

)√
n(ψ̂n − ψ0),

where ψ̄n lies between ψ̂n and ψ0. Thus, the asymptotic normality of ψ̂n follows if

(a) 1√
n
∂ logLn(ψ0)

∂ψ

D−→ N
(
0, limn→∞ Γ(ψ0)

)
,

(b) 1
n
∂2 logLn(ψ0)

∂ψ∂ψ′ − E
(
1
n
∂2 logLn(ψ0)

∂ψ∂ψ′

) p−→ 0, and

(c) 1
n
∂2 logLn(ψ̄n)

∂ψ∂ψ′ − 1
n
∂2 logLn(ψ0)

∂ψ∂ψ′
p−→ 0.

Proof of (a) The asymptotic normality of 1√
n
∂ logLn(ψ0)

∂ψ follows from the central limit theorems for linear-

quadratic forms in Kelejian and Prucha (2001). We need to check that the score vector holds Assump-
tions in Kelejian and Prucha (2001). To check assumptions for asymptotic normality, it is sufficient to
show some matrices hold desired boundaly conditions. From assumptions of this paper and Lemma A.2,
(R′

nS
′−1
n W ′

nR
′−1
n −W ′

nR
′−1
n ) and R′

nS
′−1
n W ′

nR
′−1
n are uniformly bounded in column sums, and the elements

of X ′
nS

′−1
n W ′

nR
′−1
n are uniformly bounded. Thus, each score function holds the assumptions and the asymp-

totic normality of each score function follows. Finally, the Cramér-Wold devise (Proposition 6.3.1 of Brockwell
and Davis (1991)) leads to the joint asymptotic normality.

Proof of (b) Let Dψψ be 1
n
∂2 logLn(ψ0)

∂ψ∂ψ′ − E
(
1
n
∂2 logLn(ψ0)

∂ψ∂ψ′

)
. Then, Dψψ has the elements:

Dββ′ = 0,

Dβσ2 = − 1

nσ4
0

X ′
nR

′−1
n Vn,

Dβρ = − 1

nσ2
0

X ′
nR

′−1
n R−1

n WnS
−1
n RnVn,

Dβλ =
1

nσ2
0

X ′
n(R

′−1
n W ′

nR
′−1
n +R′−1

n R−1
n W −R′−1

n R−1
n WnS

−1
n Rn)Vn,

Dσ2σ2 =
1

σ4
0

− 1

nσ6
0

V ′
nVn,

Dσ2ρ = − 1

nσ4
0

β′
0X

′
nS

′−1
n W ′

nR
′−1
n Vn − 1

nσ4
0

(V ′
nR

′
nS

′−1
n W ′

nR
′−1
n Vn − σ2

0tr(S
′−1
n W ′

n)),

Dσ2λ = − 1

nσ4
0

β′
0X

′
nS

′−1
n W ′

nR
′−1
n Vn +

1

nσ4
0

(V ′
nW

′
nR

′−1
n Vn − σ2

0tr(W
′
nR

′−1
n ))

− 1

nσ4
0

(V ′
nR

′
nS

′−1
n W ′

nR
′−1
n Vn − σ2

0tr(S
′−1
n W ′

n)),

Dρρ = − 2

nσ0
β′
0X

′
nS

′−1
n W ′

nR
′−1
n R−1

n WnS
−1
n RnVn

− 1

nσ2
0

(V ′
nR

′
nS

′−1
n W ′

nR
′−1
n R−1

n WnS
−1
n RnVn − σ2

0tr(R
′
nS

′−1
n W ′

nR
′−1
n R−1

n WnS
−1
n Rn)),

Dρλ =
1

nσ2
0

β′
0X

′
n(S

′−1
n W ′

nR
′−1
n W ′

nR
′−1
n + S′−1

n W ′
nR

′−1
n R−1

n Wn − 2S′−1
n W ′

nR
′−1
n R−1

n WnS
−1
n Rn)Vn

+
1

nσ2
0

(V ′
nR

′
nS

′−1
n W ′

nR
′−1
n W ′

nR
′−1
n Vn − σ2

0tr(S
′−1
n W ′

nR
′−1
n W ′

n))

+
1

nσ2
0

(V ′
nR

′
nS

′−1
n W ′

nR
′−1
n R−1

n WnVn − σ2
0tr(R

′
nS

′−1
n W ′

nR
′−1
n R−1

n Wn))

− 1

nσ2
0

(V ′
nR

′
nS

′−1
n W ′

nR
′−1
n R−1

n WnS
−1
n RnVn − σ2

0tr(R
′
nS

′−1
n W ′

nR
′−1
n R−1

n WnS
−1
n Rn)),

Dλλ =
1

nσ2
0

β′
0X

′
n(2S

′−1
n W ′

nR
′−1
n W ′

nR
′−1
n + S′−1

n W ′
nR

′−1
n R−1

n Wn − 2S′−1
n W ′

nR
′−1
n R−1

n WnS
′−1
n Rn
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−2R′−1
n W ′

nR
′−1
n W ′

nR
′−1
n −R′−1

n W ′
nR

′−1
n R−1

n Wn + 2R′−1
n W ′

nR
′−1
n R−1

n WnS
−1
n Rn

+2R′−1
n W ′

nR
′−1
n W ′

nR
−1
n +R′−1

n W ′
nR

′−1
n R−1

n Wn −R′−1
n W ′

nR
′−1
n R−1

n WnS
−1
n Rn)Vn

+
2

nσ2
0

(V ′
nR

′
nS

′−1
n W ′

nR
′−1
n W ′

nR
′−1
n Vn − σ2

0tr(S
′−1
n W ′

nR
′−1
n W ′

n))

+
1

nσ2
0

(V ′
nR

′
nS

′−1
n W ′

nR
′−1
n R−1

n WnVn − σ2
0tr(R

′
nS

′−1
n W ′

nR
′−1
n R−1

n Wn))

− 1

nσ2
0

(V ′
nR

′
nS

′−1
n W ′

nR
′−1
n R−1

n WnS
−1
n RnVn − σ2

0tr(R
′
nS

′−1
n W ′

nR
′−1
n R−1

n WnS
−1
n Rn))

− 2

nσ2
0

(V ′
nW

′
nR

′−1
n W ′

nR
′−1
n Vn − σ2

0tr(W
′
nR

′−1
n W ′

nR
′−1
n ))

+
1

nσ2
0

(V ′
nW

′
nR

′−1
n R−1

n WnVn − σ2
0tr(W

′
nR

′−1
n R−1

n Wn))

+
1

nσ2
0

(V ′
nW

′
nR

′−1
n R−1

n WnS
−1
n RnVn − σ2

0tr(W
′
nR

′−1
n R−1

n WnS
−1
n Rn)).

Thus, the elements of Dψψ are decomposed into sums of the forms: 1
nX

′
nAn(θ)Vn,

1
nβ

′
0X

′
nAn(θ)Vn,

1
n (V

′
nAn(θ)Vn−E(V ′

nAn(θ)Vn)) and
1
σ4
0
− 1

nσ6
0
V ′
nVn, where a matrix An(θ) is uniformly bounded in both row

and column sums. From Lemma A.3, 1
nX

′
nAn(θ)Vn,

1
nβ

′
0X

′
nAn(θ)Vn and 1

n (V
′
nAn(θ)Vn−E(V ′

nAn(θ)Vn)) are

convergence to zero in probability. Moreover, 1
σ4
0
− 1
nσ6

0
V ′
nVn

p−→ 0 because 1
nVnVn

p−→ σ2
0 by the law of large

numbers. Therefore, it follow that 1
n
∂2 logLn(ψ0)

∂ψ∂ψ′ − E
(
1
n
∂2 logLn(ψ0)

∂ψ∂ψ′

) p−→ 0.

Proof of (c) From Lemma B.2 and B.3, it is easy to show that 1
n
∂2 logLn(ψ̄n)

∂ψ∂ψ′ = Op(1) and
1
n
∂2 logLn(ψ0)

∂ψ∂ψ′ =

Op(1). Here, σ̄−r = σ−r
0 + op(1), r = 2, 4, 6 because σ̄2 p−→ σ2

0 and σr appears in Hn(ψ) ≡ ∂2

∂ψ∂ψ′ logLn(ψ)

multiplicatively, thus it results in an asymptotically negligible error to replace σ̄2 by σ2
0 . The elements of the

Hessian matrix, Hn(ψ) ≡ ∂2

∂ψ∂ψ′ logLn(ψ), are decomposed into sums of terms of the forms: X ′
nAn(θ)Xn,

X ′
nAn(θ)Yn, X

′
nAn(θ)V (θ), Y ′

nAn(θ)Yn,
n

2σ4 − 1
σ6V

′
n(θ)Vn(θ), Y

′
nAn(θ)Vn(θ), V

′
n(θ)An(θ)Vn(θ) and tr(An(θ)),

where a matrix An(θ) is uniformly bounded in both row and column sums. Therefore, it is sufficient to show
that the difference between each term at ψ̄ and ψ0 converges to zero in probability and moreover this can be
easily shown. We show some examples corresponding each term of the Hessian matrix.

Noting that

R−1
n (λ)−R−1

n = R−1
n (λ)(Rn −Rn(λ))R

−1
n ,

= (λ0 − λ)R−1
n (λ)WnR

−1
n .

For X ′
nAn(θ)Xn,

1

n
X ′
nR

′−1
n (λ̄)R−1

n (λ̄)Xn − 1

n
X ′
nR

′−1
n R−1

n Xn =
1

n
X ′
n(R

′−1
n (λ̄)−R′−1

n +R′−1
n )R−1

n (λ̄)Xn − 1

n
X ′
nR

′−1
n R−1

n Xn,

=
1

n
X ′
n(R

′−1
n (λ̄)−R′−1

n )R−1
n (λ̄)Xn +

1

n
X ′
nR

′−1
n R−1

n (λ̄)Xn − 1

n
X ′
nR

′−1
n R−1

n Xn,

= (λ0 − λ̄)
1

n
XnR

′−1
n (λ)W ′

nR
−1
n R−1

n (λ̄)Xn

+(λ0 − λ̄)
1

n
X ′
nR

′−1
n R−1

n (λ)WnR
−1
n Xn,

= op(1)O(1) + op(1)O(1),

= op(1).

Moreover, the convergence of X ′
nAn(θ)Yn is shown similarly.
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Noting that

Vn(θ) = R−1
n (λ)Rn(λ)Vn(θ),

= R−1
n (λ)(S(θ)Yn −Xnβ),

= R−1
n (λ)((λ0 − λ)WnYn + (ρ0 − ρ)WnYn +Xn(β0 − β) +RnVn).

Thus, for X ′
nAn(θ)V (θ),

1

n
X ′
nR

′−1
n (λ̄)Vn(θ̄)−

1

n
X ′
nR

′−1
n Vn =

(
(λ0 − λ̄) + (ρ0 − ρ̄)

) 1
n
X ′
nR

′−1
n (λ̄)WnYn +

1

n
X ′
nR

′−1
n (λ̄)Xn(β0 − β)

+
1

n
X ′
nR

′−1
n (λ̄)RnVn − 1

n
X ′
nR

′−1
n Vn,

= op(1)Op(1) +Op(1)op(1) + op(1) + op(1),

= op(1),

where the convergence of last two terms follow from Lemma B.3.
Here,

1

n
V ′
n(θ̄)Vn(θ̄) =

(
(λ0 − λ̄) + (ρ0 − ρ̄)

)2 1
n
Y ′
nW

′
nR

′−1
n (λ̄))R−1

n (λ̄)WnYn

+(β0 − β)′
1

n
X ′
nR

′−1
n (λ̄)R−1

n (λ̄)Xn(β0 − β) +
1

n
V ′
nR

′
nR

′−1
n (λ̄)R−1

n (λ̄)RnVn

+
2

n

(
(λ0 − λ̄) + (ρ0 − ρ̄)

)
Y ′
nW

′
nR

′−1
n (λ̄)R−1

n (λ̄)Xn(β0 − β)

+
2

n

(
(λ0 − λ̄) + (ρ0 − ρ̄)

)
Y ′
nW

′
nR

′−1
n (λ̄)R−1

n (λ̄)RnVn + (β0 − β)′
2

n
X ′
nR

′−1
n (λ̄)R−1

n (λ̄)RnVn,

= op(1)Op(1) + op(1)O(1)op(1) + σ2
0 + op(1)Op(1)op(1) + op(1)Op(1) + op(1)op(1),

= σ2
0 + op(1).

It follows that 1
2σ4

0
− 1

nσ6
0
V ′
n(θ)Vn(θ) = op(1).

Before next proof, we show an example. Y ′
nSn(θ)Vn = β′X ′

nS
−1
n S(θ)Vn + V ′

nR
′
nS

−1
n Sn(θ)Vn and

1

n
V ′
nR

′
nS

−1
n Sn(θ)Vn − 1

n
V ′
nR

′
nS

−1
n SnVn =

(
(λ0 − λ) + (ρ0 − ρ)

) 1
n
V ′
nR

′
nS

−1
n Vn,

= op(1)Op(1),

= op(1).

It follows that 1
nY

′
nSn(θ)Vn − 1

nY
′
nSnVn = op(1) and similarly 1

nY
′
nAn(θ)Vn − 1

nY
′
nAnVn = op(1) and

1
nY

′
nAn(θ)Yn − 1

nY
′
nAnYn = op(1) where An is An(θ) at true value θ0.

Now, for Y ′
nAn(θ)Vn(θ),

1

n
Y ′
nW

′
nR

′−1
n (λ)Vn(θ)−

1

n
Y ′
nW

′
nR

′−1
n Vn =

(
(λ0 − λ̄) + (ρ0 − ρ̄)

) 1
n
Y ′
nW

′
nR

′−1
n (λ)R−1

n (λ)WnYn

+
1

n
Y ′
nW

′
nR

′−1
n (λ)R−1

n (λ)Xn(β0 − β̄)

+
1

n
Y ′
nW

′
nR

′−1
n (λ̄)R−1

n (λ̄)RnV − 1

n
Y ′
nW

′
nR

′−1
n Vn

= op(1)Op(1) +Op(1)op(1) + op(1)

= op(1).

Moreover, the convergence of Vn(θ)
′An(θ)Vn(θ) is also shown similary.

Finally, for tr(An(θ)), by the Taylor expansion,

1

n
tr(R−1

n (λ)WnR
−1
n (λ)Wn)−

1

n
tr(R−1

n WnR
−1
n Wn) =

d

dλ
tr(R−1

n (λ̃)WnR
−1
n (λ̃)Wn)(λ̄− λ0),
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= O(1)op(1),

= op(1),

where λ̃ lies between λ̄ and λ0.

The convergence of the other elements of the Hessian matrix are shown similarly, hence 1
n
∂2 logLn(ψ̄n)

∂ψ∂ψ′ −
1
n
∂2 logLn(ψ0)

∂ψ∂ψ′
p−→ 0.

This completes the proof of the theorem.

C.3 Proof of Theorem 3

The estimator for α is

α̂n = (1− λ̂) log

(
1

n

n∑
i=1

exp{(R−1
n (λ̂)[S(θ̂)Yn − Znδ̂])i}

)
,

Here,

S(θ̂)Yn − Znδ̂ = Yn − λ̂WnYn − ρ̂WnYn − Znδ̂,

= (λ0 − λ̂)WnYn + (ρ0 − ρ̂)WnYn + Zn(δ0 − δ̂) + α01n +RnVn,

= D + α01n +RnVn,

where D = (λ0 − λ̂)WnYn + (ρ0 − ρ̂)WnYn + Zn(δ0 − δ̂).

Because R−1
n (λ̂)(S(θ̂)Yn − Znδ̂) =

α0

1−λ̂
1n +R−1

n (λ̂)D +R−1
n (λ̂)RnVn,

1

n

n∑
i=1

exp{(R−1
n (λ̂)[S(θ̂)Yn − Znδ̂])i} = exp

(
α

1− λ

)
1

n

n∑
i=1

exp{(R−1
n (λ̂)D +R−1

n (λ̂)RnVn)i}.

Thus,

α̂− α0 = (1− λ̂) log

(
1

n

n∑
i=1

exp{(R−1
n (λ̂)D +R−1

n (λ̂)RnVn)i}
)
. (9)

To prove consistency, it is sufficient that the right side of (9) converges to zero in probability.
By the Taylor expansion,

1

n

n∑
i=1

exp{(R−1
n (λ̂)D +R−1

n (λ̂)RnVn)i} = 1 +
1

n

n∑
i=1

exp(bi)
{
(R−1

n (λ̂)D +R−1
n (λ̂)RnVn)i

}
= 1 +

1

n
b′(R−1

n (λ̂)D +R−1
n (λ̂)RnVn),

where bi lies between 0 and (R−1
n (λ̂)D +R−1

n (λ̂)RnVn)i, and b = (b1, . . . , bn)
′.

From Assumptions, Theorem 1 and Lemma B.2 and B.3,

1

n
b′(R−1

n (λ̂)D +R−1
n (λ̂)RnVn) = (λ0 − λ̂)

1

n
b′R−1

n (λ̂)WnYn + (ρ0 − ρ̂)
1

n
b′R−1

n (λ̂)WnYn

+
1

n
b′R−1

n (λ̂)Zn(δ0 − δ̂) +
1

n
b′R−1

n (λ̂)RnVn,

= op(1)Op(1) + op(1)Op(1) +O(1)op(1) + op(1),

= op(1).

Thus, 1
n

∑n
i=1 exp{(R−1

n (λ̂)D +R−1
n (λ̂)RnVn)i}

p−→ 1 and

(1− λ̂) log
(
1
n

∑n
i=1 exp{(R−1

n (λ̂)D +R−1
n (λ̂)RnVn)i}

) p−→ 0.
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