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Abstract. In intensive care units (ICUs), mortality prediction using
vital sign or demographics of patients yields helpful information to sup-
port the decision-making of intensivists. Clinical texts recorded by med-
ical staff tend to be valuable for prediction. However, text data are not
applicable to outcome prediction of the regression framework in a direct
way. In addition, learning of prediction models of such outcomes is a class
of imbalanced data problem because the number of survivors is greater
than the number of dead patients in most ICUs. To address these dif-
ficulties, we present Cost-Sensitive MedLDA: a supervised topic model
employing cost-sensitive learning. The model realizes a prediction model
from heterogeneous data such as vital signs, demographic information,
and clinical text in an imbalanced class problem. Through experimen-
tation and discussion, we demonstrate that the model has two benefits
for use in medical fields: 1) our model has high prediction performance
for minority instances while maintaining good performance for majority
instances even if the training set is imbalanced data; 2) our model can
reveal some characteristics that are associated with bad outcomes from
the use of clinical texts.

1 Introduction

Intensive Care Units (ICUs) are closely associated with patient mortality. In-
tensivists must make prompt and accurate decisions to provide adequate treat-
ment. Nevertheless, doing so manually imposes heavy burdens on them because
of constraints related to time and available personnel. To address this issue, clin-
ical decision support systems (CDSSs) able to detect critically ill patients have
attracted attention. Accurate mortality prediction methods are fundamentally
important for realizing practical CDSSs. Severity scores that are calculated from
numerical data recorded in structured relational databases, have been used to
evaluate illness severity. For instance, Acute Physiology and Chronic Health II

⋆⋆ The first author currently is an employee of a private company, however, the work
was done at Tohoku University
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(APACHE II)[7] and Simplified Acute Physiology Score II (SAPS II)[14] (Le
Gall et al., 1993) are widely used at many hospitals.

In addition to numerical data, some researchers have recently developed mor-
tality prediction methods using unstructured clinical text, and have reported its
results [22, 8, 3, 16]. However, their methods are based mainly on a two-stage
mortality prediction procedure. In this two-stage procedure, we first extract top-
ics that represent underlying semantic themes of documents, from documents
using an unsupervised topic model, e.g. Latent Dirichlet Allocation (LDA)[1]. In
addition, we use the learned topic distribution as an input to a classifier. Some
earlier works have demonstrated that supervised topic models (STMs), which
can extract more predictive topics using label information associated with docu-
ments, outperform two-stage procedures in terms of classification accuracy[2, 11].
It is preferred to use STM for more accurate outcome prediction, but two main
problems in earlier STMs arise when we use them for mortality prediction.

First, it is necessary to develop a cost-sensitive model. The imbalanced data
problem is a well-known difficulty that poses challenges to the development and
use of machine learning applications. Generally, in-hospital mortality rates in
ICUs are from 10% to 15%, representing one example of imbalanced data. Learn-
ing algorithms for a classifier typically assume that instances in each class are
distributed uniformly. When the training set comprises imbalanced data, a clas-
sifier rarely identifies minority instances. Consequently, the predictive accuracy
becomes poor. Cost-sensitive learning is one approach to mitigating this diffi-
culty. In cost-sensitive learning, if instances that actually belong to a minority
class are misclassified to a majority class, a severer penalty is assigned to the ob-
jective function. However, no STM takes a cost-sensitive approach in its learning
stage.

Secondly, for ICU settings, it is helpful to develop an STM that integrates
textual information and numerical data. However, STMs have been developed
mainly in the fields of document classification and image categorization. Pre-
sumably, topic representations and their discriminant functions are trained only
from text or images. Electronic health records at an ICU include not only clini-
cal text but also various numerical data. This information can be beneficial for
outcome prediction.

To address these issue, we propose Cost-Sensitive Maximum entropy discrim-
inative LDA (CS-MedLDA). Maximum entropy discriminative LDA (MedLDA)
(Zhu et al., 2012[24]) is a supervised topic model that integrates discriminative
max-margin learning with topic models. CS-MedLDA is its extension, which
adopts a cost-sensitive approach in the training phase. In addition, our model
can use numerical data as features of discriminant function, unlike conventional
STM. As described herein, we demonstrate that the method can detect minority
instances correctly and that it can discover characteristics that are associated
with a minority group in an imbalanced dataset.

This paper is organized as follows. Sect.2 presents a summary of some re-
lated work. Sect.3 presents a description of the formulation and learning algo-
rithm. Sect.4 explains the pre-experiment: one-versus-rest classification in 20
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newsgroups dataset. Sect.5 presents experimentally obtained results in a trauma
patient dataset. Finally, Sect.6 presents the clinical significance, conclusions, and
avenues of future work.

2 Related Work

2.1 Cost-sensitive learning

Many works have specifically examined cost-sensitive learning[10]. Especially,
the application of Support Vector Machine (SVM), a classifier based on the
max-margin principle, has been investigated actively in this field because of
its rigorous mathematical foundation and predictive power. As a well-known
SVM application, cost-sensitive SVM (CS-SVM) [19], Boosting SVM[20], and
Optimized cost-sensitive SVM[5] can be cited.

2.2 Supervised Topic Models

STMs, which are topic models that can learn predictive topic structures using
label information of documents, have been developed mainly for document clas-
sification and image categorization[2, 15, 24]. Specifically, MedLDA has shown
great promise for document classification, image categorization and link pre-
diction in social networks[17, 21, 4]. In addition, some authors have developed
sophisticated learning algorithms to reduce the training time of MedLDA[12, 25].

However, STMs are generally assumed as models that are trained with a
single data type. In addition, no supervised topic model exists which uses cost-
sensitive learning to manage an imbalanced data problem.

2.3 Mortality Prediction using LDA and Its Extension

Outcome prediction methods using textual information have been developed
recently because of the advancement of Natural Language Processing techniques
and text mining. Most of them use LDA and its extension to extract latent topics
from clinical text[16, 8, 3, 22]. All of them reported the effectiveness of using
clinical text and LDA variants.

However, these methods have used 2-stage procedure that learns topic rep-
resentations and classifiers separately. Halpern et al. (2012) claim that STM has
a higher prediction performance than two-stage procedures when the dimension
of latent topic dimensions are low. Zhang et al.,2017[23] proposes a survival
topic model which is an STM to estimate the hazard function of mortality. It
is an example of using STM for mortality prediction. However, few works have
explained the use of STM for mortality prediction. No report of the relevant lit-
erature describes the use of MedLDA to predict outcomes in spite of its superior
classification ability.



4 H. Ishizuka et al.

3 Cost-sensitive MedLDA

This section presents the formulation and learning algorithm of CS-MedLDA.
First, we introduce LDA, Regularized Bayesian Inference, and MedLDA as pre-
liminaries. Next, we explain details of CS-MedLDA. In the following section,
we respectively denote W = {wd}Dd=1 and y = {yd}Dd=1 as the training docu-
ments and documents label. Here, yd ∈ Y = {−1, 1}. KL[q∥p] stands for the
Kullback–Leibler divergence. Also, Eq[·] represents the expectation.

3.1 Preliminaries

LDA LDA is a hierarchical Bayesian model that posits each document as an
admixture of K topics, where each topic Φk is a multinomial distributions over
V vocabularies. For document d, the generating process can be described as pre-
sented below.

1. Draw a topic proportion　 θd ∼ Dir(α).
2. For each word n (0 ≤ n ≤ Nd)
(a) draw a topic assignment zdn ∼ Mult(θd).
(b) draw the observed word wdn ∼ Mult(Φzdn).

Therein, Dir(·) represents a Dirichlet distribution, Mult(·) denotes a multino-
mial, and Φzdn expresses the topic selected by the topic assignment zdn. For
Bayesian LDA, the topics are random samples drawn from a Dirichlet prior
∀k, ϕk ∼Dir(β).

Given a training set of documents W, we let zd = {zdn}Nd
n=1 denote the set

of topic assignments for document d and let Z = {zd}Dd=1 and Θ = {θd}Dd=1

respectively denote all the topic assignments and mixing proportions for the
whole corpus. The goal of LDA is to infer the posterior distribution as

p(Θ,Φ,Z|W) =
p0(Θ,Φ,Z)p(W|Z,Φ)

p(W)
, (1)

where p0(Θ,Φ,Z) =
∏

k p(Φk|β)
∏

d p(θd|α)
∏

d

∏
n p(zdn|θd),p(W|Z,Φ) =

∏
d

∏
n p(wdn|zdn,Φ)

according to the generation process.

Regularized Bayesian Inference Jiang et al. (2012) show that (1) inferred
from the Bayes rule is equivalent to the solution of the optimization problem on
probability distribution below q(Z,Θ, Φ) as

min
q(Z,Θ,Φ)∈P

KL[q(Z,Θ,Φ)∥p0(Z,Θ,Φ)]− Eq[log p(W|Z,Φ)],

where P signifies the space of probability distributions. Regularized Bayesian In-
ference (RegBayes) is the framework which regards posterior inference by Bayes
rule as optimization problem including objective function and constraint on
probability distribution. One benefit of this framework is that it can be extended
naturally to include some regularization terms on q.
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MedLDA As a supervised topic model, MedLDA learns topic representations
and max-margin classifiers jointly. Training is conducted by solving the RegBayes
problem below as

min
q(η,Z,Θ,Φ)∈P

L(q(η,Z,Θ,Φ))− 2CR(q(η,Z,Θ,Φ))

subject to ∀d, 1− ydEq[η
Tz̄d]− ξd ≤ 0, ξd ≥ 0

(2)

where η represents the coefficient vector of classifiers L(q) isKL[q(η,Z,Θ,Φ)∥p(η,Z,Θ,Φ|W)];

R(q) =
∑D

d=1Eq[max(0, 1 − ydη
Tz̄d)] denotes the expected hinge loss, and C

signifies the penalty for misclassification. Also, z̄ is the average topic assignment

vector with each element being z̄k =
1

N

∑N
n=1 I(zn = k). The label prediction

rule is given as the signature function below:

sign(f(ηTz̄)).

3.2 Cost-sensitive MedLDA

Formulation CS-MedLDA is a MedLDA variant that adopts cost-sensitive
learning to learn topic representations and classifiers. In addition, this model
can use not only documents but also numerical data, unlike previous supervised
topic models. We define sd, sd ∈ RP as numerical data. Let xd = {z̄d, sd}Dd=1

and η = {η1,η2}, η1 ∈ RK , η2 ∈ RP respectively denote the feature vector
and coefficient vector. Then, the training of CS-MedLDA is formulated with the
optimization problem below as

min
q(η,Z,Θ,Φ)∈P

L(q(η,Z,Θ,Φ))− 2C+R+(q(η,Z,Θ,Φ))

− 2C−R−(q(η,Z,Θ,Φ))

subject to ∀d, 1− ydEq[η
Txd]− ξd ≤ 0, ξd ≥ 0

(3)

where

R+(q) =
∑

d:{d∈yd=1}

Eq[max(0, 1− ydη
Txd)];

R−(q) =
∑

d:{d∈yd=−1}

Eq[max(0, 1− ydη
Txd)].

The objective function is penalized with C+ if a minority instance is misclassified
to a majority group. One can mitigate the imbalanced data problem by adjusting
C− and C+. Here, CS-MedLDA is equivalent to MedLDA if C+ = C− and
sd = 0.

Learning Algorithm We use data augmentation and Gibbs sampling[25] as
a learning algorithm of CS-MedLDA. Furthermore, we designate y+,W+ and
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X+ = {Z+,S+} as the set of variables associated with a minority class, let-
ting y−,W− and X− = {Z−,S−} b variables belonging to a majority class.
Introducing the unnormalized pseudo-likelihood as

ϕ(y+|X+, C+,η) =
∏

d∈{d:yd=1}

exp(−2C+ max{0, ξd}),

ϕ(y−|X−, C−,η) =
∏

d∈{d:yd=−1}

exp(−2C− max{0, ξd}).

Then, the optimization problem (3) is rewritten as shown below:

min
q(η,Z,Θ,Φ)∈P

L(q(η,Z,Θ,Φ))− Eq[log ϕ(y
+|X+, C+,η)]

− Eq[log ϕ(y
−|X−, C−,η)]

. (4)

Using the ideas of data augmentation[18], the unnormalized pseudo-likelihood
for a minority group can be expressed as

ϕ(y+|X+, C+,η) =
∏

d∈{d:yd=1}

∫ ∞

0

ϕ(yd, λd|xd, C
+,η)dλd

=
∏

d∈{d:yd=1}

∫ ∞

0

1√
2πλd

exp

(
− (λd + C+ξd)

2

2λd

)
dλd

(5)

Then, if yd = 1,

ϕ(yd, λd|xd, C
+,η) =

1√
2πλd

exp

(
− (λd + C+ξd)

2

2λd

)
.

In the case of yd = −1, we obtain ϕ(yd, λd|xd, C
−,η) by changing C+ to C−.

Using ϕ(y+,λ+|X+, C+,η) and ϕ(y−,λ−|X−, C−,η), we can rewrite (3) as a
new optimization problem including augmented variable λ as shown below.

min
q(η,Z,Θ,Φ)

L(q(η,Z,Θ,Φ)− Eq[log ϕ(y
+,λ+|X+, C+,η)]

− Eq[log ϕ(y
−,λ−|X−, C−,η)]

(6)

Solving this optimization problem, we obtain the complete posterior as

q(η,λ,Z,Θ,Φ) =
p0(η,Z,Θ,Φ)p(W|Z,Φ)ϕ(y+,λ+|X+, C+,η)ϕ(y−,λ−|X−, C−,η)

ψ(y,W)
,

(7)

where ψ(y,W) is the normalized constant. In addition, we employ collapsed
Gibbs sampling[9] by setting prior p0(η,Z,Θ,Φ) = p(η)p0(Z,Θ,Φ) and inte-
grating out Θ,Φ from q(η,λ,Z,Θ,Φ).

Letting q∗(η|rest), q∗(zdn = k|rest) and q∗(λ−1
d |rest), and assuming the full

conditional distribution of η, zdn and λ−1
d , these probability distributions are
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Algorithm 1 Gibbs sampling for CS-MedLDA.

Initialization: set λ = 1 and randomly draw zdn from a uniform distribution
for m = 1 to M do

draw the classifier η from the normal distribution N(µ,Σ)
for d = 1 to D do

for each word n in document d do
draw a topic from the multinomial distribution M(C+) or M(C−)

end for
draw λ−1

d (and thus λd) from the inverse Gaussian distribution IG(1/C+|ξd|, 1)
or IG(1/C−|ξd|, 1)

end for
end for

given in the form presented below. Derivation details are presented in Appendix
1.

q∗(η|rest) = N(µ,Σ)

Σ =

(
IK+P

ν2
+ (C+)2

∑
d∈{d:yd=1}

xdx
T
d

λd
+ (C−)2

∑
d∈{d:yd=−1}

xdx
T
d

λd

)−1

µ = Σ

(
C+

∑
d∈{d:yd=−1}

yd(λd + C+)

λd
xd + C−

∑
d∈{d:yd=−1}

yd(λd + C−)

λd
xd

)
(8)

q∗(zdn = k|rest) ∝
(Ct

k.−n + βt)(C
k
d.−n + αk)∑V

t=1 C
t
k.−n +

∑V
t=1 βt

× exp

[
γη21k{λdyd + C+(yd − Eq[η2]

Tsd)}
λd

− (C+)2
γ2η21k + 2γ(1− γ)η1kΛ

k
dn

2λd

]
=M(C+)

(9)

If yd = −1, we obtain M(C−) with changing C+ to C−. Table 1 shows the
definition of Ck

d.−n,C
t
k.−n,γ and Λk

dn.

q∗(λ−1
d |rest) = IG(1/C+|ξd|, 1) (10)

Here, IG(a, b) is the inverse Gaussian distribution. After sampling λ−1
d , we ob-

tain λd by inversion. If yd = −1, then in the same fashion as zdn, we obtain
IG(1/C−|ξd|, 1) with changing C+ to C−.

Algorithm 1 shows pseudo-code for the learning algorithm of CS-MedLDA.
In our research, we set λ = 1 initially and draw Z randomly from a uniform
distribution.
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Table 1. Definition of Ck
d.−n,C

t
k.−n,γ and Λk

dn

Ck
d.−n

∑Nd
n=1 I(zdn = k)− I(zdn = k)

Ct
k.−n

∑D
d=1

∑Nd
n=1 I(zdn = k)I(wdn = t)− I(zdn = k)I(wdn = t)

γ
1

Nd

Λk
dn

1

Nd − 1

∑K
k′=1 ηk′Ck′

d.−n

Table 2. Distribution of document labels in our experimental settings

Condition |D+| |D−| imbalance ratio

1 798 4,852 14.1%

2 798 5,816 12.1%

3 798 6,803 10.4%

4 798 7,796 9.1%

5 798 8,787 8.3%

4 Pre-Experiment

4.1 Experimental Settings

Sect.4 presents the pre-experiment results: one-versus-rest classification in a 20
newsgroup dataset. This dataset includes about 20,000 articles within 20 news-
group categories. If an article d is labeled as alt.athism, then yd = 1, else yd = −1.
In one-versus-rest classification, an imbalanced data problem occurs when nu-
merous categories area used. Table 2 presents the distribution of labels in our
settings. Column |D+| is the number of articles categorized into alt.atishm. Col-
umn |D−| is the number of articles with other labels. Column imbalance ratio
is the ratio of alt.athism articles to the whole dataset. The training set contains
60% of total documents. The test set is the rest.

We compare the proposed model with four competitors: LDA+SVM, LDA+wSVM,
sLDA, and MedLDA. Here, LDA+SVM and LDA+wSVM use LDA to learn the
topic representations, and predict labels, respectively, with linear SVM and lin-
ear CS-SVM. sLDA is an STM proposed by Blei & McAliffe, 2007. sLDA and
MedLDA are trained with Gibbs sampling[26, 25]. For LDA+SVM, sLDA and
MedLDA, we set penalty parameter C = 1. For LDA+wSVM and CS-MedLDA,
we penalize their objective function with penalty C+ = 2 when a minority in-
stance is misclassified to a majority group. In the opposite case, penalizing with
C− = 1. The η’s prior p(η) for sLDA, MedLDA, and CS-MedLDA is the normal
distribution N(0, IK+P ). For all five models, we use the symmetric Dirichlet
prior α = 1/K and β = 1/V, V = 61, 118. The number of MCMC iterations M
is 100. The number of latent topics K is shifted from 10 to 60 in steps of 5.

To evaluate the predictive power, we use accuracy and the G-mean. The
G-mean is the geometric mean of the accuracy of each class, i.e., G-mean =√

#TN

|D−|
· #TP
|D+|

, where the sizes of different classes have already been consid-
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(a) Accuracy

(b) G-mean

Fig. 1. (a) Accuracy and (b) G-mean of each model when conducting one-versus-rest
classification with a 20 newsgroup dataset. The x-axis shows the number of topics. The
y-axis shows the value of indices. The imbalance ratio is shifted from 14.1% to 8.3%.

ered. Therefore, it is a good candidate for evaluating class-imbalance learning
performance.

4.2 Result

Figure 1 presents the accuracy and G-mean results obtained using different meth-
ods. All models except CS-MedLDA show a low G-mean instead of high accuracy.
This result indicates that these models cannot discriminate minority instances
from majority instances because of the influence of an imbalanced data problem.
However, the proposed model shows much higher G-mean. Moreover, its accu-
racy almost equals that of the others. Therefore, CS-MedLDA can more correctly
identify alt.athism articles belonging to a minority group than competitors can.

5 Experimental Results in Trauma Patient Dataset

This section presents the results of in-hospital mortality prediction and topic
evaluation for trauma patients in the Medical Information Mart for the Inten-
sive Care-III (MIMIC-III) database[13]. MIMIC-III includes numerical data and
clinical text of patients who were admitted to the Beth Israel Deaconess Medical
Center during 2001–2012. We extract 1,546 trauma patients (in-hospital mortal-
ity rate: 12.4%) who were older than 16 years old and who had stayed in this
ICU for 24 hr or longer.
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(a) Accuracy (b) G-mean (c) Precision

Fig. 2. (a) Accuracy, (b) G-mean, and (c) Precision of each model when predicting
patient outcomes in a trauma patient dataset.

The material documents are nursing notes and radiology reports gathered
within the first 24 hr of the ICU stay. As preprocessing, we first eliminate punc-
tuation, numbers, and clinical stopwords4. Next, we extracted noun phrases us-
ing morphological analysis. Finally, we obtained 18,041 documents and 28,080
vocabularies from 1,546 trauma patients.

Additionally, we obtained 12 numerical data such as gender, heart rate, and
hematocrit. All of these data are used to calculate SAPS II or APACHE II,
intensivists normally use in their work.

5.1 In-hospital Mortality Prediction

This experiment investigated the in-hospital mortality prediction accuracy of
the proposed model. We compare the proposed model with five competitors:
Numeric, LDA+SVM, LDA+wSVM, sLDA, and MedLDA. The numeric model
predicts patient outcomes using linear SVM, but this model is based only on
numerical data without text. Other models are the same as those described in
Sect.4 except that models predict outcomes using both numerical and textual
information. Hyperparameters are also the same settings as those described in
Sect.4.

For evaluating predictive capability, we use precision in addition to accuracy

and the G-mean. Precision is defined as precision =
#TP

#TP +#FP
, indicating

the percentage of false alerts.

Results Fig. 2 presents results of this experiment. MedLDA and LDA+wSVM
show the highest accuracy of the six models, although their G-means are much
lower than those of other competitors. These models cannot detect critically

4 https://github.com/kavgan/clinical-concepts/blob/master/clinical-stopwords.txt
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(a) MedLDA (b) CS-MedLDA

Fig. 3. (a) is the Monte-Carlo estimates of η1 of original MedLDA, and (b) is CS-
MedLDA’s one when the number of topics K = 40.

ill patients by the influence of an imbalanced data problem. When a classifier
faces an imbalanced data problem, its precision becomes unstable because the
denominator is extremely small. Therefore, we did not calculate their precision.

Numeric and LDA+wSVM show higher G-mean than either LDA+SVM or
MedLDA. However, their accuracy and precision were lower than that of ei-
ther sLDA or CS-MedLDA. This result indicates that these models classified
instances which actually belong to a majority group to a minority group in
surplus. Comparing CS-MedLDA with sLDA, the former shows higher values
than sLDA with all indices. Therefore, our proposed model can correctly predict
patient outcomes as compared to its competitors.

5.2 Topic Evaluation

This section presents the result of investigation into the topics extracted using
CS-MedLDA. First, we explore the difference of coefficient vector η1 between
standard MedLDA and our proposed model. Next, based on estimates of coef-
ficients η1k and frequently occurring words in each topic, we strive to discover
topics that have a positive correlation with bad outcomes.

coefficient η Analysis Fig. 3 presents the estimated values of coefficient η1 of
MedLDA and CS-MedLDA in the trauma patient dataset. We considered first
50 MCMC iterations as the burn-in period. The estimates of η1 of the original
MedLDA tend to be negative values. Based on the results of two classification
experiments, MedLDA produces poor predictions because it is unable to cap-
ture topics that are positively correlated with minority instances. However, CS-
MedLDA can capture such topics by giving a larger penalty for misclassifying
minority instances. As a result, CS-MedLDA produces better predictions.

Qualitative Evaluation Table 3 presents the most frequently observed words
of 10 topics extracted using CS-MedLDA. The estimated value of η1k corre-
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sponding to each topic is positive. Topic 1 has the strongest positive correlation
from the viewpoint of the value of η1k.

Hematoma, scan and subarachnoid hemorrhage (sah) appear as fre-
quent words of topic 1. Therefore, this topic is the result of CT scan over sub-
arachnoid hemorrhage patients. In addition, dislocation of a brain might occur
from the fact that dislocation appears frequently in this topic. Therefore, pa-
tients whose ratio of this topic is high might be afflicted by a severe subarachnoid
hemorrhage.

In topic 3, malignant disease spreads to the subclavian lymph node: lymph
and clavicle were observed frequently. In addition, patients were in postop
(post-operation) agitation. Metastasis of malignant disease and post-operation
agitation are known as risk factors related to bad outcomes.

Topic 4 represents tracheal intubation for mechanical ventilation. Actually,
ett is an abbreviation of endotracheal tube. Generally, endotracheal tubes are
used to secure a patient airway with consciousness disturbance or respiratory
failure. Because lobe also appeared among the most frequently observed words,
this topic represents respiratory care.

Both of these topics include factors related to deceased patients from past
findings. From the above, CS-MedLDA can discover characteristics associated
with patient mortality. However, some topics are difficult to interpret. Improve-
ment of interpretability is an important task for future work.

6 Clinical Significance and Conclusion

As described herein, we proposed a CS-MedLDA, a supervised topic model us-
ing cost-sensitive learning to ascertain the latent topic structure and max-margin
classifiers. Experimentation revealed that CS-MedLDA has two preferred prop-
erties. The proposed model detects minority instances more correctly than previ-
ous methods under an imbalanced data problem; it discovers some characteristics
associated with a minority group from documents. These properties bring two
benefits when applied in medical fields.

Table 3. Most frequently observed words in 10 topics with coefficient (η ≥ 0).

Topic 1 hematoma,mm,sinus,optiray,dislocation,scan,npn,foci, opacities,car,sah

Topic 2 ct,year,number,radiology,head,spine,hemorrhage, status,resp,structures

Topic 3 process,checks,stool,lymph,tol,clavicle,multiplanar, reformats,need,postop ,agitation

Topic 4 lobe,line,namepattern,aorta,ett,opacification,site, endotracheal,elbow,ribs,vein

Topic 5 foley,sbp,side,pupils,gallbladder,eye,qhr, remains,mcgkgmin,diameter,tree

Topic 6 herniation,service,read,flow,extubation,scale,spaces, question,rule,sicu,ed

Topic 7 indication,blood,rib,lat,detail,foot,transfer,units, volumes,data,drain

Topic 8 wcontrast,atelectasis,bilat,ventricle, lymph,adenopathy,rt,arrival,breath, reduction,heights

Topic 9 urine,midline,bp,npo,nursing,collar,wean,pancreas, stenosis,displacement,tls

Topic 10 findings,lung,time,abd,neck,position,exam,leg, mdct,calcifications,hegiht
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First, our model is expected to work well for other imbalanced data classifica-
tion problems. In medical fields, various imbalance data are generated aside from
patient mortality. One example is disease recurrence. In addition, numerical data
and clinical text are recorded all over the hospital to monitor patients’ disease
state. Using the proposed model, we can readily construct a prediction model
that integrates numerical and textual information with a simple Gibbs sampling
algorithm. These two properties, i.e. detectability over minority instances and
the ease of integrating numerical and textual information, are helpful for other
imbalanced data classification.

Secondly, the proposed model might become a powerful method by which
we can explore the characteristics associated with a minority group. In conven-
tional clinical studies, researchers have attempted to seek such characteristics
for preventing disease onset or finding care methods from numerical data. In
other words, researchers have often been interested in the characteristics of mi-
nority instances in their studies because patients with bad outcomes or those
afflicted with some disease are rare examples. Through interpretation of topics
extracted using our model, we can uncover them not from numerical data but
from unstructured text. Therefore, CS-MedLDA might become another tool to
elucidate minority group characteristics.

Future studies will be conducted to exploit dynamic supervised topic models
that learn topic representations and its dynamics from documents and from
supervision. Patient conditions might change an instant after ICU admission.
Specifically, one’s health condition tends to be unstable in his/her acuity phase.
Use of this dynamic information of clinical data has presented many benefits for
outcome prediction. Dynamic supervised topic models might become an effective
outcome prediction method based on dynamic information and supervision, and
a text mining method that captures the time-variant evolution of illness severity
from clinical texts.

A Derivation Detail of Conditional Distributions

By integrating out the Dirichlet variables (Θ,Φ) in the complete posterior dis-
tribution (7), we obtain the collapsed posterior distribution

q∗(η,λ,Z) ∝ p(η)p(W,Z|α, β)ϕ(y+,λ+|X+, C+,η)ϕ(y−,λ−|X−, C−,η)

= p(η)

[ D∏
d=1

δ(Cd +α)

δ(α)

] K∏
k=1

δ(Ck + β)

δ(β)

×
∏

d∈{yd=1}

1√
2πλd

exp

(
− (λd + C+ξd)

2

2λd

)

×
∏

d∈{yd=1}

1√
2πλd

exp

(
− (λd + C−ξd)

2

2λd

)
(11)
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where δ(x) =

∏dim(x)
i=1 Γ (xi)

Γ (
∑dim(x)

i=1 xi)
,Γ (·) is the Gamma function. Also, Ck = {Ct

k}Vt=1

is the set of word counts associated with topic k; Cd = {Ck
d}Kk=1 is the number of

times that terms are associated with topic k. The full conditional distributions
used in collapsed Gibbs sampling are the following.

For η Setting Gaussian prior N(0, ν2IK+P ) for η, the conditional distribution
q∗(η|rest) is given by as the following Gaussian distribution.

q∗(η|rest) ∝ p(η) exp

( ∑
d∈{d:yd=1}

−(λd + C+ξd)
2

2λd

)
exp

( ∑
d∈{d:yd=−1}

−(λd + C+ξd)
2

2λd

)
∝ N(µ,Σ)

Σ =

(
IK+P

ν2
+ (C+)2

∑
d∈{d:yd=1}

xdx
T
d

λd
+ (C−)2

∑
d∈{d:yd=−1}

xdx
T
d

λd

)−1

µ = Σ

(
C+

∑
d∈{d:yd=−1}

yd(λd + C+l)

λd
xd + C−

∑
d∈{d:yd=−1}

yd(λd + C−l)

λd
xd

)
(12)

Therefore, we can draw coefficient vector η from q(η|rest) = N(µ,Σ)

For Z . The conditional distribution of Z given the other variable is the follow-
ing.

q∗(Z) ∝
K∏

k=1

δ(Ck + β)

δ(β)

∏
d∈{yd=1}

δ(Cd +α)

δ(α)
exp

(
− (λd + C+ξd)

2

2λd

)

×
∏

d∈{yd=−1}

δ(Cd +α)

δ(α)
exp

(
− (λd + C−ξd)

2

2λd

)
By canceling common factors, we can derive the conditional distribution as
q∗(zdn|rest).

For λd Finally, the conditional distribution of the augmented variable λ given
the rest variable is a generalized inverse Gaussian distribution (Devroye, 1986)
as

q∗(λd|rest) ∝
1√
2πλd

exp

(
− (λd + C+ξd)

2

2λd

)
∝ 1√

2πλd
exp

(
− (C+)2ξ2d

2λd
− λd

2

)
= GIG(

1

2
, 1, (C+)2ξ2d),
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where GIG(p, a, b) = C(p, a, b)xp−1 exp

(
−1

2

(
b

x
+ ax

))
and C(p, a, b) is a

normalization constant. As q∗(λd|X,η) is the generalized inverse Gaussian dis-
tribution, λ−1

d follows an inverse Gaussian distribution. We denote q∗(λ−1
d |rest)

as the conditional distribution of λ−1
d , and q∗(λ−1

d |rest) is the following

q(λ−1
d |rest) = IG(1/C+|ξd|, 1),

where IG(a, b) =

√
b

2πx3
exp

(
−b(x− a)2

2a2x

)
, a, b > 0.
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