
A Study on View-based 3D Model Retrieval from
a Single Input Image

Vicky Sintunata
B4ID2501

Graduate School of Information Science
Tohoku University

Miyagi, Japan

July, 2017

Acknowledgement

First and foremost, I would like to thank my supervisor Prof. Terumasa Aoki
for his kindness and patience during my Ph.D study and research. Without his
guidance and insight, this dissertation will not be as it is. I would also like to thank
all the committee members Prof. Yoshifumi Kitamura, Prof. Ayumi Shinohara,
and Prof. Takuo Suganuma for their comments and their guidance to improve this
dissertation. I would also like to address my gratitude to Mitsubishi Corporation
International Student Scholarship who supported me during my Ph.D study.

I would also like to give my gratitude to all the Aoki Laboratory members
(present and past) who had not only supported me but also shared their knowl-
edge to this point. A huge thanks to my family and friends here in Japan: the
Indonesian Students Association in Japan, Miyagi Chapter (PPIS), Persekutuan
Doa Sendai (PDS) and Keluarga Katolik Indonesia Sendai (KKIS), Sendai English
Fellowship (SEF), and Mafu-mafu family who always supported and brought joy
to me. Special mention to Eddwi Hesky Hasdeo, Evelyn Pratami Sinaga, Stevanus
Kristianto Nugroho, and Ellen Tanudjaja who always encouraged and supported
me during my research, disseration writing and defense. I’m really glad to meet
and spending time with all of you! Last but not least, I would like to thank my
parents and my sisters who always supported me all up to this point in my life.

Contents

Abstract

List of Figures ii

List of Tables iv

1 Introduction 1

2 Related Work 7

2.1 Rigid 3D Object Retrieval . 7

2.2 Non-rigid Retrieval . 11

2.3 Skeletonization . 14

2.4 Background for the Proposed Methods 18

2.4.1 SIFT and SURF . 18

2.4.2 Cross Ratio based Feature 20

2.4.3 GrabCut . 21

2.4.4 Interpolation Methods . 21

2.4.5 Delaunay Triangulation . 24

3 Rigid 3D Model Retrieval using Skewness Map 26

3.1 Search Space Reduction . 27

3.1.1 Skewness . 27

3.1.2 Skewness Map . 29

3.1.3 Skewness Maps as Search Space Reduction 30

3.2 Matching Step using Cross Ratio-like Number 34

3.3 Experimental Result and Discussion 36

3.3.1 Accuracy comparison . 36

3.3.2 Time Comparison . 38

3.3.3 Larger Database . 39

3.3.4 CRN Parameters . 40

4 Natural Image Skeletonization using Delaunay Triangulation 43
4.1 Edge Points Extraction . 44

4.1.1 Orientation Approximation 46
4.1.2 Histogram Calculation Input 46

4.2 Skeleton Extraction . 47
4.2.1 Triangle Grouping . 47
4.2.2 Circular Group Removal . 48
4.2.3 Extraction . 49
4.2.4 Pruning and Smoothing . 49

4.3 Experimental Result and Discussion 50

5 Object Specific Non-rigid (Articulated) 3D Model Retrieval using
Scale-Rotation Invariant Shape Context on Skeleton 57
5.1 Shape Feature . 57
5.2 Matching Step . 60
5.3 Experiment Result . 61

6 Conclusion 67

A Result of SMSURF and SMCRN 72

B Result of Scale-Orientation Invariant Shape Context on Skeleton 80

Abstract

With the increasing number of models made available freely, the number of repos-
itory will also increase. This leads to the need of a fast and accurate 3D model
retrieval system. In this study, two types of (view-based) 3D model retrieval sys-
tems, namely the rigid 3D model retrieval and non-rigid (articulated 3D model)
retrieval system is studied. Since a skeleton information is needed to overcome
the non-rigid retrieval system, a novel skeleton extraction algorithm with sparse
points condition is also proposed. The experiment on the rigid 3D model retrieval
shows that the proposed method can enhance the rerieval speed 14 times faster
(in matching time) than the conventional view-based retrieval system. Further-
more, the proposed method can also approximate the orientation of the query
input.The skeletonization proposed achieves a better visual result and achieve 1.7
times higher F-measure compared to an existing SSM method. Finally, our pro-
posal on the articulated 3D model retrieval by combining the shape context and
skeleton information achieves a promising result of 93% (on average) correct re-
trieval rate.

List of Figures

1.1 Input an image and output the desired 3D model 1
1.2 System Overview . 2
1.3 Shape might be different based on different viewing direction 3
1.4 Skeletonization Limitation . 4
1.5 Different object might have similar skeleton in non-rigid 3D model

retrieval . 4
1.6 Relying only on skeleton information is insufficient to retrieve an

object specific object (b) . 6

2.1 Shape from shading drawbacks [12] 8
2.2 Hypergraph method proposed in [1] 9
2.3 Magic Canvas proposed in [17] . 10
2.4 Bag of Geodesic Histogram (BOGH) method proposed in [20] . . . 11
2.5 CM-BOF proposed in [22] . 12
2.6 An SSCD-based method proposed in [23] 13
2.7 An object recognition method proposed in [25] 13
2.8 Thinning method proposed in [28] 15
2.9 Distance field based method and its pruning step proposed in [35] . 15
2.10 Wavelet-based approach proposed as in Figure 12 in [36] 16
2.11 Multiscale symmetry detection proposed in [38] 17
2.12 Grey-scale skeletonization using structure adaptive anisotropic fil-

tering in [39] . 17
2.13 Grey-scale skeletonization using skeleton strength map in [40] . . . 18
2.14 Example images of similar objects 19
2.15 Cross ratio example . 20
2.16 An example of Characteristic Number in [47] 20
2.17 Grabcut example in [48] . 21
2.18 Bezier examples (image source: https://pomax.github.io/bezierinfo/) 25
2.19 Delaunay Triangulation from a set of points 25

3.1 General overview of the proposed method 27
3.2 Binarization Process . 29

ii

3.3 Applying rotation to object in Fig. 3.2 29
3.4 Test objects . 30
3.5 Skewness plot results . 31
3.6 Skewness maps example . 32
3.7 Thresholded maps . 32
3.8 Visualization of search space reduction 33
3.9 Final search space (”AND” Map) 33
3.10 CRN feature visualization . 35
3.11 3D objects used in accuracy test . 36
3.12 3D Models used in the experiment in section 3.3.3 41

4.1 Edge extraction step . 44
4.2 Along an orientation, edge point will have a large χ2 distance be-

tween the left part and the right part of the patch. 45
4.3 An example of calculating a feature from a triangle 47
4.4 Circular point removal example. If point P is connected to triangles

with the same group labels (visualize as red points), then it will be
deleted from the list and the rest of the points will be re-triangulated. 48

4.5 Three types of triangle with its connection (black lines). The colored
points represent the group label of the triangle. Color Similarity
represents the same group . 49

4.6 Pruning step . 50
4.7 Result comparison of the proposed method (column 1 and 3) with

the SSM method (column 2 and 4). 51
4.8 Input images from Berkeley Dataset. The second and fourth row

are the ground truth images generated by human observer. Starting
from the first row: deer, kangaroo1, airplane, horse, swimmer1,
panther, swimmer2, cheetah, starfish1, horse2. 52

4.9 Input images from Caltech 101 Dataset. The second and fourth row
are the ground truth images generated by human observer. Starting
from the first row: emu1, starfish2, starfish3, elephant, starfish4,
kangaroo2, kangaroo3, starfish5, emu2, seahorse. 53

4.10 Although generated better skeleton, since it does not intersect the
ground truth skeleton, the proposed method has lower F-measure . 55

5.1 Skeleton shape context . 58
5.2 Rotation and Scale variant Shape Context 59
5.3 An example of shape context descriptor 60
5.4 Rendered 3D models for one class of object in the database 62
5.5 Models in the database . 62
5.6 Test model with different pose (Test Pose) 63

iii

5.7 Query Objects . 66

iv

List of Tables

3.1 Comparison Result: Magic Canvas(MC) vs Ground Truth (GT) . . 37

3.2 Comparison Result: Proposed vs Ground Truth (GT) 38

3.3 Result comparison using Hotelling’s t-square test 39

3.4 Time Comparison of Conventional SURF, SMSURF and SMCRN
(in seconds) . 39

3.5 t-Test for Time Comparison Result 40

3.6 Summary of Large Database Experiment 40

3.7 Parameter testing of CRN feature generation (d = 5) 42

3.8 Parameter testing of CRN feature generation (d = 10) 42

4.1 Precision, Recall and F-measure comparison of SSM and the pro-
posed method . 54

4.2 Parameter test . 55

4.3 Summary (average F-measure) of the parameter testing 56

5.1 Shape Context Result on Test Pose with x = 0 63

5.2 Shape Context Result on Test Pose with x = 30 64

5.3 Shape Context Result on Test Pose with x =-30 64

5.4 Shape Context including skeleton result on Test Pose with x = 0 . . 65

5.5 Shape Context including skeleton result on Test Pose with x = 30 . 65

5.6 Shape Context including skeleton result on Test Pose with x =-30 . 65

5.7 Summary of the result using our proposal 65

A.1 Accuracy Comparison of SMSURF and SMCRN 72

A.2 Time Comparison of SMSURF and SMCRN (in seconds) 77

B.1 Shape Context including skeleton result on Template Pose 2 with x
= 0 . 81

B.2 Shape Context including skeleton result on Template Pose 2 with x
= 0 . 81

B.3 Shape Context including skeleton result on Template Pose 2 with x
= 0 . 81

v

B.4 Shape Context including skeleton result on Template Pose 2 with x
= 0 . 82

B.5 Shape Context including skeleton result on Template Pose 2 with x
= 0 . 82

B.6 Shape Context including skeleton result on Template Pose 2 with x
= 0 . 82

B.7 Shape Context including skeleton result on Student Pose 1 with x
= 0 . 83

B.8 Shape Context including skeleton result on Student Pose 1 with x
= 30 . 83

B.9 Shape Context including skeleton result on Student Pose 1 with x
= -30 . 83

B.10 Shape Context including skeleton result on Student Pose 2 with x
= 0 . 84

B.11 Shape Context including skeleton result on Student Pose 2 with x
= 30 . 84

B.12 Shape Context including skeleton result on Student Pose 2 with x
= -30 . 84

B.13 Shape Context including skeleton result on Student Pose 3 with x
= 0 . 85

B.14 Shape Context including skeleton result on Student Pose 3 with x
= 30 . 85

B.15 Shape Context including skeleton result on Student Pose 3 with x
= -30 . 85

vi

Chapter 1

Introduction

Creating a 3D model from scratch is not a trivial task. It is very time consuming
and needs a lot of effort. Not to mention that usually only a skillful person can
create a good quality of 3D models. Even for a skillful artist, creating a 3D model
still takes a lot of time and therefore, instead of creating everything from zero, it is
much preferable to have a repository of 3D models (Fig.1.1). With the increasing
amount of 3D models in the repository (database), it is necessary to have a system
that can retrieve the desired 3D model fast and correctly.

3D model retrieval mainly can be classified into two approaches: model-based
3D model retrieval and view-based 3D model retrieval. While the first one takes
a 3D model as an input, the second approach takes a 2D input such as images or
sketches as the input. There are many approaches that has been proposed in the
model-based 3D model retrieval, but there are less research for the view-based 3D
model retrieval. Furthermore it is much often that we do not have the intended
3D models at hand, instead we only have an image of the models or even only a
sketch. Therefore, the view-based 3D model retrieval is more applicable compared
to its counterpart the model-based 3D model retrieval. Thus, view-based 3D model

(a) input (b) output

Figure 1.1: Input an image and output the desired 3D model

1

Figure 1.2: System Overview

retrieval will be the main topic in this research.

3D model itself can be classified into two types: rigid 3D models and non-
rigid (articulated) 3D models. Notice that throughout the entire content of this
dissertation, the term non-rigid is regarded also as the articulated 3D models and
therefore will be used interchangably. In rigid 3D models the pose of the object
does not change or remain in rigid form. For example cup will remain a cup
irrespective of its ”pose”. The second type, non-rigid 3D models, the object might
be one, but the pose of the object might be different. For example: a human
standing and a human running are two models with the same object (human) but
different pose (standing and running). Based on these types of 3D models, the
challenge to retrieve the model from the database will also differ and of course the
non-rigid types are much more challenging than the rigid 3D model type. More of
the related work can be found on chapter 2.

The overall system can be seen in Fig.1.2. Notice that in the input to the

2

Figure 1.3: Shape might be different based on different viewing direction

system is a single natural image of a real 3D object, although for simplicity in the
research done here we were using a single rendered image of a 3D CG model, with
the exception of the input for the skeleton extraction in chapter 4.

In chapter 3 we will discuss more about the first type of retrieval, i.e. the rigid
3D model retrieval. Since we are dealing with the view-based 3D modeling, the
simplest way to retrieve the object is to create a database of the rendered image
of the 3D models. Unfortunately, depending on the viewing angle, the shape or
the feature of the object might be different (Fig.1.3). A brute force way to handle
is to render the 3D model from every possible viewing angle, so an object will be
rendered at most (360 × 360 =) 129,600 times. If there are 1000 objects in our
repository, that means there will be 129,600,000 in total. Of course matching one
input image of the model (or object) we want to create with 129,600,000 images
require a lot of time and effort. Therefore, we propose a speed-up process to be
used for this large database matching using the skewness map method. From the
experimental results, it is shown that the matching process is 14 times much faster
than conventional method. Furthermore by using the skewness map approach, the
orientation of the object can also be approximated.

One way to solve the non-rigid 3D model retrieval is by using the information
the object’s skeleton provided. Although posing differently, the general classifi-
cation of the object can be retrieved by the skeleton information. For example
the skeleton generated from human model is definitely different from the skeleton
generated from elephant. Therefore, skeleton is one of the key to solve the non-
rigid 3D model retrieval.Before moving on to the non-rigid 3D model retrieval, we
will discuss deeper regarding the skeletonization or skeleton extraction algorithm
in chapter 4.

Skeletonization comes not without a limitation (Fig.1.4). Conventional skeleton
method (left image in Fig.1.4) relies heavily from the binary image input. While it
can be achieved by doing the foreground-background segmentation, segmentation
itself is still an open problem in this area. To alleviate this limitation, the grey-
scale skeletonization come into development (middle image of Fig.1.4). In this

3

Figure 1.4: Skeletonization Limitation

Figure 1.5: Different object might have similar skeleton in non-rigid 3D model retrieval

approach, a closed-curved boundary constraint on the binary image skeletonization
is relaxed into the semi-closed curved boundary constraint. This means that the
edge or boundary of the object should be connected one and another in some
extend. More often when the background and the object in the image share a very
high similarity (such as texture or color) with the background, the connectivity
(and therefore the semi-closed curve boundary) constraint cannot be fulfilled (right
image in Fig.1.4). In chapter 4, we are proposing a method to solve this problem.

In the fifth chapter a non-rigid 3D model retrieval is using the skeleton infor-
mation is proposed. As far as we know, there are no existing literature regarding
the fully view-based non-rigid 3D model retrieval system using only one input im-
age. As mentioned beforehand, using only skeleton in retrieving the 3D model will
only result in similar type of model being retrieved (Fig.1.5). Two objects with
the same pose will have the same skeleton information or very similar informa-

4

tion. When we want to retrieve the exact object from the database, it becomes
very challenging if we only relies on the skeleton information (Fig.1.6). In order
to solve this problem, we are incorporating the shape context descriptor, so that
the retrieval system can retrieve the same object correctly regardless of its pose.
Early experiment shows a promising result of this approach. Unfortunately, there
are still some challenges that need to be addressed, namely the rotation and scale
robustness of the shape context. A new method based on the cross correlation
method is proposed in this chapter to minimize these challenges.

Finally the sixth chapter will conclude this research. In this chapter a summary
of what have been achieved and the remaining challenges for future direction in
this research will be presented.

5

(a) Class specific retrieval

(b) Pose invariant object
retrieval

Figure 1.6: Relying only on skeleton information is insufficient to retrieve an object
specific object (b)

6

Chapter 2

Related Work

In this chapter we are going to review several of the past works that had been
done to solve the rigid and non-rigid retrieval. As mentioned on the first chapter,
we will also review several algorithm of skeletonization. Finally, at the end of this
chapter, several methods that will be used as a part in our proposed method will
be described.

2.1 Rigid 3D Object Retrieval

Several authors [1, 2, 3] classified the problems of 3D object retrieval into model-
based and view-based 3D object retrieval. Model-based systems are dealing with
3D model as input (or query), while view-based systems are dealing with 2D
input(s) such as images, sketches, etc. The term query and input will be used
interchangeably unless mentioned otherwise. Although the focus in our research is
mainly dealing with the 2D input, for completeness sake we will also review some
of the methods used to solve the model-based 3D object retrieval.

One of the core problem in a retrieval system is how to match the query and
the content of the database. One such example is a method proposed by Shah
et al. [4] which utilizes a local surface descriptor based on the divergence for
feature matching between two 3D models. Another approach to solve model-based
problem using 3D curve-matching had also been proposed by Feinen et al.[5]. In [6]
the authors proposed a method which project the 3D model into a panoramic view
(cylindrical projection) which is used as a descriptor for the retrieval system. Based
on the same descriptor, the authors in [7] proposed a method which converts the
qualitative descriptions into attribute signature and reference set signature which
can be considered as an annotation problem for 3D model retrieval system.

The problem is much more pronounce in the 3D-2D matching (view-based
systems) since, depending on the viewing angle, the shape of an object might

7

Figure 2.1: Shape from shading drawbacks [12]

differ. One might elevate this problem using methods such as shape from shading
[8, 9, 10, 11] to get the semi-3D information of an object and then matching the
available information with the models in the database using the aforementioned
methods. Unfortunately shape from shading has its own problem, such as the
specular reflection and color effect [12, 13] and therefore, the generated semi-3D
model does not represent the object well (Fig.2.1).

Gao et al.[1] proposed a hypergraph analysis to solve the view-based retrieval
system (Fig. 2.2. A hypergraph is a graph with edges that can connect to several
nodes. The nodes in the hypergraph are considered objects in the database and the
edges are connected to a cluster of views. Multiple hypergraphs are constructed
in their proposed method to model the objects and their connections with each
other. Retrieval and recognition were all done based on these hypergraphs. One
important point regarding these hypergraphs is the weight on each edges. While
for retrieval the weight were set simply using equivalent weight, the recognition
weights were learned from the hypergraph fusion. Note that when a new object
is inserted to the database, a new hypergraph (including all the weights) needs to
be established again. Contrary to our proposed method where each object can be
considered to be independent with the others in the database.

Similar with [1], Ke et al.[2] proposed a retrieval system based on a graph
method. First, bipartite graphs which match images (object viewed from several
angles) feature (49 Zernike Moments) of one object with another were created.
From these bipartite graphs, a global graph with objects as nodes and weighted
edges connecting these nodes were generated. To determine the weights, a semi-
supervised learning method was applied.

Wang et al.[3], in order to solve the view-based retrieval system, proposed a

8

Figure 2.2: Hypergraph method proposed in [1]

learning method based on the Gaussian Mixture Models (GMM) of the object.
First, several view images taken from different viewing angles oof each object will
be taken and then 49 Zernike Moments as features of each view will be calculated.
A general GMM based on these features will then be calculated. Based on the
general GMM, an adapted version (object specific) GMM parameters will then be
calculated. In order to retrieve the corresponding object with the query, a distance
measurement based on the Kullback-Leibler (KL) divergence is then employed.
Note that the methods mentioned above [1, 2, 3] requires a learning step in one of
their steps, contrary to our proposal which does not require any learning at all.

Mahmoudi and Daoudi[14] proposed a method by utilizing a characteristic
views of 3D object. First a 3D object is represented by 7 characteristic views.
The first three characteristic view (principal views) are taken from the Principal
Component Analysis (PCA) of the 3D object. The rest of the characteristic views
are deduced from the principal views. In the retrieval step, two curvature scale
space (CSS) distance between the query and the models in the database will then
be calculated. M-tree is utilized to reduce the calculation time when calculating
the distance between the CSSs.

Latecki and Lakämper[15] proposed a method which utilizes the discrete curve
evolution. The shape of an object will be simplified to reduce the influence of

9

Figure 2.3: Magic Canvas proposed in [17]

noise and remove ”irrelevant” shape features. A minimum value of similarity
measurement, which calculates the arc similarity between the curve of the objects,
will determine several objects in the database to be retrieved.

Yang et al.[16] proposed a method which combines the skeleton and contour
information of an object. First skeleton information are extracted from the object.
From the extracted skeleton, contour segments belonging to those skeleton end-
points can be determined. Twelve contour features can be extracted from each
contour segment. Finally for the retrieval step, a similarity measurement that
combines the skeleton similarity value and contour segments similarity value are
calculated.

Recently Liu et al.[17] proposed a method that utilizes multi-modal clique-
graph matching. While this method’s strength lies in the multi-modal utilization, a
single modal (or feature) utilization method can also be used. The most important
thing in this method is the clique-graph generation which kind of similar with the
hypergraph generation in [1]. The difference is that in the clique-graph, not only
hyper-edges but also hyper-nodes (cliques) are used. To create the hyper-nodes
correspondences a hierarchical agglomeratice clustering (HAC) is applied. Similar
with [1, 2] since a graph based is used, when new objects are inserted, all the
process (correspondences between objects) should be established again.

Magic Canvas[18] is a system where user can draw a sketch and a selection of
3D object based on the sketch will be retrieved (provided) to the user to be selected
(Fig.2.3). Their 3D model retrieval method is based on the Fourier transform of
the distance measurement of the sketch’s contour. First, the contour of the query is
retrieved and then the distance from the center mass of the object to each contour
point is recorded. This distance data will then go through a Fourier transform to
get the frequency information. In further step, these frequency feature will then be
used as the global feature. In order to differentiate object with the same frequency,
a local feature based on the inverse Fourier transform aof the filtered frequency is
then calculated. The linear combination of these features will be the score of the
object (similarity score).

10

Figure 2.4: Bag of Geodesic Histogram (BOGH) method proposed in [20]

2.2 Non-rigid Retrieval

A good survey regarding the non-rigid retrieval method can be found in [19, 20, 21].
Some of the papers will be discussed here.

In[19, 20] Nguyen and Porikli proposed a method by using the Bag of Geodesic
Histogram, a combination of bag of feature and normalized geodesic distance ap-
proach (Fig.2.4). A geodesic distance is defined as the shortest path from one
points to another point on the model. Then, a set of points on the model will
have each a feature descriptor of these geodesic distance between the points on the
model which is encapsulated in a histogram. Finally, when matching between two
objects. the Hungarian algorithm is used with the Chi-square histogram distance
is utilized to calculate the difference between the histograms.

Lian et al. [22] proposed a method using a CM-BOF (Clock Matching - Bag of
Feature) method (Fig.2.5). This method first normalize the input object into its
canonical form. These canonical forms are then rendered into multi-view images
and SIFT descriptors are extracted from the rendered images as feature vector.
Then, using the Bag-of-Feature method, a cluster of thse feature vectors will then
be used as a codebook that will be used to represent the object. Finally, the
matching is done using the clock-matching method which basically compare the
multi-view of the object with the codebooks (database) generated from the previ-
ous step. Contrary to this method, our proposal uses only one input image.

Localized statistical feature (LSF)[19, 20] and its improvement SV-LSF[21]
has also been proposed. The method starts by taking sample points from the
surface of the 3D model and generate a sphere of interest (SOI) around the points
and checking the point on the surface of the models. The feature of each point
is extracted by computing 4D joint histogram consisting of angles and distance
information among all the pairs of oriented points inside the SOI. In [19, 20] the

11

Figure 2.5: CM-BOF proposed in [22]

features are then combined using the bag-of-feature method and in [21] a super
vector based method is used instead.

In [23] Li et al. proposed a method which utilize the Spatial Structure Circular
Descriptor (SSCD). Fig. 2.6 shows this method. The SSCD image is created from
the projected points of the 3D model into the minimal bounding sphere. In further
step, this bounding sphere is projected into the image plane. These points along
its spatial feature are then sent into a modified bag-of-feature method such that it
is translation-invariant. The difference between the model is then calculated using
the earth-moving distance. Notice that in order to get the SSCD images, a 3D
model of the input is needed.

Bronstein et al.[24] proposed a method based on the (diagonal) heat kernel
(or heat kernel signature) of the object. Like any other previously mentioned
approaches, they use the bag-of-feature approach when discriminating the input
object and the objects in the database. Instead of using the normal bag-of-feature
approach, they proposed a modified bag-of-feature which instead of using indepen-
dent feature between one point with another, they use the spatial relationships of
nearby points also.

Although not specifically designed for 3D model retrieval, a skeleton-based
method has been proposed by Bai et al.[25] to do the object detection in an image.

12

Figure 2.6: An SSCD-based method proposed in [23]

Figure 2.7: An object recognition method proposed in [25]

13

The method takes a bayesian approach to detect the object in the image. Given a
skeleton and its (semi- or full) contour information, the method will then retrieve
(or detect) the object in the image. First the skeleton is classified into several
types, i.e. the junction point skeleton and branch point skeleton. By classifying
the skeleton type, a tree structure of the skeleton can then be generated. Since the
method is based on a bayesian approach, a training step is required. The learning
parameter is then applied to the tree structure of the training images along with
the contour information. To localize the object in the image, a sum-max algorithm
[26] is then applied, i.e. summing each part with the maximum similarity of the
contour (shape) of the object and the object in the database (Fig.2.7).

2.3 Skeletonization

Based on the input, skeletonization can be classified into two types: 2D and 3D
skeletonization. Since our focus deals only with the skeletonization of 2D images,
only 2D image skeletonization will be covered here. Further classification can be
applied to the 2D skeletonizaton, i.e. binary image skeletonization and grey-scale
skeletonization.

Most of the approaches deal with the binary image skeletonization. Cornea et
al.[27] classify skeletonization into 4 classes, i.e. thinning and boundary propa-
gation method, distance field based method, geometric method and general field
method. In thinning and boundary propagation, the skeleton is extracted by
removing the boundary (object) pixel iteratively until the required thinness is
obtained.

One of the most famous algorithm to extract the skeleton from binary image
using the thinning type of approach is Zhang-Suen algorithm [28, 29] The algo-
rithm works by checking the neighborhood of all one-valued pixel (white) and the
transition of the binary pixel from zero to one. There are four predefined condi-
tions that need to be checked for each pixel of the binary image, ie. the number
of zeros (black) and ones (white) pixels on the eight neighborhoods, the number
of transition as mentioned before and two of the conditions that checked the value
of the neighbors’ value of a 4 -neighborhood system (north, east, west south po-
sitions of a current pixel). If a pixel fulfills the predefined conditions, then the
current pixel will change its current value from one to zero, i.e. from white to
black. Fig.2.8 shows the visualization of this method.

In distance field based methods, skeleton is extracted by checking the position
of an inner pixel to the boundary of the target object [30, 31, 32, 33, 34, 35]. Initial
skeleton generated by a distance transform usually produce a lot of redundant
skeleton branches. Therefore a pruning step is usually needed to get less redundant
and much more informative skeleton. In [35] a skeleton pruning using the discrete

14

Figure 2.8: Thinning method proposed in [28]

Figure 2.9: Distance field based method and its pruning step proposed in [35]

curve evolution is proposed. Basically the method will check every branch of the
skeleton. If the branch does not belong to the simplified contour of the object
(from the evolution of the curve), then it will be removed (Fig.2.9).

In geometric methods, polygonal meshes or scattered point sets are used. Reeb
graph and Voronoi diagram are some of the examples belonging to this class. The
potential field function and radial bases function are the examples of the methods
under the general-field functions. The most crucial part of the approaches belong-
ing to the binary image skeletonizaton is the availability of some closed-curved
boundary, represented by the binary image. Without a closed-curved boundary
object, these approaches cannot be used.

As some might notice that closed curved constraint might not always be achieved
in an image due to some occlusion or high similarity of the object characteristics
(such as color) with the background. With this restriction, the second type of 2D
skeletonization, i.e. the grey-scale skeletonization, came into development. Skele-
ton is closely related to symmetry, therefore several authors proposed methods
based on the symmetry information.

15

Figure 2.10: Wavelet-based approach proposed as in Figure 12 in [36]

You and Tang [36] proposed a character’s skeleton extraction method using
wavelet (Fig.2.10). They proposed a new wavelet function to detect the symmetry
of the character in the input image. Although the extraction perform well, the
generated skeleton has a discontinuity in some of its part. Therefore, they also
proposed a method to amend this drawback by connecting the loss skeleton. A
character usually has a distinguish uniform color and contour and so the method
perform really well. Unfortunately, in natural images, such condition is rarely or
hard to be achieved.

Widynski et al. [37] proposed a method based on particle filter approach. Par-
ticle filtering approach requires a training or (a) known distribution(s) beforehand.
Levinshtein et al. [38] proposed a method based on superpixel segmentation and
learned affinity function. First a multiscale superpixels are generated from the
input image. In the training step, an affinity matrix, i.e. how similar a superpixel
with its surrounding and other superpixels are learned. Based on the affinity ma-
trix, a connection between the center of each superpixel will be generated. Finally

16

Figure 2.11: Multiscale symmetry detection proposed in [38]

Figure 2.12: Grey-scale skeletonization using structure adaptive anisotropic filtering in
[39]

a symmetry (or in this case, the skeleton) is extracted through a graph-based seg-
mentation approac (Fig.2.11). Notice that in these last two methods, a supervised
learning step is incorporated.

Du et al. [39] proposed a method based on structure-adaptive anisotropic
filtering (Fig.2.12. The intuition behind the adaptive approach is that large scale
(of the kernel) is preferable in edge and smooth area, while smaller scale are
performed on the skeleton points. An iterative approach which updates every
pixels’ value and parameters is used in this approach and therefore requires a high
computational cost.

Quannan et al. [40] proposed a grey-scale skeletonization based on the distance
transform method [41] (Fig.2.13. Instead of using the distance transform directly,
the inverted distance transform is used. The authors argued that the relative
value between a skeleton point and its neighbors is significantly larger for the
inverted version than using the distance transform and therefore easier to work
with. In a later step of the method, the authors applied a foreground-background
segmentation-like (taking the higher level information) using a method described

17

Figure 2.13: Grey-scale skeletonization using skeleton strength map in [40]

in [42]. By doing so, the skeletonization can then be converted into a binary image
skeletonization problem.

Note that both of the works in [39] and [40] utilize the Skeleton Strength Map
(SSM). The only difference is the calculation method. While in [39] the calculation
is based on the divergence calculation, in [40] the diffused gradient vector field is
utilized instead.

2.4 Background for the Proposed Methods

The first two subsections will describe image features that will be used (or be the
background) in the proposed methods in the subsequent chapters. Afterwards, the
grabcut algorithm which is very common to be used as the foreground-background
segmentation will also be described. In the fourth subsection, interpolation meth-
ods will be discussed. A bicubic spline interpolation method which will be used in
chapter 3 and bezier curve interpolation used in chapter 4 will be briefly explained.
Finally, the delaunay triangulation which is one of the core method in chapter 4
will be described briefly.

2.4.1 SIFT and SURF

There are four steps in SIFT feature detection: scale-space extrema detection,
keypoint localization, orientation assignment and keypoint descriptor. In the scale-
space extrema detection, a difference of Gaussian is used to identify the candidates
for interest points that are invariant to scale and orientation. The difference of
gaussian is defined as the difference of two nearby scales separated by a constant
multiplicative k [43]. In order to find the extrema location, 26 of its neighbors
(8 pixel neighbors in current scale, 9 pixels in lower scale, and 9 pixels in higher

18

Figure 2.14: Example images of similar objects

scale) are compared. The point will be selected if the sample point is larger (or
smaller) than all of these neighbors.

In the next step, the location of these extrema or minima points are located
through the keypoint localization. Candidate which has a low contrast and a strong
edge responses are eliminated because they are very sensitive to noise. In elimi-
nating the edge responses, the element of the Hessian matrix are used to calculate
the ratio of principal curvature. Point with ratio more than the pre-determined
threshold will be rejected. At each keypoint, a gradient and (therefore) orientation
at a region surrounding it, is computed at the orientation assignment step. Finally
a keypoint descriptor is defined by calculating an orientation histogram, which will
generate (4×4(subregions)× 8 (bins) =) 128 dimensional vector at each keypoints.

SURF is a faster version of SURF. The less computational costs is achieved
by utilizing the integral image approach and using a box filter to approximate the
(second order) gaussian filter. Compared to the SIFT method where the image
needs to be subsampled and the gaussian filter needs to be applied iteratively,
by using these approaches (integral image and box filter), SURF can reduce the
computational costs of iteratively reducing the image size (during the scale-space
analysis) and calculating the filtered image. For the matching between SIFT or
SURF descriptors, Fast Approximate Nearest Neighbor (FLANN, [44]) which uti-
lizes either randomized kd-tree algorithm[45] or hierarchical k-means algorithm,
can be used. The smaller the distance is, the more similar the object to be re-
trieved.

Consider some images in Fig.2.14, where the left most image is the query, the
middle and the right images are the images in the database. Applying SURF to
the images and calculating its distances will give us a result of 8.324 for the query-
middle pair and 7.343 for the query-right pair. This values mean that the right pair
is much more similar according to the SURF feature, which is a false conclusion.
This shows that in some cases, SURF is not really suitable for a texture-less object
as in Fig.2.14 as also noted in [46, 47].

19

Figure 2.15: Cross ratio example

Figure 2.16: An example of Characteristic Number in [47]

2.4.2 Cross Ratio based Feature

Recently, a shape descriptor based on cross ratio calculation has been gaining
popularity in pictogram matching area [46, 47]. This is due to the characteristic
of cross ratio that maintains segments of line ratio under a perspective projection.
Li and Tan [46] proposed a cross ratio spectrum descriptor. In their method, they
used a set of cross-ratio from the combination of point lying on the outer contour
of the pictogram. When calculating the cross ratio, only two points inside the
pictogram were used. Luo et al.[47] argued that using only tow points inside the
pictogram made the method not comprehensive enough. Therefore, they proposed
a Characteristic Number (CN) approach (Fig.2.16) which also utilizing cross ratio,
but instead of using only a pair of sampling points to calculate the cross ratio, they
used three sampling points on the boundary of the object creating a triangle and
calculating all the cross ratio along the edges of the triangle and therefore more
information can be acquired. Although the proposed method performs well in
terms of accuracy, CN requires a lot of computational cost. Furthermore, the
calculation of cross ratio proposed in [47] is not the standard way to calculate the
cross-ratio.

20

Figure 2.17: Grabcut example in [48]

2.4.3 GrabCut

Grabcut [48] is a method to segment an input image into a foreground and back-
ground parts (Fig.2.17). The method works by first creating Gaussian Mixture
Model (GMM) of the color distribution of the object in the image specified by
a user (through a bounding box surrounding the object). There are two GMMs
generated, one for the background and another one for the foreground. Color in-
formation belonging to the part outside of the bounding box will be considered
background. Finally, the segmentation process is done by minimizing the energy
function (Gibbs Energy) through a graph-cut algorithm. Notice here that the
hard segmentation part defined by the user is only the background part. At this
point the unlabelled part is considered to be the ”foreground” and the energy
minimization process will update the parameters of the GMMs, which eventually
will produce the final foreground segmentation during convergence.

2.4.4 Interpolation Methods

Interpolation methods are used to predict the unknown value given several known
values. Here we are going to discuss two interpolation methods: (generalized)
bicubic interpolation method and bezier curve interpolation.

2.4.4.1 Generalized Bicubic Interpolation

In cubic spline interpolation [49], given a set of known points P (xi, yi), we would
like to get the parameters (coefficients) such that equation (2.1) holds.

S(xi) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di (2.1)

A spline interpolation has a characteristic that it has a smooth curve. In order
to maintain its smooth curve characteristics, i.e. for each segment the first and
second derivatives should be continuous, several conditions must be met:

• Si(xi) = yi

• Si(xi+1) = yi+1

21

• S ′i−1(xi) = S ′i(xi)

• S ′′i−1(xi) = S ′′i (xi)

The first and second condition ensure that the input points will be traversed by
the spline. The third and fourth condition are the smoothness constraint of the
spline. By applying these conditions to (2.1), we can get the following equations:

Si(xi+1) = yi+1 (2.2)

S ′′i (xi) = 2bi (2.3)

S ′′i (xi+1) = 2bi+1 (2.4)

Which, we can specify the following:

yi = di (2.5)

hi−1 = xi − xi−1 (2.6)

ci =
yi+1 − yi

hi
− aih2i − bihi (2.7)

ai =
bi+1 − bi

3hi
(2.8)

Combining these equations result in equation (2.9).

ci =
yi+1 − yi

hi
− (bi+1 + 2bi)hi

3
(2.9)

Taking into account that b0 = bn = 0 (free ends, not clamped), where n =
number of points -1, we can arrange the equation into matrix form to solve b as
follows.

p1 h1 0 · · · 0 0
h1 p2 h2 · · · 0 0
0 h2 p3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · pn−2 hn−2
0 0 0 · · · hn−2 pn−1

b1
b2
b3
...

bn−2
bn−1

=

q1
q2
q3
...

qn−2
qn−1

Having known the coefficients needed, we can then apply the cubic spline in-

terpolation to a new xi data.

22

Bicubic spline interpolation is a generalization of the cubic spline with two vari-
ables. A more generalize form is a generalized bicubic interpolation. In generalized
bicubic interpolation, we need the following information:

p(x, y) =
3∑

i=0

3∑
j=0

ai,jx
iyj (2.10)

px(x, y) =
3∑

i=1

3∑
j=0

ai,jx
i−1yj (2.11)

py(x, y) =
3∑

i=0

3∑
j=1

ai,jx
ijyj−1 (2.12)

px,y(x, y) =
3∑

i=1

3∑
j=1

aijijx
i−1yj−1 (2.13)

In order to solve (determining) the coefficient (aij), 16 equations created by
inputing the corner value, i.e. x, y ∈ [0..1] are needed.

f(0, 0) = p(0, 0) = a00 (2.14)

f(1, 0) = p(1, 0) = a00 + a10 + a20 + a30 (2.15)

f(0, 1) = p(0, 1) = a00 + a01 + a02 + a03 (2.16)

f(1, 1) = p(1, 1) =
3∑

i=0

3∑
j=0

aij (2.17)

fx(0, 0) = px(0, 0) = a10 (2.18)

fx(1, 0) = px(1, 0) = a10 + 2a20 + 3a30 (2.19)

fx(0, 1) = px(0, 1) = a10 + a11 + a12 + a13 (2.20)

fx(1, 1) = px(1, 1) =
3∑

i=1

∑
j = 03aiji (2.21)

fy(0, 0) = py(0, 0) = a01 (2.22)

fy(1, 0) = py(1, 0) = a01 + a11 + a21 + a31 (2.23)

fy(0, 1) = py(0, 1) = a01 + 2a02 + 3a03 (2.24)

fy(1, 1) = py(1, 1) =
3∑

i=0

3∑
j=1

aijj (2.25)

23

fxy(0, 0) = pxy(0, 0) = a11 (2.26)

fxy(1, 0) = pxy(1, 0) = a11 + 2a21 + 3a31 (2.27)

fxy(0, 1) = pxy(0, 1) = a11 + 2a12 + 3a13 (2.28)

fxy(1, 1) = pxy(1, 1) =
3∑

i=1

3∑
j=1

aijij (2.29)

Let α be the vector consists of the coefficients aij and F be the vector consists
of the value of f. In matrix form, the 16 equations above can be written as (2.30),
where M is the coefficient of a. Thus, by calculating the matrix multiplication of
inverse matrix M−1, we can get the values of aij.

Mα = F (2.30)

2.4.4.2 Bezier Curve Interpolation

Similar with the cubic interpolation, given a set of points bezier curve interpolation
tries to interpolate the curve among those points. While in typical interpolation
where the curve generated will traversed the known points, in a bezier curve the
curve generated will not intersect (traverse) those points with an exception of the
first and the last point. These known points are called the control points and will
determine the shape of the bezier curve generated. Given n+1 control points, a
general bezier curve can be defined as in (2.31). bi denotes the i-th control point
and Bi,n(t) is called the Bernstein polynomial defined in (2.32). An example of a
quadratic bezier curve (3 control points) and cubic bezier curve (4 control points)
can be seen in Fig.2.18.

B(t) =
n∑

i=0

biBi,n(t) (2.31)

Bi,n(t) =

{
n!

(n−i)!i!(1− t)
n−iti if 0 ≤ i ≤ n

0, otherwise
(2.32)

2.4.5 Delaunay Triangulation

Given a set of (randomly placed) points, delaunay triangulation is a method to
connect these points one with another to create a set of triangles, such that there
are no other triangles lie inside the circumcircle of a triangle (Fig. 2.19). Notice
in figure 2.19a, the triangle configuration is invalid since vertex B is inside the
circumcircle of triangle ACD. In case where there is no possible solution, delaunay

24

Figure 2.18: Bezier examples (image source: https://pomax.github.io/bezierinfo/)

(a) Invalid
Delaunay

(b) Valid
Delaunay

Figure 2.19: Delaunay Triangulation from a set of points

triangulation will minimize the total number of triangles lying in the circumcircle
of another triangle. Notice that by avoiding creating a triangle inside a circumcircle
of another triangle, a skinny triangle can be avoided. There are several algorithms
that have been developed to solve the delaunay triangulation, such as divide and
conquer, sweephull algorithm, etc.

In the divide and conquer algorithm, the basic idea is to divide the vertices
into two sets recursively until a set consists only at most three vertices. From
these sets of vertices, the algorithm then merged a set of vertices into another set
until all set has been merged and finally the final triangulation can be acquired.
During each merging process, the constraint that each triangle should avoid being
generated inside another triangle circumcircle is kept. In the sweephull algorithm,
the idea is to expand the seed (randomly picked triangle from the set of points)
radially by adding the point to the previously generated triangle(s), such that the
circumcircle constraint still be maintained. In the sweep-hull algorithm, a triangle
flipping step is also incorporated to minimize the number of skinny triangle.

25

Chapter 3

Rigid 3D Model Retrieval using
Skewness Map

In this chapter, we discuss the rigid 3D object retrieval case. The purpose of the
system is to retrieve a 3D object which has the most similarity with the query
from the database. One of the core problem in a retrieval system is how to match
between the query and the database. In model-based systems, matching between
the input and models in the database can be done relatively easy, since both of the
models have the same dimensions, i.e. 3D features matched with 3D features.The
problem is much more pronounce in the 3D-2D matching (view-based systems)
since, depending on the viewing angle, the shape of an object might differ.

The simplest way to solve this is by having a full information regarding the
object in all possible viewing angle and then do the matching step. This means
that an object shall be represented by at most 360 × 360 images (129,600 images).
If the database consists of 1000 objects, then the total images in the database will
be 129,600,000 images. Matching a query with 129,600 images is of course a time
consuming task. It is natural to ask then whether or not matching between the
query and all the images in the database is required. As will be shown in the
later section, the answer is no. Utilizing a skewness information from the object,
we can reduce the search space of the matching step greatly. To further analyze
the accuracy, the proposed method will then be applied to solve the orientation
estimation (viewing angle estimation) of an object. Fig. 3.1 shows the pipeline
of our proposal. To summarize, the purpose of this research can be considered to
answer the following questions:

1. How fast is the proposed method in retrieving an image from the database
compared to the conventional retrieval method (e.g. using SURF[50])?

2. Is there any other descriptor that can be used?

26

Figure 3.1: General overview of the proposed method

3. How accurate is the proposed method in estimating the orientation of the
object?

The rest of this chapter is organized as follows: in the first section, a search
space reduction utilizing the skewness map will be introduced. In the second sec-
tion the matching step between the query image and the reference (database) will
be presented. The details about the experiments done, the results and discussion
will be presented on the third section of this chapter.

3.1 Search Space Reduction

In order to reduce the search space, we proposed a skewness map method. Before
delving deeper into the skewness map, we will present the background information
regarding skewness and how it relates to the objects.

3.1.1 Skewness

In probability theory, skewness is a method to measure the symmetricity of a distri-
bution. A distribution with a zero valued skewness will be regarded as symmetrical,
while a positive (negative) skewness value will be regarded as right-skewed (left-
skewed). A genereal way to define skewness is by using the third order moment of
the distribution. Consider a distribution with two variables x and y. Eq.(3.1) de-
fines the central moment calculation, which can be used to calculate the skewness

27

value.

mji =

∫∫
(x− x̄)j(y − ȳ)if(x, y)dxdy (3.1)

The subscripts ji denote the order of the moment in x and y spaces respectively.
Note that Eq.3.1 needs the average values (center mass) of x and y, which are
denoted by x̄ and ȳ. Both of these values can be calculated using the raw moment
equations defined in Eqs.(3.2)-(3.3). M00 denotes the area of the object.

x̄ =
M10

M00

(3.2)

ȳ =
M01

M00

(3.3)

Mpq =

∫∫
xpyqf(x, y)dxdy (3.4)

Since a calculation which can be used to calculate the skewness of a distribution
has been defined, one might ask what the relation between skewness and an image
of an object is. Given an image of an object shown in the left-most part of Fig. 3.2,
we can binarize the image by first finding the outer contour of the object. After
acquiring the outer contour information, each pixel will then be labelled depending
on its position to the contour points. A pixel lying inside the contour will be given
a label of one (visualize as white in Fig. 3.2) and zero otherwise (visualize as black
pixel). Finally we can calculate the sum of the ones (white pixels) at each column
or row respectively to generate a distribution as shown in the right-most part of
Fig. 3.2. Note that in Fig. 3.2 we only show the column-wise summation of the
white pixels.

Note that the equation (3.1) is not invariant to scaling, therefore, instead of
using equation (3.1) as it is, we use the normalized moments instead (Eq.(3.5)).
Calculating this distribution using the normalized moment will give us a unique
value for its distribution. Since this distribution is symmetric, the skewness value
will be zero (or very near to zero).

nji =
mji

m
(i+j)

2
+1

00

(3.5)

Assume that the horizontal axis is the x axis, the axis which protrudes from
the paper is the z axis and the vertical axis is the y axis. Fig. 3.3 is the result
of rotating the same object in Fig. 3.2 by 30 degrees with respect to the y axis.
Doing the same binarization process mentioned beforehand, we can get another
distribution as shown in the right-hand most part of Fig. 3.3. As can be seen
here, the distribution does not maintain its symmetricity. From this conclusion, we

28

Figure 3.2: Binarization Process

Figure 3.3: Applying rotation to object in Fig. 3.2

believe that by utilizing this skewness information of an object distribution, given
a set of known symmetry values, the orientation of an object can be approximated.
Not only can we approximate the orientation of an object, but also by utilizing
this skewness information, a search space reduction method namely skewness map
can be applied. The following subsection will describe the skewness map proposal
in more details.

3.1.2 Skewness Map

A skewness map is a collection of skewness value of a given object. Each point
(or pixel) in a skewness map represents the skewness value of an object. The
position of the pixel represents the orientation of the object. For example, an
object viewed from polar angle ((xz)y-plane) θ = 30◦ and azimuth angle φ = 45◦

will be represented by a pixel at (x,y) = (30,45) coordinates on the skewness map.
Ideally, a skewness map should be generated by calculating the skewness value of
every possible viewing angle of an object, but of course this will take a lot of time
and resources. In order to relax this condition, an interpolation method is used.

There are several known interpolation methods that can be used. In this re-
search the generalize bicubic interpolation is chosen. While bicubic spline is the
generalization of cubic spline [49] in two dimensions, it is also a special case of a

29

(a) Al (b) Lamp (c) Stanford Rabbit

Figure 3.4: Test objects

generalized bicubic interpolation. Bicubic spline interpolation has two properties
which are suited for skewness interpolation, i.e. it has a smooth continuous curve
and maintains the original value at the sample points (node). Consider objects
given in Fig. 3.4. If a (azimuthal) rotation operation is applied to each object
and the skewness values are plotted, a graph created using the cubic spline inter-
polation as in Fig. 3.5 will be acquired. As can be seen from the Fig., rotational
operation will make a smooth changes to the skewness value. Also note that in
order to make an interpolation, a ground truth value of the object at the sampling
points are taken. Therefore at the exact sampling point we know the skewness
value of the respective object. Since the bicubic interpolation has a property of
maintaining its value at the start and end points and has a more flexibility, it
has a better interpolation result compared to other interpolation methods, such
as linear interpolation.

Recall that an image will have two types of distribution, i.e. column-wise and
row-wise distributions, therefore there will also be two skewness maps to describe
an object. Fig. 3.6 shows examples of the skewness maps. The next subsection
will discuss how the skewness map will be used to reduce the search space during
the matching step.

3.1.3 Skewness Maps as Search Space Reduction

A visualization of this approach can be seen in Fig.3.8. Given a query object,
using equation (3.5) with i, j = {0, 3|i 6= j}, both the column-wise and row-wise
skewness values can be calculated. Let Sx denotes the column-wise skewness value
and Sy denotes the row-wise skewness value. These values will be the threshold to
reduce the search space. Given skewness maps of an object, all the pixels value will
be compared with the calculated skewness value. If a pixel has a value beyond (less
or higher than) the threshold value, then it will be neglected dyrubg the matching

30

(a) Al skewness plot

(b) Lamp skewness plot

(c) Stanford Rabbit skewness plot

Figure 3.5: Skewness plot results
31

(a) Column-wise skewness
map

(b) Row-wise skewness
map

Figure 3.6: Skewness maps example

(a) column-wise (b) row-wise

Figure 3.7: Thresholded maps

step. Otherwise, it will be kept and will be considered during the matching step.
Recall that each pixel at the skewness map represents the object (image) viewed
at certain angles.

Mathematically equation (3.6) defined the aforementioned selection (thresh-
olding) step and Fig. 3.7 visualizes the thresholding operation. Ix(x, y) denotes
the new pixel value at pixel (x,y) of the column (subscript x) thresholded map.
Iy(x, y) denotes the new pixel value at pixel (x,y) of the row (subscript y) thresh-
olded map. fx(x, y) and fy(x, y) denote the original pixel value at the skewness
maps. ε denotes the user-defined constant error value.

Ix(x, y) =

{
1, if (sx − ε) ≤ fx(x, y) ≤ (sx + ε)

0, otherwise

Iy(x, y) =

{
1, if (sy − ε) ≤ fy(x, y) ≤ (sy + ε)

0, otherwise

(3.6)

32

Figure 3.8: Visualization of search space reduction

Figure 3.9: Final search space (”AND” Map)

Finally, given the two new thresholded maps, we can combine both of the maps
using a simple AND operator as in equation (3.7). Ixy(x, y) denotes the pixel value
at the ”AND” map. Fig. 3.9 visualize the final search space for the matching step.
Only the pixel which still remains after the logical AND process (visualize as white
pixels) will go through a matching process with the query. As can be seen most of
the images in the database can be neglected using the skewness maps.

Ixy =

{
1, if (Ix ∧ Iy)
0, otherwise

s (3.7)

33

3.2 Matching Step using Cross Ratio-like Num-

ber

Matching between the input image and the images on the database is one of the
most important task. One way to calculate the similarity between the images
is by using the image feature. Therefore, the feature extraction method is also a
crucial part in this matching step[51]. In this section, we will discuss several image
features (along with a matching step for each feature) that can be used to help
match between the input and the reference images in the database.

As described in the beginning of chapter 2, SURF might have a drawback of
retrieving an incorrect result given an object with less texture. Recently, a descrip-
tor based on the cross ratio has been gaining popularity to solve this problem. In
light of this, we propose a cross-ratio like number to be used as feature descriptor
as follow. A cross ratio is usually defined as a ratio between 4 collinear points
in a projective geometry. Given a collinear points denoted by A, B, C, and D
(Fig.2.15), the cross ratio (CR) betwen those points can be defined as in (3.8).
The overbar denotes the length between two points. Notice here that the order
will determine the outcome of the equation, i.e. CR(A,B,C,D) is not the same as
CR(A,C,B,D).

CR(A,B,C,D) =
AC

BC
· BD
AD

(3.8)

In order to calculate the CRN feature, first of all an edge image of the object
shall be created. This can be done simply by using Canny edge detector[52] or
any other edge extraction algorithm. A convex hull from the edge image is then
generated. Afterwards, a set of n points with equal spacing are generated on
the convex hull. A set of line connecting these points withe one and another is
generated and the cross ratio along these lines will be used as a feature.

Given n points on the convex hull, at most there will be N =n C2 point pairs.
Among these lines, there will be lines which intersect the edges of the object as
shown in Fig.3.10. On such lines, the cros ratio will then be calculated. If a line
consists only three points including the hull points, then it will be regarded as
a feature point with zero value (zero cross ratio). In [47] the authors proposed
a multiple-line combination to generate the CN feature. Unfortunately multiple-
line combination is computationally expensive and therefore we use only one line
with d -number of cross ratios here. d can also be considered as the number of
dimensional descriptor pre-defined by the user.

For an example, consider the line, two hull points (small circle on the convex
hull) and the four intersection points in Fig.3.10. In this line example, we can
generate a (D =4 C2 =) 6-dimensional descriptor to describe the cross ratios on

34

Figure 3.10: CRN feature visualization

this line. If D ≤ d, the rest of it (d−D) will be considered as zero-valued feature
vector’s element. If D > d, we will truncate the feature vector’s element, i.e. only
the first d cross ratios will be used. In total, assuming that the number of points
n = 25 is used, we will have at most (N =25 C2 =) 300 descriptors, where each
descriptor consists of d -cross ratios. Let O be the object, (Pi)d denotes the i -th
line each with d number of cross ratios, m is the number of points (m ≤ N), the
CRN is the set that encapsulates these features and defined in (3.9).

CRN(O) = {(P1)d, (P2)d, · · · , (Pm)d} (3.9)

Cross matching is utilized here for the feature matching step. Let A and B
each denote a feature vector of the query and the reference respectively. For every
element in A an L1-norm distance between the point and all elements in B will be
calculated (3.10).

dist(A,B) =
k=d−1∑
k=0

|ak − bk| (3.10)

Let (X, Y) be the feature point pair with the minimum distance of two objects
1 and 2 (X ∈ CRN(O = 1) and Y ∈ CRN(O = 2)) from X point of view. The
cross matching is then utilized by switching the feature point reference, i.e. Y is
compared with all the feature points in CRN(O = 1). Let (Y, X’) be the minimum
distance from Y point of view. If X’ is the same point as X, then the point pair
is regarded as matching point.

In order to assess whether the query is similar with an object in the database,
the sum of these matching pairs (i.e. matching points) is calculated. Object with
the highest total similarity number will be considered to be matching with each
other (hence, the term Cross-Ratio-like Numbers). Notice here the difference of
inference between the FLANN and cross-matching criteria.

35

Figure 3.11: 3D objects used in accuracy test

3.3 Experimental Result and Discussion

Several experiments were done in order to assess the proposed method. All of
the experiments were done using C++ language in an Intel i5, 4GB RAM, 3.20
GHz, Windows 7 OS computer using OpenCV 2.49 as the image processing li-
brary. GrabCut[48] algorithm was used in order to do the foreground-background
extraction. Each image used in the experiment has 150 × 150 resolutions. One
object database consists of 129,600 artificial object (rendered 3D model) images,
taken at every possible orientation. The thresholding parameter ε was set to 10%
of the s values.

3.3.1 Accuracy comparison

The first test is to assess the accuracy of the proposed method. There are two
types of accuracy that were considered here. The first one is whether the method
retrieve the same object correctly and the second one is whether the orientation
of the object can be approximated correctly.Three test objects were used in this
experiment as shown in Fig.3.11. Five orientations were selected randomly from
the database for every object.

First the retrieval method based on Magic Canvas [18] was tested and the result
is shown in Table 3.1. x denotes the rotation (in degrees) with respect to the x -
axis and y denotes the rotation with respect to y-axis. NA means the incorrect
object was retrieved as the result of the algorithm. There are several reason why
we choose to compare our proposal with Magic Canvas. The first one is most of
the methods mentioned in rigid retrieval in chapter 2 use two or more inputs to
the system, while our method and Shin’s method use only one input to the system.
Second, both of them rely on the contour information. Third, most of the previous
method used a learning step in one of their proposal, while our proposal and Shin’s
do not require any step at all.

Table 3.2 shows the result of the proposed method using the Skewness Map
combined with SURF (SMSURF) and CRN (SMCRN) respectively. As can be seen
from Table 3.2 the proposed method can retrieve the object correctly. Furthermore
the second type of accuracy, i.e. approximating the orientation of the object,

36

Table 3.1: Comparison Result: Magic Canvas(MC) vs Ground Truth (GT)

Query Image
GT

MC

Result Error

x y x y x y

Bike1 176 349 NA NA
Bike2 289 301 NA NA
Bike3 318 319 180 351 138 32
Bike4 142 43 0 191 142 148
Bike5 72 255 70 141 2 114

Cow1 129 239 NA NA
Cow2 104 329 30 11 74 318
Cow3 224 263 NA NA
Cow4 89 53 30 61 59 8
Cow5 125 314 NA NA

Monkey1 220 159 NA NA
Monkey2 14 125 NA NA
Monkey3 348 126 NA NA
Monkey4 119 214 90 101 29 113
Monkey5 118 34 110 121 8 87

generated only a really small error (less than 2 degrees error in average).

Notice here that we do not show the result of the accuracy of SURF. This
is because SURF will give us 100% accuracy since the query is taken from the
database. Seeing the results, one might ask then whether the proposal actually
decrease the accuracy of SURF in general. Statistically, the proposed method
and conventional SURF method generate the same performance. The multivariate
one-sample t-test (Hotelling’s t-square test 3.11) is used to prove the previous
statement. X̄ denotes a vector (mean vector) which every element is the mean
value of the variables, S−1 is the inverse covariance matrix. k denotes the number
of variable and n denotes the number of samples. As mentioned before, SURF
generates zero errors, therefore µ0 = 0. For small number of n, the value T 2 can
be calculated by using the F distribution (Eq.3.12). We were using α = 0.05.
Table 3.3 shows the result of the statistical analysis. Note that since the F-values
are smaller than the F-critical values, we can not reject the Null-hypotheses and
therefore there is no significant difference between the result of conventional SURF
which gave zero errors and our proposals.

T 2 = n
(
X̄ − µ0

)
S−1

(
X̄ − µ0

)
(3.11)

37

Table 3.2: Comparison Result: Proposed vs Ground Truth (GT)

Query Image
GT

SMSURF SMCRN

Result Error Result Error

x y x y x y x y x y

Bike1 176 349 176 349 0 0 176 349 0 0
Bike2 289 301 289 301 0 0 289 301 0 0
Bike3 318 319 318 319 0 0 318 319 0 0
Bike4 142 43 142 43 0 0 142 43 0 0
Bike5 72 255 71 258 0 3 67 257 5 2

Cow1 129 239 129 239 0 0 129 239 0 0
Cow2 104 329 104 329 0 0 104 329 0 0
Cow3 224 263 224 263 0 0 224 263 0 0
Cow4 89 53 89 53 0 0 89 53 0 0
Cow5 125 314 125 314 0 0 125 314 0 0

Monkey1 220 159 220 159 0 0 220 159 0 0
Monkey2 14 125 15 125 1 0 21 126 7 1
Monkey3 348 126 355 124 7 2 357 123 9 3
Monkey4 119 214 115 206 4 8 115 204 4 10
Monkey5 118 34 118 34 0 0 118 34 0 0

Average 0.867 0.867 1.67 1.067
RMSE 4.467 5.133 11.4 7.6

F =
n− k
k(n− 1)

T 2 ∼ F (k, n− k) (3.12)

3.3.2 Time Comparison

The second experiment is to compare the time comparison achieved by the pro-
posed method and the conventional SURF. Table 3.4 shows the result of the exper-
iment using the same data as the accuracy test. By average, the proposed method
(SMSURF) is much faster, i.e. the total time is reduced 75% and for SMCRn it is
reduced further around 91%. In order to assess the validity of these measurements,
a statistical test using one sample t-test is performed. Again α = 0.05 is used here.
µd,P is defined as µd,P = µSURF − µP , where the subscript P denotes the proposal
methods respectively, i.e. SMSURF or SMCRN. Table 3.5 shows the result of this
test.

Since the p-values are less than α = 0.05, we can reject the null hypothe-
ses, which mean conventional SURF significantly has higher computational cost

38

Table 3.3: Result comparison using Hotelling’s t-square test

Hypothesis n k T 2 F F-critical

H0 : µSMSURF = 0
15 2 3.239552 1.504078 3.805565

H1 : µSMSURF 6= 0

H0 : µSMCRN = 0
15 2 4.825895 2.240594 3.805565

H1 : µSMCRN 6= 0

Table 3.4: Time Comparison of Conventional SURF, SMSURF and SMCRN (in
seconds)

Query Image
Total Time

SMCRN SMSURF SURF

Bike 1 115.572 340.227 1632.57
Bike 2 119.178 416.308 2466.83
Bike 3 147.19 433.35 1759.32
Bike 4 171.239 516.879 2170.32
Bike 5 207.645 532.747 1271.2

Cow 1 130.661 376.933 1270.6
Cow 2 91.935 277.637 1538.65
Cow 3 177.126 466.511 1228.96
Cow 4 116.435 376.661 2045.69
Cow 5 124.088 349.275 1202.16

Monkey 1 82.181 258.934 1411.03
Monkey 2 135.442 336.955 934.219
Monkey 3 155.161 410.519 1165.35
Monkey 4 56.923 161.814 1553.25
Monkey 5 166.119 438.426 1136.19

Average 133.126 379.545 1519.089

compared to both of the proposed methods. By these results, we believe that our
proposal using the skewness map can reduce the time needed to retrieve the object
from the database faster than the conventional SURF method.

3.3.3 Larger Database

In this experiment, a larger database is used to compare the result of SMSURF and
SMCRN. Fig.3.12 shows the objects used in this experiment. 30 models were used.
Each model in the database were rendered from every possible viewing angles, i.e.

39

Table 3.5: t-Test for Time Comparison Result

Hypothesis t-value p-value

H0 : µd,SMSURF = 0
10.254 3.422× 10−8

H1 : µd,SMSURF > 0

H0 : µd,SMCRN = 0
12.019 3.809× 10−9

H1;µd,SMCRN > 0

Table 3.6: Summary of Large Database Experiment

Method
Error RMSE

Time (in seconds)
x y x y

SMSURF 4.133 0.211 36.173 0.367 4765.556
SMCRN 7.856 0.8 41.049 3.197 1402.428

(360 × 360 =)129,600 images for one model. For each object, three samples were
taken randomly. Therefore, in total there were 90 images tested and used as the
input image. The full comparison data can be accessed in Table A.1 and Table A.2
in appendix section. Table 3.6 summarize the results. As can be seen, SMCRN
has lower accuracy but performs faster than the SMSURF. The reason is becaue
CRN uses less vector element for its descriptor. Of course this also depends on
the parameter of the CRN, which leads us to the next part.

3.3.4 CRN Parameters

There are two parameters that need to be defined by the user, i.e. the number
of points on the convex hull (n) and the size of descriptor (d). To determine
these parameters, a simple test was performed. Several objects are taken from the
database (Fig.3.12) One query and two test comparison objects will be used for
each test. One of the two comparison objects is taken from the same object with
the query but with different viewing angle. All of the objects are chosen manually,
such that either the appearance of the object is similar or have a very minimum
texture information.

Table (3.7) and Table (3.8) show the results of the experiment. The bold num-
bers highlight the highest similar number, i.e. the retrieved object. For exxample,
with n = 10 and d = 5, with the query of monkey object, the retrieved object
will be monkey also since it has higher similarity number compared to oni. We
are trying to find the minimum requirement which has not only less number of
descriptor but also a good accuracy. From the results shown, we then defined the

40

Figure 3.12: 3D Models used in the experiment in section 3.3.3

41

Table 3.7: Parameter testing of CRN feature generation (d = 5)

Query Comparison
Similarity Number

n = 10 n = 20 n = 30

Monkey(0,1)
Monkey(0,10) 19 77 146

Oni (0,1) 18 65 151

Minidragon(0,45)
Minidragon(0,10) 15 63 133

Monkey(0,10) 14 54 99

Suzanne(0,1)
Suzanne(0,10) 12 27 77

Snowman1(0,10) 7 35 51

Snowman1(0,1)
Snowman1(10,1) 23 81 155
Snowman2(0,1) 8 48 102

Bike(232,69)
Bike(230,71) 25 93 184
Tiger(0, 341) 20 67 133

Accuracy 1.0 0.8 0.8

Table 3.8: Parameter testing of CRN feature generation (d = 10)

Query Comparison
Similarity Number

n = 10 n = 20 n = 30

Monkey(0,1)
Monkey(0,10) 14 76 142

Oni (0,1) 17 46 115

Minidragon(0,45)
Minidragon(0,10) 12 54 95

Monkey(0,10) 15 40 84

Suzanne(0,1)
Suzanne(0,10) 8 23 45

Snowman1(0,10) 6 22 44

Snowman1(0,1)
Snowman1(10,1) 12 62 126
Snowman2(0,1) 6 41 77

Bike(232,69)
Bike(230,71) 24 81 173
Tiger(0, 341) 13 56 112

Accuracy 0.6 1.0 1.0

CRN parameters to be d = 5 and n = 10.

42

Chapter 4

Natural Image Skeletonization
using Delaunay Triangulation

Skeletonization or skeleton extraction has been used in many area in image pro-
cessing and computer vision. Although used mainly for animation [53, 54], several
other uses of skeleton information are including symmetry detection [32], sensor
networks [32]. A more interesting application of application has been proposed
in 2D to 3D model creation [55, 56, 57]. Several authors also had already pub-
lished works using skeleton information in shape analysis, which also includes the
retrieval system for both rigid and non-rigid object [58, 25, 59, 60, 61].

Conventional skeletonization relies heavily on a closed-curved boundary object.
In another term, this means that the binary image is needed as the input to the
skeletonization process. Unfortunately, the closed curved constraint might not
be achieved in an image due to some occlusion or the similarity of the object
characteristics, such as colors, with the background.

To overcome such problem, grey-scale (natural image) skeletonization came
into development. Instead of using a binary image as an input, grey-scale skele-
tonization use a grey-scale value of the image (or even the color image) as the
input for the skeleton extraction method. As mentioned on the first chapter, cur-
rent grey-scale skeletonization also relies on a semi-closed curve boundary and does
not work well for the unconnected (sparse) points. In this chapter, we are trying
to solve the grey-scale skeletonization with the sparse points condition.

Let it be a conventional skeletonization or the grey-scale skeletonization, object
boundary still plays a major role in determining the result of the skeletonization.
Therefore, the first step in our approach is to locate and identify the edge points on
the image (the first section). Following this, a novel method to extract the skeleton
extraction from these points will be presented on the second section. Finally, the
third section consists the result of the experiment and some discussion.

43

Figure 4.1: Edge extraction step

4.1 Edge Points Extraction

Although Canny edge detection performs relatively well to a general type of image,
we avoid using it since Canny operator mainly depends only on the brightness
image. As mentioned before, relying only on the brightness image might give
a severe loss in the edge points extraction. Instead the following step is used
(Fig.4.1). Note that the blue rectangle means that L, a, and b images are sent to
the Sobel operation, while the red rectangle means that only the color images (a
and b) are sent to the histogram equalization (CLAHE) step.

First, we convert the image into the CIELab space and split the image into
each respective channels (L, a, and b). On each channel, we apply a 3×3 Sobel
operator for horizontal and vertical direction. There are two benefits of using a
Sobel operator. Not only the gradient edge image can be generated, the orientation
(of the gradient) can also be found. More of this regarding the orientation will be
described later.

By calculating the magnitude of both the images applied with the Sobel opera-
tor, a gradient image(s) can be acquired. Clearly, since we are working in L, a and
b images, there will be three gradient images. We combine these three gradient
images into one single image I by using (4.1). Here, I(i, j) denotes the combined
gradient images at (i,j) pixel location, while the subscript (L,a,b) denote each
channel respectively. Note that the pixel’s value at each channel is normalized
before applying (4.1).

I(i, j) = max(IL(i, j), Ia(i, j), Ib(i, j)) (4.1)

44

Figure 4.2: Along an orientation, edge point will have a large χ2 distance between the
left part and the right part of the patch.

On the combined gradient image (I), we divide the image using a grid (patch)
of n×n, which we set n = 5 in this paper. On each grid, we search pixel with the
highest intensity. Let these points be the candidate points. To reduce the number
of the candidate points and using the fact that a pixel with high intensity value
on I indicates higher probability of being an edge point (strong edge point), the
first selection using k-means is applied. In our implementation the number of k is
set to be 3 and two clusters with the highest centroid values (position) are sent to
the next selection step.

A similar approach as in [62, 63] is adopted further to select the edge points
from the candidate points. The idea of the method is to create a patch with the
point as the center and divide the patch into two halves along the orientation
(Fig.4.2). Then, histograms created at each part of the patch (first half and the
second half) is compared by calculating their χ2 distance (4.2).

χ2
p(l, r) =

N∑
i=0

(l − r)2

l + r
(4.2)

Here l denotes the left part of the patch and r denotes the right part respec-
tively. The higher the difference is the more likely it is to be considered as the edge
points. Note that subscript p denotes the input image used for calculation. This
means that each candidate point can be represented by p-number of vectors as fea-
tures. These features will then be sent to the k-means algorithm to be clustered.
Similar with the previous step, we use k = 3 and choose the points belonging to
two clusters which centroid have the highest coordinate position.

As noticed, some points lie in a neighborhood of each other, these points will
give artifacts to the end result and therefore to hinder such results, a merging
operation is applied. The merging process is as follows: for each point check its
vicinity in R radius. If there is (are) point(s) lying inside R, those points shall
be merged to generate a new point. This new point coordinate is the average
coordinate of all the points to be merged.

45

Before moving on the next part, there are several things that needs to be
addressed, i.e. the orientation at each point and the images used in the histogram
calculation.

4.1.1 Orientation Approximation

To approximate the orientation at each point, recall the gradient image generation
step. The orientation at each pixel can be approximated by calculating the phase
(4.3). Let Sx

c be the horizontal gradient value and Sy
c be the vertical gradient value

at (i,j). Subscript c denotes the input channel, i.e. L, a, or b.

θc(i, j) =

∣∣∣∣arctan

(
Sy
c (i, j)

Sx
c (i, j)

)∣∣∣∣ , θc ∈ {0, 180} (4.3)

Finally the orientation at a point is determined through a voting of orientation.
A histogram with 12 bins is created for each point (i.e. each bin representing 15
degrees increment) and a patch of 3×3 with the point as the center is created at
each channel. In total there will be 27 data which will ”vote” for the orienta-
tion approximation. Bin with the maximum number of element will be chosen as
the orientation approximation. For example if the 7-th bin is chosen, the point
orientation will be considered to be 90 (= 6×15) degrees.

4.1.2 Histogram Calculation Input

There are several inputs which will be used for histogram calculation. The bright-
ness image (L), two color images (a and b) and texture image. The strength of
the method relies on the difference distribution (through histogram calculation)
between two parts of a patch. Unfortunately the color images often have a small
contrast value, which in turn give us uninformative features. Contrast Limited
Adaptive Histogram Equalization (CLAHE) with the limit value as its parameter,
is then applied to improve the contrast of the images so that the color images can
give us better information to differentiate the candidate points.

Texture image in this paper is generated by applying Gaussian blur along with
median blue iteratively to the gradient image I. Highly textured object will have
a dense high value intensity pixel on the gradient image (Fig.4.1). Applying a
Gaussian blur will make parts with high texture to be distinct with the other
parts. Median blur will reduce this effect especially on the edge part of the object
(maintaining the boundary position).

46

Figure 4.3: An example of calculating a feature from a triangle

4.2 Skeleton Extraction

As mentioned in the first section, we apply the delaunay triangulation to connect
the edge points. Delaunay triangulation is used because of its property which hin-
der a triangulation with a sharp angle. Delaunay triangulation itself had actually
been proposed to solve the 2D binary image skeletonization in the past [55, 64].

In 2D binary image skeletonization using Delaunay triangulation, the core
skeleton extraction algorithm lies in the grouping of triangles. Several triangles
are defined based on the types of edges a triangle has, i.e. sleeve triangle (one
of the edges is the contour edge), terminal triangles (two of the edges are the
contour edge), and junction triangles (none of the edges are the contour edge).
Unfortunately, in grey-scale skeletonization the information of the edges wheteher
it belongs to the boundary edges or not is not available. Therefore, a new method
to do the skeleton extraction is proposed. The idea of the proposal is to connect
triangles sharing the same edges if and only if the triangles belong to the same
group.

4.2.1 Triangle Grouping

In order to group the triangles, a feature vector for each triangle is generated. This
feature vector consists of the data taken from the brightness image, color images
and the texture image. A triangle is considered to be in the same group if the
data has similar values one with the other.

Let c be the center of a triangle, ek is the k -th edge’s middle point where

47

Figure 4.4: Circular point removal example. If point P is connected to triangles with
the same group labels (visualize as red points), then it will be deleted from the list and

the rest of the points will be re-triangulated.

k ∈ 1, 2, 3. For each of these points, we can create a patch of size m × m and
generate a histogram with h bins. The feature vector (v̄) is then generated by
concatenating the histogram generated at each point of the triangle. For example
a triangle with h = 16 will have 256 (= 4 (images from L, a, b and texture image)
×16 bins × (center point + 3 middle point of each edge)) - floating points feature
vector (Fig.4.3). Finally the grouping itself is done using the spectral clustering
algorithm [65].

For the spectral clustering, a similarity matrix between each triangle is gener-
ated. To calculate the similarity of one triangle with another, the exponential of
the sum of difference (distance) between the feature vectors (v̄) is calculated 4.4.
In this paper the Bhattacharyya distance is used (4.5). One nice property of the
Bhattacharyya distance is its range which lies between 0 and 1. The subscript c,
again is the type of input used (L, a, b, or texture) and Hi denotes the histogram
of the i -th triangle. h is the total number of bins.

dtotal = e−(dL+da+db+dtexture) (4.4)

dc(Hi, Hj) =

√√√√1− 1

H̄iH̄jh2

h∑
I=0

Hi(I)Hj(I) (4.5)

4.2.2 Circular Group Removal

There is a possible result of the triangle grouping which will generate a circular
(loop) skeleton as in Fig.4.4. In order to avoid such condition, a point removal
algorithm is proposed. This is done by checking the triangle point P and all the
triangles with point P as its vertex. If every triangles connected to P has the same
group ID, then point P shall be removed. This process is done iteratively r times.

48

(a) Junction Triangle (b) Sleeve Triangle (c) Terminal Triangle

Figure 4.5: Three types of triangle with its connection (black lines). The colored points
represent the group label of the triangle. Color Similarity represents the same group

4.2.3 Extraction

Similar with [55, 64] there are three possible conditions for skeleton extraction step
(Fig.4.5). The first one is the junction triangle. Here junction triangle is defined
as a triangle with all of its neighboring triangles belonging to the same group.
The terminal triangle, when one or none of the neighboring triangle belongs to the
same group. The third and final type of triangle is the sleeve triangle where two
of the neighboring triangles belong to the same group with the center triangle.

If a triangle is a junction triangle, then the center point of the triangle will be
connected to all of the middle point of each edge points. If a triangle is a sleeve
triangle, then the middle point of the shared edges between the triangle and its
neighboring triangles will be connected. Finally no connection will be generated
for the terminal triangle.

4.2.4 Pruning and Smoothing

Pruning operation is applied to cut the redundant (noisy) skeleton branch (Fig.4.6).
The green and blue points represent skeleton points connected to a junction point
(red). The connection from the blue point to the red point will be removed since
it has only one connection to the junction point and is considered to be a noisy
branch.The redundant branch is identified by the connection of each skeleton point.
If a skeleton point connected only to the junction point, then this point will be
removed. Finally the smoothing operation is done using the Bezier curve, where
the skeleton points are used as the control points.

49

Figure 4.6: Pruning step

4.3 Experimental Result and Discussion

All the experiment were done using C++ language and OpenCV 2.4.9 library.
Twenty images taken from Berkeley BSDS 300 dataset [66] and Caltech 101 dataset
[67] were used to test the algorithm. Fig.4.8 and Fig.4.9 shows the images used
in this experiment. Since they have varying size, all images used were resized into
300×200 resolutions.

The results of the algorithm are compared with a method based on the SSM
method in[40]. Since the SSM method depends on the Canny edge extraction, we
vary the threshold from 40 to 100 with 10 value increment and take the best F-
measure, which will be explained later, to be compared with the proposed method.
Note that in the original paper, the second half of the algorithm relies on the
background-foreground segmentation of the image. Doing so will alter the problem
from the grey skeletonization into the binary image skeletonization. Therefore, we
avoid implementing the segmentation part of the algorithm.

Fig.4.7 shows the results including the comparison. Note that for visualization
purpose, the skeleton image is overlaid on top of the original input image and
colorized. As can be seen from the figures, most of the time the proposed method
can represent the skeleton of the object in the image well.

The most clearly seen example is from the starfish image with white background
(starfish4 image, 2nd last row in Fig.4.7). Note here that the SSM method, which
relies heavily on the edge information only, suffers from the incomplete edge ex-
traction. Therefore, generating many errors. In comparison, the proposed method,
although extracting only sparse point of the edge boundary, can generate a gen-
erally better skeleton which represents the shape very well. This is due to the
point removal step and clustering step of the triangles. Even though there are
some errors during the edge (point) extraction, such as points inside the object
instead of points on the boundary, these points will be removed during the circular

50

Figure 4.7: Result comparison of the proposed method (column 1 and 3) with the SSM
method (column 2 and 4).

51

Figure 4.8: Input images from Berkeley Dataset. The second and fourth row are the
ground truth images generated by human observer. Starting from the first row: deer,
kangaroo1, airplane, horse, swimmer1, panther, swimmer2, cheetah, starfish1, horse2.

point removal, since the point inside the object will have triangles such that the
surrounding triangles will have the same features (colors, texture, etc.).

In order to have a better comparison, the generated skeleton image is also com-
pared with the ground truth image created by human observer and then calculated
using the F-measure (4.6). The skeleton image is created as a binary image where
pixels crossed by the skeleton have value zero (black pixel) and value one (white
pixel) otherwise.

F = 2× (Precision×Recall)
(Precision+Recall)

(4.6)

Precision =
true positive

true positive+ false positive
(4.7)

Recall =
true positive

true positive+ false negative
(4.8)

Let xt denotes the pixel where both the ground truth (GT) image and the
generated skeleton image (S) have the same zero value (4.9). The sigma notation
can be considered as a threshold for a slight offset generated by skeleton. Then
the true positive is defined as in (4.10). n and m denote the row and column size

52

Figure 4.9: Input images from Caltech 101 Dataset. The second and fourth row are the
ground truth images generated by human observer. Starting from the first row: emu1,
starfish2, starfish3, elephant, starfish4, kangaroo2, kangaroo3, starfish5, emu2, seahorse.

respectively.

xt =

{
1, if S(i, j) = GT (i, j)± σ
0, otherwise

(4.9)

true positive =
n∑

i=0

m∑
j=0

xt(i, j) (4.10)

Let xfp denotes the pixel which has value one in the skeleton image and value
zero in the ground truth image (4.11). Therefore, the false positive in (4.7) is
defined as the sum of this xfp. Similarly, let xfn denotes the pixel which has value
zero in the skeleton image and value one in the ground truth image (4.12). Then,
the false negative in (4.8) is defined as the sum of xfn. Table 4.1 shows the result
of the F-measure comparison.

xfp =

{
1, if S(i, j) = 1 ∧GT (i, j) = 0

0, otherwise
(4.11)

xfn =

{
1, if S(i, j) = 0 ∧GT (i, j) = 1

0, otherwise
(4.12)

53

Table 4.1: Precision, Recall and F-measure comparison of SSM and the proposed
method

Image
SSM Proposed

Precision Recall F-measure Precision Recall F-measure

deer 0.236 0.147 0.182 0.350 0.262 0.300
airplane 0.468 0.319 0.379 0.345 0.514 0.413
panther 0.091 0.206 0.127 0.120 0.327 0.175

swimmer1 0.197 0.352 0.253 0.159 0.430 0.233
swimmer2 0.122 0.154 0.136 0.163 0.297 0.210
elephant 0.242 0.202 0.220 0.240 0.282 0.259

emu 0.100 0.098 0.099 0.147 0.386 0.213
emu2 0.088 0.115 0.100 0.143 0.402 0.211

kangaroo 0.203 0.191 0.197 0.170 0.318 0.222
kangaroo2 0.089 0.121 0.103 0.244 0.283 0.262
kangaroo3 0.144 0.159 0.151 0.264 0.302 0.282
seahorse 0.035 0.108 0.053 0.124 0.312 0.177
cheetah 0.143 0.112 0.126 0.270 0.572 0.367
starfish 0.096 0.104 0.100 0.214 0.357 0.268
starfish2 0.025 0.072 0.037 0.140 0.319 0.195
starfish3 0.015 0.034 0.021 0.140 0.504 0.219
starfish4 0.263 0.181 0.214 0.313 0.455 0.371
starfish5 0.111 0.180 0.137 0.219 0.253 0.235

horse 0.283 0.257 0.270 0.241 0.525 0.333
horse2 0.270 0.265 0.268 0.237 0.386 0.294

Average 0.161 0.169 0.158 0.212 0.374 0.262

Almost all of the image being tested has better F-measure compared with the
SSM Method. Only one of them, i.e. the swimmer1 image, does have a better
F-measure than the proposed method. This is possibly due to the slight shift of
the generated skeleton. For example see Fig.4.10. Assume that the image on the
left of Fig.4.10 are the proposed method and the right part is the existing method.
The red curve is the ground truth skeleton, the gray area is the thresholded part
and the black curve is the generated skeleton.

Notice also that, even though most of the results have low valued F-measure,
the proposed method can still represent the object well as mentioned before (refer
again to starfish4 image in Fig.4.7 for visualization). One side note needs to be
addressed here. The reader might wonder why the image deer has lower F-measure
compared with the proposed method, although SSM method seems to have a better
result visually. This is due to the higher number of ”error” skeleton generated by

54

Figure 4.10: Although generated better skeleton, since it does not intersect the ground
truth skeleton, the proposed method has lower F-measure

Table 4.2: Parameter test

Parameter Value

CLAHE limit 2, 4
Patch size 3, 5, 9, 15
Bin size 20, 30, 40

Removal iteration (r) 1, 3, 5

the SSM method on the background image which reduces the precision and recall
values.

Parameters, such as the limit for CLAHE, the patch and bin sizes when group-
ing the triangles and the number of iteration for circular point removal (r) will
determine the result. Every image, of course, has their best parameter for the best
result. In order to have a better guidance in regard to selecting the parameters,
the following experiment is done. For each image, we vary the parameters values
as in Table 4.2. Then for each image we calculate the F-measures. In total there
are 1440 data collected (= 2 CLAHE limit × 4 patch sizes × 3 bin sizes × 3 r ×
20 images). Table 4.3 shows the summary of the parameter test.

Notice from Table 4.3, compared to the other parameters, the average F-
measure does not differ much (less than 0.001 difference), this means that the
bin size has a relatively low influence on the result. CLAHE limit parameters
show that the limit of value of 2 give a better result. As expected, applying too
much contrast adjustment to the image give a worse solution since part of the
object will be different one and another resulting in a strict triangle grouping.

For the patch size, the larger size seems to have a better result, since smaller
size will have a very little information of the area. Finally the removal iteration
r. Here it shows that 3 gave us the best result. Similar with the CLAHE limit
parameter, too much removal will result in lost of skeleton information and too
little iteration will give a looping skeleton.

55

Table 4.3: Summary (average F-measure) of the parameter testing

Parameter Average F-measure

CLAHE limit:
2 0.198
4 0.192

Patch Size:
3 0.192
5 0.194
9 0.196
15 0.199

Bin Size:
20 0.1954
30 0.1957
40 0.1946

Removal Iteration (r)
1 0.177
3 0.205
5 0.204

56

Chapter 5

Object Specific Non-rigid
(Articulated) 3D Model Retrieval
using Scale-Rotation Invariant
Shape Context on Skeleton

It has been shown that by using skeleton information, 3D model retrieval can be
achieved. Notice here, that the retrieved object usually does not mean the same
object will be retrieved. What usually retrieved is object with the same structure
as the query object. In this chapter we are trying to solve this drawback, i.e.
retrieving the same object as the query (image) even though they have different
poses.

5.1 Shape Feature

Assuming that the skeleton is already given, the problem is then how to match the
shape of the model of the query with the database. Therefore, we need a feature
(descriptor) that can match the shape or appearance of the 3D model. Shape
context [68, 69] is a feature that can be used to record the shape of an object.

Shape context works by first extracting the edge information of the object.
External and internal edge information are used for the calculation of the shape
context desciptor. From the edges, a uniform distance spaced points are taken as
sampling points, i.e. points with equal spacing. For each points, a shape context
descriptor is generated.

The descriptor is generated by checking the distribution of the position of
neighboring points with respect to the current point. In order to capture the
distribution information, it is natural the make a histogram. The input to the his-

57

Figure 5.1: Skeleton shape context

togram are then comprised of the log-polar information of the neighboring points.
In Fig.5.3 the center of the log-polar histogram (the wheel-like figure) is the point
of which the shape context descriptors will be generated. Points lying on the bins
will be counted for the respective bins. In the example, 12 angular bins and 2
log distance bins are used. All the points (red circles) will have its own shape
context descriptor and will be used for the matching between the points. In order
to calculate the histogram distance, originally the χ2 distance is used.

While it might work well for rigid object, using only the shape context de-
scriptor to the query will not work for non-rigid object. This is because of the
appearance of the object might be completely different in differing poses and
viewing-angle.

To minimize such effect, we propose to combine the shape context with the
skeleton information (Fig.5.1). Instead of generating the sampling points on the
contour of the objects, we generate them on the skeleton instead. By doing so,
it reduces the number of points need to be checked (and therefore reduces the
matching computation time). In further section, we will also prove that by using
the skeleton information, a better retrieval rate can also be achieved.

Notice that the shape context feature is not rotation and scale invariant (Fig.5.2).
As can be seen, by rotating the object, the generated log-histogram (the box un-
der each object figure) generated a different result eventhough it should be the
same since basically the object is the same. To minimize the rotation effect, we
propose using the cross correlation when calculating the similarity between the
log-histograms. Let Hq and Hr be the log-histogram of the query point and refer-
ence point respectively. The cross correlation can be regarded as the convolution
of the reference onto the query log-histogram (5.1). g(i, j) denotes the output of

58

Figure 5.2: Rotation and Scale variant Shape Context

59

Figure 5.3: An example of shape context descriptor

the convolution. Finally, the value that defines the simmilarity between two his-
tograms can be regarded as the maximum value of the cross correlation calculation
(5.2).

g(i, j) =
∑
k,l

Hq(i+ k, j + l)Hr(k, l) (5.1)

d(Hq, Hr) = arg max
i,j

g(i, j) (5.2)

In order to minimize the scale effect, the k-nearest neighbor of the outer contour
points is used. The distance of the skeleton point with the k-th nearest neighbor
will then be used as the base radius of the log-histogram calculation for the shape
context feature. Let r be the radius, i.e. the k-th nearest neighbor distance, then
the log-histogram will have a radius of (1 + λ)r. The outer contour information is
acquired by first segmenting the input image using the grabcut algorithm and then
extracted using the Canny edge extraction algorithm. From the edge information,
the sampling points with uniform distance are then extracted. Notice that when
calculating the shape context feature, the inner contour or edge information is
preserved (also be used).

5.2 Matching Step

The cost of matching between the query and the object in the database is calculated
from the cross matching of the query features and the object features. Let f q

i be
the i -th (histogram) feature of the query (superscript q) and i ∈ {0, 1, . . . , n} with
n is the number of features of the query. Similarly, let f r

j be the j -th feature of the
reference (superscript r) and j ∈ {0, 1, . . . ,m} with m is the number of features
of the reference. Therefore, the total pair of features will then be n×m.

60

Let pij be the cost of matching feature f q
i and f r

j using (5.2). This can be
represented in a matrix form of size n×m. The pair pi,j will be considered to be a
valid pair if pi,j if it has the maximum value on the i -th column and j -th row. Let
Pqr be the set of matching pairs of the query and reference features. The similarity
(Sqr) of the query and the reference object is then calculated by the average cost
of the pairs in Pqr (5.3), where N is the total number of element and i denotes the
i -th element of the set Pqr.

Sqr =
1

N

N∑
i=0

Pqr[i] (5.3)

An object in the database will be represented by several images of the object
taken from several differing viewing angle (Fig. 5.4). Following the notation
previously defined, notice here that n (the number of feature of the query) will be
less than the number of feature of the reference m. For simplicity, assume that the
number of features generated in an image is constant f number. Therefore, the
query will have n = f number of feature, while one object in the database will have
m = Ni × f number of features, where Ni is the number of images representing
the object. The intuition behind this is to minimize the effect of the difference
of the shape and information in viewing angle direction, i.e. local information is
sufficient enough to be used in matching the object in differing viewing angle.

5.3 Experiment Result

The first experiment is done to compare the results of using only the shape context
feature and the results of using our proposal, the scale-rotation invariant on the
skeleton. Fig.5.5 shows the models with standard pose that are used and stored
in the database. For each object 21 orientations were used to represent the object
(similar with Fig.5.4). Along with the image database, the skeleton information is
also stored in the database. Each image has a resolution of 300 × 300 pixels.

The parameters setting is 12 angular bins and 3 distance bins. The sampling
distance on the edge is fixed to be 3. For the shape context only feature, the radius
when calculating the log-histogram was fixed as 90 and when comparing the log-
histograms, χ2 distance was used. The proposal on the other hand used the cross
correlation method described in section 5.1 with k = 10. Both of the methods used
the cross matching method described in section 5.2. Fig.5.6 shows the test pose
for the experiment. The test model is rendered similarly like the image in Fig.,
i.e. rendered in different viewing angle. In total there were 21 images rendered,
each will be the test image independently. This means that there will be 21 data
to assess our statement. Table (5.1 - 5.3) shows the result of using only the shape

61

(a) x:-30,
z = -90

(b) x:-30,
z = -60

(c) x:-30,
z = -30

(d) x:-30,
z = 0

(e) x:-30,
z = 30

(f) x:-30,
z = 60

(g) x:-30,
z = 90

(h) x:0, z
= -90

(i) x:0, z
= -60

(j) x:0, z
= -30

(k) x:0, z
= 0

(l) x:0, z
= 30

(m) x:0, z
= 60

(n) x:0, z
= 90

(o) x:30, z
= -90

(p) x:30, z
= -60

(q) x:30, z
= -30

(r) x:30, z
= 0

(s) x:30, z
= 30

(t) x:30, z
= 60

(u) x:30, z
= 90

Figure 5.4: Rendered 3D models for one class of object in the database

(a) Bunny (b) Cherry (c) Enchu

(d) Template (e) Student

Figure 5.5: Models in the database

62

Figure 5.6: Test model with different pose (Test Pose)

Table 5.1: Shape Context Result on Test Pose with x = 0

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 5.077 6.492 6.031 6.103 6.098 9.153 5.927
Student 8.591 9.361 5.929 7.699 8.490 8.722 9.405
Bunny 6.815 8.354 8.162 7.954 7.387 9.026 7.404
Cherry 7.637 8.372 6.340 7.192 7.411 7.625 7.239
Echu 7.322 10.025 7.581 9.100 7.951 8.352 7.628

context and Table (5.4 - 5.5) shows the result of combining the skeleton and shape
context information.

Notice here that, since the shape context used the χ2 as the calculation method
when comparing two histograms and our proposal used the cross correlation, the
decision on which object to be retrieved will be different. While the proposed
method considered the maximum value as the best matching candidate, the shape
context considered the minimum value as the best matching candidate.

The bold number represents the smallest (or largest) cost value and therefore
the retrieved object. For example in Table 5.1 the query is the template model
with z = 0, and the bold number belongs to the template model, then it is a correct
retrieval. In the contrary, for example in the same table, when the query is z = -60,
using only shape context descriptor, the (falsely) retrieved object is cherry since
it has the smallest value. All the query belongs to the Template model, therefore,
the bold number should be in the same row as the Template model (first row).
As can be seen from the tables, adding the skeleton information gave us (18/21 =
)85.7% accuracy for the test pose, while using only shape context it gave us only
(14/21 =) 67%.

To further assess the proposed method, several test queries were tested and
similarly, the retrieval rate is calculated. Figure 5.7 shows the query objects.

63

Table 5.2: Shape Context Result on Test Pose with x = 30

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 5.892 7.963 5.929 7.214 6.929 5.945 6.431
Student 6.828 9.277 6.823 8.080 6.710 7.082 8.369
Bunny 7.928 10.507 8.043 8.529 10.048 7.789 7.185
Cherry 5.965 9.644 5.714 7.453 7.142 7.261 7.567
Echu 7.450 9.522 6.435 9.871 8.581 6.718 8.077

Table 5.3: Shape Context Result on Test Pose with x =-30

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 4.616 8.689 7.803 7.847 6.073 5.428 6.760
Student 6.118 7.390 8.900 9.973 7.385 7.401 8.316
Bunny 7.359 7.995 8.034 8.238 6.399 6.348 6.207
Cherry 8.199 7.886 7.625 8.716 7.797 7.965 6.725
Echu 7.164 8.146 8.167 9.373 7.220 6.581 7.888

Similar with the previous experiment, each object will be rendered 21 times from
different viewing angle and therefore, there will be 21 data collected for each object
query. The detail of the results can be viewed in appendix B.1 - B.15. Table 5.7
shows the summary of the results. For the student pose objects, there are slight
parameter changes, i.e. 5 distance bins instead of 3 and k = 20 for the best result.

As can be seen from the results shown in Table 5.7, our proposal generate a
promising result of achieving 93.32% correct retrieval rate. These results how-
ever, due to the manually chosen parameter setting, i.e. for the best performance
each object has their own parameter setting. For further direction, an automatic
parameters selection should be considered.

64

Table 5.4: Shape Context including skeleton result on Test Pose with x = 0

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 13.781 15.968 17.000 16.000 16.333 16.833 16.045
Student 13.317 14.889 15.375 14.760 15.333 16.125 15.417
Bunny 11.000 10.675 13.583 13.040 12.875 14.219 13.571
Cherry 12.131 14.098 14.258 14.050 14.063 14.125 14.468
Echu 12.414 14.173 14.639 13.676 14.510 14.298 14.008

Table 5.5: Shape Context including skeleton result on Test Pose with x = 30

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 16.111 16.810 16.333 15.944 12.987 16.500 15.667
Student 15.000 14.816 16.417 14.109 13.320 14.494 15.833
Bunny 13.500 14.107 13.500 12.500 11.177 14.375 14.750
Cherry 14.396 14.452 14.571 12.597 13.021 13.400 14.400
Echu 14.333 13.355 13.619 13.976 12.332 113.556 15.000

Table 5.6: Shape Context including skeleton result on Test Pose with x =-30

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 15.717 15.619 15.762 15.500 16.110 16.111 14.733
Student 14.283 14.149 14.725 14.616 14.460 13.901 14.444
Bunny 12.906 11.636 14.000 13.339 12.120 12.687 12.130
Cherry 14.286 13.770 15.167 14.173 13.897 14.763 13.454
Echu 13.485 13.339 14.114 14.000 14.631 13.635 12.457

Table 5.7: Summary of the result using our proposal

Object Accuracy

Template Pose 2 100%
Template Pose 3 95.2%
Student Pose 1 85.7%
Student Pose 2 95.2%
Student Pose 3 90.5%

Average 93.32%

65

(a) Template pose 2 (b) Template pose 3

(c) Student pose 1 (d) Student pose 2 (e) Student pose 3

Figure 5.7: Query Objects

66

Chapter 6

Conclusion

There are mainly three parts in this (view-based) 3D model retrieval study: Rigid
3D model retrieval, skeletonization and non-rigid 3D model retrieval system. In
Rigid 3D model retrieval, we propose a novel method using the skewness map
approach. By using the skewness map approach, with 3 models in the database
the system can enhance the speed of retrieval 4 times faster than the conventional
method of using the SURF method. In matching times, the system can enhance
the speed up to 14 times of the conventional method. Furthermore, the proposed
method can also approximate the orientation of the query object with averagely
less than 1 degrees of error both in x and y direction. By sacrificing an increase
of error of the orientation approximation, using our proposal CRN descriptor, the
system can further speed up the total computation time 11 times faster than the
conventional SURF method.

As like the other view-based methods, our approach has some limitations. First,
the objects retrieved depends on the orientation the object in the input image
taken. Let say that we have a cup with some objects inside the cup. Our proposal
will only retrieve the cup and not the objects inside the cup. In other words, unless
the cup in the database has the same or similar objects already inside the cup, our
proposal will not be able to separately retrieve all the items. Since the skewness
map depends on the shape of the object, the speed-up process will not work for a
round object, such as ball, since it will have the same skewness value irrespective
of the viewing angle.

We also propose a new method in solving the grey-scale skeletonization prob-
lem by utilizing the Delaunay triangulation. A new skeletonization based on the
triangle grouping and sparse points condition is proposed in the second parts of
this study. By using our approach, we can get a better result visually (subjectively)
and numerically (objectively) of achieving 1.7 times higher F-measure compared
to another method.

One of the limitation in our proposal here is that the object has to have a

67

uniform color or texture distribution. Thus, object with a lot contrast, like human
with bright and contrast colored clothes, will not be applicable for our proposal
since the skeleton extracted will be based on the clothes instead of the whole object
(human pose). Occlusion proves still to be a challenging work in skeletonization,
thus our work also has a limitation that part of objects occluded will not be able
to be extracted correctly.

Finally on the last part of the study regarding the non-rigid (articulated) 3D
models retrieval, using a combination of shape context and skeleton information
of the query and the reference images, we show a promising result of retrieving the
correct (the exact) same model even though they have different pose. An assump-
tion in our current implementation is that the skeleton can be extracted correctly.
Our proposal achieves 93.3% accuracy on retrieving the correct object. There are
still some parameter issues of the proposed method. In current implementation,
the parameters are still chosen manually to give the best result. Particularly in
determining the number of k for the k -nearest neighbors (which is made constant
in current implementation) for each point. For further direction on this research,
an adaptive selection of k should be considered.

Most of the results described in this dissertation can be found on several jour-
nals and conference papers as follow:

• Rigid 3D Model Retrieval using Skewness Map:

1. V. Sintunata, Kurumi Kaminishi and T.Aoki, ”Skewness Map: Estimat-
ing Object Orientation for High Speed 3D Object Retrieval System”,
International Journal of Intelligent Engineering Informatics, 2017. (in
press)

2. V.Sintunata and T.Aoki, ”High Speed 3D Object Orientation Estima-
tion for High Speed 3D Object Retrieval”, in 4th International Confer-
ence on Information and Communication Technology (ICoICT), 2016.

3. V.Sintunata and T.Aoki, ”High Speed 3D Object Retrieval using Skew-
ness Value”, IEEE Region 10 Symposium (TENSYMP), 2016.

4. V.Sintunata and T.Aoki, ”3D Object Retrieval using Skewness Database”,
International Conference on Control, Decision, and Information Tech-
nology (CoDIT), 2016.

• Natural Image Skeletonization using Delaunay Triangulation:

1. V.Sintunata and T.Aoki, ”Skeletonization in Natural Image using De-
launay Triangulation”, Advances in Science, Technology and Engineer-
ing Systems Journal, vol. 2, no.3, pp.1013-1018, 2017. (in press)

68

2. V.Sintunata and T.Aoki, ”Grey-scale Skeletonization using Delaunay
Triangulation”, IEEE International Conference on Consumer Electronic
- Taiwan, 2017.

3. V.Sintunata and T.Aoki, ”Skeleton Extraction in Cluttered Image based
on Delaunay Triangulation”, IEEE International Symposium on Multi-
media (ISM), 2016.

69

Publication List

Journal:

1. V.Sintunata and T.Aoki, ”Skeletonization in Natural Image using Delaunay
Triangulation”, Advances in Science, Technology and Engineering Systems
Journal, vol. 2, no.3, pp.1013-1018, 2017. (in press, related to Chapter 4)

2. V. Sintunata, Kurumi Kaminishi and T.Aoki, ”Skewness Map: Estimating
Object Orientation for High Speed 3D Object Retrieval System”, Interna-
tional Journal of Intelligent Engineering Informatics, 2017. (in press, related
to Chapter 3)

3. V. Sintunata and T. Aoki, ”Color Segmentation based Depth Adjustment
for Image Reconstruction from a Single Input Image”, International Journal
of Computer Theory and Engineering, vol. 8, no. 2, April 2016. (unrelated)

4. V. Sintunata and T. Aoki, ”Shape from Shading using Color Segmentation
based Depth Adjustment”, International Journal of Enhanced Research in
Science Technology and Engineering, vol. 3, issue 11, pp.64-72, 2014. (un-
related)

5. T.Aoki and V.Sintunata, ”Direct Joint Detection from Humanoid 3D Models
without using Skeleton Information”, International Journal of Electronics
Communication and Engineering, vol. 5, issue 3, May 2014. (unrelated)

Conference:

1. V.Sintunata and T.Aoki, ”Grey-scale Skeletonization using Delaunay Trian-
gulation”, IEEE International Conference on Consumer Electronic - Taiwan,
2017. (related to Chapter 4)

2. V.Sintunata and T.Aoki, ”Skeleton Extraction in Cluttered Image based
on Delaunay Triangulation”, IEEE International Symposium on Multimedia
(ISM), 2016. (related to Chapter 4)
DOI: 10.1109/ISM.2016.0080.

70

3. V.Sintunata and T.Aoki, ”Object Orientation Estimation for High Speed
3D Object Retrieval”, in 4th International Conference on Information and
Communication Technology (ICoICT), 2016. (related to Chapter 3)
DOI: 10.1109/ICoICT.2016.7571933

4. V.Sintunata and T.Aoki, ”High Speed 3D Object Retrieval using Skewness
Value”, IEEE Region 10 Symposium (TENSYMP), 2016. (related to Chap-
ter 3)
DOI: 10.1109/TENCONSpring.2016.7519435

5. V.Sintunata and T.Aoki, ”3D Object Retrieval using Skewness Database”,
International Conference on Control, Decision, and Information Technology
(CoDIT), 2016. (related to Chapter 3)
DOI: 10.1109/CoDIT.2016.7593547.

6. O. Hirvola, T.Viitanen, V.Sintunata and T.Aoki, ”Improved Image Quality
in Fast Inpainting with Omnidirectional Filling”, International Conference
on Image, Vision and Computing (ICIVC), 2016. (unrelated)
DOI: 10.1109/ICIVC.2016.7571269.

7. N.T.H.Van, V. Sintunata, and T.Aoki, ”Automatic Image Colorization based
on Feature Lines”, in Proc. 11th Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications, vol.4: VISAPP,
pp.126-133, 2016. (unrelated)

8. T.Aoki and V.Sintunata, ”Template Matching Skeletonization based on Gauss
Sphere Representation”, IEEE International Symposium on Multimedia (ISM),
2013. (unrelated)
DOI:10.1109/ISM.2013.19.

9. T.Aoki and V.Sintunata, ” Automatic Animation Skeleton Extraction Method
based on Vertex Gauss Sphere Representation”, International Conference on
Computational Intelligence Modelling and Simulation (CIMSIM), 2013. (un-
related)
DOI: 10.1109/CIMSim.2013.21

71

Appendix A

Result of SMSURF and SMCRN

Table A.1: Accuracy Comparison of SMSURF and SMCRN

Query
Ground Truth SMSURF SMCRN

x y x y ∆x ∆y x y ∆x ∆y

Bike
232 69 232 69 0 0 232 69 0 0
148 51 148 51 0 0 150 53 2 2
271 85 271 85 0 0 271 85 0 0

Bird
222 166 225 164 3 2 222 166 0 0
275 223 275 223 0 0 275 223 0 0
175 193 175 193 0 0 175 193 0 0

Bugs
325 9 324 8 1 1 324 5 1 4
123 276 123 275 0 1 123 276 0 0
355 77 355 77 0 0 355 77 0 0

Continued to next page

72

Continuation of Table A.1

Query
Ground Truth SMSURF SMCRN

x y x y ∆x ∆y x y ∆x ∆y

Bus
133 12 133 12 0 0 133 12 0 0
195 138 195 138 0 0 195 138 0 0
325 193 325 193 0 0 325 193 0 0

Cake
77 49 77 49 0 0 77 49 0 0
280 6 282 7 -2 -1 70 6 210 0
288 61 288 61 0 0 288 61 0 0

Cello
283 217 283 217 0 0 283 217 0 0
148 193 148 193 0 0 148 193 0 0
25 24 25 24 0 0 25 24 0 0

Chicken
255 357 255 357 0 0 255 357 0 0
107 155 107 155 0 0 107 115 0 0
47 250 47 250 0 0 47 250 0 0

Cow
200 262 200 262 0 0 200 262 0 0
193 5 193 5 0 0 193 5 0 0
207 304 207 304 0 0 207 304 0 0

Dino
55 129 55 129 0 0 55 129 0 0
307 158 307 158 0 0 307 158 0 0
126 141 126 141 0 0 126 141 0 0

Flower
82 146 86 147 4 1 87 145 5 1
295 246 303 246 8 0 300 241 5 5
300 339 300 339 0 0 300 339 0 0

Continued to next page

73

Continuation of Table A.1

Query
Ground Truth SMSURF SMCRN

x y x y ∆x ∆y x y ∆x ∆y

Frog
130 163 129 164 1 1 129 164 1 1
311 97 311 97 0 0 311 97 0 0
141 135 141 135 0 0 141 135 0 0

Hikoboshi
256 277 256 277 0 0 256 277 0 0
70 288 70 288 0 0 70 288 0 0
186 42 186 42 0 0 186 42 0 0

Horse
43 41 43 41 0 0 43 41 0 0
292 318 292 318 0 0 292 318 0 0
250 34 251 36 1 2 242 42 6 8

Incense Holder
265 65 265 65 0 0 265 65 0 0
226 200 226 200 0 0 226 200 0 0
241 354 241 354 0 0 241 354 0 0

Kimono
344 174 344 174 0 0 344 174 0 0
202 122 202 122 0 0 202 122 0 0
289 343 289 343 0 0 289 343 0 0

Mini Dragon
305 143 302 145 3 2 142 130 163 13
184 354 184 354 0 0 184 354 0 0
36 291 36 291 0 0 36 291 0 0

Mochi
140 37 140 37 0 0 140 37 0 0
191 201 191 201 0 0 191 201 0 0
107 166 106 166 0 0 110 164 3 2

Continued to next page

74

Continuation of Table A.1

Query
Ground Truth SMSURF SMCRN

x y x y ∆x ∆y x y ∆x ∆y

Monkey
35 301 38 301 3 0 319 277 284 24
246 27 246 27 0 0 246 27 0 0
24 89 24 89 0 0 24 89 0 0

Necklace
71 107 71 107 0 0 71 107 0 0
159 86 159 86 0 0 159 86 0 0
202 332 202 333 0 1 208 332 6 0

Oni
64 244 65 246 1 2 67 245 3 1
352 220 352 220 0 0 352 220 0 0
146 205 146 205 0 0 146 205 0 0

Orihime
36 274 36 274 0 0 36 274 0 0
18 94 18 94 0 0 18 94 0 0
286 239 286 239 0 0 286 239 0 0

Sheep
29 75 29 75 0 0 29 75 0 0
50 209 50 209 0 0 50 209 0 0
230 135 230 135 0 0 230 135 0 0

Snail
84 13 84 13 0 0 84 13 0 0
337 201 337 201 0 0 337 201 0 0
68 300 68 300 0 0 68 300 0 0

Snowman1
99 8 99 8 0 0 99 8 0 0
216 5 216 5 0 0 216 5 0 0
322 26 322 26 0 0 322 26 0 0

Continued to next page

75

Continuation of Table A.1

Query
Ground Truth SMSURF SMCRN

x y x y ∆x ∆y x y ∆x ∆y

Snowman2
15 81 358 80 343 1 3 82 12 1
318 276 318 276 0 0 318 276 0 0
292 284 292 284 0 0 292 284 0 0

Sofa
85 336 85 336 0 0 85 336 0 0
116 187 116 187 0 0 116 187 0 0
24 131 24 131 0 0 24 131 0 0

Sunflower
218 100 218 100 0 0 218 100 0 0
201 303 201 303 0 0 201 303 0 0
339 19 339 19 0 0 339 19 0 0

Sunflower2
140 312 140 312 0 0 140 312 0 0
152 190 152 190 0 0 152 190 0 0
172 193 172 193 0 0 172 193 0 0

Suzanne
271 308 271 308 0 0 271 308 0 0
45 24 45 24 0 0 45 24 0 0
167 152 167 155 0 3 167 155 0 3

Tiger
206 249 206 249 0 0 206 249 0 0
254 72 254 72 0 0 254 72 0 0
178 134 177 133 1 1 184 127 6 7

76

Table A.2: Time Comparison of SMSURF and SMCRN (in seconds)

Query SMSURF SMCRN

Bike
4378.8 1108.48
3655.95 796.326
1133.08 291.231

Bird
280.439 91.705
2063.1 679.925
3622.72 1124.02

Bugs
4360.49 1809.67
5600.94 2263.9
1260.98 420.916

Bus
8874.65 1762.07
6217.19 1738.17
4746.37 1106.48

Cake
11334.7 1853.69
5907.81 1299.04
14050.4 2162.45

Cello
3979.05 1557.93
1692.78 678.565
653.758 231.908

Chicken
4846.74 1552.17
5721.5 2019.18
2962.64 902.437

Cow
3392 1263.39

5135.44 2078.56
6975.3 2575.22

Dino
308.124 96.58
6228.05 1609.26
261.814 88.29

Flower
1144.46 363.791
2452.24 1010.7
1780.48 601.85

Continued to next page

77

Continuation of Table A.2

Query SMSURF SMCRN

Frog
2628.85 732.15
7641.97 2065.42
4147.17 1088.16

Hikoboshi
6871.78 1850.58
5512.13 1464.21
8062.06 2432.88

Horse
7106.68 2162.6
4520.52 1388.92
1126.18 383.455

Incenseholder
5587.77 1769.33
9187.36 2360.89
9255.19 2321.44

Kimono
2534.05 962.235
4418.67 1384.44
2993.24 1109.22

Mini Dragon
1573.25 456.324
5021.51 1664.17
3946.56 1318.7

Mochi
10155.5 2731.74
6946.99 1839.38
7258.37 1925.86

Monkey
4041.49 1572.28
4643.25 1707.33
4900.55 1769.85

Necklace
6945.09 2336.19
4583.02 1406.48
5860.77 1718.39

Oni
2532.97 940.906
5070.14 1744.84
5232.91 1807.01

Orihime
8902.56 2576.27
8521.95 1911.42
6691.23 1888.74

Continued to next page

78

Continuation of Table A.2

Query SMSURF SMCRN

Sheep
3226.11 1226.54
5870.74 1905.65
5587.72 2124.73

Snail
1990.6 551.44
2190.83 604.387
5916.22 1665.31

Snowman1
2201.29 761.238
2631.08 774.406
3045.5 920.861

Snowman2
7669.29 2681.75
5805.37 2449.03
4488.03 1254.2

Sofa
5074.53 1598.94
3726.48 1061.43
10331 2417.94

Sunflower
5540.76 1562.21
2903.2 921.282
4896.7 1193.04

Sunflower2
6267.78 1814.95
6329.53 2118.38
6585.1 2253.31

Suzanne
6711.29 2060.64
1374.74 395.43
1714.62 469.342

Tiger
893.825 233.992
5153.31 980.466
1333.66 286.92

79

Appendix B

Result of Scale-Orientation
Invariant Shape Context on
Skeleton

80

Table B.1: Shape Context including skeleton result on Template Pose 2 with x = 0

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 18.000 16.833 16.905 16.708 16.286 17.952 16.476
Student 17.111 16.417 16.024 15.509 16.310 15.533 15.488
Bunny 14.521 13.155 13.536 13.381 13.810 14.161 13.338
Cherry 15.542 14.408 14.286 13.768 13.420 14.503 14.252
Echu 15.778 14.516 14.158 14.589 14.925 15.878 14.933

Table B.2: Shape Context including skeleton result on Template Pose 2 with x = 0

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 17.133 18.333 18.103 15.744 16.767 17.133 16.310
Student 16.485 17.133 17.238 14.982 15.881 15.743 15.417
Bunny 13.977 15.000 15.016 12.987 14.003 14.045 13.082
Cherry 14.975 16.350 16.036 14.750 14.906 15.233 13.901
Echu 15.233 16.533 16.143 14.718 15.500 15.200 14.069

Table B.3: Shape Context including skeleton result on Template Pose 2 with x = 0

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 17.000 13.966 17.963 15.505 16.500 15.185 16.667
Student 15.942 14.892 16.907 14.292 15.611 14.374 16.060
Bunny 13.197 13.440 14.889 12.671 13.633 12.642 13.714
Cherry 13.020 13.787 15.819 14.036 14.293 13.503 13.767
Echu 14.403 13.973 16.148 13.577 14.524 13.710 16.000

81

Table B.4: Shape Context including skeleton result on Template Pose 2 with x = 0

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 15.893 17.833 17.889 17.000 14.935 15.589 16.400
Student 11.721 15.917 16.425 15.438 13.909 15.011 14.700
Bunny 13.083 13.563 14.439 13.294 11.449 12.611 13.500
Cherry 13.037 15.000 15.317 13.612 13.219 13.447 13.803
Echu 13.347 14.917 15.611 14.548 13.027 14.025 13.971

Table B.5: Shape Context including skeleton result on Template Pose 2 with x = 0

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 15.238 15.762 16.133 15.944 16.722 17.778 16.500
Student 14.643 15.022 14.979 14.958 15.426 16.635 15.611
Bunny 12.856 13.491 13.450 13.042 13.345 14.133 12.785
Cherry 14.207 13.949 13.848 13.875 14.455 14.965 14.000
Echu 13.779 13.650 13.466 14.109 14.594 15.267 14.444

Table B.6: Shape Context including skeleton result on Template Pose 2 with x = 0

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 17.556 17.000 14.687 15.867 16.792 16.042 16.778
Student 16.500 15.691 14.011 15.400 15.875 15.548 15.500
Bunny 13.958 13.857 12.463 12.900 13.906 13.009 13.500
Cherry 14.089 15.000 13.406 13.824 14.906 13.695 14.024
Echu 15.333 14.796 13.039 14.867 15.125 13.282 14.778

82

Table B.7: Shape Context including skeleton result on Student Pose 1 with x = 0

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 16.775 15.427 16.229 16.188 15.781 14.646 15.099
Student 19.833 17.564 19.222 20.083 18.542 16.172 17.638
Bunny 16.143 14.544 15.650 16.694 14.450 13.431 14.524
Cherry 17.567 16.871 17.013 18.357 15.267 15.929 15.015
Echu 18.177 15.718 17.467 18.406 17.521 14.813 17.267

Table B.8: Shape Context including skeleton result on Student Pose 1 with x = 30

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 14.996 17.952 17.375 17.425 14.571 14.895 13.333
Student 15.349 19.371 19.114 20.108 15.547 14.196 14.833
Bunny 14.328 16.289 15.877 17.711 13.361 14.764 12.257
Cherry 16.163 18.180 16.634 18.550 15.210 14.547 13.866
Echu 15.076 17.902 17.643 18.023 14.737 15.152 14.667

Table B.9: Shape Context including skeleton result on Student Pose 1 with x = -30

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 16.738 18.222 17.061 16.388 16.876 17.337 16.838
Student 18.611 20.086 18.851 16.333 18.182 20.778 18.759
Bunny 16.411 17.259 16.083 15.807 15.693 16.819 16.741
Cherry 16.663 19.528 17.890 15.234 15.251 17.070 16.965
Echu 17.933 18.764 17.955 17.333 17.079 19.617 18.171

83

Table B.10: Shape Context including skeleton result on Student Pose 2 with x = 0

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 18.128 18.710 18.591 19.386 17.782 17.387 18.473
Student 21.101 22.200 20.808 22.950 20.506 21.254 22.567
Bunny 17.524 18.244 16.756 19.242 16.640 17.259 17.080
Cherry 19.476 18.087 18.709 20.857 18.511 18.779 20.714
Echu 18.873 19.602 18.375 21.091 18.594 18.975 20.028

Table B.11: Shape Context including skeleton result on Student Pose 2 with x = 30

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 17.557 18.462 17.000 16.408 18.092 17.071 16.677
Student 19.215 21.667 18.546 18.451 19.628 18.690 19.144
Bunny 16.965 17.735 15.450 16.181 16.505 16.020 15.366
Cherry 17.977 20.560 17.171 17.998 19.906 18.113 16.968
Echu 18.598 20.096 17.251 16.803 18.979 17.596 17.700

Table B.12: Shape Context including skeleton result on Student Pose 2 with x = -30

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 16.993 18.340 19.091 17.707 19.153 19.250 18.265
Student 18.977 20.271 20.960 18.743 22.059 19.742 21.056
Bunny 16.554 17.676 17.980 16.849 18.175 18.375 17.700
Cherry 18.434 18.283 18.809 18.917 20.151 18.964 20.194
Echu 17.947 18.721 19.641 18.430 19.761 18.728 19.296

84

Table B.13: Shape Context including skeleton result on Student Pose 3 with x = 0

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 18.558 17.590 14.889 15.812 17.966 17.020 15.495
Student 21.208 19.644 17.150 17.318 21.455 18.697 17.337
Bunny 17.096 15.536 15.078 14.450 16.498 16.454 14.769
Cherry 19.825 17.212 16.069 16.643 19.130 18.302 16.427
Echu 19.050 18.252 16.019 15.846 19.636 17.075 16.202

Table B.14: Shape Context including skeleton result on Student Pose 3 with x = 30

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 19.375 14.363 17.075 14.236 16.976 16.931 15.316
Student 20.806 16.525 19.200 17.500 18.297 19.611 18.861
Bunny 17.977 14.439 15.863 13.622 16.199 15.669 15.409
Cherry 19.696 16.388 17.573 16.968 18.651 16.413 17.583
Echu 17.683 15.829 16.332 15.292 17.240 17.754 17.917

Table B.15: Shape Context including skeleton result on Student Pose 3 with x = -30

Model
Query

z = 0 z = 30 z = 60 z = 90 z = -30 z = -60 z = -90

Template 17.297 18.596 18.250 20.556 18.304 17.894 21.575
Student 20.091 19.111 21.213 23.444 21.676 21.120 25.100
Bunny 16.472 16.708 18.444 19.074 18.278 17.361 21.033
Cherry 17.181 17.365 20.107 21.079 18.000 19.835 23.413
Echu 18.939 18.855 19.056 21.630 18.702 18.713 22.650

85

Bibliography

[1] Y. Gao, M. Wang, D. Tao, R. Ji, and Q. Dai, “3-d object retrieval and recogni-
tion with hypergraph analysis,” IEEE Trans. Image Processing, vol. 21, no. 9,
pp. 4290 – 4303, 2012.

[2] K. Lu, R. Ji, J. Tang, and Y. Gao, “Learning-based bipartite graph matching
for view-based 3d model retrieval,” IEEE Trans. Image Processing, vol. 23,
no. 10, pp. 4553 –4563, 2014.

[3] M. Wang, Y. Gao, K. Lu, and Y. Rui, “View-based discriminative proba-
bilistic modeling for 3d object retrieval and recognition,” IEEE Trans. Image
Processing, vol. 22, no. 4, pp. 1395 – 1407, 2013.

[4] S. A. A. Shah, M. Bennamoun, F. Boussaid, and A. A. El-Sallam, “3d-div: A
novel local surface descriptor for feature matching and pairwise range image
registration,” in IEEE International Conference on Image Processing (ICIP),
2013.

[5] C. Feinen, J. Czajkowska, M. Grzegorzek, and L. J. Latecki, “3d object re-
trieval by 3d curve matching,” in IEEE International Conference on Image
Processing (ICIP), 2014.

[6] P. Papadakis, I. Pratikakis, T. Theoharis, and S. Perantonis, “PANORAMA:
a 3D shape descriptor based on panoramic views for unsupervised 3D object
retrieval,” International Journal of Computer Vision, vol. 89, no. 2, pp. 177–
192, 2010.

[7] B. Gong, J. Liu, X. Wang, and X. Tang, “Learning semantic signatures for
3D object retrieval,” IEEE Trans. Multimedia, vol. 15, no. 2, pp. 369–377,
2013.

[8] A. Tankus, N. Sochen, and Y. Yeshurun, “A new perspective [on] shape from
shading,” in Proceedings of the Ninth IEEE International Conference on Com-
puter Vision (ICCV’03), 2003.

86

[9] E. Prados and O. Faugeras, “Shape from shading: a well-posed problem?” in
IEEE Computer Vision and Pattern Recognition (CVPR), 2005.

[10] J.-D. Durou, M. Falcone, and M. Sagona, “Numerical methods for shape-
from-shading: A new survey with benchmarks,” Computer Vision and Image
Understanding, vol. 109, no. 1, pp. 22–43, 2007.

[11] R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah, “Shape from shading: A
survey,” IEEE Trans. Pattern Analysis and Machine Learning, vol. 21, no. 8,
pp. 690–706, 1999.

[12] Z. Zhang, Y. Gao, and T. Caelli, “Colour adjustment and specular removal
for non-uniform shape from shading,” in International Conference on Digital
Image Computing: Techniques and Applications (DICTA), 2010.

[13] M. Rahman, T. W. Chow, and S.-Y. Cho, “A segmentation based approach
for shape recovery from multi-color images,” in International Conference in
Control, Automation, Robotics and Vision, 2010.

[14] S. Mahmoudi and M. Daoudi, “3d models retrieval by using characteristic
views,” in Proceedings of International Conference on Pattern Recognition,
2002.

[15] L. J. Latecki and R. Lakämper, “Application of planar shape comparison to
object retrieval in image databases,” Pattern Recognition, vol. 35, no. 1, pp.
15–29, 2002.

[16] C. Yang, O. Tiebe, P. Pietsch, C. Feinen, U. Kelter, and M. Grzegorzek,
“Shape-based object retrieval by contour segment matching,” in IEEE Inter-
national Conference on Image Processing, 2014.

[17] A.-A. Liu, W.-Z. Nie, Y. Gao, and Y.-T. Su, “Multi-modal clique-graph
matching for view-based 3d model retrieval,” IEEE Trans. Image Process-
ing, vol. 25, no. 5, pp. 2103–2116, 2016.

[18] H. Shin and T. Igarashi, “Magic canvas: Interactive design of a 3-d scene
prototype from freehand sketches,” in Graphics Interface 2007, 2007.

[19] Z.Lian, A.Godil, B.Bustos, M.Daoudi, J.Hermans, S.Kawamura, Y.Kurita,
G.Lavoué, H.V.Nguyen, R.Ohbuchi, Y.Ohkita, Y.Ohnishi, F.Porikli,
M.Reuter, I.Sipiran, D.Smeets, P.suetens, H.Tabia, and D.Vandermeulen,
“SHREC’11 track: Shape retrieval on non-rigid 3D watertight meshes,” in
Eugrographics Workshop on 3D Object Retrieval, 2011.

87

[20] ——, “A comparison of methods for non-rigid 3D shape retrieval,” Pattern
Recognition, vol. 46, no. 1, pp. 449 – 461, 2013.

[21] Z. Lian, J. Zhang, S. Choi, H. ElNaghy, J. El-Sana, T. Furuya, A. Giachetti,
R. Guler, L. Lai, C. Li, H. Li, F. Limberger, R. Martin, R. Nakanishi, A. Neto,
L. Nonato, R. Ohbuchi, K. Pevzner, D. Pickup, P. Rosin, A. Sharf, L. Sun,
X. Sun, S. Tari, G. Unal, and R. Wilson, “SHREC’15 track: Non-rigid 3D
shape retrieval,” in Eurographics Workshop on 3D Object Retrieval, 2015.

[22] Z. Lian, A. Godil, X. Sun, and J. Xiao, “CM-BOF: visual similarity-based 3D
shape retrieval using Clock Matching and Bag-of-Features,” Machine Vision
and Applications, vol. 24, pp. 1685–1704, 2013.

[23] P. Li, H. Ma, and A. Ming, “View-based 3D model retrieval using two-level
spatial structure,” in IEEE Conference on Image Processing, 2011.

[24] A. Bronstein, M. Bronstein, L. Guibas, and M. Ovsjanikov, “Shape Google:
Geometric words and expressions for invariant shape retrieval,” ACM. Trans.
Graphics, vol. 30, no. 1, 2011.

[25] X. Bai, X. Wang, L. J. Latecki, W. Liu, and Z. Tu, “Active skeleton for
non-rigid object detection,” in IEEE International Conference on Computer
Vision, 2009.

[26] Y. N. Wu, Z. Si, H. Gong, and S.-C. Zhu, “Learning active basis model for
object detection and recognition,” International Journal of Computer Vision,
vol. 90, no. 2, pp. 198–235, 2010.

[27] N. D. Cornea, D. Silver, and P. Min, “Curve-skeleton properties, applications,
and algorithms,” IEEE Trans. Visualization and Computer Graphics, vol. 13,
no. 3, pp. 530–548, 2007.

[28] T. Zhang and C. Suen, “A fast parallel algorithm for thinning digital pat-
terns,” Communications of the ACM, vol. 27, no. 3, pp. 236–239, 1984.

[29] L. Lam, S.-W. Lee, and C. Y. Suen, “Thinning methodologies-a comprehen-
sive survey,” IEEE Trans. Pattern Analysis and Machine Learning, vol. 14,
no. 9, pp. 869–885, 1992.

[30] T. K. Dey and J. Sun, “Defining and computing curve-skeletons with me-
dial geodesic function,” in SGP ’06 Proceedings of the fourth Eurographics
symposium on Geometry processing, 2006, pp. 143–152.

88

[31] M. Couprie, D. Coeurjolly, and R. Zrour, “Discrete bisector function and
euclidean skeleton in 2d and 3d,” Image and Vision Computing, vol. 25, no. 10,
pp. 1543–1556, 2007.

[32] W. Liu, H. Jiang, X. Bai, G. Tan, C. Wang, W. Liu, and K. Cai, “Distance
transform-based skeleton extraction and its applications in sensor networks,”
IEEE Trans. Parallel and Distributed Systems, vol. 24, no. 9, pp. 1763–1772,
2013.

[33] W.-P. Choi, K.-M. Lam, and W.-C. Siu, “Extraction of the euclidean skeleton
based on a connectivity criterion,” Pattern Recognition, vol. 36, no. 3, pp.
721–729, 2003.

[34] A. Lieutier, “Any open bounded subset of irn has the same homotopy type
than its medial axis,” Computer-Aided Design, vol. 36, no. 11, pp. 1029–1046,
2004.

[35] X. Bai, L. J. Latecki, and W.-Y. Liu, “Skeleton pruning by contour parti-
tioning with discrete curve evolution,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 29, no. 3, pp. 449–462, 2007.

[36] X. You and Y. Y. Tang, “Wavelet-based approach to character skeleton,”
IEEE Trans. Image Processing, vol. 16, no. 5, pp. 1220–1231, 2007.

[37] N. Widynski, A. Moevus, and M. Mignotte, “Local symmetry detection in
natural images using a particle filtering approach,” IEEE Trans. Image Pro-
cessing, vol. 23, no. 12, pp. 5309–5322, 2014.

[38] A. Levinshtein, C. Sminchisescu, and S. Dickinson, “Multiscale symmetric
part detection and grouping,” International Journal of Computer Vision, vol.
104, no. 2, pp. 117–134, 2013.

[39] X. Du, S. Zhu, and J. Li, “Skeleton Extraction via Structure-Adaptive
Anisotropic Filtering,” in Proc. International Conference on Internet Mul-
timedia Computing and Service (ICMCS’14), 2014.

[40] Q. Li, X. Bai, and W. Liu, “Skeletonization of gray-scale image from incom-
plete boundaries,” in Proc. International Conference on Image Processing
(ICIP’08), 2008.

[41] L. J. Latecki, Q. nan Li, X. Bai, and W. yu Liu, “Skeletonization using
ssm of the distance transform,” in Proc. International Conference on Image
Processing (ICIP’07), 2007.

89

[42] Z. Tu, “Auto-context and its application for high-level vision,” in IEEE Con-
ference on Computer Vision and Pattern Recognition, 2008.

[43] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” In-
ternational Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[44] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with au-
tomatic algorithm configuration,” in International Conference on Computer
Vision Theory and Application VISAPP’09. INSTICC Press, 2009, pp. 331–
340.

[45] C. Silpa-Anan and R. Hartley, “Optimised KD-trees for fast image descriptor
matching,” in IEEE Conference on Computer Vision and Pattern Recognition,
2008.

[46] L. Li and C. L. Tan, “Recognizing planar symbols with severe perspective de-
formation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32,
no. 4, pp. 755–762, 2010.

[47] Z. Luo, D. Luo, X. Fan, X. Zhou, and Q. Jia, “A shape descriptor based
on new projective invariants,” in IEEE International Conference on Image
Processing (ICIP), 2013.

[48] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: interactive foreground
extraction using iterated graph cuts,” ACM Transactions on Graphics (TOG)
- Proceedings of ACM SIGGRAPH 2004, vol. 23, no. 3, pp. 309–314, 2004.

[49] D. Pollock, “Smoothing with cubic splines,” Queen Mary and Westfield Col-
lege, The University of London, Tech. Rep., 1993.

[50] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-Up Robust Features
(SURF),” Computer Vision and Image Understanding, vol. 110, no. 3, pp.
346–359, 2008.

[51] J. Tangelder and R.C.Veltkamp, “A survey of content based 3D shape retrieval
methods,” Multimedia Tools and Applications, vol. 39, no. 3, pp. 441–471,
2008.

[52] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pat-
tern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679–698, 1986.

[53] J. Pan and J. J. Zhang, “Sketch-Based Skeleton-Driven 2d Animation and
Motion Capture,” Trans. on Edutainment VI, pp. 164–181, 2011.

90

[54] S. Messmer, S. Fleischmann, and O. Sorkine-Hornung, “Animato: 2D Shape
Deformation and Animation on Mobile Devices,” in Proc. SIGGRAPH ASIA
2016 Mobile Graphics and Interactive Applications, 2016.

[55] T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: A Sketching Interface for
3D Freeform Design,” in Proc. Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH’99), 1999.

[56] Y. Gingold, T. Igarashi, and D. Zorin, “Structured annotations for 2D-to-3D
modeling,” Transactions on Graphics, vol. 28, no. 5, 2009.

[57] N. R. Twarog, M. F.Tappen, and E. H. Adelson, “Playing with puffball:
simple scale-invariant inflation for use in vision and graphics,” in Symposium
on Applied Perception, 2012.

[58] X. Bai and L. J. Latecki, “Path Similarity Skeleton Graph Matching,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 7, pp. 1282–
1292, 2008.

[59] M. van Eede, D. Macrini, A. Telea, C. Sminchisescu, and S. Dickinson,
“Canonical skeletons for shape matching,” in IEEE International Conference
on Pattern Recognition, 2006.

[60] D. Pickup, X. Sun, P. L. Rosin, and R. R. Martin, “Skeleton-based canonical
forms for non-rigid 3D shape retrieval,” Computational Visual Media, vol. 2,
no. 3, pp. 232–243, 2016.

[61] S. Lin, Y. Guo, Y. Liang, Q. Chen, and Y. Wu, “3D model retrieval based
on skeleton,” in IEEE International Conference on Networking, Architecture
and Storage, 2015.

[62] M. Maire, P. Arbeláez, C. Fowlkes, and J. Malik, “Using Contours to Detect
and Localize Junctions in Natural Images,” in Proc. Computer Vision and
Pattern Recognition (CVPR’08), 2008.

[63] D. R.Martin, C. C.Fowlkes, and J. Malik, “Learning to Detect Natural Image
Boundaries Using Local Brightness, Color, and Texture Cues,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 26, no. 5, pp. 530–549, 2004.

[64] L. Prasad, “Rectification of the chordal axis transform skeleton and criteria for
shape decomposition,” Image and Vision Computing, vol. 25, pp. 1557–1571,
2007.

91

[65] A. Y.Ng, M. I. Jordan, and Y. Weiss, “On Spectral Clustering: Analysis and
an algorithm,” in International Conference on Neural Information Processing
Systems: Natural and Synthetic (NIPS’01), 2001.

[66] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A Database of Human Seg-
mented Natural Images and Its Application to Evaluation Segmentation Al-
gorithms and Measuring Ecological Statistics,” in Proc. International Con-
ference on Computer Vision (ICCV’01), 2001.

[67] L. Fei-Fei, R. Fergus, and P. Perona, “Learning Generative Visual Models
from Few Training Examples: An Incremental Bayesian Approach Tested on
101 Object Categories,” in Proc. Conference on Computer Vision and Pattern
Recognition (CVPR’04), 2004.

[68] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recog-
nition using shape contexts,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 24, no. 24, pp. 509–522, 2002.

[69] S. Belongie and J. Malik, “Matching with shape contexts,” in Content-based
Access of Image and Video Libraries, 2002.

92

