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Abstract

Consider the poset Pn(Fq) of all subspaces in an n-dimensional vector space over

a finite field Fq of q elements. It is called a finite projective geometry. As an

algebraic view of Pn(Fq), we consider a matrix algebra, called the incidence algebra,

defined from the “global” combinatorial structure of Pn(Fq). The incidence algebra

is known to be a homomorphic image of the quantum algebra Uq1/2(sl2). In this

thesis, we extend this situation to the level of the quantum affine algebra Uq1/2(ŝl2).

We introduce two algebras Hs, Hf from the “local” combinatorial structures of

Pn(Fq) as well as the “global” one, both of which contain the incidence algebra as

a proper subalgebra. We then show that there exist algebra homomorphisms from

Uq1/2(ŝl2) to these algebras and that any irreducible module for these algebras is

irreducible as a Uq1/2(ŝl2)-module.

We next consider a finite projective geometry Pn(F) over any field F and discuss

the new algebra Hf from the viewpoint of the association schemes on Schubert

cells of a Grassmannian. The Grassmannian Gr(m,n) is the set of m-dimensional

subspaces in Pn(F), and the general linear group GLn(F) acts transitively on it.

The Schubert cells of Gr(m,n) are the orbits of the Borel subgroup B ⊂ GLn(F) on
Gr(m,n). We consider the association scheme on each Schubert cell defined by the

B-action and show it is symmetric and it is the generalized wreath product of one-

class association schemes, which was introduced by R. A. Bailey [European Journal

of Combinatorics 27 (2006) 428–435].
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3.1 A subspace lattice and its hyper-cubic structure . . . . . . . . . . . . 38

3.2 Ferrers boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 The matrix representation of P . . . . . . . . . . . . . . . . . . . . . 46

3.4 The number of matrices with given parameter . . . . . . . . . . . . . 48

3.5 The algebra Hf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 The structure of the algebra Hf . . . . . . . . . . . . . . . . . . . . . 52

3.7 The Lm- and Rm-actions on V . . . . . . . . . . . . . . . . . . . . . . 52

3.8 The LmRm- and RmLm-actions on V . . . . . . . . . . . . . . . . . . 57

3.9 The scalar κ(m,µ, λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.10 The Hf -modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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Chapter 1

Introduction

Let (P,≤) be a finite graded partially ordered set (poset) of rank N with fibers

P0, P1, . . ., PN . Consider the lowering, raising and projection matrices L, R, E∗
i

(0 ≤ i ≤ N) with rows and columns indexed by P as follows:

Lx,y =

1 if y covers x,

0 otherwise,

Rx,y =

1 if x covers y,

0 otherwise,

(E∗
i )x,y =

1 if x = y ∈ Pi,

0 otherwise,

for x, y ∈ P . The incidence algebra of P is the complex matrix algebra generated

by L, R and E∗
i (0 ≤ i ≤ N), and has been studied in the field of algebraic

combinatorics. It is implicit in [23, 25] that the incidence algebras of the following

posets are closely related to the Lie algebra sl2 or the quantum algebra Uq(sl2):

algebra posets

sl2 subset lattices, Hamming semi-lattices

Uq(sl2) subspace lattices, attenuated spaces, classical polar spaces

For example, for a subset lattice consisting of all subsets of a finite set, the incidence

algebra becomes naturally a homomorphic image of the universal enveloping algebra

U(sl2). In this thesis, we focus on the subspace lattices over finite fields. Our goal

is to extend the above situation further to the level of the quantum affine algebra

Uq(ŝl2) in a nontrivial manner.

By a subspace lattice, also known as a finite projective geometry, we mean the

poset of all subspaces of a finite-dimensional vector space over a finite field, where
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the ordering is given by inclusion. In the field of combinatorics, subspace lattices

are regarded as q-analogs of Boolean lattices and therefore they have been studied

from many combinatorial points of view, such as Grassmann codes and Grassmann

graphs. On the other hand, the quantum affine algebras Uq(ŝl2) are Hopf algebras

that are q-deformations of the universal enveloping algebra of the affine Lie algebra

ŝl2 and their representations are developed in [6, Section 5] as trigonometric solutions

of the quantum Yang–Baxter equation.

Here we briefly recall some known facts about the subspace lattices. See Section

2.3 for more details. Let N be a positive integer. Let H denote an N -dimensional

vector space over a finite field Fq of q elements and let P denote the subspace lattice

consisting of all subspaces of H. The poset P has the grading which is a partition

of P into nonempty sets

Pi = {y ∈ P | dim y = i} (0 ≤ i ≤ N). (1.1)

We denote by I the incidence algebra of P . By some combinatorial counting it is

easily verified that in this case q(1−N)/2L, R, K :=
∑N

i=0 q
N/2−iE∗

i and its inverse,

satisfy the defining relations of Uq1/2(sl2) in terms of the Chevalley generators. In

particular, every irreducible I-submodule of the standard module V = CP becomes

an irreducible Uq1/2(sl2)-module of type 1.

We summarize the first results of this thesis. See Chapter 2 for more details.

The main idea here is to fix one subspace x ∈ P with 0 < dim x < N and then

consider the following new “rectangle” partition of P with respect to x:

Pi,j = {y ∈ P | dim y = i+ j, dim(y ∩ x) = i}, (1.2)

for 0 ≤ i ≤ dim x and for 0 ≤ j ≤ N − dimx. Remark that this is a refinement

of the grading. In terms of new partition (1.2), we naturally decompose each of

the lowering and raising matrices into the sum of two matrices: L = L1 + L2 and

R = R1+R2. Then L1, L2, R1, R2 and the projection matrices for the new partition,

give us a new algebra Hs which contains I as a proper subalgebra. We define an

action of Uq1/2(ŝl2) on the standard module V using matrices in Hs. With respect

to this Uq1/2(ŝl2)-module structure on V , we moreover, show that any irreducible

Hs-module induces an irreducible Uq1/2(ŝl2)-module of type (1, 1) which is more

precisely a tensor product of two evaluation modules. In particular, it follows that

Hs is generated by the actions of Uq1/2(ŝl2) together with the center of Hs. Our main

results are Theorems 2.10.1, 2.10.4, 2.10.5 and 2.10.6. In fact, our approach is quite

relevant to Dunkl’s study on an addition theorem for some q-Hahn polynomials [10].

Meanwhile, we also describe the center of Hs (Theorem 2.8.3).
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We remark that this work was motivated by the study of the Terwilliger algebras

[19, 24] of the Grassmann graphs. Indeed, each of the fibers Pi of the subspace

lattice P induces a Grassmann graph, and it follows that E∗
i HsE

∗
i (viewed as a

subalgebra of End(CPi)) contains its Terwilliger algebra. By first describing the

Hs-modules and carefully analyzing their structures, we were able to determine all

the irreducible modules of the Terwilliger algebras of the Grassmann graphs. See

[20].

We summarize the second results of this thesis. See Chapter 3 for more details.

We fix a (full) flag {xi}Ni=0 on H instead of the subspace x ∈ P , and consider the

following new “hyper-cubic” partition of P with respect to {xi}Ni=0:

Pµ = {y ∈ P | dim(y ∩ xi) = µ1 + µ2 + · · ·+ µi (1 ≤ i ≤ N)}, (1.3)

for µ = (µ1, µ2, . . . , µN) ∈ {0, 1}N . Then for µ ∈ {0, 1}N , we define the projection

matrix E∗
µ by the diagonal matrix indexed by P whose (y, y)-entry is 1 if y ∈ Pµ and 0

otherwise for y ∈ P . We next define the complex matrix algebraHf generated by the

lowering, raising matrices and these new projection matrices E∗
µ, where µ ∈ {0, 1}N .

By the construction, the algebra Hf contains the incidence algebra as its proper

subalgebra. We prove that there exists an algebra homomorphism from the quantum

affine algebra Uq1/2(ŝl2) to the algebra Hf , which again extends the above algebra

homomorphism from Uq1/2(sl2) to the incidence algebra. Moreover, it is also proved

that any irreducible module for the algebra Hf induces an irreducible Uq1/2(ŝl2)-

module of type (1, 1) which is more precisely a tensor product of evaluation modules

of dimension 2. Our results are Theorems 3.12.1 and 3.12.5. To prove the main

theorems, we classify all the Hf -modules up to isomorphism and determine the

multiplicities appearing in the standard module V .

Seen from the viewpoint of the action of the general linear group GLN(Fq) on

the subspace lattice P , we may say the results in Chapter 3 are “opposite” to those

obtained in Chapter 2. (In Chapters 2 and 3, however, we will not take this point

of view in any essential way. We refer the reader to [10] for this viewpoint.) Indeed,

the partitions (1.2) and (1.3) turn out to be the orbits of maximal and minimal

parabolic subgroups of GLN(Fq), respectively. More precisely, the corresponding

subgroups stabilize the fixed subspace x and the fixed flag {xi}Ni=0, respectively.

It is worth pointing out that our proofs in Chapter 3 involve a natural and

intrinsic combinatorial characterization of the subspace lattice, while the method

used in Chapter 2 is rather oriented towards Lie theory and the representation theory

of quantum groups. In Chapter 3, we fix a basis v1, v2, . . . , vN for H such that xi is

spanned by v1, v2, . . . , vi for 1 ≤ i ≤ N . With respect to the basis, we identify each

subspace in P with a certain matrix whose entries are in the base field Fq. Then, we
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relate these matrices to classical combinatorial objects, such as Ferrers boards rook

placements, and inversion numbers, and interpret algebraic properties of subspaces

in terms of these matrices (and moreover, of other combinatorial objects above).

Almost all the problems which we concern in Chapter 3 arrive at problems in such

classical combinatorial fields. This type of argument is motivated by Delsarte [9]

and the technique used in Chapter 3 is a kind of a generalized version of that in [9].

Comparing the partitions (1.2) and (1.3) again, one may ask whether same kinds

of results can still be obtained if we take a more general partition, which is defined

by replacing a subspace or a full flag by a general flag. We will not develop this

point here because the required computation is expected to be far more complicated.

However, we emphasize that we have done for the two extremal and essential cases,

and conjecture that similar results still hold in the general case.

We summarize the last results of this thesis. See Chapter 4 for more details. Let

n be a positive integer, and let F be any field. Let Pn(F) denote the subspace lattice
of subspaces of an n-dimensional vector space over F. The general linear group

GLn(F) acts on Pn(F). The natural grading structure (1.1) of Pn(F) is given by

GLn(F)-action, and each fiber (i.e., orbit) is called a Grassmannian. In other words,

the Grassmannian Gr(m,n) is the set of m-dimensional subspaces in Fn, where

0 ≤ m ≤ n. Let B denote the Borel subgroup (i.e., minimal parabolic subgroup) of

GLn(F). Then, the B-action defines a finer “hyper-cubic” grading structure (1.3) of

Pn(F), and each fiber contained in Gr(m,n) is called a Schubert cell of Gr(m,n). See

[15] for details. We showed in Chapter 3 that the algebra defined from the “hyper-

cubic” grading structure of Pn(F) together with its incidence structure has a close

relation to the quantum affine algebra Uq(ŝl2), if F is a finite field of q2 elements. In

Chapter 4, we study the Schubert cells of a Grassmannian from the combinatorial

point of view of association schemes. More precisely, we show that the association

scheme defined by the B-action on each Schubert cell is a generalized wreath product

of one-class association schemes with the base set F. The concept of a generalized

wreath product of association schemes was introduced by R. A. Bailey [1] in 2006.

The (usual) wreath product of association schemes has been actively studied (see

e.g., [3, 4, 11, 14, 17, 21, 22, 29]), and we may view the result in Chapter 4 as

demonstrating the fundamental importance of Bailey’s generalization as well.

In this thesis, we remark that the contents of each Chapters 2, 3, and 4 are based

on the author’s paper [27], [26] and [28], respectively. For the convenience of the

reader, the notation used in each chapter is identical with that in each paper with

two exceptions. We replace H in [27] with Hs in Chapter 2 and H in [26] with Hf in

Chapter 3 because they are different and play important roles in this thesis. Thus,
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some symbols are not consistent between these chapters.
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Chapter 2

An algebra associated with a

subspace lattice over a finite field

and its relation to the quantum

affine algebra Uq(ŝl2)

In this chapter, we introduce an algebra Hs from a subspace lattice with respect

to a fixed subspace which contains its incidence algebra as a proper subalgebra and

show how it is related to the quantum affine algebra Uq1/2(ŝl2), where q denotes the

cardinality of the base field. We show that there is an algebra homomorphism from

Uq1/2(ŝl2) to Hs, and that Hs is generated by its image together with the center.

Moreover, we show that any irreducible Hs-module is also irreducible as a Uq1/2(ŝl2)-

module and is isomorphic to the tensor product of two evaluation modules. We also

obtain a small set of generators of the center of Hs. This chapter is based on the

author’s work [27].

We organize this chapter as follows. In Section 2.1, we recall the basic notation

and basic combinatorial structures in a subspace lattice. In Section 2.3, we recall

some known facts about the subspace lattices with the quantum algebra Uq(sl2). In

Section 2.4, we discuss detailed combinatorial structures in a subspace lattice. In

Sections 2.5, 2.6 and 2.7 we introduce the main object of this chapter, the algebra

Hs, and discuss the structure of it. In Section 2.8, we describe the center of Hs.

In Sections 2.2 and 2.9, for the convenience of the reader, we repeat the relevant

material, including the definitions of the quantum algebra Uq(sl2) and the quantum

affine algebra Uq(ŝl2) from [6, 13] without proofs, thus making our exposition self-

contained. In Section 2.10, our main results are stated and proved.
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2.1 Preliminaries

Recall the integers Z = {0,±1,±2, . . .}, the natural numbers N = {0, 1, 2, . . .}
and the complex field C. Assume a nonzero scalar q ∈ C is not a root of unity.

Throughout this chapter except in Sections 2.2 and 2.9, we fix positive integers a,b

and a finite field F = Fq of q elements, so we further assume that q is a prime power.

Let H denote a vector space over F with dimension a + b. Let P denote the set of

all subspaces of H. We view P as a partially ordered set (poset) with the partial

order given by inclusion. For y, z ∈ P , we say z covers y whenever y ⊆ z and

dim z = dim y + 1. Two elements in P are called adjacent whenever one covers the

other. For a nonzero integer n ∈ N, a path of length n is a sequence y0, y1, . . . , yn in

P such that yi−1 and yi are adjacent for every 1 ≤ i ≤ n. This path is said to be

from y0 to yn.

Let us review some of the basic facts about the poset P . The Z-grading of P is

the partition of P into disjoint nonempty sets P0, P1, . . . , Pa+b such that

Pi = {y ∈ P | dim y = i} (0 ≤ i ≤ a+ b).

For notational convenience, for i ∈ Z define Pi = ∅ unless 0 ≤ i ≤ a + b. By

combinatorial counting we verify the following lemmas.

Lemma 2.1.1. For 0 ≤ i ≤ a+ b, the following (i), (ii) hold.

(i) Given y ∈ Pi, there exist exactly qi−1
q−1

elements z ∈ P which are covered by y.

(ii) Given y ∈ Pi, there exist exactly qa+b−i−1
q−1

elements z ∈ P which cover y.

Lemma 2.1.2. The following (i)–(iii) hold.

(i) Given y, z ∈ P with y ⊆ z and dim z = dim y + 2, there exist exactly q + 1

elements which are adjacent to both y and z.

(ii) Given y, z ∈ P with dim y = dim z and y ̸= z, if there exists an element that

is covered by y and z, then there exists a unique element that covers y and z.

(iii) Given y, z ∈ P with dim y = dim z and y ̸= z, if there exists an element that

covers y and z, then there exists a unique element that is covered by y and z.

Let V = CP denote the vector space over C with a basis P . Let MatP (C) denote
the C-algebra consisting of the matrices with entries in C and rows and columns

indexed by P . Observe that MatP (C) acts on V by left multiplication. We call V
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the standard module for MatP (C). We write I ∈ MatP (C) for the identity matrix.

For any nonzero n ∈ N, we define

[n]q =
qn − q−n

q − q−1
, [n]!q = [n]q[n− 1]q · · · [1]q.

Set [0]q = 0 and [0]!q = 1. For simplicity of notation, we write [n] = [n]q1/2 and

[n]! = [n]!
q1/2

for n ∈ N. Finally, we recall the Gaussian coefficient

[
n

k

]
q

=
k−1∏
i=0

qn − qi

qk − qi
= qk(n−k)/2 [n]!

[k]![n− k]!
,

for 0 < k ≤ n and
[
n
0

]
q
= 1.

2.2 The quantum algebra Uq(sl2)

In this section, we consider a nonzero scalar q ∈ C which is not a root of unity. We

introduce the notion of the quantum algebra Uq(sl2).

Definition 2.2.1 ([13, p. 122]). Let Uq(sl2) be the associative C-algebra generated

by e, f, k±1 with the relations

kk−1 = k−1k = 1,

ke = q2ek,

kf = q−2fk,

ef − fe =
k − k−1

q − q−1
.

The elements e, f, k±1 are called the Chevalley generators for Uq(sl2).

Lemma 2.2.2 ([13, p. 128]). With reference to Definition 2.2.1, for any finite-

dimensional irreducible Uq(sl2)-module, there exists ε ∈ {1,−1} such that a basis

v0, v1, . . . , vd for the module satisfies

kvi = εqd−2ivi (0 ≤ i ≤ d),

fvi = [i+ 1]qvi+1 (0 ≤ i ≤ d− 1), fvd = 0,

evi = ε[d− i+ 1]qvi−1 (1 ≤ i ≤ d), ev0 = 0.

We write Vε,d for the above irreducible Uq(sl2)-module.
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2.3 The incidence algebra I of the Z-grading of P

Until further notice, a scalar q is a prime power. Recall the Z-grading of P . For

0 ≤ i ≤ a+ b, we define diagonal matrices E∗
i ∈ MatP (C) with (y, y)-entry

(E∗
i )y,y =

1 if y ∈ Pi,

0 if y ̸∈ Pi

(y ∈ P ).

We have

E∗
iE

∗
j = δi,jE

∗
i (0 ≤ i, j ≤ a+ b).

Here δi,j is the Kronecker delta. Also

I = E∗
0 + E∗

1 + · · ·+ E∗
a+b.

Moreover,

V = E∗
0V + E∗

1V + · · ·+ E∗
a+bV (direct sum).

Note that E∗
i V has the basis Pi for 0 ≤ i ≤ a + b. We call E∗

i the i-th projection

matrix. By the above comments, the projection matrices E∗
0 , E

∗
1 , . . . , E

∗
a+b form

a basis for a commutative subalgebra of MatP (C). It is easy to check that this

subalgebra is generated by the diagonal matrix K whose (y, y)-entry is q(a+b)/2−dim y

for y ∈ P . The matrix K is also defined as

K =
a+b∑
i=0

q(a+b)/2−iE∗
i .

We remark that K is invertible from the construction.

Next, we introduce two matrices in MatP (C). The matrices L, R have (y, z)-

entries

Ly,z =

1 if z covers y,

0 otherwise
(y, z ∈ P ),

Ry,z =

1 if y covers z,

0 otherwise
(y, z ∈ P ).

We remark that L, R are the transpose to each other and we have

LE∗
i V ⊆ E∗

i−1V (1 ≤ i ≤ a+ b), LE∗
0V = 0, (2.1)

RE∗
i V ⊆ E∗

i+1V (0 ≤ i ≤ a+ b− 1), RE∗
a+bV = 0. (2.2)

By the above inclusions, we call L the lowering matrix and R the raising matrix.

For notational convenience, we adjust

L̂ = q(1−a−b)/2L.

9



Definition 2.3.1. Let I denote the C-subalgebra of MatP (C) generated by L̂, R,

K. We call I the incidence algebra of P .

Note that K is invertible so that K−1 ∈ I.

Proposition 2.3.2. The algebra I in Definition 2.3.1 is semisimple.

Proof. This follows since I is closed under the conjugate-transpose map [7, Chap-

ter 4].

Lemma 2.3.3. With above notation, the following (i)–(iii) hold.

(i) KL̂ = qL̂K.

(ii) qKR = RK.

(iii) L̂R−RL̂ =
K −K−1

q1/2 − q−1/2
.

Proof. All formulas follow from Lemmas 2.1.1 and 2.1.2.

Theorem 2.3.4 ([25, Section 7]). The standard module V supports a Uq1/2(sl2)-

module structure on which the Chevalley generators act as follows:

generators e f k k−1

actions on V L̂ R K K−1

Proof. By Lemma 2.3.3, L̂, R, K, K−1 satisfy the defining relations in Definition

2.2.1.

Corollary 2.3.5. There exists an algebra homomorphism from Uq1/2(sl2) to I that

sends

e 7→ L̂, f 7→ R, k 7→ K, k−1 7→ K−1.

Moreover, this homomorphism is surjective.

Proof. By Theorem 2.3.4, such a homomorphism exists. Since the incidence algebra

I is generated by L̂, R, K, this homomorphism is a surjection.

From Proposition 2.3.2, the standard module V is decomposed into a direct

sum of irreducible I-modules, and every irreducible I-module appears in V up to

isomorphism. We now discuss the irreducible I-modules in detail.

10



Definition 2.3.6. Let W be an irreducible I-module. Define

ν = min{i | 0 ≤ i ≤ a+ b, E∗
iW ̸= 0},

d = |{i | 0 ≤ i ≤ a+ b, E∗
iW ̸= 0}| − 1.

The integers ν, d are called the endpoint and diameter of W , respectively.

Proposition 2.3.7. LetW be an irreducible I-module with endpoint ν and diameter

d. Then we have

d = a+ b− 2ν.

Proof. This follows from the fact that, for 0 ≤ i ≤ (a + b)/2, the linear maps

Ra+b−2i : E∗
i V → E∗

a+b−iV and La+b−2i : E∗
a+b−iV → E∗

i V are isomorphisms of

C-vector spaces. See for example [8].

Proposition 2.3.8. LetW be an irreducible I-module with endpoint ν and diameter

d. Then there exists a basis

wi ∈ E∗
ν+iW (0 ≤ i ≤ d), (2.3)

on which generators L̂, R act as follows:

Rwi = [i+ 1]wi+1 (0 ≤ i ≤ d− 1), Rwd = 0,

L̂wi = [d− i+ 1]wi−1 (1 ≤ i ≤ d), L̂w0 = 0.

Proof. By the definition of endpoint, E∗
νW ̸= 0. We pick any nonzero vector w0 ∈

E∗
νW . Define

wi =
Riw0

[i]!
(1 ≤ i ≤ d).

For 0 ≤ i ≤ d, observe that wi ∈ E∗
ν+iW by (2.2). The actions of L̂ and R on wi are

determined from the relations in Lemma 2.3.3. See for example [13, p. 128].

Proposition 2.3.9. Referring to Proposition 2.3.8, the generator K acts on the

basis (2.3) as

Kwi = q(a+b−2ν−2i)/2wi (0 ≤ i ≤ d).

Proof. Recall wi ∈ E∗
ν+iW . The result follows from the definition of K.

Corollary 2.3.10. Let W be an irreducible I-module with endpoint ν. Then we

have

dimW = a+ b− 2ν + 1.

In particular, 0 ≤ ν ≤ (a+ b)/2.
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Proof. Use Propositions 2.3.7 and 2.3.8.

Proposition 2.3.11. Let W be an irreducible I-module with diameter d. Then, as

Uq1/2(sl2)-modules, W is isomorphic to V1,d in Lemma 2.2.2.

Proof. For both modules, compare the actions of the generators.

Proposition 2.3.12. For each 0 ≤ ν ≤ (a+ b)/2, there exists a unique irreducible

I-module W with endpoint ν up to isomorphism. The multiplicity mult(ν) of W in

the decomposition of the standard module V is given by

mult(ν) =

[
a+ b

ν

]
q

−
[
a+ b

ν − 1

]
q

(ν ≥ 1),

and mult(0) = 1.

Proof. The endpoint ν of an irreducible I-module W must satisfy 0 ≤ ν ≤ (a+ b)/2

by Corollary 2.3.10. Moreover, the isomorphism class of W is determined by ν by

Propositions 2.3.7, 2.3.8 and 2.3.9. For 0 ≤ ν ≤ (a+ b)/2, let (E∗
νV )new denote the

subspace consisting of the vectors w ∈ E∗
νV with Lw = 0. If ν = 0, any w ∈ E∗

0V

satisfies Lw = 0 so that dim(E∗
νV )new = dimE∗

0V = 1. If ν ̸= 0, it is known that

the linear map L : E∗
νV → E∗

ν−1V is surjective (see for example [8]), so that

dim(E∗
νV )new = dimE∗

νV − dimE∗
ν−1V =

[
a+ b

ν

]
q

−
[
a+ b

ν − 1

]
q

(≥ 1).

Thus, the assertion becomes mult(ν) = dim(E∗
νV )new for all 0 ≤ ν ≤ (a+ b)/2. For

each irreducible I-moduleW with endpoint ν, there exists a vector ofW that belongs

to (E∗
νV )new by Proposition 2.3.8. Moreover, the vector generates W . Therefore the

multiplicity mult(ν) is bounded from above by dim(E∗
νV )new. On the other hand,

for each 0 ≤ ν ≤ (a + b)/2, pick any nonzero vector w ∈ (E∗
νV )new. Let W = Iw

denote the I-module generated by w. It suffices to show that W is an irreducible I-
module with endpoint ν. Indeed, once this holds, mult(ν) is bounded from bottom

by dim(E∗
νV )new. Let us write the irreducible I-modules decomposition of W as

follows:

W = W1 +W2 + · · ·+Wr (direct sum),

for some positive integer r. It is sufficient to show that r = 1 and W1 has endpoint

ν. According to this decomposition, we write w = w1 + w2 + · · · + wr such that

wi ∈ Wi (1 ≤ i ≤ r). Then, every wi lies in (E∗
νV )new and moreover, wi ̸= 0 since

Wi = Iwi. By Propositions 2.3.8 and 2.3.9, for 1 ≤ i ≤ r, Wi must have endpoint ν.

Moreover, it follows again from Propositions 2.3.8 and 2.3.9 that, for every M ∈ I,
we have Mwi = 0 for some i if and only if Mwi = 0 for all i (1 ≤ i ≤ r). This

shows r = 1, for otherwise w1, . . . , wr ̸∈ W , a contradiction.
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2.4 The decomposition Pi,j

For the rest of the chapter, we fix a subspace x ∈ P with dimx = a. For 0 ≤ i ≤ a

and 0 ≤ j ≤ b, define

Pi,j = {y ∈ P | dim(y ∩ x) = i, dim y = i+ j}.

For notational convenience, for i, j ∈ Z define Pi,j = ∅ unless 0 ≤ i ≤ a and

0 ≤ j ≤ b. Note that

P =
⊔

0≤i≤a
0≤j≤b

Pi,j (disjoint union).

We compile some basic properties about the decomposition Pi,j whose proofs are

straightforward. Related computations can be found in [5, Section 9.3]. Lemma

2.4.6 is obtained by combining other five lemmas. Only for Lemma 2.4.6, we give a

partial proof, which includes the most complicated case.

Lemma 2.4.1. For 0 ≤ i ≤ a and 0 ≤ j ≤ b, the following (i)–(iv) hold.

(i) Given y ∈ Pi,j, there exist exactly qj(qi−1)
q−1

elements in Pi−1,j adjacent to y.

(ii) Given y ∈ Pi,j, there exist exactly qj−1
q−1

elements in Pi,j−1 adjacent to y.

(iii) Given y ∈ Pi,j, there exist exactly qa−i−1
q−1

elements in Pi+1,j adjacent to y.

(iv) Given y ∈ Pi,j, there exist exactly qa−i(qb−j−1)
q−1

elements in Pi,j+1 adjacent to y.

Lemma 2.4.2. For 1 ≤ i ≤ a and 1 ≤ j ≤ b, the following (i)–(iv) hold.

(i) Given y ∈ Pi,j and z ∈ Pi−1,j−1 with z ⊆ y, there exists a unique element in

Pi,j−1 which is adjacent to both y and z.

(ii) Given y ∈ Pi,j and z ∈ Pi−1,j−1 with z ⊆ y, there exist exactly q elements in

Pi−1,j which are adjacent to both y and z.

(iii) Given y ∈ Pi−1,j and z ∈ Pi,j−1, if there exists an element that is covered by y

and z, then there exists a unique element that covers y and z.

(iv) Given y ∈ Pi−1,j and z ∈ Pi,j−1, if there exists an element that covers y and

z, then there exists a unique element that is covered by y and z.

Lemma 2.4.3. For 0 ≤ i ≤ a and 0 ≤ j ≤ b, the following (i), (ii) hold.

(i) Assume i is neither 0 nor a. Given y ∈ Pi+1,j and z ∈ Pi−1,j with z ⊆ y, there

exist exactly q + 1 elements in Pi,j which are adjacent to both y and z.
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(ii) Assume j is neither 0 nor b. Given y ∈ Pi,j+1 and z ∈ Pi,j−1 with z ⊆ y, there

exist exactly q + 1 elements in Pi,j which are adjacent to both y and z.

Lemma 2.4.4. Let 0 ≤ i ≤ a and 0 ≤ j ≤ b. Given y, z ∈ Pi,j with y ̸= z, the

following (i)–(iv) hold.

(i) If y ∩ z ∈ Pi−1,j, then y + z ∈ Pi+1,j.

(ii) If y ∩ z ∈ Pi,j−1, then y + z ∈ Pi+1,j or y + z ∈ Pi,j+1.

(iii) If y + z ∈ Pi,j+1, then y ∩ z ∈ Pi,j−1.

(iv) If y + z ∈ Pi+1,j, then y ∩ z ∈ Pi−1,j or y ∩ z ∈ Pi,j−1.

Lemma 2.4.5. Let 0 ≤ i ≤ a and 0 ≤ j ≤ b. Given y ∈ P , z ∈ Pi,j, assuming y

does not cover z, the following (i), (ii) hold.

(i) Suppose y ∈ Pi+1,j. If y ∩ z ∈ Pi−1,j, then y + z ∈ Pi+2,j.

(ii) Suppose y ∈ Pi,j+1. If y + z ∈ Pi,j+2, then y ∩ z ∈ Pi,j−1.

Lemma 2.4.6. Fix y ∈ P and z ∈ Pi,j. The tables below give the numbers of paths

z, w1, w2, y satisfying the specified conditions on w1, w2.

(i) If y ∈ Pi+1,j and y covers z, then the numbers of paths are given as follows.

conditions assumption the number of paths

w1 ∈ Pi−1,j w2 ∈ Pi,j 1 ≤ i ≤ a− 1 qj(q+1)(qi−1)
q−1

w1 ∈ Pi+1,j w2 ∈ Pi,j 0 ≤ i ≤ a− 1 qa−i+qi+j+1−qj−q
q−1

w1 ∈ Pi+1,j w2 ∈ Pi+2,j 0 ≤ i ≤ a− 2 (qa−i−1−1)(q+1)
q−1

(ii) If y ∈ Pi,j+1 and y covers z, then the numbers of paths are given as follows.

conditions assumption the number of paths

w1 ∈ Pi,j−1 w2 ∈ Pi,j 1 ≤ j ≤ b− 1 (q+1)(qj−1)
q−1

w1 ∈ Pi,j+1 w2 ∈ Pi,j 0 ≤ j ≤ b− 1 qa+b−i−j+qj+1−qa−i−q
q−1

w1 ∈ Pi,j+1 w2 ∈ Pi,j+2 0 ≤ j ≤ b− 2 qa−i(qb−j−1−1)(q+1)
q−1
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(iii) If y ∈ Pi+1,j and y does not cover z, then the numbers of paths are given as

follows.

conditions assumptions the number of paths

w1 ∈ Pi−1,j w2 ∈ Pi,j y ∩ z ∈ Pi−1,j 1 ≤ i ≤ a− 1 q + 1

otherwise 0

w1 ∈ Pi+1,j w2 ∈ Pi,j y ∩ z ∈ Pi−1,j 0 ≤ i ≤ a− 1 q + 1

⋆ 0 ≤ i ≤ a− 1 q

otherwise 0

w1 ∈ Pi+1,j w2 ∈ Pi+2,j y + z ∈ Pi+2,j 0 ≤ i ≤ a− 2 q + 1

otherwise 0

Here the symbol ⋆ means y ∩ z ∈ Pi,j−1 and y + z ∈ Pi+2,j.

(iv) If y ∈ Pi,j+1 and y does not cover z, then the numbers of paths are given as

follows.

conditions assumptions the number of paths

w1 ∈ Pi,j−1 w2 ∈ Pi,j y ∩ z ∈ Pi,j−1 1 ≤ j ≤ b− 1 q + 1

otherwise 0

w1 ∈ Pi,j+1 w2 ∈ Pi,j ∗ 0 ≤ j ≤ b− 1 q

y + z ∈ Pi,j+2 0 ≤ j ≤ b− 1 q + 1

otherwise 0

w1 ∈ Pi,j+1 w2 ∈ Pi,j+2 y + z ∈ Pi,j+2 0 ≤ j ≤ b− 2 q + 1

otherwise 0
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Here the symbol ∗ means y ∩ z ∈ Pi,j−1 and y + z ∈ Pi+1,j+1.

Proof. It is essential to prove (i) and (iii) since the proofs of (ii) and (iv) are similar

to those of (i) and (iii), respectively. Here we prove only for the cases of the second

condition in (iii) since this is the most complicated one among all the cases in (i)

and (iii).

Assume y ∈ Pi+1,j and y does not cover z. Count the paths z, w1, w2, y with

condition w1 ∈ Pi+1,j and w2 ∈ Pi,j. Suppose there exists such a path. Then,

applying Lemma 2.4.4 (i) to y, w1 ∈ Pi+1,j, we obtain y+w1 ∈ Pi+2,j. By comparing

dimensions, we have y + w1 = y + z, so that y + z ∈ Pi+2,j. Similarly, applying

Lemma 2.4.4 (iv) to z, w2 ∈ Pi,j, we obtain z ∩w2 ∈ Pi−1,j or z ∩w2 ∈ Pi,j−1. Again

we have z ∩w2 = y ∩ z. Now we count the number for each of the two cases. Let us

first assume y ∩ z ∈ Pi−1,j. Recall from Lemma 2.4.5 that we have y + z ∈ Pi+2,j.

Then by Lemma 2.4.3 (i), there are q + 1 choices for w2, an element in Pi,j which

is adjacent to both y ∩ z and y. For any such element w2, we have z ∩ w2 = y ∩ z
and then we have z + w2 ∈ Pi+1,j by Lemma 2.4.4 (i). Thus there exists a unique

w1 satisfying the condition, which is z + w2. Let us next assume y ∩ z ∈ Pi,j−1 and

y + z ∈ Pi+2,j. Then by Lemma 2.4.2 (ii), there are q choices for w2, an element

in Pi,j which is adjacent to both y ∩ z and y. For any such element w2, we have

z ∩w2 = y ∩ z and then we have z +w2 ∈ Pi+1,j or z +w2 ∈ Pi,j+1 by Lemma 2.4.4

(ii). Since z + w2 ⊆ y + z ∈ Pi+2,j, we must have z + w2 ∈ Pi+1,j. Thus there exists

a unique w1 satisfying the condition, which is z + w2.

2.5 The algebra K

For 0 ≤ i ≤ a and 0 ≤ j ≤ b, define a diagonal matrix E∗
i,j ∈ MatP (C) with

(y, y)-entry

(E∗
i,j)y,y =

1 if y ∈ Pi,j,

0 if y ̸∈ Pi,j

(y ∈ P ).

For notational convenience, for i, j ∈ Z define E∗
i,j = 0 unless 0 ≤ i ≤ a and

0 ≤ j ≤ b. We have

E∗
i,jE

∗
s,t = δi,sδj,tE

∗
i,j (0 ≤ i, s ≤ a, 0 ≤ j, t ≤ b).

Also

I =
a∑

i=0

b∑
j=0

E∗
i,j.
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Moreover,

V =
a∑

i=0

b∑
j=0

E∗
i,jV (direct sum).

Note that E∗
i,jV has the basis Pi,j for 0 ≤ i ≤ a and 0 ≤ j ≤ b. We call E∗

i,j the

(i, j)-projection matrix.

Definition 2.5.1. By the above comments, the matrices

E∗
i,j (0 ≤ i ≤ a, 0 ≤ j ≤ b),

form a basis for a commutative subalgebra of MatP (C). We denote the subalgebra

by K.

We now introduce two matrices that generate K. Define diagonal matrices

K1, K2 ∈ MatP (C) with (y, y)-entries

(K1)y,y = qa/2−i, (K2)y,y = qj−b/2,

where y ∈ Pi,j.

Lemma 2.5.2. We have

K1 =
a∑

i=0

b∑
j=0

qa/2−iE∗
i,j, K2 =

a∑
i=0

b∑
j=0

qj−b/2E∗
i,j.

Proof. Immediate from the construction.

Proposition 2.5.3. The algebra K in Definition 2.5.1 is generated by K1, K2.

Proof. By Lemma 2.5.2, the elements K1, K2 generate a subalgebra K′ of K. For

0 ≤ i, i′ ≤ a and 0 ≤ j, j′ ≤ b with (i, j) ̸= (i′, j′), we have (qa/2−i, qj−b/2) ̸=
(qa/2−i′ , qj

′−b/2). Therefore E∗
i,j is a polynomial in K1, K2 for 0 ≤ i ≤ a and 0 ≤ j ≤

b. Consequently, K′ = K.
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2.6 The algebra Hs

Define matrices L1, L2, R1, R2 ∈ MatP (C) with (y, z)-entries

(L1)y,z =

1 if y ∈ Pi−1,j, z ∈ Pi,j, y ⊂ z,

0 otherwise
(y, z ∈ P ),

(L2)y,z =

1 if y ∈ Pi,j−1, z ∈ Pi,j, y ⊂ z,

0 otherwise
(y, z ∈ P ),

(R1)y,z =

1 if y ∈ Pi+1,j, z ∈ Pi,j, z ⊂ y,

0 otherwise
(y, z ∈ P ),

(R2)y,z =

1 if y ∈ Pi,j+1, z ∈ Pi,j, z ⊂ y,

0 otherwise
(y, z ∈ P ).

Lemma 2.6.1. For 0 ≤ i ≤ a and 0 ≤ j ≤ b,

L1E
∗
i,jV ⊆ E∗

i−1,jV, L2E
∗
i,jV ⊆ E∗

i,j−1V,

R1E
∗
i,jV ⊆ E∗

i+1,jV, R2E
∗
i,jV ⊆ E∗

i,j+1V.

Proof. Immediate from the construction.

Because of Lemma 2.6.1, we call L1, L2 the lowering matrices and R1, R2 the

raising matrices. We remark that Lt
1 = R1 and Lt

2 = R2, where t denotes the

transpose.

Definition 2.6.2. Let Hs denote the subalgebra of MatP (C) generated by L1, L2,

R1, R2, K.

The algebra Hs as well as irreducible Hs-modules were discussed in detail in

[20], and some of the results in Sections 2.6, 2.7 are given in [20] in different forms.

However, since we adopt different generators and their normalization for Hs, and

also a different parametrization of the irreducible Hs-modules, we include full proofs

of most of these results for the convenience of the reader.

Proposition 2.6.3. The algebra Hs in Definition 2.6.2 is semisimple.

Proof. This follows since Hs is closed under the conjugate-transpose map [7, Chap-

ter 4].

We now consider some relations in Hs. Here we remark that some of the fol-

lowing relations can be obtained by taking the transpose of others. For notational

convenience we adjust L1, L2 as follows:

L̂1 = q(1−a−b)/2L1, L̂2 = q(1−a−b)/2L2. (2.4)
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Lemma 2.6.4. The following (i)–(viii) hold.

(i) K1L̂1 = qL̂1K1.

(ii) K1L̂2 = L̂2K1.

(iii) qK1R1 = R1K1.

(iv) K1R2 = R2K1.

(v) K2L̂1 = L̂1K2.

(vi) qK2L̂2 = L̂2K2.

(vii) K2R1 = R1K2.

(viii) K2R2 = qR2K2.

Proof. Use Lemmas 2.5.2 and 2.6.1.

Lemma 2.6.5. With the above notation, the following (i)–(iv) hold.

(i) L̂1R2 = R2L̂1.

(ii) L̂2R1 = R1L̂2.

(iii) qL̂1L̂2 = L̂2L̂1.

(iv) R1R2 = qR2R1.

Proof. This lemma is a matrix reformulation of Lemma 2.4.2.

Lemma 2.6.6. With the above notation, the following (i)–(iv) hold.

(i) R2
1L̂1 − (q + 1)R1L̂1R1 + qL̂1R

2
1 = −q−1/2(q + 1)K−1

1 K2R1.

(ii) qR2
2L̂2 − (q + 1)R2L̂2R2 + L̂2R

2
2 = −q1/2(q + 1)K1K

−1
2 R2.

(iii) qL̂2
1R1 − (q + 1)L̂1R1L̂1 +R1L̂

2
1 = −q1/2(q + 1)K−1

1 K2L̂1.

(iv) L̂2
2R2 − (q + 1)L̂2R2L̂2 + qR2L̂

2
2 = −q−1/2(q + 1)K1K

−1
2 L̂2.

Proof. (i) For y, z ∈ P , we compare (y, z)-entry of both sides of the formula. Let

y ∈ Pr,s and z ∈ Pi,j. We assume r = i + 1 and s = j, otherwise all (y, z)-

entries are 0. For each term in the equation, we compute (y, z)-entry. These

entries are obtained from the table below and (2.4).
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Case description (R2
1L1)y,z (R1L1R1)y,z (L1R

2
1)y,z (K−1

1 K2R1)y,z

y covers z qj(q+1)(qi−1)
q−1

qa−i+qi+j+1−qj−q
q−1

(qa−i−1−1)(q+1)
q−1

qi+j−(a+b)/2+1

y ∩ z ∈ Pi−1,j q + 1 q + 1 q + 1 0

y ∩ z ∈ Pi,j−1,

y + z ∈ Pi+2,j

0 q q + 1 0

otherwise 0 0 0 0

The table entries are routinely obtained from Lemma 2.4.6. From the above

comments, the result follows.

(ii) Similar to the proof of (i) above.

(iii) Take the transpose of (i), and use Lemma 2.6.4.

(iv) Take the transpose of (ii), and use Lemma 2.6.4.

Due to the complexity of the relations in Lemma 2.6.6, we find it useful to

introduce a matrix F ∈ MatP (C) with (y, z)-entry

Fy,z =


qa−i + qj − 1 if y, z ∈ Pi,j, y = z,

q − 1 if y, z ∈ Pi,j, y ∩ z ∈ Pi,j−1, y + z ∈ Pi+1,j,

0 otherwise,

for y, z ∈ P . For notational convenience, define

F̂ = q(−a−b)/2F. (2.5)

Lemma 2.6.7. The following (i),(ii) hold.

(i) L̂1R1 −R1L̂1 =
F̂ −K−1

1 K2

q1/2 − q−1/2
.

(ii) L̂2R2 −R2L̂2 =
K1K

−1
2 − F̂

q1/2 − q−1/2
.

Moreover, F̂ ∈ Hs.
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Proof. (i) For y, z ∈ P , we compare (y, z)-entry of both sides of the formula. Let

y ∈ Pr,s and z ∈ Pi,j. We assume r = i and s = j, otherwise all (y, z)-entries

are 0. For each term in the equation, we compute (y, z)-entry. These entries

are obtained from the table below and (2.4), (2.5).

Case description (L1R1)y,z (R1L1)y,z Fy,z (K−1
1 K2)y,z

y = z qa−i−1
q−1

qj(qi−1)
q−1

qa−i + qj − 1 qi+j−(a+b)/2

y ∩ z ∈ Pi−1,j 1 1 0 0

y ∩ z ∈ Pi,j−1,

y + z ∈ Pi+1,j

1 0 q − 1 0

otherwise 0 0 0 0

The table entries are routinely obtained from Lemmas 2.4.1 and 2.4.4. From

the above comments, the result follows.

(ii) Similar to the proof of (i) above.

Lemma 2.6.8. The following (i), (ii) hold.

(i) K1F̂ = F̂K1.

(ii) K2F̂ = F̂K2.

Proof. Combine Lemmas 2.6.4 and 2.6.7.

Lemma 2.6.9. The following (i)–(iv) hold.

(i) F̂ L̂1 = qL̂1F̂ .

(ii) qF̂ L̂2 = L̂2F̂ .

(iii) qF̂R1 = R1F̂ .

(iv) F̂R2 = qR2F̂ .

Proof. Combine Lemmas 2.6.4, 2.6.5 and 2.6.7.

Our next general goal is to show that F̂ is invertible.

Lemma 2.6.10. For 0 ≤ i ≤ a and 0 ≤ j ≤ b, we have

F̂E∗
i,jV ⊆ E∗

i,jV.
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Proof. Immediate from the construction.

Lemma 2.6.11. For 0 ≤ i ≤ a and 0 ≤ j ≤ b, the matrix F̂ is diagonalizable on

E∗
i,jV . The eigenvalues θi,j,l and the multiplicities mi,j,l are given by

θi,j,l = q(a−b−2i+2j−2l)/2,

mi,j,l =

[
a

i

]
q

[
b

j

]
q

[
a− i

l

]
q

[
j

l

]
q

l−1∏
s=0

(
ql − qs

)
,

where 0 ≤ l ≤ min{a− i, j}.

Proof. Let F ′ ∈ MatP (C) be a matrix with (y, z)-entry

F ′
y,z =

(q − 1)−1Fy,z if y ̸= z,

0 if y = z,

=

1 if y, z ∈ Pi,j, y ∩ z ∈ Pi,j−1, y + z ∈ Pi+1,j,

0 otherwise,

for y, z ∈ P . Then it is sufficient to show that F ′ is diagonalizable on E∗
i,jV with

the eigenvalues

θ′i,j,l =
q(a+b)/2θi,j,l − qa−i − qj + 1

q − 1
,

and the multiplicities mi,j,l for 0 ≤ l ≤ min{a− i, j}.
For 0 ≤ i ≤ a, 0 ≤ j ≤ b, u ∈ Pi,0 and w ∈ Pa,j, let (E

∗
i,jV )u,w be a subspace of

E∗
i,jV spanned by

Pi,j,u,w = {y ∈ Pi,j | y ∩ x = u, y + x = w}.

Then it is easy to check that F ′(E∗
i,jV )u,w ⊆ (E∗

i,jV )u,w. Therefore we have a block

diagonal form:

F ′ =
a⊕

i=0

b⊕
j=0

⊕
u∈Pi,0

⊕
w∈Pa,j

F ′|i,j,u,w,

where |i,j,u,w means the restriction to (E∗
i,jV )u,w.

For each i, j, u, w, observe a bijection from Pi,j,u,w to the set of j-subspaces of

w/u which intersect with x/u trivially. Under this bijection, F ′|i,j,u,w is precisely

the adjacency matrix of the bilinear forms graph Bilq(a− i, j) with eigenvalues θ′i,j,l
and multiplicities mi,j,l (see [5, Section. 9.5 A]). Combining with the block diagonal

form of F ′, we complete the proof of our claim.

Corollary 2.6.12. The matrix F̂ is invertible.

Proof. Observe that the eigenvalues θi,j,l of F̂ given in Lemma 2.6.11 are nonzero.
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2.7 The irreducible Hs-modules

Recall from Proposition 2.6.3 that the algebra Hs is semisimple. Thus the standard

module V is a direct sum of irreducibleHs-modules, and every irreducibleHs-module

appears in V up to isomorphism. We now discuss the irreducible Hs-modules in V .

Recall that for 0 ≤ i ≤ a and 0 ≤ j ≤ b the matrix F̂ acts on E∗
i,jV . For each

eigenvalue θi,j,l of this action, let Vi,j,l denote the corresponding eigenspace. Thus

Vi,j,l = {v ∈ E∗
i,jV | F̂ v = θi,j,lv}.

Let W be an irreducible Hs-module in V . Then we have

W =
a∑

i=0

b∑
j=0

E∗
i,jW (direct sum).

Definition 2.7.1. Let W denote an irreducible Hs-module. Define

ν = min{i | 0 ≤ i ≤ a,E∗
i,jW ̸= 0 for some j},

µ = min{j | 0 ≤ j ≤ b, E∗
i,jW ̸= 0 for some i}.

We call the ordered pair (ν, µ) the lower endpoint of W . Define

ν ′ = max{i | 0 ≤ i ≤ a,E∗
i,jW ̸= 0 for some j},

µ′ = max{j | 0 ≤ j ≤ b, E∗
i,jW ̸= 0 for some i}.

We call the ordered pair (ν ′, µ′) the upper endpoint of W .

By construction,

0 ≤ ν ≤ ν ′ ≤ a, 0 ≤ µ ≤ µ′ ≤ b. (2.6)

Lemma 2.7.2. With reference to Definition 2.7.1, the following are equivalent for

0 ≤ i ≤ a and 0 ≤ j ≤ b.

(i) E∗
i,jW ̸= 0.

(ii) ν ≤ i ≤ ν ′ and µ ≤ j ≤ µ′.

Suppose (i), (ii) hold. Then dimE∗
i,jW = 1 and E∗

i,jW = (R1)
i−ν(R2)

j−µE∗
ν,µW .

Proof. By the definition of the lower endpoint, there exists a nonzero vector w ∈
E∗

ν,µW such that L̂1w = L̂2w = 0. For n,m ∈ N, a vector (R1)
n(R2)

mw is in

E∗
ν+n,µ+mW by Lemma 2.6.1. The assertion is equivalent to showing that the module

W has a basis

(R1)
n(R2)

mw, 0 ≤ n ≤ ν ′ − ν, 0 ≤ m ≤ µ′ − µ. (2.7)
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From the irreducibility of W , we can write W = Hsw. Since Hs is generated by R1,

R2, L̂1, L̂2, K1, K2 and from the relations in Lemmas 2.6.4, 2.6.5, 2.6.7, 2.6.8 and

2.6.9, the module W is spanned by

(R1)
n(R2)

m(K1)
s(K2)

t(F̂ )u(L̂1)
i(L̂2)

jw (n,m, s, t, u, i, j ∈ N). (2.8)

Since w vanishes by the actions of L̂1 and L̂2, the vector in (2.8) is zero unless

i = j = 0. Moreover, since K1, K2, F̂ are diagonalizable on E∗
ν,µW , we may take

vectors with s = t = u = 0 for a spanning set of W . By the definition of the upper

endpoint, (R1)
n(R2)

mw ̸= 0 if n = ν ′− ν and m = µ′−µ, while (R1)
n(R2)

mw = 0 if

n > ν ′ − ν or m > µ′ − µ. It remains to prove that the vectors in (2.7) are nonzero.

Suppose there exist 0 ≤ n′ ≤ ν ′ − ν, 0 ≤ m′ ≤ µ′ − µ such that (R1)
n′
(R2)

m′
w = 0.

Then by Lemma 2.6.5 (iv),

(R1)
ν′−ν(R2)

µ′−µw = qn
′(µ′−µ−m′)(R1)

ν′−ν−n′
(R2)

µ′−µ−m′
(
(R1)

n′
(R2)

m′
w
)
. (2.9)

Then the left-hand side of (2.9) is nonzero, while the right-hand side of (2.9) is zero.

This is a contradiction and completes the proof.

Lemma 2.7.3. With reference to Definition 2.7.1, we have

ν + µ+ ν ′ + µ′ = a+ b.

Proof. Let W = W1 +W2 + · · · +Wr denote a direct sum decomposition into irre-

ducible I-modules, and let νi denote the endpoint of Wi for 1 ≤ i ≤ r. Observe that

ν + µ = min{νi | 1 ≤ i ≤ r} by Lemma 2.7.2. On the other hand, it follows from

Proposition 2.3.7 and Lemma 2.7.2 that

ν ′ + µ′ = max{a+ b− νi | 1 ≤ i ≤ r} = a+ b−min{νi | 1 ≤ i ≤ r} = a+ b− ν − µ.

The result follows.

Definition 2.7.4. Let W denote an irreducible Hs-module with lower endpoint

(ν, µ) and upper endpoint (ν ′, µ′). By Lemma 2.7.3, we have a−ν−ν ′ = −b+µ+µ′.

We denote this common value by ρ and call it the index of W .

Lemma 2.7.5. Let W denote an irreducible Hs-module with lower endpoint (ν, µ)

and index ρ. Then

2µ− b ≤ ρ ≤ a− 2ν.

Proof. This follows from (2.6).
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Lemma 2.7.6. Let W denote an irreducible Hs-module with lower endpoint (ν, µ)

and index ρ. Then

dimW = (a− 2ν − ρ+ 1)(b− 2µ+ ρ+ 1).

Proof. Let (ν ′, µ′) denote the upper endpoint ofW . By Lemma 2.7.2, the dimension

of W is (ν ′−ν+1)(µ′−µ+1). By the definition of ρ, this is the same as the desired

formula.

Proposition 2.7.7. Let W be an irreducible Hs-module in V with lower endpoint

(ν, µ) and index ρ. There exists a basis

wn,m (0 ≤ n ≤ a− 2ν − ρ, 0 ≤ m ≤ b− 2µ+ ρ), (2.10)

on which the generators L̂1, L̂2, R1, R2 act as follows:

L̂1wn,m = q(−b+2µ−ρ+2m)/2[a− 2ν − ρ− n+ 1]wn−1,m,

L̂2wn,m = q(a−2ν−ρ)/2[b− 2µ+ ρ−m+ 1]wn,m−1,

R1wn,m = [n+ 1]wn+1,m,

R2wn,m = q−n[m+ 1]wn,m+1.

Here we set wn,m = 0 unless n and m satisfy the inequalities in (2.10).

Proof. Let (ν ′, µ′) denote the upper endpoint of W . Remark that ν ′ = a − ν − ρ

and µ′ = b− µ+ ρ. Pick any nonzero vector w ∈ E∗
ν,µW . Set

wn,m =
(R1)

n(R2)
m

[n]![m]!
w (0 ≤ n ≤ ν ′ − ν, 0 ≤ m ≤ µ′ − µ). (2.11)

Remark that w0,0 = w. The set (2.11) of vectors forms a basis for the vector space

W by Lemma 2.7.2. We show that every vector in (2.11) satisfies the desired actions.

By the construction and Lemma 2.6.5 (iv), it is easily seen that the desired actions

of R1 and R2 hold. For L̂1, recall Lemma 2.6.6 (i). For 0 ≤ n ≤ ν ′ − ν and

0 ≤ m ≤ µ′ −µ, applying both sides of the equation in Lemma 2.6.6 (i) to wn,m, we

have

(R1)
2L̂1wn,m − (q + 1)[n+ 1]R1L̂1wn+1,m + q[n+ 1][n+ 2]L̂1wn+2,m

= −q−1/2(q + 1)[n+ 1]K−1
1 K2wn+1,m. (2.12)

By the definitions of K1 and K2, the scaler of wn+1,m in the right hand side of

(2.12) is known. By Lemmas 2.6.1 and 2.7.2, we know L̂1wn,m is a scalar multiple

of wn−1,m for 1 ≤ n ≤ ν ′ − ν and 0 ≤ m ≤ µ′ − µ. Set the scaler by cn−1,m and
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set c−1,m = cd+1,m = 0 for 0 ≤ m ≤ µ′ − µ. Substituting this in (2.12), we have for

0 ≤ n ≤ d and 0 ≤ m ≤ δ,

cn−1,m − (q + 1)[n− ν + 1]cn,m + q[n− ν + 1][n− ν + 2]cn+1,m

= −(q + 1)[n− ν + 1]q(−a−b+2n+2m+1)/2.

It turns out cn,m = q(−b−ρ+2m)/2[a − ν − ρ − n] (ν ≤ n ≤ ν ′, µ ≤ m ≤ µ′) is the

unique solution to this system. This determines the action of L̂1. The proof of the

action of L̂2 is similar.

Proposition 2.7.8. Referring to Proposition 2.7.7, the elements K1, K2, F̂ act on

the basis (2.10) in the following way:

K1wn,m = q(a−2n−2ν)/2wn,m,

K2wn,m = q(−b+2m+2µ)/2wn,m,

F̂wn,m = q(a−b−2n+2m−2ν+2µ−2ρ)/2wn,m.

Proof. From the required actions in Proposition 2.7.7 and from Lemmas 2.6.1 and

2.7.2, it turns out that wn,m ∈ E∗
ν+n,µ+mW for 0 ≤ n ≤ a − 2ν − ρ and 0 ≤ m ≤

b− 2µ+ ρ. Then the actions of K1, K2 on each wn,m are given by their definitions.

As for the action of F̂ , we use the relations in Lemma 2.6.7 (i), combined with the

other actions of L̂1, R1, K1, K2.

Theorem 2.7.9. Let W denote an irreducible Hs-module. Then W is determined

up to isomorphism by its lower endpoint and index.

Proof. From Propositions 2.7.7 and 2.7.8, the actions of L̂1, L̂2, R1, R2, K1, K2 on

W are determined by its lower endpoint and index. The result follows since Hs is

generated by L̂1, L̂2, R1, R2, K1, K2.

Definition 2.7.10. Let W denote an irreducible Hs-module with lower endpoint

(ν, µ) and index ρ. We call the triple (ν, µ, ρ) the type of W .

Lemma 2.7.11. Let W be an irreducible Hs-module of type (ν, µ, ρ). Then

0 ≤ ρ ≤ µ.

Proof. From Proposition 2.7.8, the value q(a−b−2i+2j−2ρ)/2 is an eigenvalue of the F̂ -

action on E∗
i,jV for ν ≤ i ≤ a − ν − ρ and µ ≤ j ≤ b − µ + ρ. Then, by Lemma

2.6.11, the index ρ must satisfy 0 ≤ ρ ≤ min{a − i, j}. This implies the desired

inequality.

Theorem 2.7.12. The following (i), (ii) hold.
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(i) Let W denote an irreducible Hs-module in V of type (i, j, l). Then

E∗
i,jW ⊆ Vi,j,l ∩Ker L̂1 ∩Ker L̂2.

(ii) For (ν, µ, ρ) satisfying 0 ≤ ν ≤ a, 0 ≤ µ ≤ b, 0 ≤ ρ ≤ µ, 2ν − b ≤ ρ ≤ a− 2ν

and for a nonzero vector w ∈ Vν,µ,ρ ∩ Ker L̂1 ∩ Ker L̂2, the Hs-module Hsw is

irreducible of type (ν, µ, ρ).

Here we see each L̂i as a linear operator and Ker L̂i denotes the kernel of it, i.e.,

Ker L̂i = {v ∈ V | L̂iv = 0}.

Proof. (i) Since (i, j) is the lower endpoint of W , the space E∗
i,jW is a subspace

of Ker L̂1 and Ker L̂2. By Proposition 2.7.8, there exists a nonzero vector

w ∈ E∗
i,jW such that

F̂w = q(a−b−2i+2j−2l)/2w.

This proves w ∈ Vi,j,l. By Lemma 2.7.2, the subspace E∗
i,jW is spanned by one

vector w. Hence the result follows.

(ii) Set W = Hsw. We write the irreducible Hs-modules decomposition of W as

follows:

W = W1 +W2 + · · ·+Wr (direct sum),

for some positive integer r. It is sufficient to show that r = 1 andW1 is of type

(ν, µ, ρ). According to this decomposition, we write w = w1 + w2 + · · · + wr

such that wi ∈ Wi (1 ≤ i ≤ r). Then, every wi lies in Vν,µ,ρ ∩Ker L̂1 ∩Ker L̂2

and moreover, wi ̸= 0 since Wi = Hswi. By Propositions 2.7.7 and 2.7.8,

for 1 ≤ i ≤ r, Wi must be of type (ν, µ, ρ). Moreover, it follows again from

Propositions 2.7.7 and 2.7.8 that, for every M ∈ Hs, we have Mwi = 0 for

some i if and only if Mwi = 0 for all i (1 ≤ i ≤ r). This shows r = 1, for

otherwise w1, . . . , wr ̸∈ W , a contradiction.

Corollary 2.7.13. For integers ν, µ, ρ, the following are equivalent.

(i) There exists an irreducible Hs-module of type (ν, µ, ρ).

(ii) 0 ≤ ν ≤ a and 0 ≤ µ ≤ b and 0 ≤ ρ ≤ µ and 2µ− b ≤ ρ ≤ a− 2ν.

Proof. We first assume (i) holds. Then (ii) follows from (2.6) and Lemmas 2.7.5

and 2.7.11. On the other hand, assume (ii) holds. If there exists a nonzero vector
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w ∈ Vν,µ,ρ such that L̂1w = L̂2w = 0, then by Theorem 2.7.12, Hsw is an irre-

ducible Hs-module of type (ν, µ, ρ). So all we need to show is that the vector space

Vν,µ,ρ ∩Ker L̂1 ∩Ker L̂2 is nonzero under the assumption (ii). This is shown in [20,

Corollary 7.12].

Theorem 2.7.12 shows that the irreducible Hs-modules in V are classified by

their types up to isomorphism. Now, in addition to types, we introduce a different

characterization, which also has a combinatorial importance.

Definition 2.7.14. Let W be an irreducible Hs-module with lower endpoint (ν, µ)

and upper endpoint (ν ′, µ′). Define

d = ν ′ − ν, δ = µ′ − µ.

We call the ordered pair (d, δ) the diameter of W .

Lemma 2.7.15. Let W denote an irreducible Hs-module of index ρ. Its lower

endpoint (ν, µ) and diameter (d, δ) are related as follows:

ν =
a− d− ρ

2
, µ =

b− δ + ρ

2
,

d = a− 2ν − ρ, δ = b− 2µ+ ρ.

Moreover,

ν ′ = a− ν − ρ =
a+ d− ρ

2
, µ′ = b− µ+ ρ =

b+ δ + ρ

2
.

Proof. Use Definitions 2.7.4 and 2.7.14.

Corollary 2.7.16. Let W denote an irreducible Hs-module. Then W is determined

up to isomorphism by diameter and index.

Proof. Use Theorem 2.7.9 and Lemma 2.7.15.

Definition 2.7.17. Let W denote an irreducible Hs-module with diameter (d, δ)

and index ρ. We call the triple (d, δ, ρ) the shape of W .

We now show how Corollary 2.7.13 looks in terms of shape. We find it convenient

to work with shapes instead of types.

Corollary 2.7.18. For integers d, δ, ρ, the following are equivalent.

(i) There exists an irreducible Hs-module of shape (d, δ, ρ).

(ii) 0 ≤ d ≤ a and 0 ≤ δ ≤ b and 0 ≤ ρ ≤ min{a− d, b− δ}.
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Proof. Use Corollary 2.7.13 and Lemma 2.7.15.

Let S denote the set of triples (d, δ, ρ) of integers that satisfy Corollary 2.7.18

(ii). For s ∈ S, we denote by Es ∈ MatP (C) the projection from V onto the sum of

all irreducible Hs-modules of shape s. We have

EsEs′ = δs,s′Es (s, s′ ∈ S),

I =
∑
s∈S

Es.

Moreover,

V =
∑
s∈S

EsV (direct sum).

In Propositions 2.7.7 and 2.7.8, we described the actions of L̂1, L̂2, R1, R2, K1,

K2, F̂ on a basis for an irreducible Hs-module. We now describe these actions in

terms of shapes.

Corollary 2.7.19. Let W be an irreducible Hs-module in V of shape (d, δ, l). On

the basis (2.10) the generators L̂1, L̂2, R1, R2 act as follows, where the inequalities

in (2.10) become 0 ≤ n ≤ d and 0 ≤ m ≤ δ:

L̂1wn,m = q(−δ+2m)/2[d− n+ 1]wn−1,m

L̂2wn,m = qd/2[δ −m+ 1]wn,m−1,

R1wn,m = [n+ 1]wn+1,m,

R2wn,m = q−n[m+ 1]wn,m+1.

Here, recall that we set wn,m = 0 unless n and m satisfy the inequalities in (2.10).

Proof. This is a restatement of Proposition 2.7.7 in terms of shapes.

Corollary 2.7.20. Referring to Corollary 2.7.19, the elements K1, K2, F̂ act on

the basis (2.10) in the following way:

K1wn,m = q(d+l−2n)/2wn,m,

K2wn,m = q(−δ+l+2m)/2wn,m,

F̂wn,m = q(d−δ−2n+2m)/2wn,m.

Proof. This is a restatement of Proposition 2.7.8 in terms of shapes.

Corollary 2.7.21. Let W be an irreducible Hs-module in V with index l. Then for

0 ≤ i ≤ a, 0 ≤ j ≤ b we have

E∗
i,jW ⊆ Vi,j,l.

Moreover,
∑a

i=0

∑b
j=0 Vi,j,l is an Hs-module.
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Proof. Let (ν, µ) be the lower endpoint of W . Assume ν ≤ i ≤ a − ν − l and

µ ≤ j ≤ b − µ + l; otherwise the first assertion is trivial from Lemma 2.7.2. From

Corollary 2.7.8, there is a vector w = wi−ν,j−µ ∈ E∗
i,jW such that

F̂w = q(a−b−2i+2j−2ρ)/2w.

By the definition of Vi,j,l, this shows us that w ∈ Vi,j,l. From Lemma 2.7.2, we know

the vector space E∗
i,jW is spanned by one vector w so that the first assertion holds.

Next let Ṽl denote the sum of all irreducible Hs-modules in V of index l. By the

first assertion, we have Ṽl ⊆
∑a

i=0

∑b
j=0 Vi,j,l. Recall the two direct sum decomposi-

tions of V :

V =
∑
l

Ṽl (direct sum),

V =
∑
l

(
a∑

i=0

b∑
j=0

Vi,j,l

)
(direct sum),

where the two sums are over all indices l. Then by the above comment, the corre-

sponding summands must coincide, i.e., we have Ṽl =
∑a

i=0

∑b
j=0 Vi,j,l for every l.

This proves the second assertion.

2.8 The center of the algebra Hs

In this section, we show central elements which generate the center of the algebra

Hs. Recall from Corollary 2.6.12, we have F̂−1 ∈ Hs. Define Λ0,Λ1,Λ2 ∈ Hs by

Λ0 = K1K2F̂
−1,

Λ1 = L̂1R1K
−1
2 +

q1/2K−1
1 + q−1/2F̂K−1

2

(q1/2 − q−1/2)2
,

Λ2 = L̂2R2K
−1
1 +

q−1/2K−1
2 + q1/2F̂K−1

1

(q1/2 − q−1/2)2
.

Lemma 2.8.1. The above elements Λ0, Λ1, Λ2 are in the center of the algebra Hs.

Proof. It is sufficient to check that each of Λ0, Λ1, Λ2 commutes with the generators.

This follows from Lemmas 2.6.4, 2.6.7, 2.6.8 and 2.6.9. One may use the properties

that K1, K2, F are symmetric and that L1, L2 are transpose to R1, R2, respectively.

Lemma 2.8.2. The following hold.
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(i) The complete set of the eigenvalues for Λ0 is

ql (0 ≤ l ≤ a).

Moreover,
∑

d,δ E(d,δ,l)V is the eigenspace with respect to the above eigenvalue.

(ii) The complete set of the eigenvalues for Λ1 is

q(d−l+1)/2 + q(−d−l−1)/2

(q1/2 − q−1/2)2
(0 ≤ d ≤ a, 0 ≤ l ≤ a− d).

Moreover,
∑

δ E(d,δ,l)V is the eigenspace with respect to the above eigenvalue.

(iii) The complete set of the eigenvalues for Λ2 is

q(δ−l+1)/2 + q(−δ−l−1)/2

(q1/2 − q−1/2)2
(0 ≤ δ ≤ b, 0 ≤ l ≤ a).

Moreover,
∑

dE(d,δ,l)V is the eigenspace with respect to the above eigenvalue.

In particular, each of Λ0, Λ1, Λ2 is diagonalizable in the standard module V . Here

the sum ranges all possible shapes in S.

Proof. Let λ0(l), λ1(d, l), λ2(δ, l) denote the desired eigenvalues of Λ0, Λ1, Λ2 re-

spectively. We fix a shape (d, δ, l) ∈ S. Let W be an irreducible Hs-module of shape

(d, δ, l). Let {wn,m} be the basis for W in (2.10). For given one vector wn,m, it is

sufficient to show that

Λ0wn,m = λ0(l)wn,m,

Λ1wn,m = λ1(d, l)wn,m,

Λ2wn,m = λ2(δ, l)wn,m.

These formulas are obtained by using the actions in Corollaries 2.7.19 and 2.7.20.

Theorem 2.8.3. The center of the algebra Hs is generated by Λ0, Λ1 and Λ2.

Proof. Let λ0(l), λ1(d, l), λ2(δ, l) denote the eigenvalues of Λ0, Λ1, Λ2, respectively,

from Lemma 2.8.2. Recall that for s ∈ S, we denote by Es the projection matrix

from V onto the sum of irreducible Hs-modules in V of shape s. By Lemma 2.8.2,

we have

Λ0 =
∑

(d,δ,l)∈S

λ0(l)E(d,δ,l), Λ1 =
∑

(d,δ,l)∈S

λ1(d, l)E(d,δ,l), Λ2 =
∑

(d,δ,l)∈S

λ2(δ, l)E(d,δ,l).

Moreover, we have (λ0(l), λ1(d, l), λ2(δ, l)) = (λ0(l
′), λ1(d

′, l′), λ2(δ
′, l′)) if and only

if (d, δ, l) = (d′, δ′, l′). Hence, for s ∈ S, we see Es as a polynomial in Λ0, Λ1, Λ2.

Since the elements Es (s ∈ S) are the central primitive idempotents of Hs, the result

follows.
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2.9 The quantum affine algebra Uq(ŝl2)

In this section, we fix a nonzero scalar q ∈ C which is not a root of unity.

Definition 2.9.1 ([6, Section 2]). The quantum affine algebra Uq(ŝl2) is the asso-

ciative C-algebra generated by e±i , k
±1
i , (i = 0, 1) with the relations

kik
−1
i = k−1

i ki = 1,

k0k1 = k1k0,

kie
±
i = q±2e±i ki,

kie
±
j = q∓2e±j ki (i ̸= j),

e+i e
−
i − e−i e

+
i =

ki − k−1
i

q − q−1
,

e±0 e
∓
1 − e∓1 e

±
0 = 0,

(e±i )
3e±j − [3]q(e

±
i )

2e±j e
±
i + [3]qe

±
i e

±
j (e

±
i )

2 − e±j (e
±
i )

3 = 0 (i ̸= j).

We call e±i , k
±1
i the Chevalley generators for Uq(ŝl2).

Lemma 2.9.2 ([6, Section 2]). The quantum affine algebra Uq(ŝl2) has the following

Hopf algebra structure. The comultiplication ∆ satisfies

∆(e+i ) = e+i ⊗ ki + 1⊗ e+i ,

∆(e−i ) = e−i ⊗ 1 + k−1
i ⊗ e−i ,

∆(ki) = ki ⊗ ki.

The counit ε satisfies

ε(e±i ) = 0, ε(ki) = 1.

The antipode S satisfies

S(ki) = k−1
i , S(e+i ) = −e+i k−1

i , S(e−i ) = −kie−i .

Lemma 2.9.3 ([6, Section 4]). For any nonzero scalar α ∈ C, there is an algebra

homomorphism evα : Uq(ŝl2) → Uq(sl2) that sends

e+0 7→ αf, e−0 7→ α−1e, k0 7→ k−1,

e+1 7→ e, e−1 7→ f, k1 7→ k.

We call the algebra homomorphism evα in Lemma 2.9.3 the evaluation homo-

morphism with evaluation parameter α. Modules for Uq(ŝl2) can be obtained from

modules for Uq(sl2) along evaluation homomorphism evα.

32



Definition 2.9.4 ([6, Section 4]). For d ∈ N and a nonzero scalar α ∈ C, the

evaluation module Vd(α) for Uq(ŝl2) is the pull-back of the Uq(sl2)-module V1,d along

the evaluation homomorphism evα : Uq(ŝl2) → Uq(sl2).

Lemma 2.9.5. For d ∈ N and a nonzero scalar α ∈ C, the evaluation Uq(ŝl2)-

module Vd(α) has a basis {vi}di=0 on which the Chevalley generators act as follows:

e+0 vi = α[i+ 1]qvi+1 (0 ≤ i ≤ d− 1), e+0 vd = 0,

e+1 vi = [d− i+ 1]qvi−1 (1 ≤ i ≤ d), e+1 v0 = 0,

e−0 vi = α−1[d− i+ 1]qvi−1 (1 ≤ i ≤ d), e+1 v0 = 0,

e−1 vi = [i+ 1]qvi+1 (0 ≤ i ≤ d− 1), e+0 vd = 0,

k0vi = q2i−dvi (0 ≤ i ≤ d),

k1vi = qd−2ivi (0 ≤ i ≤ d).

Proof. Use Lemmas 2.2.2 and 2.9.3.

Lemma 2.9.6. For d, δ ∈ N and nonzero scalars α, β ∈ C, the tensor product of two
evaluation Uq(ŝl2)-modules Vd(α) ⊗ Vδ(β) is again a Uq(ŝl2)-module. This module

has a basis

vn ⊗ wm (0 ≤ n ≤ d, 0 ≤ m ≤ δ), (2.13)

on which the Chevalley generators act as follows:

e+0 (vn ⊗ wm) = α[n+ 1]qq
2m−δ(vn+1 ⊗ wm) + β[m+ 1]q(vn ⊗ wm+1),

e+1 (vn ⊗ wm) = [d− n+ 1]qq
δ−2m(vn−1 ⊗ wm) + [δ −m+ 1]q(vn ⊗ wm−1),

e−0 (vn ⊗ wm) = α−1[d− n+ 1]q(vn−1 ⊗ wm) + β−1[δ −m+ 1]qq
d−2n(vn ⊗ wm−1),

e−1 (vn ⊗ wm) = [n+ 1]q(vn+1 ⊗ wm) + [m+ 1]qq
2n−d(vn ⊗ wm+1),

k0(vn ⊗ wm) = q2n+2m−d−δ(vn ⊗ wm),

k1(vn ⊗ wm) = qd+δ−2n−2m(vn ⊗ wm).

Here we set vn ⊗ wm = 0 unless n and m satisfy the inequalities in (2.13).

Proof. Recall that Uq(ŝl2) has a Hopf algebra structure. The comultiplication

∆ : Uq(ŝl2) → Uq(ŝl2)⊗ Uq(ŝl2),

induces the Uq(ŝl2)-module structure on Vd(α) ⊗ Vδ(β). The actions are obtained

from Lemmas 2.9.2 and 2.9.5.
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With an evaluation module Vd(α), we associate the set of scalars

Sd(α) = {αqd−1, αqd−3, . . . , αq−d+1}.

The set Sd(α) is called a q-string of length d. Two q-strings Sd(α), Sδ(β) are said

to be in general position if one of the following occurs:

(i) Sd(α) ∪ Sδ(β) is not a q-string,

(ii) Sd(α) ⊆ Sδ(β) or Sδ(β) ⊆ Sd(α).

Moreover, q-strings Sd1(α1), . . . , Sdr(αr) are said to be in general position if every

two q-strings are in general position.

Theorem 2.9.7 ([6, Section 4]). A tensor product Vd1(α1)⊗· · ·⊗Vdr(αr) of evalua-

tion modules for Uq(ŝl2) is irreducible if and only if the associated q-strings Sd1(α1),

. . ., Sdr(αr) are in general position.

Theorem 2.9.8 ([6, Section 4]). Two tensor products of evaluation modules for

Uq(ŝl2) are isomorphic if and only if one is obtained from the other by permuting

the factors in the tensor product.

2.10 Hs and Uq1/2(ŝl2)

In this section, we get back to the subspace lattice. Let q be a fixed prime power.

Theorem 2.10.1. The standard module V supports a Uq1/2(ŝl2)-module structure

on which the Chevalley generators act as follows:

generators e+0 e+1 e−0 e−1

actions on V R1 +R2 L̂1X + Y L̂2 L̂1 + L̂2 R1Z +WR2

generators k0 k1 k−1
0 k−1

1

actions on V K−1
1 K2 K1K

−1
2 K1K

−1
2 K−1

1 K2

Here X = K1F̂
−1, Y = K2F̂

−1, Z = K−1
2 , W = K−1

1 .

Proof. The proof is straightforward. We check if the actions on V corresponding

to the Chevalley generators satisfy the defining relations of Uq1/2(ŝl2) in Definition

2.9.1. These follow from the relations in Lemmas 2.6.4–2.6.9.
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Corollary 2.10.2. There exists an algebra homomorphism from Uq1/2(ŝl2) to Hs

that sends

e+0 7→ R1 +R2, e+1 7→ L̂1X + Y L̂2,

e−0 7→ L̂1 + L̂2, e−1 7→ R1Z +WR2,

k0 7→ K−1
1 K2, k1 7→ K1K

−1
2 .

Here X = K1F̂
−1, Y = K2F̂

−1, Z = K−1
2 , W = K−1

1 .

Proof. Immediate from Theorem 2.10.1.

Remark that Theorem 2.10.1 and Corollary 2.10.2 are still true if we swap the

values of X and Z and/or those of Y and W . However, this does not cause any

essential difference for our discussion.

By the homomorphism in Corollary 2.10.2, we can see any module for Hs as a

module for Uq1/2(ŝl2). In particular, the standard module V becomes a Uq1/2(ŝl2)-

module.

Lemma 2.10.3. Referring to Proposition 2.7.7 and Lemma 2.9.6, let Wd,δ,l denote

an irreducible Hs-module of shape (d, δ, l) and Vd(α)⊗Vδ(β) denote the tensor prod-

uct of two evaluation Uq1/2(ŝl2)-modules with evaluation parameters α and β. For

nonzero scalars cn,m ∈ C (0 ≤ n ≤ d, 0 ≤ m ≤ δ), the following are equivalent.

(i) There exists a Uq1/2(ŝl2)-module isomorphism φ : Vd(α)⊗ Vδ(β) → Wd,δ,l such

that

φ(vn ⊗ um) = cn,mwn,m (0 ≤ n ≤ d, 0 ≤ m ≤ δ).

(ii) α = β = ql/2 and there exists a nonzero scalar γ ∈ C such that

cn,m = γqn(δ−l)/2−ml/2−nm (0 ≤ n ≤ d, 0 ≤ m ≤ δ).

Proof. First we assume (i), and show (ii). It is independent of the scalars cn,m that

the map φ preserves the actions of k0, k1. Thus, we check the map φ preserves the

actions of the other Chevalley generators.

Comparing e+0 action on vn ⊗ um in Lemma 2.9.6 with R1 + R2 action on wn,m

in Corollary 2.7.19, we have

αq(2m−δ)/2cn+1,m = cn,m, βcn,m+1 = q−ncn,m.

Similarly, from e+1 action and L̂1X + Y L̂2 action, we obtain

q(δ−2m)/2cn−1,m = ql/2cn,m, cn,m−1 = q(2n+l)/2cn,m.
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By the above formulas, we get α = β = ql/2. Moreover, we have

cn,m = qn(δ−2m−l)/2c0,m = qn(δ−2m−l)/2−lm/2c0,0,

for any 0 ≤ n ≤ d, 0 ≤ m ≤ δ.

On the other hand, the scalars cn,m define the map φ. It is a direct calculation

to show that φ becomes an isomorphism of Uq1/2(ŝl2)-modules.

Theorem 2.10.4. Referring to Lemma 2.10.3, we have the following isomorphism

for Uq1/2(ŝl2)-modules.

Vd(q
l/2)⊗ Vδ(q

l/2) ≃ Wd,δ,l,

for (d, δ, l) ∈ S.

Proof. The proof is immediate from Lemma 2.10.3.

Theorem 2.10.5. Any irreducible Hs-module is irreducible as a Uq1/2(ŝl2)-module.

Proof. Let W be an irreducible Hs-module of shape (d, δ, l). Then from Theorem

2.10.4, this module W is isomorphic to

Vd(q
l/2)⊗ Vδ(q

l/2),

which is an irreducible Uq1/2(ŝl2)-module by Theorem 2.9.7.

Theorem 2.10.6. The algebra Hs is generated by both the image of Uq1/2(ŝl2) of

the algebra homomorphism defined in Corollary 2.10.2 and its center.

Proof. Let H′
s denote the subalgebra of Hs generated by the homomorphic image

of Uq1/2(ŝl2) and the center of Hs. By Theorem 2.10.5, any irreducible Hs-module

is also irreducible as an H′
s-module. We now show that H′

s coincides with Hs by

comparing the H′
s-isomorphism classes of irreducible Hs-modules in V .

Let W1, W2 be irreducible Hs-modules in V . If W1, W2 are Hs-isomorphic, then

they are clearly H′
s-isomorphic. On the other hand, suppose that W1, W2 are H′

s-

isomorphic. Observe that the projections Es (s ∈ S) belong to the center of Hs.

Hence there is a unique s ∈ S such that EsW1 and EsW2 are both nonzero. In other

words, W1, W2 are Hs-isomorphic. The result follows.
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Chapter 3

An algebra associated with a flag

in a subspace lattice over a finite

field and the quantum affine

algebra Uq(ŝl2)

In this chapter, we introduce an algebra Hf from a subspace lattice with respect

to a fixed flag which contains its incidence algebra as a proper subalgebra. We

then establish a relation between the algebra Hf and the quantum affine algebra

Uq1/2(ŝl2), where q denotes the cardinality of the base field. It is an extension of

the well-known relation between the incidence algebra of a subspace lattice and the

quantum algebra Uq1/2(sl2). We show that there exists an algebra homomorphism

from Uq1/2(ŝl2) to Hf and that any irreducible module for Hf is irreducible as an

Uq1/2(ŝl2)-module. This chapter is based on the author’s work [26].

We organize this chapter as follows. In Section 3.1, we recall the basic notation

and introduce a hyper-cubic structure in a subspace lattice. In Section 3.2, we recall

some notation on Ferrers boards, rook placements and inversion numbers which is

used in this chapter. In Sections 3.3 and 3.4, we introduce a matrix representation

of P and interpret some properties of matrices in terms of rook placements and

inversion numbers. In Sections 3.5 and 3.6, we introduce the main object of this

chapter, the algebra Hf , and discuss the structure of it. In Sections 3.7, 3.8, 3.9

and 3.10, we discuss the Hf -action on the standard module and classify all the

irreducible Hf -modules up to isomorphism. In Section 3.11, for the convenience of

the reader, we repeat the relevant material, including the definition of the quantum

affine algebra Uq(ŝl2), from [6] without proofs, thus making our exposition self-

contained. In Section 3.12, our main results are stated and proved.
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3.1 A subspace lattice and its hyper-cubic struc-

ture

We now begin our formal argument. Recall the integers Z = {0,±1,±2, . . .} and

the natural numbers N = {0, 1, 2, . . .} and let C denote the complex field. The

Kronecker delta is denoted by δ. Throughout this chapter except Section 3.11, we

fix N ∈ N \ {0}. Throughout this chapter except Sections 3.2, 3.9 and 3.11, we fix a

prime power q. Let Fq denote a finite field of q elements and let H denote a vector

space over Fq with dimension N . Let P denote the set of all subspaces of H. We

view P as a poset with the partial order given by inclusion. The poset P is a graded

lattice of rank N where the rank function is defined by its dimension and called the

subspace lattice. For two subspaces y, z ∈ P , we say y covers z whenever z ⊆ y and

dim z = dim y − 1. By a (full) flag on H we mean a sequence {xi}Ni=0 of subspaces

in P such that dim xi = i for 0 ≤ i ≤ N and xi−1 ⊊ xi for 1 ≤ i ≤ N . For the

rest of this chapter, we fix a flag {xi}Ni=0 on H. A basis v1, v2, . . . , vN for H is said

to be adapted to the flag {xi}Ni=0 whenever each xi is spanned by v1, v2, . . . , vi for

1 ≤ i ≤ N .

By the N-cube we mean the poset consisting of all N -tuples in {0, 1}N with

the partial order µ ≤ ν defined by µm ≤ νm for all 1 ≤ m ≤ N , where µ =

(µ1, µ2, . . . , µN), ν = (ν1, ν2, . . . , νN) ∈ {0, 1}N . (We note that it is isomorphic to

the Boolean lattice of all subsets of an N -set.) The N -cube is a graded lattice of

rank N with the rank function defined by

|µ| = µ1 + µ2 + · · ·+ µN ,

for µ = (µ1, µ2, . . . , µN) ∈ {0, 1}N .

Proposition 3.1.1. There exists an order-preserving map from the subspace lattice

P to the N-cube which sends y ∈ P to (µ1, µ2, . . . , µN) ∈ {0, 1}N where

dim(y ∩ xm) = µ1 + µ2 + · · ·+ µm,

for 1 ≤ m ≤ N . Moreover, this map is surjective.

Proof. For y ∈ P and 1 ≤ m ≤ N , observe that µm = dim(y ∩ xm)− dim(y ∩ xm−1)

is either 0 or 1 since xm−1 ⊊ xm and dim xm − dim xm−1 = 1. Therefore this

correspondence becomes a map from P to the N -cube. It is clear that this map

preserves the ordering. To show its surjectivity, let v1, v2, . . . , vN denote a basis for

H adapted to the flag {xi}Ni=0. For any µ = (µ1, µ2, . . . , µN) ∈ {0, 1}N , consider the
subspace y ∈ P spanned by the vectors {vi | 1 ≤ i ≤ N,µi = 1} and check that y is

mapped to µ. Therefore it is surjective.
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Definition 3.1.2. If µ ∈ {0, 1}N is the image of y ∈ P by the map in Proposition

3.1.1, we call µ the location of y. For µ ∈ {0, 1}N , let Pµ denote the set of all

subspaces at location µ. For notational convenience, for µ ∈ ZN we set Pµ = ∅
unless µ ∈ {0, 1}N .

Note that P is the disjoint union of Pµ, where µ ∈ {0, 1}N . Observe that

dim y = |µ| for y ∈ Pµ.

Definition 3.1.3. Let 1 ≤ m ≤ N . For µ = (µ1, µ2, . . . , µN), ν = (ν1, ν2, . . . , νN) ∈
{0, 1}N , we say µ m-covers ν whenever νm < µm and νn = µn for 1 ≤ n ≤ N with

n ̸= m. Similarly, for y, z ∈ P , we say y m-covers z whenever y covers z and the

location of y m-covers the location of z.

For each 1 ≤ m ≤ N , let m̂ denote the N -tuple in {0, 1}N with a 1 in m-th

coordinate and 0 elsewhere. To simplify the notation, we consider the coordinate-

wise addition in ZN so that µ m-covers ν if and only if µ = ν+ m̂ for µ, ν ∈ {0, 1}N .

Lemma 3.1.4. For µ = (µ1, µ2, . . . , µN) ∈ {0, 1}N and for 1 ≤ m ≤ N , the

following (i), (ii) hold.

(i) Given y ∈ Pµ, the number of subspaces m-covered by y is

δµm,1q
µm+1+µm+2+···+µN .

(ii) Given y ∈ Pµ, the number of subspaces which m-cover y is

δµm,0q
(m−1)−(µ1+µ2+···+µm−1).

Proof. (i) Assume µm = 1, otherwise, the assertion is clear. Set n = dim y −
dim(y∩xm) = µm+1+ · · ·+µN . Take linearly independent vectors u1, . . . , un ∈
y \ (y ∩ xm) such that Span{u1, . . . , un} ∩ (y ∩ xm) = 0. We define w =

Span{u1, . . . , un} + (y ∩ xm−1). Then we have w ⊆ y and w ∈ Pµ−m̂. On the

other hand, for any w′ ∈ Pµ−m̂ with w′ ⊆ y, there exist linearly independent

vectors u′1, . . . , u
′
n ∈ w′ \ (w′∩xm) such that Span{u′1, . . . , u′n}∩ (w′∩xm) = 0.

Then we have Span{u′1, . . . , u′n} ∩ (y ∩ xm) = 0 and w′ = Span{u′1, . . . , u′n} +
(y ∩ xm−1). Thus, there are

(qµ1+···+µN − qµ1+···+µm) · · · (qµ1+···+µN − qµ1+···+µm+n−1)

(qµ1+···+µN−1 − qµ1+···+µm−1) · · · (qµ1+···+µN−1 − qµ1+···+µm−1+n−1)
= qn

subspaces w ∈ Pµ−m̂ with w ⊆ y.
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(ii) Assume µm = 0, otherwise, the assertion is clear. Take a vector u ∈ xm\xm−1.

Then Span{u} ∩ y = 0. Set w = Span{u} + y. Then y ⊆ w and we have

w ∈ Pµ+m̂. On the other hand, for any w′ ∈ Pµ+m̂ with y ⊆ w′, we can write

as w′ = Span{u′}+ y for any u′ ∈ (w′ ∩ xm) \ (w′ ∩ xm−1) ⊆ xm \ xm−1. Thus,

there are
qm − qm−1

qµ1+···+µm−1+1 − qµ1+···+µm−1
= q(m−1)−(µ1+···+µm−1)

subspaces w ∈ Pµ+m̂ with y ⊆ w.

Lemma 3.1.5. Let 1 ≤ m < n ≤ N . For µ = (µ1, µ2, . . . , µN) ∈ {0, 1}N with

µm = µn = 1, the following hold.

(i) Given z ∈ Pµ and y ∈ Pµ−m̂−n̂ with y ⊆ z, there exists a unique element in

Pµ−n̂ which m-covers y and which is n-covered by z.

(ii) Given z ∈ Pµ and y ∈ Pµ−m̂−n̂ with y ⊆ z, there exist exactly q elements in

Pµ−m̂ which n-cover y and which are m-covered by z.

(iii) Given y ∈ Pµ−m̂ and z ∈ Pµ−n̂, if there exists an element that is covered by

both y and z, then there exists a unique element that covers both y and z.

(iv) Given y ∈ Pµ−m̂ and z ∈ Pµ−n̂, if there exists an element that covers both y

and z, then there exists a unique element that is covered by both y and z.

Proof. (i) Set w = y + (z ∩ xn−1). It is easy to check that w covers y and w is

covered by z. Observe that the location of w is µ − n̂. On the other hand,

any w′ ∈ Pµ−n̂ which covers y and which is covered by z contains both y and

z ∩xn−1. So w ⊆ w′. By computing dimensions, w and w′ must coincide. The

result follows.

(ii) There exist exactly q + 1 elements which cover y and which are covered by

z since dim z − dim y = 2. Observe that they must belong to either Pµ−n̂ or

Pµ−m̂. Therefore the result follows from (i).

(iii) Since y and z are distinct, the element that is covered by both y and z must

be y ∩ z. Therefore, y + z is a unique element which covers both y and z.

(iv) Similar to (iii).
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3.2 Ferrers boards

We introduce the notion of Ferrers boards. For the general theory on this topic, we

refer the reader to [18, Chapters 1 and 2]. Note that we modify the notation in [18]

to fit our setting.

Let µ = (µ1, µ2, . . . , µN) ∈ {0, 1}N . Then µ has a natural correspondence with

a bipartition of {1, 2, . . . , N}, which is defined by

Sµ = {s ∈ N | 1 ≤ s ≤ N,µs = 0}, Tµ = {t ∈ N | 1 ≤ t ≤ N,µt = 1}. (3.1)

We remark that Sµ and Tµ are empty if and only if µ = 1 = (1, 1, . . . , 1) and

µ = 0 = (0, 0, . . . , 0), respectively. The Ferrers board of shape µ is defined by

Bµ = {(s, t) ∈ Sµ × Tµ | s < t}. (3.2)

If both Sµ and Tµ are not empty, i.e. if µ ̸= 0,1, we can draw a Ferrers board

as a two-dimensional subarray of a matrix whose rows indexed by Sµ and columns

indexed by Tµ, whose (s, t)-entry has a box for all (s, t) ∈ Bµ. This subarray is also

known as a Young diagram of shape µ.

Example 3.2.1 (N = 13). Let µ = (0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0) ∈ {0, 1}13. Then

the corresponding Ferrers board Bµ has the following subarray form:

2 3 5 6 8 9 12

1

4

7

10

11

13

Take a nonempty Ferrers board Bµ of shape µ. For (s0, t0) ∈ Bµ, the rectangle

in Bµ with respect to (s0, t0), denoted by Bµ(s0, t0), is defined by

Bµ(s0, t0) = {(s, t) ∈ Bµ | s ≤ s0, t ≥ t0}. (3.3)

It is actually the rectangle in the corresponding Young diagram which includes the

top-right corner and the (s0, t0)-th box as its bottom-left corner. We remark that

such a rectangle is called the Durfee square if it is the largest square in Bµ. To see

the rectangle structure, we use the following notation:

Sµ(m) = {s ∈ Sµ | s ≤ m}, Tµ(m) = {t ∈ Tµ | t ≥ m}, (3.4)

for 1 ≤ m ≤ N so that we can write Bµ(s0, t0) = Sµ(s0)× Tµ(t0).
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Example 3.2.2 (N = 13). Take µ ∈ {0, 1}13 as in Example 3.2.1. Then (4, 6) ∈ Bµ

and the rectangle Bµ(4, 6) is the set of the following eight elements:

(1, 6), (1, 8), (1, 9), (1, 12), (4, 6), (4, 8), (4, 9), (4, 12).

In the corresponding Young diagram, Bµ(4, 6) is the following gray rectangle:

2 3 5 6 8 9 12

1

4

7

10

11

13

Take a nonempty Ferrers board Bµ of shape µ. A subset of Bµ such that no two

elements have a common entry is called a rook placement on Bµ. Let σ denote a

rook placement on Bµ. The row index set π1(σ) and the column index set π2(σ) of

σ are defined by

π1(σ) = {s ∈ Sµ | (s, t) ∈ σ for some t}, (3.5)

π2(σ) = {t ∈ Tµ | (s, t) ∈ σ for some s}, (3.6)

respectively. Remark that |π1(σ)| = |π2(σ)| = |σ|. Assume σ ̸= ∅. For 1 ≤ i ≤
|σ|, we denote by si and by ti the i-th smallest element in π1(σ) and in π2(σ),

respectively. Then σ gives rise to a permutation of {1, 2, . . . , |σ|} which sends i to j

where (si, tj) ∈ σ.

Lemma 3.2.3. Let µ ∈ {0, 1}N and let σ be a rook placement on Bµ with the

row/column index sets π1 = π1(σ), π2 = π2(σ), respectively. Then the pair (π1, π2)

satisfies the following:

(i) |π1| = |π2|.

(ii) Let n denote the common value in (i). For 1 ≤ i ≤ n, the i-th smallest element

in π1 is strictly smaller than the i-th smallest element in π2.

Proof. (i) It is clear.

(ii) We may assume σ ̸= ∅ since otherwise the assertion is clear. Let σ̃ denote the

permutation of {1, 2, . . . , n} corresponding to σ. For 1 ≤ i ≤ n, we write si,

ti for the i-th smallest element in π1, π2, respectively. Fix 1 ≤ i ≤ n. Since
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σ̃ is a permutation, there exists i ≤ k ≤ n such that σ̃(k) ≤ i. So we have

(sk, tσ̃(k)) ∈ σ. Therefore si ≤ sk < tσ̃(k) ≤ ti as desired.

Proposition 3.2.4. Let µ ∈ {0, 1}N . For a pair (π1, π2) such that π1 ⊆ Sµ and

π2 ⊆ Tµ, the following are equivalent.

(i) There exists a rook placement σ on Bµ such that π1 = π1(σ) and π2 = π2(σ).

(ii) It satisfies (i), (ii) in Lemma 3.2.3.

Proof. We have shown in Lemma 3.2.3 that (i) implies (ii).

Suppose we are given π1 ⊆ Sµ and π2 ⊆ Tµ satisfying (i), (ii) in Lemma 3.2.3.

By the condition (i) in Lemma 3.2.3, we set n = |π1| = |π2|. Let σ = {(si, ti) | 1 ≤
i ≤ n}, where each si, ti is the i-th smallest element in π1, π2, respectively. By the

condition (ii) in Lemma 3.2.3, we have σ ⊆ Bµ and so σ is a rook placement on Bµ.

By construction, it is clear that π1 = π1(σ) and π2 = π2(σ). So (ii) implies (i).

Definition 3.2.5. Let µ ∈ {0, 1}N and consider the Ferrers board Bµ of shape µ.

Then the type of a rook placement σ on Bµ is defined by the disjoint union

π1(σ) ∪ π2(σ) ⊆ {1, 2, . . . , N},

where π1(σ), π2(σ) are the row/column index sets of σ defined in (3.5), (3.6).

Lemma 3.2.6. Let µ ∈ {0, 1}N . For λ ⊆ {1, 2, . . . , N}, the following are equivalent.

(i) There exists a rook placement on Bµ of type λ.

(ii) The pair (λ ∩ Sµ, λ ∩ Tµ) satisfies (i), (ii) in Lemma 3.2.3.

Proof. Immediate from Proposition 3.2.4.

Lemma 3.2.7. For λ ⊆ {1, 2, . . . , N}, the following are equivalent.

(i) There exists a rook placement on Bµ of type λ for some µ ∈ {0, 1}N .

(ii) The cardinality of λ is even.

Proof. Fix λ ⊆ {1, 2, . . . , N}. Suppose there exists a rook placement σ on Bµ of

type λ for some µ ∈ {0, 1}N . Then by Lemma 3.2.6, the pair (λ∩Sµ, λ∩Tµ) satisfies
(i), (ii) in Lemma 3.2.3. In particular, |λ| = |λ∩Sµ|+ |λ∩Tµ| is even. So (ii) holds.

Conversely, we suppose |λ| = 2n for some n ∈ N and show (i) holds. Let (π1, π2)

denote the bipartition of λ where π1 contains the first n smallest elements in λ and

π2 contains the remaining n elements in λ. Take any µ ∈ {0, 1}N such that π1 ⊆ Sµ
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and π2 ⊆ Tµ. Then we have π1 = λ ∩ Sµ and π2 = λ ∩ Tµ. Observe that the pair

(π1, π2) satisfies (i), (ii) in Lemma 3.2.3. So by Lemma 3.2.6, there exists a rook

placement on Bµ of type λ. In particular, (i) holds.

Since rook placements can be seen as permutations, we define the concept of

inversions. Let σ be a nonempty rook placement on a Ferrers board Bµ of shape µ.

For (s0, t0) ∈ σ, the local inversion number of σ at (s0, t0), denoted by inv(σ, s0, t0),

is defined by

inv(σ, s0, t0) = |{(s, t) ∈ σ | s < s0, t > t0}| = |σ ∩Bµ(s0, t0)| − 1. (3.7)

For a rook placement σ, the (total) inversion number of σ, denoted by inv(σ), is

defined by

inv(σ) =
∑

(s,t)∈σ

inv(σ, s, t).

Example 3.2.8 (N = 13). Take µ ∈ {0, 1}13 as in Example 3.2.1. Consider the

following rook placement σ on Bµ:

σ = {(1, 9), (4, 6), (10, 12)}.

Then we have inv(σ, 1, 9) = inv(σ, 10, 12) = 0 and inv(σ, 4, 6) = 1. Thus inv(σ) = 1.

2 3 5 6 8 9 12

⋆ 1

⋆ 4

7

⋆ 10

11

13

The next lemma is a generalization of [18, Corollary 1.3.10] and the proof of the

next lemma is motivated by that of [18, Corollary 1.3.10].

Lemma 3.2.9. Let µ ∈ {0, 1}N and let λ ⊆ {1, 2, . . . , N} satisfy (ii) in Lemma

3.2.6. For 1 ≤ m ≤ N , set

ρ(m,µ, λ) = |λ ∩ Sµ(m)|+ |λ ∩ Tµ(m)| − |λ|
2
.

Then for q ∈ C with q ̸= 0, 1, we have∑
σ

qinv(σ) =
∏

s∈λ∩Sµ

qρ(s,µ,λ) − 1

q − 1
,

where the sum is taken over all rook placements σ on Bµ of type λ.
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Proof. If λ = ∅, the assertion is clear. We assume λ ̸= ∅. We claim that there exists

a bijection between the following two sets:

(i) The set of rook placements σ on Bµ of type λ,

(ii) The set of integer sequences (as)s∈λ∩Sµ such that 0 ≤ as ≤ ρ(s, µ, λ) − 1 for

s ∈ λ ∩ Sµ,

such that inv(σ) =
∑

s∈λ∩Sµ
as. Suppose for the moment that the claim is true.

Then we have

∑
σ

qinv(σ) =
∏

s∈λ∩Sµ

ρ(s,µ,λ)−1∑
as=0

qas

 =
∏

s∈λ∩Sµ

qρ(s,µ,λ) − 1

q − 1
.

So the result follows.

Therefore, it remains to prove the claim. For a given rook placement σ on Bµ

of type λ and for s ∈ λ ∩ Sµ, there exists a unique t ∈ λ ∩ Tµ such that (s, t) ∈ σ.

Then we set as = inv(σ, s, t). Then for s ∈ λ ∩ Sµ, we have

0 ≤ as = |σ ∩ (Sµ(s)× Tµ(t))| − 1

≤ |σ ∩ (Sµ(s)× Tµ(s))| − 1

= ρ(s, µ, λ)− 1.

The inequality follows from the fact that s ≤ t and the last equality follows by the

direct caluculation. Conversely, set r = |λ∩Sµ| and for 1 ≤ i ≤ r, we write si the i-th

smallest element in λ∩Sµ. By definition, we remark that ρ(m,µ, λ) ≤ |λ∩Sµ(m)| for
1 ≤ m ≤ N . For a given integer sequence (a1, a2, . . . , ar) with 0 ≤ ai ≤ ρ(si, µ, λ)−1

for 1 ≤ i ≤ r, since 0 ≤ ai ≤ i−1, there exists a unique permutation σ̃ of {1, 2, . . . , r}
such that

ai = |{j | 1 ≤ j < i, σ̃(i) < σ̃(j)}|. (3.8)

Then consider the set σ = {(si, tσ̃(i)) | 1 ≤ i ≤ r}, where ti is the i-th smallest

element in λ ∩ Tµ. Fix 1 ≤ i ≤ r. By (3.8), we have σ̃(i) ≥ i− ai and so we have

σ̃(i) ≥ i− ai ≥ i− ρ(si, µ, λ) + 1 = |{t ∈ Tµ | t < si}|+ 1.

The above equality follows from the definition of ρ(si, µ, λ). This implies that si <

tσ̃(i). This holds for any 1 ≤ i ≤ r and so σ becomes a rook placement on Bµ. It is

clear that σ is of type λ. Therefore our claim holds.
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3.3 The matrix representation of P

For a field K and for two finite nonempty sets S and T , let MatS,T (K) denote the

set of all matrices with rows indexed by S and columns indexed by T whose entries

are in K. If S = T , we write it MatS(K) for short. For M ∈ MatS,T (K), the support

of M , denoted by Supp(M), is the set of indices containing nonzero entries:

Supp(M) = {(s, t) ∈ S × T |Ms,t ̸= 0}.

For µ ∈ {0, 1}N , recall the corresponding bipartition Sµ, Tµ from (3.1) and the

Ferrers board Bµ of shape µ from (3.2). We will assume µ ̸= 0, 1 in this section so

that both Sµ and Tµ are nonempty.

Definition 3.3.1. Let µ ∈ {0, 1}N with µ ̸= 0, 1. Let Mµ(Fq) denote the set of

matrices in MatSµ,Tµ(Fq) such that Supp(M) ⊆ Bµ.

Recall the set Pµ of subspaces at location µ ∈ {0, 1}N from Definition 3.1.2.

Proposition 3.3.2. Let µ ∈ {0, 1}N with µ ̸= 0, 1. Fix a basis v1, v2, . . . , vN for H

adapted to the flag {xi}Ni=0. There exists a bijection from Pµ to the set Mµ(Fq) in

Definition 3.3.1 that sends y ∈ Pµ to Y ∈ Mµ(Fq), where y has a basis∑
s∈Sµ

Ys,tvs + vt (t ∈ Tµ).

Proof. For y ∈ Pµ, there exists a basis wt (t ∈ Tµ) for y such that wt ∈ xt \ xt−1

for each t ∈ Tµ. Write wt as a linear combination of the fixed basis v1, v2, . . . , vt for

xt. Without loss of generality, we may assume the coefficient of vt is 1. Use linear

operations on the basis wt to make the coefficient of vt′ 0 for any t′ ∈ Tµ with t ̸= t′.

Observe that the resulting basis w′
t (t ∈ Tµ) is uniquely determined by y. Then

from the basis w′
t, we construct the matrix Y ∈ MatSµ,Tµ(Fq) such that Ys,t is the

coefficient of vs in w
′
t. Then we have Y ∈ Mµ(Fq) since w

′
t ∈ xt. On the other hand,

let Y ∈ Mµ(Fq). For t ∈ Tµ, we write wt =
∑

s∈Sµ
Ys,tvs + vt. Since Supp(Y ) ⊆ Bµ,

the vector wt is a linear combination of v1, v2, . . . , vt, that means wt ∈ xt \ xt−1.

Therefore the subspace y spanned by the vectors wt must belong to Pµ.

Definition 3.3.3. Let µ ∈ {0, 1}N with µ ̸= 0, 1. Take y ∈ Pµ. By the matrix

form of y, we mean the matrix Y ∈ Mµ(Fq) which is the image of y under the

bijection in Proposition 3.3.2. We note that the matrix form of y depends on the

basis v1, v2, . . . , vN for H.

Let µ ∈ {0, 1}N with µ ̸= 0, 1. For s ∈ Sµ, we denote by s− the one smaller

element in Sµ. If there is no such element, we set s− = 0. For t ∈ Tµ, we denote
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by t+ the one larger element in Tµ. If there is no such element, we set t+ = N + 1.

Observe that for (s, t) ∈ Bµ, we have (s
−, t) ∈ Bµ if s− ̸= 0 and we have (s, t+) ∈ Bµ

if t+ ̸= N+1. ForM ∈ Mµ(Fq) and for (s, t) ∈ Bµ, letM(s, t) denote the submatrix

of M indexed by the rectangle with respect to (s, t) in (3.3). Moreover, we set

r−(M, s, t) =

rank (M(s−, t)) if s− ̸= 0,

0 if s− = 0,
(3.9)

r+(M, s, t) =

rank (M(s, t+)) if t+ ̸= N + 1,

0 if t+ = N + 1,
(3.10)

r−+(M, s, t) =

rank (M(s−, t+)) if s− ̸= 0 and t+ ̸= N + 1,

0 if s− = 0 or t+ = N + 1.
(3.11)

Definition 3.3.4. Let µ ∈ {0, 1}N with µ ̸= 0, 1. For M ∈ Mµ(Fq), we define the

set σ(M) consisting of all indices (s, t) ∈ Bµ such that

rϵ(M, s, t) = rank (M(s, t))− 1,

for all ϵ ∈ {−,+,−+}.

Lemma 3.3.5. Let µ ∈ {0, 1}N with µ ̸= 0, 1. For M ∈ Mµ(Fq), the set σ(M) in

Definition 3.3.4 is a rook placement on Bµ.

Proof. Fix M ∈ Mµ(Fq). Since σ(M) is a subset of Bµ, it suffices to show that no

two elements in σ(M) have a common entry. To do this, we take (s1, t), (s2, t) ∈
σ(M) and assume s1 < s2. Observe that s−2 ̸= 0. Since (s1, t) ∈ σ(M), we have

r+(M, s1, t) = rank (M(s1, t))− 1.

Since (s2, t) ∈ σ(M), we have

r+(M, s−2 , t) = rank
(
M(s−2 , t)

)
.

By the two equalities above, we have s−2 < s1, which contradicts to s1 < s2. There-

fore we must have s1 = s2. Similarly, if we take (s, t1), (s, t2) ∈ σ(M), then one can

show that t1 = t2. So the result follows.

Recall the local inversion numbers of a rook placement from (3.7).

Lemma 3.3.6. Let µ ∈ {0, 1}N with µ ̸= 0, 1. For M ∈ Mµ(Fq), we have

rank (M(s, t)) = inv(σ(M), s, t) + 1,

for (s, t) ∈ σ(M).
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Proof. Fix (s, t) ∈ σ(M). Observe that rank (M(s, t)) can be computed as follows:∑
(s′,t′)∈Bµ(s,t)

(
rank (M(s′, t′))− r−(M, s′, t′)− r+(M, s′, t′) + r−+(M, s′, t′)

)
.

Then by the definition of σ(M), each summand is 0 if (s′, t′) ̸∈ σ(M) and it is 1

if (s′, t′) ∈ σ(M). So, rank (M(s, t)) is equal to the cardinality of σ(M) ∩ Bµ(s, t).

The result follows from the definition of local inversion numbers.

Lemma 3.3.7. Let µ ∈ {0, 1}N with µ ̸= 0, 1. For a subset σ ⊆ Bµ, the following

are equivalent.

(i) There exists M ∈ Mµ(Fq) such that σ(M) = σ.

(ii) It is a rook placement on Bµ.

Proof. Lemma 3.3.5 shows that (i) implies (ii).

Assume we are given a rook placement σ on Bµ. Consider the matrix Mσ ∈
Mµ(Fq) defined by

(Mσ)s,t =

1 if (s, t) ∈ σ,

0 otherwise,

for s ∈ Sµ, t ∈ Tµ. Then it is easy to check that σ(M) = σ. So (ii) implies (i).

3.4 The number of matrices with given parameter

Let µ ∈ {0, 1}N with µ ̸= 0,1. Recall from Lemma 3.3.7 that each matrix Mµ(Fq)

corresponds to a rook placement on the Ferrers board Bµ of shape µ. Recall the

sets from (3.1) and (3.4). To simplify the notation, we set

n(π1) =
∑
s∈π1

|Sµ(s)|, (3.12)

for a subset π1 ⊆ Sµ.

Definition 3.4.1. Let µ ∈ {0, 1}N . A subset λ ⊆ {1, 2, . . . , N} is said to be column-

full with respect to µ whenever Tµ ⊆ λ. Moreover, a rook placement σ on Bµ is said

to be column-full whenever the type of σ is column-full.

Let µ ∈ {0, 1}N . We remark that a rook placement σ on Bµ is column-full if and

only if the column index set π2(σ), defined in (3.6), is maximal.
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Proposition 3.4.2. Let µ ∈ {0, 1}N with µ ̸= 0,1 and let σ denote a rook placement

on Bµ. Assume σ is column-full in Definition 3.4.1. Then the number of matrices

M ∈ Mµ(Fq) such that σ = σ(M) in Definition 3.3.4 is given by

(q − 1)|µ|qinv(σ)+|Bµ|−n(π1(σ)).

Proof. Let t ∈ Tµ. We count the number of possibilities for the t-th column of M

with σ = σ(M). Since σ is a column-full rook placement, there uniquely exists s ∈ Sµ

such that (s, t) ∈ σ. Recall from the definition of σ that we have r−+(M, s, t) =

r−(M, s, t) and r+(M, s, t) = rank (M(s, t))−1 in (3.9), (3.10) and (3.11). Then the

number of possibilities for the t-th column of M(s, t) is

(q − 1)qr
−+(M,s,t) = (q − 1)qinv(σ,s,t).

Here the equality follows from the definition of σ and Lemma 3.3.6. Since M ∈
Mµ(Fq), or equivalently Supp(M) ⊆ Bµ, the (s′, t)-entries are 0 if (s′, t) ̸∈ Bµ.

For the remaining entries, the choices are arbitrary. Therefore the total number of

possibilities for the t-th column of M is

(q − 1)qinv(σ,s,t) × q|Sµ(t)|−|Sµ(s)|.

The result follows from the definition of inv(σ), the column-full property and∑
t∈Tµ

|Sµ(t)| = |{(s, t) ∈ Sµ × Tµ | s < t}| = |Bµ|.

Corollary 3.4.3. Let µ ∈ {0, 1}N with µ ̸= 0,1 and let λ ⊆ {1, 2, . . . , N} satisfy

(ii) in Lemma 3.2.6. Assume σ is column-full in Definition 3.4.1. Then the number

of matrices M ∈ Mµ(Fq) such that σ(M) is of type λ in Definitions 3.2.5 and 3.3.4

is given by

q|Bµ|−n(λ∩Sµ)
∏

s∈λ∩Sµ

(
qρ(s,µ,λ) − 1

)
,

where ρ(s, µ, λ) is defined in Lemma 3.2.9.

Proof. Use Lemma 3.2.9 and Proposition 3.4.2.

3.5 The algebra Hf

Recall MatP (C), the set of all matrices whose rows and columns are indexed by P

and whose entries are in C. We see it as a C-algebra. We write I ∈ MatP (C) for the
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identity matrix and O ∈ MatP (C) for the zero matrix. In this section, we introduce

a subalgebra Hf of MatP (C) which represents the N -cube structure in P .

Let V = CP denote the vector space over C consisting of the column vec-

tors whose coordinates are indexed by P and whose entries are in C. Observe

that MatP (C) acts on V by left multiplication. We call V the standard module

for MatP (C). We equip V with the standard Hermitian inner product defined by

⟨u, v⟩ = utv̄ for u, v ∈ V , where t denotes transpose and¯denotes complex conjugate.

Recall from Definition 3.1.2 that we have partitioned P into the sets Pµ of all

subspaces at location µ for µ ∈ {0, 1}N . For µ ∈ ZN , define a diagonal matrix

E∗
µ ∈ MatP (C) by

(E∗
µ)y,y =

1 if y ∈ Pµ,

0 if y ̸∈ Pµ

(y ∈ P ).

Observe that E∗
µ = O unless µ ∈ {0, 1}N . By construction, we have

E∗
µE

∗
ν = δµ,νE

∗
µ (µ, ν ∈ {0, 1}N),

I =
∑

µ∈{0,1}N
E∗

µ.

Moreover, we have a decomposition of V :

V =
∑

µ∈{0,1}N
E∗

µV (direct sum),

where E∗
µV is the subspace of V with the basis Pµ. Thus, the matrix E∗

µ is the

projection from V onto E∗
µV and we call it the projection matrix.

Definition 3.5.1. By the above comments, the matrices E∗
µ, where µ ∈ {0, 1}N

form a basis for a commutative subalgebra of MatP (C). We denote this subalgebra

by K.

We now introduce matrices that generate K. For 1 ≤ m ≤ N , we define diagonal

matrices Km ∈ MatP (C) by

(Km)y,y = q1/2−µm (y ∈ Pµ),

where µ = (µ1, µ2, . . . , µN).

Lemma 3.5.2. For 1 ≤ m ≤ N , we have

Km =
∑

µ∈{0,1}N
q1/2−µmE∗

µ,

where µ = (µ1, µ2, . . . , µN).
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Proof. Immediate from the construction.

Proposition 3.5.3. The algebra K in Definition 3.5.1 is generated by Km for 1 ≤
m ≤ N .

Proof. By Lemma 3.5.2, the matrices Km (1 ≤ m ≤ N) generate a subalgebra K′

of K. For distinct indices µ = (µ1, µ2, . . . , µN), ν = (ν1, ν2, . . . , νN) ∈ {0, 1}N , we
have q1/2−µm ̸= q1/2−νm for some 1 ≤ m ≤ N . Therefore E∗

µ is a polynomial in Km

(1 ≤ m ≤ N) for every µ ∈ {0, 1}N . Consequently, K′ = K.

Next we introduce two kinds of matrices from covering relations in Definition

3.1.3. For 1 ≤ m ≤ N , the matrices Lm, Rm ∈ MatP (C) are defined by

(Lm)y,z =

1 if z m-covers y,

0 otherwise,
(Rm)y,z =

1 if y m-covers z,

0 otherwise,

for y, z ∈ P . We remark that for each 1 ≤ m ≤ N , the matrices Lm and Rm are

transpose to each other. Recall the comment in the above of Lemma 3.1.4.

Lemma 3.5.4. For 1 ≤ m ≤ N and µ ∈ {0, 1}N , we have the following:

(i) LmE
∗
µ = E∗

µ−m̂Lm and RmE
∗
µ = E∗

µ+m̂Rm.

(ii) LmE
∗
µV ⊆ E∗

µ−m̂V and RmE
∗
µV ⊆ E∗

µ+m̂V .

Proof. Immediate from the construction.

Because of Lemma 3.5.4 (ii), we call Lm the lowering matrices and Rm the raising

matrices.

Definition 3.5.5. Let Hf denote the subalgebra of MatP (C) generated by Lm, Rm

(1 ≤ m ≤ N) and the algebra K in Definition 3.5.1.

Proposition 3.5.6. The algebra Hf in Definition 3.5.5 is semisimple.

Proof. This follows since Hf is closed under the conjugate-transpose map.

We recall the incidence algebra, which is generated by L, R and E∗
i (0 ≤ i ≤ N) in

Definition 2.3.1. We remark that Hf contains the incidence algebra as its subalgebra

because L =
∑N

m=1 Lm, R =
∑N

m=1Rm and E∗
i =

∑
µ∈{0,1}N ,|µ|=iE

∗
µ. Moreover, if

N ≥ 2, the incidence algebra is a proper subalgebra of Hf .
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3.6 The structure of the algebra Hf

In this section, we discuss the relations among the generators Lm, Rm, Km of the

algebra Hf .

Proposition 3.6.1. For 1 ≤ m,n ≤ N with m ̸= n, the following hold.

(i) LmKn = KnLm.

(ii) RmKn = KnRm.

(iii) qLmKm = KmLm.

(iv) RmKm = qKmRm.

Proof. This lemma follows by combining Lemmas 3.5.2 and 3.5.4 (i).

Proposition 3.6.2. For 1 ≤ m,n ≤ N , we have the following:

(i) L2
m = R2

m = 0.

(ii) qLmLn = LnLm if m < n.

(iii) RmRn = qRnRm if m < n.

(iv) LmRn = RnLm if m ̸= n.

Proof. (i) It follows from the definition of Lm and Rm.

(ii), (iii) These are matrix reformulations of Lemma 3.1.5 (i), (ii).

(iv) This is a matrix reformulation of Lemma 3.1.5 (iii), (iv).

3.7 The Lm- and Rm-actions on V

We now describe a basis for V , which is the key in this chapter. In this section, we fix

a basis v1, v2, . . . , vN for H adapted to the flag {xi}Ni=0 and assume that the matrix

forms in Definition 3.3.3 are always taken with respect to this basis v1, v2, . . . , vN .

Definition 3.7.1. Let χ denote a nontrivial character of the additive group Fq and

let µ ∈ {0, 1}N . For y ∈ Pµ, define a vector χy ∈ V as follows.

(i) If µ = 0 or 1, then for z ∈ P , the z-th entry of χy is 1 if y = z and 0 otherwise.
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(ii) If µ ̸= 0,1, then for z ∈ P , the z-th entry of χy is defined byχ (tr(Y Zt)) if z ∈ Pµ,

0 if z ̸∈ Pµ,

where Y, Z ∈ Mµ(Fq) are the matrix forms of y, z, respectively in Definition

3.3.3. Here t denotes transpose and tr denotes the trace map of matrices.

For the rest of this section, we fix a nontrivial character χ of the additive group

Fq.

Lemma 3.7.2. For µ ∈ {0, 1}N , the set of vectors χy ∈ V for y ∈ Pµ in Definition

3.7.1 forms an orthogonal basis for the vector space E∗
µV .

Proof. Let µ ∈ {0, 1}N . For y ∈ Pµ, observe that χy ∈ E∗
µV from the construction.

If µ = 0 or 1, then the assertion is trivial since dimE∗
µV = 1. Assume µ ̸= 0,1 and

take y, y′ ∈ Pµ. Consider the Hermitian inner product

⟨χy, χy′⟩ =
∑
z∈P

χy(z)χy′(z),

where χy(z), χy′(z) denote the z-th entries of χy, χy′ , respectively. By the definitions

of χy(z), χy′(z) and by the orthogonality of character χ, we obtain ⟨χy, χy′⟩ = q|Bµ| =

|Pµ| if y = y′ and 0 otherwise. Therefore the set of vectors χy for y ∈ Pµ becomes

an orthogonal basis for a subspace Vµ of E∗
µV . By comparing their dimensions, we

have Vµ = E∗
µV and the result follows.

Recall the m-covering relation from Definition 3.1.3.

Lemma 3.7.3. Let 1 ≤ m ≤ N and let µ, ν ∈ {0, 1}N with µ, ν ̸= 0,1 such that µ

m-covers ν. Take y ∈ Pµ, z ∈ Pν and let Y ∈ Mµ(Fq) and Z ∈ Mν(Fq) denote the

matrix forms of y, z, respectively in Definition 3.3.3. Then y m-covers z if and only

if

Zs,t = Ys,t + Ys,mZm,t,

for s ∈ Sµ and for t ∈ Tν.

Proof. Recalling the bijection of Proposition 3.3.2, for t ∈ Tµ and t′ ∈ Tν , we write

wt(Y ) =
∑
s∈Sµ

Ys,tvs + vt, wt′(Z) =
∑
s′∈Sν

Zs′,t′vs′ + vt′ .

Assume y covers z. For each t′ ∈ Tν , since z ⊆ y, the vector wt′(Z) is a linear

combination of wt(Y ), where t ∈ Tµ. Comparing the coefficients of vt for t ∈ Tµ,
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we have wt′(Z) = Zm,t′wm(Y ) + wt′(Y ). Then comparing the coefficients of vs for

s ∈ Sµ, we obtain the desired equality. On the other hand, assume the equality

Zs,t′ = Ys,t′ + Zm,t′Ys,m for s ∈ Sµ and t′ ∈ Tν . By the same argument above, we

have wt′(Z) ∈ y for all t′ ∈ Tν . This implies y covers z, as desired.

Lemma 3.7.4. Let 1 ≤ m ≤ N and let µ, ν ∈ {0, 1}N with µ, ν ̸= 0,1 such that

µ m-covers ν. Take y ∈ Pµ, z ∈ Pν and let Y ∈ Mµ(Fq), Z ∈ Mν(Fq) denote the

matrix forms of y, z, respectively in Definition 3.3.3. Then the z-th entry of Lmχy

is given by

Lmχy(z) = q|Sµ(m−1)|χ

∑
s∈Sµ

∑
t∈Tν

Ys,tZs,t

 ,

if Ys,m =
∑

t∈Tν
Ys,tZm,t for all s ∈ Sµ with s < m and 0 otherwise.

Proof. By the definition of Lm, the z-th entry of Lmχy is defined by

Lmχy(z) =
∑
y′

χy(y
′),

where the sum is taken over all y′ ∈ Pµ such that y′ m-covers z. Then by Definition

3.7.1 and Lemma 3.7.3, we have

Lmχy(z) = χ

∑
s∈Sµ

∑
t∈Tν

Ys,tZs,t

∑χ

∑
s∈Sµ

(
Ys,m −

∑
t∈Tν

Ys,tZm,t

)
Y ′
s,m

 ,

where the third sum is taken over all Y ′
s,m ∈ Fq for s ∈ Sµ with s < m, and where

we set Y ′
s,m = 0 for s ∈ Sµ with s > m. By the orthogonality of characters, the third

sum does not vanish if and only if

Ys,m =
∑
t∈Tν

Ys,tZm,t,

for all s ∈ Sµ with s < m. Moreover, in this case, the sum is the number of choices

for Y ′
s,m ∈ Fq for s ∈ Sµ with s < m, which is q|Sµ(m−1)|.

Lemma 3.7.5. Let 1 ≤ m ≤ N and let µ, ν ∈ {0, 1}N with µ, ν ̸= 0,1 such that

µ m-covers ν. Take y ∈ Pµ, z ∈ Pν and let Y ∈ Mµ(Fq), Z ∈ Mν(Fq) denote the

matrix forms of y, z, respectively in Definition 3.3.3. Then the y-th entry of Rmχz

is given by

Rmχz(y) = q|Tν(m+1)|χ

∑
s∈Sµ

∑
t∈Tν

Ys,tZs,t

 ,

if Zm,t = −
∑

s∈Sµ
Zs,tYs,m for all t ∈ Tν with t > m and 0 otherwise.
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Proof. Similar to the proof of Lemma 3.7.4.

Lemma 3.7.6. Referring to Lemma 3.7.4, let λ denote the type of σ(Y ) in Def-

initions 3.2.5 and 3.3.4. Then the number of Z ∈ Mν(Fq) such that Ys,m =∑
t∈Tν

Ys,tZm,t for all s ∈ Sµ with s < m is given by ql, where

l = |Bν | − |λ ∩ Sµ(m− 1)| − |λ ∩ Tµ(m+ 1)|+ |λ|/2,

if m ̸∈ λ, and 0 otherwise.

Proof. We count the number of possibilities for Zs,t ∈ Fq for s ∈ Sν and t ∈ Tν . If

s > t, then Zs,t = 0 since Supp(Z) ⊆ Bν . If s ̸= m and s < t, then Zs,t is arbitrary

and therefore the number of possibilities is q. The number of such pairs (s, t) is

given by

|{(s, t) ∈ Bν | s ̸= m}| = |Bν | − |Tν(m+ 1)|.

For the case s = m and m < t, by the constraint, the sequence (Zm,t)t∈Tν ,t>m must

be a solution of the system of linear equations over Fq:

Cu = c,

where C = (Ys,t)s∈Sµ,s<m,t∈Tν ,t>m is the coefficient matrix, u = (ut)t∈Tν ,t>m is the

unknown vector and c = (Ys,m)s∈Sµ,s<m is the constant vector. By linear algebra, the

system Cu = c has a solution if and only if the rank of the augmented matrix [C, c] is

equal to the rank of the coefficient matrix C. By Definition 3.3.4, it is also equivalent

to (s,m) ̸∈ σ(Y ) for all s ∈ Sµ with s < m, which means m ̸∈ λ. Moreover, suppose

there is a solution of the system Cu = c. Since there are |Tν(m+1)| columns in C,

the number of solutions is given by

q|Tν(m+1)|−rankC .

By Lemma 3.3.6, the rank of C is computed as follows:

rankC = |{(s, t) ∈ σ(Y ) | s ≤ m− 1, t ≥ m+ 1}|

= |{(s, t) ∈ σ(Y ) | s ≤ m− 1}|+ |{(s, t) ∈ σ(Y ) | t ≥ m+ 1}| − |σ(Y )|

= |λ ∩ Sµ(m− 1)|+ |λ ∩ Tµ(m+ 1)| − |λ|/2.

Therefore the result follows.

Lemma 3.7.7. Referring to Lemma 3.7.5, let λ denote the type of σ(Z) in Def-

initions 3.2.5 and 3.3.4. Then the number of Y ∈ Mµ(Fq) such that Zm,t =

−
∑

s∈Sµ
Zs,tYs,m for all t ∈ Tν with t > m is given by ql where

l = |Bµ| − |λ ∩ Sµ(m− 1)| − |λ ∩ Tµ(m+ 1)|+ |λ|/2,

if m ̸∈ λ, and 0 otherwise.

55



Proof. Similar to the proof of Lemma 3.7.6.

Definition 3.7.8. Let µ ∈ {0, 1}N and take y ∈ Pµ. If µ ̸= 0,1, then let Y ∈
Mµ(Fq) denote the matrix form of y in Definition 3.3.3. Then the type of y is

defined to be the type of σ(Y ) in Definitions 3.2.5 and 3.3.4. If µ = 0 or 1, then the

type of y is defined to be the empty set. We note that the type of y depends on the

basis v1, v2, . . . , vN for H since the matrix form does.

Lemma 3.7.9. Let µ ∈ {0, 1}N and let λ ⊆ {1, 2, . . . , N} satisfy (ii) in Lemma

3.2.6. For 1 ≤ m ≤ N , the following are equivalent.

(i) For any y ∈ Pµ of type λ, we have Lmχy = 0.

(ii) m ∈ Sµ or m ∈ λ.

Proof. Set ν = µ− m̂ so that µ m-covers ν. For y ∈ Pµ, observe that Lmχy ∈ E∗
νV

by Lemma 3.5.4 (ii). If m ∈ Sµ, then E∗
νV = 0 and so both (i) and (ii) hold. If

m ∈ Tµ and µ = 1, then Lmχy ̸= 0 by Definition 3.7.1 and λ = ∅ by Definition

3.7.8. So both (i) and (ii) fail to hold. If m ∈ Tµ and ν = 0, then Pν = {0} and

subspaces y′ ∈ Pµ m-cover 0. So we have

Lmχy(0) =
∑

Y ′∈Mµ(Fq)

χ
(
tr(Y (Y ′)t)

)
,

where Y ∈ Mµ(Fq) is the matrix form of y in Definition 3.3.3. By the orthogonality

of χ, it vanishes if and only if Y is not the zero matrix, which means m is in the

type λ of σ(Y ). If m ∈ Tµ, µ ̸= 1 and ν ̸= 0, then the result follows from Lemmas

3.7.4 and 3.7.6.

Lemma 3.7.10. Let ν ∈ {0, 1}N and let λ ⊆ {1, 2, . . . , N} satisfy (ii) in Lemma

3.2.6. For 1 ≤ m ≤ N , the following are equivalent.

(i) For any z ∈ Pν of type λ, we have Rmχz = 0.

(ii) m ∈ Tν or m ∈ λ.

Proof. Similar to the proof of Lemma 3.7.9.

Recall from Lemma 3.2.7, a subset λ ⊆ {1, 2, . . . , N} becomes a type if and

only if it has even cardinality. For λ ⊆ {1, 2, . . . , N} with even cardinality, let Vλ

denote the subspace of V spanned by the vectors χy ∈ V for all y ∈ P of type λ

in Definitions 3.7.1 and 3.7.8. Then for λ ⊆ {1, 2, . . . , N} with even cardinality, we

define a matrix Eλ ∈ MatP (C) such that

(Eλ − I)Vλ = 0,

EλVλ′ = 0 if λ ̸= λ′,
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where λ′ ⊆ {1, 2, . . . , N} with even cardinality. In other words, Eλ is the projection

from V onto Vλ. Observe that E∗
µ and Eλ commute for all µ ∈ {0, 1}N and λ ⊆

{1, 2, . . . , N} with even cardinality.

Lemma 3.7.11. For µ ∈ {0, 1}N and for λ ⊆ {1, 2, . . . , N} with even cardinality,

the following are equivalent.

(i) E∗
µEλ = EλE

∗
µ ̸= 0.

(ii) The pair (λ ∩ Sµ, λ ∩ Tµ) satisfies (i), (ii) in Lemma 3.2.3.

Proof. This is a matrix interpretation of Lemma 3.2.6.

3.8 The LmRm- and RmLm-actions on V

In this section, we fix a basis v1, v2, . . . , vN for H adapted to the flag {xi}Ni=0 and

assume that the matrix forms in Definition 3.3.3 and the types in Definition 3.7.8

are always taken with respect to this basis v1, v2, . . . , vN . We also fix a nontrivial

character χ of the additive group Fq. Recall from Section 3.7, the definition of Eλ

for λ ⊆ {1, 2, . . . , N} with even cardinality depends on the basis v1, v2, . . . , vN and

on the character χ. We show in this section, that Eλ is independent of the basis

v1, v2, . . . , vN for H adapted to the flag {xi}Ni=0 and the nontrivial character χ of the

additive group Fq.

Lemma 3.8.1. Let 1 ≤ m ≤ N , and let µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfy

(ii) in Lemma 3.2.6. Set

κ(m,µ, λ) = |Sµ(m− 1) \ λ|+ |Tµ(m+ 1) \ λ|+ |λ|/2. (3.13)

Then for v ∈ E∗
µEλV , we have the following:

RmLmv =

qκ(m,µ,λ)v if m ∈ Tµ and m ̸∈ λ,

0 if m ∈ Sµ or m ∈ λ.

Proof. Observe that RmLm acts on E∗
µV by Lemma 3.5.4 (ii). Fix y ∈ Pµ of type

λ in Definition 3.7.8. We show that χy is an eigenvector for RmLm. If m ∈ Sµ or

m ∈ λ, then by Lemma 3.7.9, we have Lmχy = 0 and so χy is an eigenvector for

RmLm with respect to the eigenvalue 0. If µ = 1, then Pµ = {H} and λ = ∅. So we

have dimE∗
µV = 1. Therefore, χy is an eigenvector of RmLm and the corresponding

eigenvalue is the number of subspaces which are m-covered by y = H, which is equal

to qN−m = qκ(m,1,∅) by Lemma 3.1.4 (i). Set ν = µ − m̂ so that µ m-covers ν. If
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m ∈ Tµ, m ̸∈ λ and ν = 0, then Pν = {0} and λ = ∅. In other words, the matrix

form of y in Definition 3.3.3 equals to the zero matrix O, and so y′-th entry χy(y
′)

of χy is 1 if y′ ∈ Pµ and 0 if y′ ̸∈ Pµ. Since Pν = {0}, χy is an eigenvector of RmLm

and the corresponding eigenvalue is the number of subspaces which m-covers z = 0,

which is equal to qm−1 = qκ(m,m̂,∅) by Lemma 3.1.4 (ii). If m ∈ Tµ, m ̸∈ λ, µ ̸= 1

and ν ̸= 0, then we have

RmLmχy =
1

|Pµ|
∑
y′∈Pµ

⟨RmLmχy, χy′⟩χy′ .

Let y′ ∈ Pµ. Since Lm and Rm are (conjugate-)transpose to each other, we have

⟨RmLmχy, χy′⟩ = ⟨Lmχy, Lmχy′⟩

=
∑
z∈Pν

Lmχy(z)Lmχy′(z).

Let Y, Y ′ ∈ Mµ(Fq) and Z ∈ Mν(Fq) be the matrix forms of y, y′, z, respectively in

Definition 3.3.3. Then by Lemma 3.7.4, it becomes

∑
z∈Pν

Lmχy(z)Lmχy′(z) = q2|Sµ(m−1)|
∑

χ

∑
s∈Sµ

∑
t∈Tν

(
Ys,t − Y ′

s,t

)
Zs,t

 ,

where the sum is taken over all Z ∈ Mν(Fq) such that∑
t∈Tν

Ys,tZm,t = Ys,m,
∑
t∈Tν

Y ′
s,tZm,t = Y ′

s,m, (3.14)

for all s ∈ Sµ with s < m. Then since Supp(Z) ⊆ Bν , by the orthogonality of the

characters, the sum vanishes unless Ys,t = Y ′
s,t for all s ∈ Sµ and t ∈ Tν with s < t,

which by (3.14) and Lemma 3.7.6 implies Y = Y ′ and so y = y′. In particular, χy

is an eigenvector of RmLm. Moreover, using Lemma 3.7.6 and |Pµ| = q|Bµ|, we can

easily show that the corresponding eigenvalues is qκ(m,µ,λ).

Lemma 3.8.2. Let 1 ≤ m ≤ N , and let µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfy

(ii) in Lemma 3.2.6. Recall κ(m,µ, λ) from (3.13). Then for v ∈ E∗
µEλV , we have

the following:

LmRmv =

qκ(m,µ,λ)v if m ∈ Sµ and m ̸∈ λ,

0 if m ∈ Tµ or m ∈ λ.

Proof. Similar to the proof of Lemma 3.8.1.

Proposition 3.8.3. For λ ⊆ {1, 2, . . . , N} with even cardinality, the matrix Eλ

belongs to the algebra Hf in Definition 3.5.5.
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Proof. Referring to (3.13), we set

θ(m,µ, λ) =

qκ(m,µ,λ) if m ̸∈ λ,

0 if m ∈ λ

for 1 ≤ m ≤ N , µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfying (ii) in Lemma 3.2.6.

Then by Lemmas 3.8.1 and 3.8.2, we have

RmLm + LmRm =
∑
µ,λ

θ(m,µ, λ)E∗
µEλ,

where the sum is taken over all pairs µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfying

(ii) in Lemma 3.2.6. Pick µ ∈ {0, 1}N and multiply each term on the left of the

above equation, by E∗
µ. Then we obtain

E∗
µRmLm + E∗

µLmRm =
∑
λ

θ(m,µ, λ)E∗
µEλ,

where the sum is taken over λ ⊆ {1, 2, . . . , N} satisfying (ii) in Lemma 3.2.6. For

distinct λ, λ′ in the sum, there exists 1 ≤ m ≤ N such that θ(m,µ, λ) ̸= θ(m,µ, λ′).

Therefore each E∗
µEλ is a polynomial in E∗

µRmLm+E∗
µLmRm (1 ≤ m ≤ N). Observe

that for λ ⊆ {1, 2, . . . , N} with even cardinality, we have

Eλ =
∑
µ

E∗
µEλ,

where the sum is taken over all µ ∈ {0, 1}N such that the pair (λ ∩ Sµ, λ ∩ Tµ)

satisfies (i), (ii) in Lemma 3.2.3. Then the result follows.

We remark that the above proof of Proposition 3.8.3 also shows that the matrices

Eλ are independent of the basis v1, v2, . . . , vN for H adapted to the flag {xi}Ni=0 and

the nontrivial character χ of the additive group Fq.

Lemma 3.8.4. Let Vnew denote the set of all v ∈ V such that Lmv = 0 for all

1 ≤ m ≤ N . Then we have

Vnew =
∑
µ,λ

E∗
µEλV (direct sum),

where the sum is taken over all pairs (µ, λ) with µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N}
satisfying (ii) in Lemma 3.2.6 such that λ is column-full with respect to µ in Defi-

nition 3.4.1.

Proof. Take µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfying (ii) in Lemma 3.2.6.

Observe that the following are equivalent.
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(i) For 1 ≤ m ≤ N , we have either m ∈ Sµ or m ∈ λ.

(ii) λ is column-full with respect to µ.

Then by Lemma 3.7.9, if λ is column-full with respect to µ, we have E∗
µEλV ⊆ Vnew.

Suppose λ is not column-full with respect to µ. Then since we assume λ satisfies

Lemma 3.2.6 (ii), there exists 1 ≤ m ≤ N such that m ∈ Tµ and m ̸∈ λ. By Lemma

3.8.1, for any v ∈ E∗
µEλV , RmLmv is a nonzero scalar multiple of v. In particular,

Lmv ̸= 0 and so v ̸∈ Vnew. By above comments and by the fact that V is the direct

sum of E∗
µEλV , the result follows.

Recall the column-full property in Definition 3.4.1. For µ ∈ {0, 1}N and λ ⊆
{1, 2, . . . , N} satisfying (ii) in Lemma 3.2.6, we say λ is row-full with respect to µ

if Sµ ⊆ λ.

Lemma 3.8.5. Let Vold denote the set of all v ∈ V such that Rmv = 0 for all

1 ≤ m ≤ N . Then we have

Vold =
∑
µ,λ

E∗
µEλV (direct sum),

where the sum is taken over all pairs (µ, λ) with µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N}
satisfying (ii) in Lemma 3.2.6 such that λ is row-full with respect to µ.

Proof. Similar to the proof of Lemma 3.8.4.

3.9 The scalar κ(m,µ, λ)

In this section, we discuss on the scalar κ(m,µ, λ) in (3.13).

Lemma 3.9.1. Let µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfy (ii) in Lemma 3.2.6.

Referring to (3.13), we have the following:∑
m

(−1)µmκ(m,µ, λ) =
(N − 1)(N − 2|µ|)

2
,

where the sum is taken over all 1 ≤ m ≤ N with m ̸∈ λ.

Proof. Fix µ ∈ {0, 1}N and we prove the assertion by induction on the cardinality

of λ. Let F (λ) denote the left-hand side of the equation. Observe that

F (λ) =

 ∑
s∈Sµ\λ

|Sµ(s− 1) \ λ|+
∑

s∈Sµ\λ

|Tµ(s+ 1) \ λ|+
∑

s∈Sµ\λ

|λ|
2


−

 ∑
t∈Tµ\λ

|Sµ(t− 1) \ λ|+
∑

t∈Tµ\λ

|Tµ(t+ 1) \ λ|+
∑

t∈Tµ\λ

|λ|
2

 .
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Then the second and fourth terms cancel out, i.e., F (λ) equals ∑
s∈Sµ\λ

|Sµ(s− 1) \ λ|

−

 ∑
t∈Tµ\λ

|Tµ(t+ 1) \ λ|

+
|λ|
2

(|Sµ \ λ| − |Tµ \ λ|) .

If λ = ∅ then we have∑
s∈Sµ

|Sµ(s− 1)| = 0 + 1 + · · ·+ (N − |µ| − 1) =
(N − |µ|)(N − |µ| − 1)

2
,

and ∑
t∈Tµ

|Tµ(t+ 1)| = 0 + 1 + · · ·+ (|µ| − 1) =
|µ|(|µ| − 1)

2
.

Therefore, we have

F (∅) = (N − |µ|)(N − |µ| − 1)

2
− |µ|(|µ| − 1)

2
=

(N − 1)(N − 2|µ|)
2

,

and the result follows.

If |λ| ≥ 1, there exist s = max(λ ∩ Sµ) and t = max(λ ∩ Tµ) since the pair

(λ ∩ Sµ, λ ∩ Tµ) satisfies (i) in Lemma 3.2.3. Set λ′ = λ \ {s, t} and observe that λ′

satisfies (ii) in Lemma 3.2.6 and we have

∑
s′∈Sµ\λ

|Sµ(s
′ − 1) \ λ| =

 ∑
s′∈Sµ\λ′

|Sµ(s
′ − 1) \ λ′|

− |Sµ \ λ|,

and ∑
t′∈Tµ\λ

|Tµ(t′ + 1) \ λ| =

 ∑
t′∈Tµ\λ′

|Tµ(t′ + 1) \ λ′|

− |Tµ \ λ|.

Therefore, since |λ| = |λ′|+ 2, we have

F (λ) = F (λ′),

and by the inductive hypothesis, the result follows.

In the next lemma, we do not assume q to be a prime power.

Lemma 3.9.2. Let µ = (µ1, µ2, . . . , µN) ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfy (ii)

in Lemma 3.2.6. Referring to (3.13), for q ∈ C with q ̸= 0, 1, we have the following:

∑
m

(−1)µmqκ(m,µ,λ) =
qN−|µ| − q|µ|

q − 1
,

where the sum is taken over all 1 ≤ m ≤ N with m ̸∈ λ.
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Proof. For notational convenience, in this proof we use the following notation. Take

n ∈ N \ {0}. For ν = (ν1, ν2, . . . , νn) ∈ {0, 1}n, a sequence a = (a1, a2, . . . , an) ∈ Zn

is called a κ-sequence with respect to ν whenever it satisfies

ai =

ai−1 + 1 if νi−1 = νi,

−ai−1 if νi−1 ̸= νi,

for 2 ≤ i ≤ n. We call ν ∈ {0, 1}n reduced if n ≤ 2 or ν is either 0 or 1.

Let a = (a1, a2, . . . , an) ∈ Zn be a κ-sequence with respect to a non-reduced

ν = (ν1, ν2, . . . , νn) ∈ {0, 1}n. Then we have νi−1 ̸= νi for some 2 ≤ i ≤ n.

Let ν ′ ∈ {0, 1}n−2 be the sequence obtained from ν by removing the coordinates

i− 1 and i, and let a′ ∈ Zn−2 denote the sequence obtained from a by removing the

same pair of coordinates. Then it is easy to show that the sequence a′ is again a

κ-sequence with respect to ν ′. Moreover, by continuing this process, any κ-sequence

reaches a κ-sequence with respect to a reduced tuple ν. More precisely, a κ-sequence

a with respect to ν ∈ {0, 1}n becomes

(i) a κ-sequence of length 2 with respect to (0, 1) or (1, 0) if 2|ν| = n,

(ii) a κ-sequence of length n− 2|ν| with respect to 0 ∈ {0, 1}n−2|ν| if 2|ν| < n,

(iii) a κ-sequence of length 2|ν| − n with respect to 1 ∈ {0, 1}2|ν|−n if 2|ν| > n.

We call this a reduced κ-sequence from a. For a κ-sequence a = (a1, a2, . . . , an) ∈ Zn

with respect to ν = (ν1, ν2, . . . , νn) ∈ {0, 1}n, we define

f(ν, a; q) =
n∑

i=1

(−1)νiq(−1)νiai .

Observe that the value f(ν, a; q) is invariant under the reducing process above. In

particular, if a′ is a reduced κ-sequence with respect to ν ′ from a κ-sequence a with

respect to ν, then we have f(ν, a; q) = f(ν ′, a′; q).

Set n = N − |λ|. Let ν = ν(µ, λ) ∈ {0, 1}n be the sequence obtained from µ by

removing all the coordinates indexed by λ. Consider the sequence a ∈ Zn defined

by

a = ((−1)µmκ(m,µ, λ))m∈{1,2,...,N}\λ,

where the index m increases from left to right. For 1 ≤ m < n ≤ N with m,n ̸∈ λ,

observe that

κ(m,µ, λ)− κ(n, µ, λ) = |{t ∈ Tµ \ λ | m < t ≤ n}| − |{s ∈ Sµ \ λ | m ≤ s < n}|.
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Therefore, the sequence a is a κ-sequence with respect to ν. Let a′ be a reduced

κ-sequence with respect to ν ′ from a. Then the left-hand side of the desired identity

becomes f(ν ′, a′; q).

We first consider the case 2|µ| = N . Then we have |Sµ| = |Tµ| and so 2|ν| = n

since the pair (λ∩Sµ, λ∩Tµ) satisfies (i) in Lemma 3.2.3. Thus, a′ is a κ-sequence of

length 2 with respect to (0, 1) or (1, 0) and so f(ν ′, a′; q) = 0 and the result follows.

We next consider the case 2|µ| < N . Then by the similar argument above, we have

2|ν| < n. Thus, a′ is a κ-sequence of length n − 2|ν| = N − 2|µ| with respect to

0 ∈ {0, 1}n−2|ν|. By the definition of κ-sequence, a′ is an arithmetic sequence with

common difference 1. We claim that

a′ = (|µ|, |µ|+ 1, . . . , N − |µ| − 1).

To show this, since it is an arithmetic sequence, it suffices to show that∑
a′∈a′

a′ =
(N − 1)(N − 2|µ|)

2
.

This follows from Lemma 3.9.1 since
∑

a′∈a′ a
′ =
∑

a∈a a. For the case 2|µ| > N , the

proof is similar to that for the case 2|µ| < N . Hence the result follows.

3.10 The Hf-modules

Recall from Proposition 3.5.6 that the algebra Hf is semisimple. Thus the standard

module V is a direct sum of irreducible Hf -modules, and every irreducible Hf -

module appears in V up to isomorphism. We now discuss the Hf -submodules of V ,

which from now on we call Hf -modules for short.

Proposition 3.10.1. Any irreducible Hf -module is generated by a nonzero vector

v ∈ V such that Lmv = 0 for all 1 ≤ m ≤ N .

Proof. Set Φ(v) = {m | 1 ≤ m ≤ N,Lmv ̸= 0} for v ∈ V . Let W denote an

irreducible Hf -module and take a nonzero vector w ∈ W . If Φ(w) = ∅, then

Lmw = 0 for all 1 ≤ m ≤ N and by the irreducibility of W , the module W is

generated by w and so the result follows. Suppose Φ(w) ̸= ∅. Let m = minΦ(w)

and set w′ = Lmw ∈ W . By Proposition 3.6.2 (i) and (ii), we have Φ(w′) ⊊ Φ(w).

By continuing this process at most |Φ(w)| times, we get a nonzero vector v ∈ W

such that Φ(v) = ∅. By the same argument above, the assertion holds.

Recall from Sections 3.7 and 3.8, that there are the matrices Eλ in Hf and that

they turn out to be independent of the basis v1, v2, . . . , vN for H and the nontrivial
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character χ of the additive group Fq. By Lemma 3.8.4 and Proposition 3.10.1, it

suffices to consider the module Hfv for v ∈
∑

µ,λE
∗
µEλV , where the sum is taken

over all pairs (µ, λ) with µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfying (ii) in Lemma

3.2.6 such that λ is column-full with respect to µ in Definition 3.4.1.

Proposition 3.10.2. Let µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfy (ii) in Lemma

3.2.6, and assume that λ is column-full with respect to µ in Definition 3.4.1. Recall

κ(m,µ, λ) in (3.13). For a nonzero vector v ∈ E∗
µEλV , the Hf -module Hfv has a

basis

w(ε) ∈ E∗
µ+εV

ε = (ε1, ε2, . . . , εN), εm =

0 if m ∈ λ,

0 or 1 if m ̸∈ λ

 , (3.15)

on which the generators Lm, Rm (1 ≤ m ≤ N) act as follows:

Lmw(ε) = qκ(m,µ,λ)−(ε1+···+εm−1)w(ε− m̂),

Rmw(ε) = qεm+1+···+εNw(ε+ m̂),

where we set w(ε) = 0 if ε is not of the form in (3.15).

Proof. Let H+
f denote the subalgebra of Hf generated by R1, R2, . . . , RN . Consider

H+
f v, the H+

f -module generated by v. We show that H+
f v is an Hf -module. Let

1 ≤ m ≤ N . Then H+
f v is Rm-invariant by the construction and Km-invariant

by Proposition 3.6.1 (ii), (iv). In addition, H+
f v is Lm-invariant by Proposition

3.6.2 (i), (iii), (iv), Lemma 3.8.2 and since Lmv = 0 by Lemma 3.8.4. Since Hf is

generated by Rm, Lm and Km, for 1 ≤ m ≤ N , H+
f v is an Hf -module. Thus we

have H+
f v = Hfv. By Proposition 3.6.2 (i), (iii), H+

f v is spanned by

w(ε) = RεN
N R

εN−1

N−1 · · ·Rε1
1 v,

for ε = (ε1, ε2, . . . , εN) ∈ {0, 1}N . By Lemma 3.5.4 (ii), w(ε) ∈ E∗
µ+εV . By Lemmas

3.7.10 and 3.8.5, w(ε) ̸= 0 if and only if m ∈ Sµ and m ̸∈ λ for all 1 ≤ m ≤ N with

εm = 1. Thus (3.15) forms a basis for Hfv. For 1 ≤ m ≤ N , the Lm-actions on

w(ε) follow from Proposition 3.6.2 (iii), (iv), Lemma 3.8.2 and Lmv = 0. Similarly,

for 1 ≤ m ≤ N , the Rm-actions on w(ε) follow from Proposition 3.6.2 (i), (iii). The

result follows.

Proposition 3.10.3. Referring to Proposition 3.10.2, the basis (3.15) for Hfv sat-

isfies the following:

Kmw(ε) = q1/2−(µm+εm)w(ε),

for 1 ≤ m ≤ N , where µ = (µ1, µ2, . . . , µN) and ε = (ε1, ε2, . . . , εN).
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Proof. By Proposition 3.10.2, we have w(ε) ∈ E∗
µ+εV . The result follows from the

definition of Km.

Theorem 3.10.4. For any irreducible Hf -module W , there uniquely exist µ ∈
{0, 1}N and λ ⊆ {1, 2, . . . , N} satisfying (ii) in Lemma 3.2.6 where λ is column-

full with respect to µ, such that W is generated by a nonzero vector in E∗
µEλV .

Moreover, W is determined up to isomorphism by µ and λ.

Proof. By Proposition 3.10.1, there exists a nonzero vector v ∈ W with Lmv = 0

for all 1 ≤ m ≤ N such that W = Hfv. According to the direct sum decomposition

in Lemma 3.8.4, we write

v =
∑
µ,λ

E∗
µEλv.

Since v is nonzero, there exists a pair (µ, λ) such that E∗
µEλv ̸= 0. By Proposition

3.8.3, E∗
µEλv belongs to W and so by the irreducibility of W , E∗

µEλv generates W .

Suppose there exists another pair (µ′, λ′) such that E∗
µ′Eλ′v ̸= 0. Then E∗

µ′Eλ′v also

generates W . Thus we have the two bases (3.15) for W . However, by comparing

them, we obtain (µ′, λ′) = (µ, λ) and the result follows.

Definition 3.10.5. Referring to Theorem 3.10.4, we call µ ∈ {0, 1}N the endpoint

of W and λ ⊆ {1, 2, . . . , N} the shape of W .

Corollary 3.10.6. Let λ ⊆ {1, 2, . . . , N} with even cardinality. For an irreducible

Hf -module W of shape λ, we have

dimW = 2N−|λ|.

Proof. Count the vectors in the basis (3.15) for W .

Theorem 3.10.7. For µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfying (ii) in Lemma

3.2.6 where λ is column-full with respect to µ, there exists an irreducible Hf -module

of endpoint µ and shape λ. Moreover, the multiplicity in V is given by

q|Bµ|−n(λ∩Sµ)
∏

s∈λ∩Sµ

(
qρ(s,µ,λ) − 1

)
,

where n(λ ∩ Sµ) is defined in (3.12) and ρ(s, µ, λ) is defined in Lemma 3.2.9.

Proof. Take a nonzero vector v ∈ E∗
µEλV . We show that W = Hfv is irreducible.

Consider an irreducible Hf -module decomposition of W as follows.

W = W1 +W2 + · · ·+Wr (direct sum),
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for some positive integer r ≥ 1. According to this decomposition, we write v =

w1 + w2 + · · · + wr such that wn ∈ Wn (1 ≤ n ≤ r). Since this sum is direct and

v ∈ E∗
µEλW , we find that wn is nonzero and wn ∈ E∗

µEλW for 1 ≤ n ≤ r. However,

by Proposition 3.10.2, we have dimE∗
µEλW = 1. Since the vectors wn (1 ≤ n ≤ r)

are linearly independent, this forces r = 1, i.e., W is irreducible.

The multiplicity of W in V is dimE∗
µEλV , which is determined in Corollary

3.4.3.

3.11 The quantum affine algebra Uq(ŝl2)

In this section, we fix a nonzero scalar q ∈ C which is not a root of unity. For n ∈ N,
we define

[n]q =
qn − q−n

q − q−1
.

We recall the definition of Uq(ŝl2) from [6] in terms of Chevalley generators.

Definition 3.11.1 ([6, Section 2]). The quantum affine algebra Uq(ŝl2) is the asso-

ciative C-algebra generated by e±i , ki, k
−1
i (i = 0, 1) with the relations

kik
−1
i = k−1

i ki = 1, k0k1 = k1k0, (3.16)

kie
±
i = q±2e±i ki, kie

±
j = q∓2e±j ki (i ̸= j), (3.17)

e+i e
−
i − e−i e

+
i =

ki − k−1
i

q − q−1
, e±0 e

∓
1 − e∓1 e

±
0 = 0, (3.18)

(e±i )
3e±j − [3]q(e

±
i )

2e±j e
±
i + [3]qe

±
i e

±
j (e

±
i )

2 − e±j (e
±
i )

3 = 0 (i ̸= j). (3.19)

We call e±i , ki, k
−1
i (i = 0, 1) the Chevalley generators for Uq(ŝl2).

It is known that the quantum affine algebra Uq(ŝl2) has the following Hopf algebra

structure. The comultiplication ∆ satisfies

∆(e+i ) = e+i ⊗ ki + 1⊗ e+i , ∆(e−i ) = e−i ⊗ 1 + k−1
i ⊗ e−i , ∆(ki) = ki ⊗ ki.

It is also known that there exists a family of finite-dimensional irreducible Uq(ŝl2)-

modules Vd(α) for d ∈ N, α ∈ C \ {0}, where Vd(α) has a basis {ui}di=0 satisfying

e+0 ui = α[i+ 1]qui+1 (0 ≤ i ≤ d− 1), e+0 ud = 0,

e+1 ui = [d− i+ 1]qui−1 (1 ≤ i ≤ d), e+1 u0 = 0,

e−0 ui = α−1[d− i+ 1]qui−1 (1 ≤ ε ≤ d), e−0 u0 = 0,

e−1 ui = [i+ 1]qui+1 (0 ≤ i ≤ d− 1), e−1 ud = 0,

k0ui = q2i−dui (0 ≤ i ≤ d),

k1ui = qd−2iui (0 ≤ i ≤ d).
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We call Vd(α) the evaluation module for Uq(ŝl2) with the evaluation parameter α.

We recurrently define the algebra homomorphism

∆(N) : Uq(ŝl2) → Uq(ŝl2)⊗ · · · ⊗ Uq(ŝl2)︸ ︷︷ ︸
(N + 1) times

,

for N ∈ N by

∆(0) = id,

∆(1) = ∆,

∆(N) = (id⊗ · · · ⊗ id︸ ︷︷ ︸
(N − 2) times

⊗∆) ◦∆(N−1) (N ≥ 2).

This algebra homomorphism ∆(N) is called the N-fold comultiplication. For each

N ≥ 1, by the (N−1)-fold comultiplication ∆(N−1), a tensor product of N evaluation

modules again becomes a Uq(ŝl2)-module. More precisely, a tensor product Vd1(α1)⊗
· · · ⊗ VdN (αN) has a basis

u(ε) = uε1 ⊗ · · · ⊗ uεN (0 ≤ ε1 ≤ d1, . . . , 0 ≤ εN ≤ dN), (3.20)

on which the Chevalley generators act as follows:

e+0 u(ε) =
N∑

m=1

αm[εm + 1]qq
2(εm+1+···+εN )−(dm+1+···+dN )u(ε+ m̂), (3.21)

e+1 u(ε) =
N∑

m=1

[dm − εm + 1]qq
(dm+1+···+dN )−2(εm+1+···+εN )u(ε− m̂), (3.22)

e−0 u(ε) =
N∑

m=1

α−1
m [dm − εm + 1]qq

(d1+···+dm−1)−2(ε1+···+εm−1)u(ε− m̂), (3.23)

e−1 u(ε) =
N∑

m=1

[εm + 1]qq
2(ε1+···+εm−1)−(d1+···+dm−1)u(ε+ m̂), (3.24)

k0u(ε) = q2(ε1+···+εN )−(d1+···+dN )u(ε), (3.25)

k1u(ε) = q(d1+···+dN )−2(ε1+···+εN )u(ε), (3.26)

where ε = (ε1, ε2, . . . , εN) ∈ ZN and we define u(ε) = 0 if ε is not of the form in

(3.20).

Let W denote a finite-dimensional irreducible Uq(ŝl2)-module. By [6, Proposi-

tion 3.2], there exist scalars ϵ0, ϵ1 ∈ {−1, 1} such that each eigenvalue of ki on W is

ϵi times an integral power of q for i = 0, 1. The pair (ϵ0, ϵ1) is called the type of W .

For each pair ϵ0, ϵ1 ∈ {−1, 1}, there exists an algebra automorphism of Uq(ŝl2) that

sends

ki 7→ ϵiki, e+i 7→ ϵie
+
i , e−i 7→ e−i (i = 0, 1).
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By this automorphism, any finite-dimensional irreducible Uq(ŝl2)-module of type

(ϵ0, ϵ1) becomes that of type (1, 1).

Theorem 3.11.2 ([6, Theorem 4.11]). Every finite-dimensional irreducible Uq(ŝl2)-

module of type (1, 1) is isomorphic to a tensor product of evaluation modules. More-

over, two such tensor products are isomorphic if and only if one is obtained from

the other by permuting the factors in the tensor product.

With an evaluation module Vd(α), we associate the set of scalars

Sd(α) = {αqd−1, αqd−3, . . . , αq−d+1}.

The set Sd(α) is called a q-string of length d. Two q-strings Sd1(α1), Sd2(α2) are

said to be in general position if one of the following occurs:

(i) Sd1(α1) ∪ Sd2(α2) is not a q-string,

(ii) Sd1(α1) ⊆ Sd2(α2) or Sd2(α2) ⊆ Sd1(α1).

Moreover, several q-strings are said to be in general position if every two q-strings

are in general position.

Theorem 3.11.3 ([6, Theorem 4.8]). A tensor product of evaluation modules for

Uq(ŝl2) is irreducible if and only if the associated q-strings are in general position.

3.12 The algebra Hf and the quantum affine al-

gebra Uq1/2(ŝl2)

In this section, we get back to the subspace lattice P over Fq. Recall the matrices

Eλ ∈ Hf in Sections 3.7 and 3.8. Let µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfy (ii)

in Lemma 3.2.6. For v ∈ E∗
µEλV and 1 ≤ m ≤ N , if Lmv ̸= 0, then we have m ∈ Tµ

and m ̸∈ λ by Lemma 3.7.9 and so (LmRm)Lmv = qκ(m,µ,λ)Lmv by Lemma 3.8.1.

Therefore, we define the matrix (LmRm)
−1Lm by

(LmRm)
−1Lmv =

q−κ(m,µ,λ)Lmv if Lmv ̸= 0,

0 if Lmv = 0,
(3.27)

for v ∈ V . We remark that (LmRm)
−1Lm does not mean the product of (LmRm)

−1

and Lm since LmRm is not invertible by Lemma 3.8.1. Similarly, we define the

matrix (RmLm)
−1Rm by

(RmLm)
−1Rmv =

q−κ(m,µ,λ)Rmv if Rmv ̸= 0,

0 if Rmv = 0,
(3.28)

for v ∈ V .
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Theorem 3.12.1. Let α1, α2, . . . , αN denote nonzero scalars. The standard module

V supports a Uq1/2(ŝl2)-module structure on which the Chevalley generators act as

follows:

generators actions on V

e+0 q(1−N)/2
∑N

m=1 αmRm

e+1 q(N−1)/2
∑N

m=1(LmRm)
−1Lm

e−0
∑N

m=1 α
−1
m Lm

e−1
∑N

m=1(RmLm)
−1Rm

k0
∏N

m=1K
−1
m

k−1
0

∏N
m=1Km

k1
∏N

m=1Km

k−1
1

∏N
m=1K

−1
m

Here the matrices (LmRm)
−1Lm and (RmLm)

−1Rm are defined in (3.27) and in

(3.28), respectively.

Proof. Referring to the above table, for i = 0, 1 let ê+i , ê
−
i , k̂i, k̂

−1
i denote the expres-

sions to the right of e+i , e
−
i , ki, k

−1
i respectively. We show these elements ê+i , ê

−
i , k̂i,

k̂−1
i (i = 0, 1) satisfy the defining relations (3.16)–(3.19) of Uq1/2(ŝl2) on V .

We first show ê+i , ê
−
i , k̂i, k̂

−1
i (i = 0, 1) satisfy the relations except the first relation

in (3.18). They satisfy the relations in (3.16) by the definitions of k̂i, k̂
−1
i (i = 0, 1).

They satisfy the first relation in (3.17) with i = 0 by Proposition 3.6.1. They satisfy

the second relation in (3.17) with (i, j) = (1, 0) by Proposition 3.6.1. Since the other

relations involve ê+1 , ê
−
1 , we show them as follows. Fix a nonzero vector v ∈ V . Then

we apply both sides of each defining relation to v and check the results are the same.

These elements ê+i , ê
−
i , k̂i, k̂

−1
i (i = 0, 1) satisfy the first relation in (3.17) with i = 1

by Proposition 3.6.1. They satisfy the second relation in (3.17) with (i, j) = (0, 1)

by Proposition 3.6.1. They satisfy the second relation in (3.18) and the relations in

(3.19) by Proposition 3.6.2.

It remains to show that they satisfy the first relation in (3.18). Take a nonzero

vector v ∈ E∗
µEλV for some µ = (µ1, µ2, . . . , µN) ∈ {0, 1}N , λ ⊆ {1, 2, . . . , N}. By
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Lemmas 3.8.1 and 3.8.2, we have

(
ê+0 ê

−
0 − ê−0 ê

+
0

)
v = −

(
q(1−N)/2

∑
m

(−1)µmqκ(m,µ,λ)

)
v,

where the sum is taken over all 1 ≤ m ≤ N with m ̸∈ λ. On the other hand, by the

definition of Km, we have(
k̂0 − k̂−1

0

q1/2 − q−1/2

)
v =

(
q|µ|−N/2 − qN/2−|µ|

q1/2 − q−1/2

)
v.

By Lemma 3.9.2, it turns out that both scalars are the same and so ê+0 , ê
−
0 , k̂0, k̂

−1
0

satisfy the first relation in (3.18). Similarly, ê+1 , ê
−
1 , k̂1, k̂

−1
1 satisfy the first relation

in (3.18).

Corollary 3.12.2. Let α1, α2, . . . , αN denote nonzero scalars. There exists an al-

gebra homomorphism from Uq1/2(ŝl2) to Hf that sends

e+0 7→ q(1−N)/2

N∑
m=1

αmRm, e+1 7→ q(N−1)/2

N∑
m=1

(LmRm)
−1Lm,

e−0 7→
N∑

m=1

α−1
m Lm, e−1 7→

N∑
m=1

(RmLm)
−1Rm,

k0 7→
N∏

m=1

K−1
m , k1 7→

N∏
m=1

Km.

Proof. Immediate from Proposition 3.12.1.

The algebra homomorphism in Corollary 3.12.2 turns an Hf -module into a

Uq1/2(ŝl2)-module.

Lemma 3.12.3. Let µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfy (ii) in Lemma

3.2.6 where λ is column-full with respect to µ in Definition 3.4.1. Let Wµ,λ denote

an irreducible Hf -module with endpoint µ and shape λ. The basis (3.15) for Wµ,λ

has the following actions of Chevalley generators via the algebra homomorphism in
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Corollary 3.12.2.

e+0 w(ε) = q(1−N)/2

N∑
m=1

αmq
εm+1+···+εNw(ε+ m̂), (3.29)

e+1 w(ε) = q(N−1)/2

N∑
m=1

q−(εm+1+···+εN )w(ε− m̂), (3.30)

e−0 w(ε) =
N∑

m=1

α−1
m θm(µ, λ)q

−(ε1+···+εm−1)w(ε− m̂), (3.31)

e−1 w(ε) =
N∑

m=1

θm(µ, λ)
−1qε1+···+εm−1w(ε+ m̂), (3.32)

k0w(ε) = q−N/2+|µ|+|ε|w(ε), (3.33)

k1w(ε) = qN/2−|µ|−|ε|w(ε), (3.34)

where ε = (ε1, ε2, . . . , εN) ∈ {0, 1}N . Here we define w(ε) = 0 if ε is not of the form

in (3.15).

Proof. Use Propositions 3.10.2, 3.10.3 and Corollary 3.12.2.

Lemma 3.12.4. Let µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfy (ii) in Lemma

3.2.6 where λ is column-full with respect to µ in Definition 3.4.1. We define d =

(d1, d2, . . . , dN) ∈ {0, 1}N by

dm =

1 if m ̸∈ λ,

0 if m ∈ λ
(1 ≤ m ≤ N).

Then we have the following:

(i) |d| = N − 2|µ|.

(ii) If m ̸∈ λ, then κ(m,µ, λ) = (N−1)/2+(d1+· · ·+dm−1)/2−(dm+1+· · ·+dN)/2
defined in (3.13).

Proof. (i) By the definition of d, we have |d| = N − |λ|. By the assumption, we

have |λ| = 2|µ| and so the result follows.

(ii) Assume m ̸∈ λ. Observe that

|Sµ(m− 1) \ λ| = d1 + · · ·+ dm−1, |Tµ(m+ 1) \ λ| = 0.

By the definition of d,

|λ|/2 = N/2− (d1 + · · ·+ dN)/2.

Hence the result follows from the above comments and dm = 1.
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Theorem 3.12.5. Let µ ∈ {0, 1}N and λ ⊆ {1, 2, . . . , N} satisfy (ii) in Lemma

3.2.6 where λ is column-full with respect to µ in Definition 3.4.1. Let Wµ,λ denote

an irreducible Hf -module with endpoint µ and shape λ. Then by the algebra homo-

morphism in Corollary 3.12.2, Wµ,λ becomes a Uq1/2(ŝl2)-module and we have the

following:

(i) Wµ,λ has type (1, 1).

(ii) Wµ,λ is isomorphic to the tensor product of V1(αm), where 1 ≤ m ≤ N such

that m ̸∈ λ.

Proof. (i) This follows from (3.33) and (3.34).

(ii) Recall (d1, d2, . . . , dN) ∈ {0, 1}N from Lemma 3.12.4. It suffices to show that

Wµ,λ ≃ Vd1(α1)⊗ · · · ⊗ VdN (αN).

Recall the basis w(ε) in (3.15) forWµ,λ and the basis u(ε) in (3.20) for Vd1(α1)⊗
· · · ⊗ VdN (αN), where ε = (ε1, ε2, . . . , εN) ∈ {0, 1}N such that w(ε) = 0 and

u(ε) = 0 if dm < εm for some 1 ≤ m ≤ N . We define a linear map φ from

Vd1(α1)⊗ · · · ⊗ VdN (αN) to Wµ,λ that sends u(ε) to γ(ε)w(ε), where

γ(ε) = q|ε|(1−N)/2
∏
m∈Tε

q(dm+1+···+dN )/2.

We check φ preserves the actions of Chevalley generators. Observe that

γ(ε) = q(N−1)/2q−(dm+1+···+dN )/2γ(ε+ m̂), (3.35)

for ε ∈ {0, 1}N .

By (3.25) and (3.33) and Lemma 3.12.4 (i), φ preserves the action of k0. By

(3.26) and (3.34) and Lemma 3.12.4 (i), φ preserves the action of k1. By (3.21),

(3.29) and (3.35), the map φ preserves the action of e+0 . By (3.22), (3.30) and

(3.35), the map φ preserves the action of e+1 . By (3.23), (3.31), (3.35) and

Lemma 3.12.4 (ii), the map φ preserves the action of e−0 . By (3.24), (3.32),

(3.35) and Lemma 3.12.4 (ii), the map φ preserves the action of e−1 .
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Chapter 4

Association schemes on the

Schubert cells of a Grassmannian

In this chapter, let F be any field. The Grassmannian Gr(m,n) is the set of m-

dimensional subspaces in Fn, and the general linear group GLn(F) acts transitively
on it. The Schubert cells of Gr(m,n) are the orbits of the Borel subgroup B ⊂
GLn(F) on Gr(m,n). We consider the association scheme on each Schubert cell

defined by the B-action and show it is symmetric and it is the generalized wreath

product of one-class association schemes, which was introduced by R. A. Bailey in

[1]. This chapter is based on the author’s work [28].

4.1 Preliminaries

We briefly recall the notion of the generalized wreath product of association schemes.

For the definition of association schemes, see [2, 16, 30], and for the theory of posets,

see [18]. Let (X,≤) be a nonempty finite poset. A subset Y in X is called an anti-

chain if any two elements in Y is incomparable. For an anti-chain Y in X, define

the down-set (also known as the order ideal) by

Down(Y ) = {x ∈ X | x < y for some y ∈ Y }.

We note that this definition follows from [1] and it is different from [18], where

Down(Y ) ∪ Y is called the down-set of Y . For each x ∈ X, let Qx denote an rx-

class association scheme on a set Ωx. We do not assume either Qx is symmetric

or Ωx is finite. Let Rx,i denote the i-th associate class for i ∈ {0, 1, . . . , rx}. By

convention, we choose the index so that Rx,0 = {(ω, ω) | ω ∈ Ωx}. We set Ω =∏
x∈X Ωx. For each anti-chain Y in X and for each (ix)x∈Y ∈

∏
x∈Y {1, 2, . . . , rx}, let

R(Y, (ix)x∈Y ) denote the set of ((αx)x∈X , (βx)x∈X) ∈ Ω× Ω satisfying (i) αx = βx if
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x ∈ X \ (Y ∪Down(Y )), and (ii) (αx, βx) ∈ Rx,ix if x ∈ Y . Let R denote the set of

R(Y, (ix)x∈Y ) for all anti-chains Y in X and (ix)x∈Y ∈
∏

x∈Y {1, 2, . . . , rx}.

Theorem 4.1.1 (cf. [1, Theorem 3]). The pair (Ω,R) is an association scheme.

The association scheme (Ω,R) in Theorem 4.1.1 is called the generalized wreath

product of Qx over the poset X. We remark that Bailey [1, Theorem 3] assumes that

each base set Ωx is finite and each association scheme Qx is symmetric. However,

the theorem is still true if we drop both of these assumptions.

4.2 Subspace lattices

Throughout this chapter, we fix a positive integer n and a field F. Let Fn denote

the n-dimensional column vector space over F. By the subspace lattice, denoted by

Pn(F), we mean the poset consisting of all subspaces in Fn with partial order given

by inclusion. We fix the sequence {Vi}ni=0 in Pn(F) such that each Vi consists of

vectors whose bottom n− i entries are zero. We remark that {Vi}ni=0 is a (complete)

flag (i.e., a maximal chain) in Pn(F).
Let Matn(F) denote the set of n × n matrices with entries in F. Let GLn(F)

denote the set of invertible matrices in Matn(F). Observe that GLn(F) acts on

Fn by left multiplication, and hence it acts on Pn(F). Let B denote the (Borel)

subgroup in GLn(F) stabilizing {Vi}ni=0. In other words, B consists of all upper

triangular invertible matrices in Matn(F). In this chapter, we consider the B-action
on Pn(F).

A matrix in Matn(F) is said to be in reverse column echelon form if the following

two conditions are met:

(CE1) Any zero columns are right of all nonzero columns.

(CE2) The last nonzero entry of a nonzero column is always strictly below of the last

nonzero entry of its right column.

A matrix in Matn(F) is said to be in reduced reverse column echelon form if it is in

reverse column echelon form and the following third condition is also met:

(CE3) Every last nonzero entry of a nonzero column is 1 and is the only nonzero

entry in its row.

By elementary linear algebra, we have the following:

Proposition 4.2.1. There exists a bijection between the following two sets:
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(i) The set of all matrices in Matn(F) in reduced reverse column echelon form,

(ii) The set Pn(F) of all subspaces in Fn,

that sends a matrix in Matn(F) to its column space.

Proof. See for instance [12].

Example 4.2.2 (n = 7). Let e1, e2, . . . , e7 denote the standard basis for F7. Sup-

pose U is the 4-dimensional subspace in F7 given by U = Span{8e1 + 6e3 + 4e6 +

2e7, 8e1+9e3+e4+e5, 4e1+e2+5e3+e4, 3e1+e2}. Then the following is the matrix

corresponding to U by the bijection in Proposition 4.2.1:

M =



4 7 1 3 0 0 0

0 0 0 1 0 0 0

3 4 5 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

2 0 0 0 0 0 0

1 0 0 0 0 0 0


.

Observe that for M,N ∈ Matn(F) in reduced reverse column echelon form and

for G ∈ B, the column space of N moves to that of M by the G-action if and only

if M and GN are column equivalent. Since GN is in reverse column echelon form

(but not necessarily reduced), these conditions are equivalent to M = GNH t for

some H ∈ B. For notational convenience, we write M ∼ N if there exist G,H ∈ B
such that M = GNH t. Observe that ∼ is an equivalence relation on Matn(F).

For the rest of this chapter, we will identify Pn(F) with the set of all matrices

in Matn(F) in reduced reverse column echelon form by the bijection in Proposition

4.2.1.

4.3 The B-action on Pn(F)

For a positive integer m, we write [m] = {1, 2, . . . ,m}. We define a partial order in

the index set [n]×[n] of matrices in Matn(F) by (i, j) ≤ (k, l) if i ≤ k and j ≤ l. This

is known as the direct product order in [18, Section 3.2]. For M ∈ Matn(F), by the

support of M , denoted by Supp(M), we mean the subposet of [n]× [n] consisting of

all indices (i, j) ∈ [n]× [n] with Mi,j ̸= 0. The pivot-set of M , denoted by Piv(M),

is the set of all maximal elements in Supp(M). Each element in the pivot-set is

called a pivot. Observe that (i, j) ∈ Piv(M) if and only if Mi,j ̸= 0 and Mk,l = 0 if
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(k, l) > (i, j). We remark that every entry indexed by a pivot of a matrix in Pn(F)
must be 1 by the condition (CE3).

Lemma 4.3.1. For M,N ∈ Pn(F), the following are equivalent.

(i) M ∼ N ,

(ii) Piv(M) = Piv(N).

Proof. (i) ⇒ (ii) Suppose M ∼ N . There exist G,H ∈ B such that M = GNH t.

It suffices to show Piv(N) ⊆ Piv(M). For (i, j) ∈ Piv(N), we have Ni,j = 1 and

Nk,l = 0 if (k, l) > (i, j). Since G,H are upper triangular, we have

Mk,l =
n∑

s=k

n∑
t=l

Gk,sNs,tHl,t =

Gi,iHj,j if (k, l) = (i, j),

0 if (k, l) > (i, j).

Since G,H are invertible, Gi,iHj,j ̸= 0. These imply (i, j) ∈ Piv(M) and hence

Piv(N) ⊆ Piv(M).

(ii) ⇒ (i) Suppose Piv(M) = Piv(N). Take X ∈ Pn(F) with Xi,j = 1 if (i, j) ∈
Piv(M) and Xi,j = 0 otherwise. Observe that for each j ∈ [n], there exists at most

one k such that (j, k) ∈ Piv(M) and then we define G ∈ Matn(F) by

Gi,j =

Mi,k if (j, k) ∈ Piv(M) for some k,

δi,j if there is no k such that (j, k) ∈ Piv(M),

for i, j ∈ [n]. Then we have Gi,i = 1 for i ∈ [n] and Gi,j = 0 if j < i for i, j ∈ [n].

Thus G ∈ B. By the direct calculation, we have M = GX and hence, M ∼ X.

Similarly we have N ∼ X and so M ∼ N .

Let 1 ≤ m ≤ n − 1 and M ∈ Pn(F) with rankM = m. Note that we avoid the

trivial cases m = 0 and m = n. Since the pivots of M lie in the first m columns,

Piv(M) is an anti-chain in [n] × [m] of size m. For 1 ≤ m ≤ n − 1 and for an

anti-chain α in [n]× [m] of size m, we set

Oα = {M ∈ Pn(F) | Piv(M) = α}. (4.1)

For each 1 ≤ m ≤ n − 1 and each anti-chain α in [n] × [m] of size m, consider

M ∈ Pn(F) with Mi,j = 1 if (i, j) ∈ α and Mi,j = 0 otherwise. Then we have

M ∈ Oα and in particular Oα ̸= ∅.

Proposition 4.3.2. The rank of any matrix in (4.1) is m = |α|. Moreover, each

subset (4.1) is an orbit of the B-action on Pn(F).

76



Proof. Immediate from the construction and Lemma 4.3.1.

Recall the Grassmannian Gr(m,n) and we identify Gr(m,n) with a set of ma-

trices by the bijection in Proposition 4.2.1. In other words,

Gr(m,n) = {M ∈ Pn(F) | rankM = m}.

By Proposition 4.3.2, each Oα in (4.1) is a B-orbit in Gr(m,n), where m = |α|. It

is called a Schubert cell of a Grassmannian [15].

Example 4.3.3 (n = 7, m = 4). Take M ∈ P7(F) as in Example 4.2.2. Then we

have Piv(M) = {(2, 4), (4, 3), (5, 2), (7, 1)}. Moreover, OPiv(M) is the set of matrices

of the form 

∗ ∗ ∗ ∗ 0 0 0

0 0 0 1 0 0 0

∗ ∗ ∗ 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

∗ 0 0 0 0 0 0

1 0 0 0 0 0 0


, (4.2)

where the symbol ∗ denotes an arbitrary element in F.

Lemma 4.3.4. Let 1 ≤ m ≤ n − 1 and let α denote an anti-chain in [n] × [m] of

size m. For M,N,M ′, N ′ ∈ Oα, the following are equivalent.

(i) (M,N) moves to (M ′, N ′) by the diagonal B-action,

(ii) Piv(M −N) = Piv(M ′ −N ′).

Proof. (i) ⇒ (ii) Suppose there exist G,H,K ∈ B such that M ′ = GMHT and

N ′ = GNKt. Then we have

Piv(GM) = Piv(GN) = α, (4.3)

Piv(GM −GN) = Piv(M −N), (4.4)

since G ∈ B (cf. Lemma 4.3.1). We write α = {(kr, r) | r ∈ [m]} and observe that

k1 > k2 > · · · > km and that Piv(M −N) ⊆ Down(α).

Take (i, j) ∈ Piv(M − N). Observe that j ∈ [m] and kj > i and hence there

exists m′ = max{r ∈ [m] | kr > i}. For r, l ∈ [m] with j ≤ r ≤ m′ and j ≤ l ≤ m′,

since H,K are upper triangular, we have

M ′
kr,l =

n∑
t=l

(GM)kr,tHl,t,

N ′
kr,l =

n∑
t=l

(GN)kr,tKl,t.
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In the above equations, we have the following: For each r, l, we haveM ′
kr,l

= N ′
kr,l

=

δr,l by (CE3); For each r, t, we have (GM)kr,t = (GN)kr,t since (kr, t) > (i, j) and

by (4.4); For each r, t with r < t, we have (GM)kr,r = (GN)kr,r = Gkr,kr ̸= 0 and

(GM)kr,t = (GN)kr,t = 0 since (kr, r) ∈ α and by (4.3). By these comments, for each

l ∈ [m] with j ≤ l ≤ m′, both (Hl,l, Hl,l+1, . . . , Hl,m′) and (Kl,l, Kl,l+1, . . . , Kl,m′) are

solutions to the same system of m′ − j + 1 independent linear equations. Hence,

Hl,t = Kl,t for j, t ∈ [m] with j ≤ l ≤ t ≤ m′.

For (k, l) ∈ [n] × [n] with (k, l) > (i, j), we have (GM)k,t = (GN)k,t if t ≥ l

since (k, t) > (i, j) and by (4.4), and we also have (GM)k,t = (GN)k,t = 0 if t > m′

by the definition of m′ and by (4.3). Recall that we have shown Hl,t = Kl,t if

j ≤ l ≤ t ≤ m′. By these comments, we have

M ′
k,l =

n∑
t=l

(GM)k,tHl,t =
n∑
t=l

(GN)k,tKl,t = N ′
k,l.

Similarly, we have

M ′
i,j −N ′

i,j =
n∑

t=j

(GM)i,tHj,t −
n∑

t=j

(GN)i,tKj,t = ((GM)i,j − (GN)i,j)Hj,j.

In the above equations, we have (GM)i,j ̸= (GN)i,j by (4.4), and we also have Hj,j ̸=
0 since H ∈ B. Therefore we obtain M ′

i,j ̸= N ′
i,j. These imply (i, j) ∈ Piv(M ′ −N ′)

and hence Piv(M −N) ⊆ Piv(M ′ −N ′). Since G,H,K are invertible, we also have

Piv(M ′ −N ′) ⊆ Piv(M −N). Consequently, we have Piv(M −N) = Piv(M ′−N ′).

(ii) ⇒ (i) Let M,N,M ′, N ′ ∈ Oα with Piv(M − N) = Piv(M ′ − N ′). Take

X ∈ Oα with Xi,j = 1 if (i, j) ∈ α ∪ Piv(M − N) and Xi,j = 0 otherwise, and

Y ∈ Oα with Yi,j = 1 if (i, j) ∈ α and Yi,j = 0 otherwise. Define G ∈ Matn(F) by

Gi,j =


Ni,k if (j, k) ∈ α for some k,

Mi,k −Ni,k if (j, k) ∈ Piv(M −N) for some k,

δi,j if there is no k such that (j, k) ∈ α ∪ Piv(M −N),

for i, j ∈ [n]. Then we have G ∈ B and M = GX and N = GY . Similarly there

exists G′ ∈ B such that M ′ = G′X and N ′ = G′Y . Therefore (M,N) moves to

(M ′, N ′) by the diagonal action of G′G−1.

Let 1 ≤ m ≤ n − 1 and let α denote an anti-chain in [n] × [m] of size m. Let

M,N ∈ Oα. Observe that Piv(M −N) is an anti-chain in

D(α) = {(i, j) ∈ Down(α) | there is no k such that (i, k) ∈ α}. (4.5)
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For 1 ≤ m ≤ n−1 and for an anti-chain α in [n]× [m] of size m and for an anti-chain

β in D(α), we set

Rα,β = {(M,N) ∈ Oα ×Oα | Piv(M −N) = β}. (4.6)

For each 1 ≤ m ≤ n−1, each anti-chain α in [n]×[m] of sizem and each anti-chain β

in D(α), consider M ∈ Pn(F) with Mi,j = 1 if (i, j) ∈ α∪ β and Mi,j = 0 otherwise,

and N ∈ Pn(F) with Ni,j = 1 if (i, j) ∈ α and Ni,j = 0 otherwise. Then we have

(M,N) ∈ Rα,β and in particular Rα,β ̸= ∅.

Proposition 4.3.5. Let 1 ≤ m ≤ n− 1 and let α denote an anti-chain in [n]× [m]

of size m. Each subset (4.6) is an orbital of the B-action on Oα.

Proof. Immediate from Lemma 4.3.4.

Let 1 ≤ m ≤ n− 1. For an anti-chain α in [n]× [m] of size m, consider

D1(α) = {i | there is no k such that (i, k) ∈ α}. (4.7)

Then we have |D1(α)| = n − m since |α| = m. For 1 ≤ i ≤ n − m, we define

λi = |{j | (di, j) ∈ D(α)}|, where di denotes the i-th smallest element in D1(α).

Then λ = (λ1, λ2, . . . , λn−m) ∈ Nn−m is an integer partition (i.e., a non-increasing

sequence) with largest part at most m, where

N = {0, 1, . . .}.

Consider the map φm which sends α to λ.

For an integer partition λ = (λ1, λ2, . . . , λl), the Ferrers board of shape λ is

defined by

{(i, j) ∈ N× N | 1 ≤ i ≤ l, 1 ≤ j ≤ λi}.

We endow the Ferrers board with direct product order in N× N.

Lemma 4.3.6. For 1 ≤ m ≤ n− 1, the map φm is a bijection between the following

two sets:

(i) The set of anti-chains in [n]× [m] of size m.

(ii) The set of integer partitions in Nn−m with largest part at most m.

Proof. Let 1 ≤ m ≤ n − 1. It is clear that φm is a map from (i) to (ii). We define

the map φ′
m from (ii) to (i) as follows. For a given integer partition λ in Nn−m with

largest part at most m, we define α as the set of maximal elements in the Ferrers

board of shape µ = λ∪ (m,m− 1, . . . , 1), which is the integer partition obtained by
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rearranging parts of both λ and (m,m − 1, . . . , 1) in non-increasing order. Since µ

is in Nn and its largest part is m, α is an anti-chain in [n]× [m] of size m. The map

φ′
m is defined to send λ to α. By construction, φm and φ′

m are inverses and hence

bijections.

Lemma 4.3.7. Let 1 ≤ m ≤ n − 1 and let α denote an anti-chain in [n] × [m] of

size m. The poset D(α) in (4.5) is isomorphic to the Ferrers board of shape φm(α).

Moreover, there is a one-to-one correspondence between the anti-chains in D(α) and

the subpartitions of φm(α).

Proof. Recall the setD1(α) in (4.7). Then define the map ψ from the Ferrers board of

shape φm(α) to D(α) by ψ(i, j) = (di, j), where di denotes the i-th smallest element

in D1(α). It is obvious that ψ is an order-preserving bijection. The first assertion

follows. To show the second assertion, we define the map ρ from the subpartitions

of φm(α) to the anti-chains in D(α) by ρ(µ) = ψ(max(µ)), where max(µ) is the set

of all maximal elements in the Ferrers board of shape µ. From the construction, the

map ρ is also a bijection. The second assertion follows.

Example 4.3.8 (n = 7, m = 4). Take the anti-chain α = {(2, 4), (4, 3), (5, 2), (7, 1)}
as in Example 4.3.3. Recall that Oα is the set of matrices of the form (4.2). Then

φ4(α) = (4, 3, 1). We remark that each number in (4, 3, 1) equals the number of ∗’s
in each row without a pivot.

4.4 The association scheme on each Schubert cell

For 1 ≤ m ≤ n − 1 and for an anti-chain α in [n] × [m] of size m, by Propositions

4.3.2 and 4.3.5, the pair

Xα = (Oα, {Rα,β}β), (4.8)

becomes an association scheme, where β runs over all anti-chains in D(α) in (4.5).

See [30, Preface]. We remark that by Lemma 4.3.6, the family of association schemes

{Xα}α can be indexed by integer partitions λ ∈ Nn−m with largest part at most m.

In this case, the associate classes of Xα = Xλ are indexed by the subpartitions of λ

by Lemma 4.3.7.

Theorem 4.4.1. Let 1 ≤ m ≤ n− 1 and let α denote an anti-chain in [n]× [m] of

size m. The association scheme Xα in (4.8) is symmetric.

Proof. Immediate from the definition of Rα,β.
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Theorem 4.4.2. For 1 ≤ m ≤ n−1 and for an anti-chain α in [n]× [m] of size m,

the association scheme Xα in (4.8) is the generalized wreath product of the one-class

association schemes with the base set F over the poset D(α) in (4.5).

Proof. For M,N ∈ Oα and for an anti-chain β in D(α), we have (M,N) ∈ Rα,β if

and only if Mi,j = Ni,j if (i, j) ̸∈ β ∪ Down(β), Mi,j ̸= Ni,j if (i, j) ∈ β. Therefore,

this associate relation is the same as that of the generalized wreath product of the

one-class association schemes with the base set F over the poset D(α). So the result

follows.

4.5 Concluding remarks

This chapter focuses on the Schubert cells of a Grassmannian. It would be an

interesting problem to find similar results on Schubert cells for other types of BN-

pairs.

The Terwilliger algebra, introduced by P. Terwilliger [24], of the wreath prod-

uct of one-class association schemes is discussed in several papers [4, 21, 29]. We

will consider the Terwilliger algebra of the generalized wreath product of one-class

association schemes in a future paper.
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