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Numerical simulations are carried out to discover the flow structure that plays an important
role in the laminar-turbulent transition process of a boundary layer on a flat plate. The
boundary layer is destabilized by ejecting a short-duration jet from a hole in the surface.
When the jet velocity is set to 20% of the uniform-flow velocity, a laminar-turbulent
transition takes place, whereas in the 18% case, the disturbances created by the jet decay
downstream. It is found that in both cases, hairpin vortices are generated; however, these
first-generation hairpins do not directly cause the transition. Only in the 20% case does a
new hairpin vortex of a different shape with wider distance between the legs appear. The
new hairpin grows with time and evokes the generation of vortical structures one after
another around it, turning the flow turbulent. It is found that the difference between the
two cases is whether or not one of the first-generation hairpin vortices gets connected with
the nearby longitudinal vortices. Only when the connection is successful is the new hairpin
vortex with wider distance between the legs created. For each of several cases tested with
changing jet-ejecting conditions, no difference is found in the importance of the role of the
hairpin structure. Therefore, we conclude that the hairpin vortex with widespread legs is a
key structure in the transition to turbulence.
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I. INTRODUCTION

The transition of a boundary layer from a laminar state to a turbulent state is a fundamental
engineering issue that has been studied. The transition process and the formation of a predominant
structure depend on the freestream turbulence level. In a low-disturbance environment, linear two-
dimensional perturbations, or Tollmien-Schlichting waves (T-S waves), start to grow in a laminar
boundary layer. Accompanying the three-dimensionalization of T-S waves, � vortices are generated,
whose breakdowns trigger the generation of isolated turbulent regions [1]. In contrast, in a high-
disturbance environment, a bypass transition takes place, wherein a streaky structure is generated,
followed by the quasistreamwise vortices or hairpin vortices that queue up in the streamwise direction
to eventually break down. The secondary instability of streaky structures is responsible for the
formation of these vortices [2]. Asai et al. [3] discussed the transient growth and the eventual
breakdown of a low-speed streak, which was artificially generated by sucking out the near-wall
turbulent structures from a fully developed turbulent boundary layer.

Other transition processes triggered by the growth of localized disturbances in a Blasius boundary
layer have also been studied. Based on their theoretical analysis and experiments, Gaster [4] and
Gaster et al. [5], followed the development of wave packets introduced inside a flat-plate boundary
layer. Asai et al. [6] examined the subcritical transition triggered by energetic hairpin vortices,
which were acoustically excited at the leading edge. They found that the transition was likely to
occur at subcritical Reynolds numbers when the x-Reynolds number was over Rex = 3.9 × 104.
A similar study was performed by Lemoult et al. [7] in a plane Poiseuille flow. They found that
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the minimal amplitude of the perturbation triggering the transition could be asymptotically scaled
by the inverse of the Reynolds number, Re−1, in the range of Re > 2000. In addition, Levin and
Henningson [8] found hairpin vortices and spiral vortices accompanying the generation of a turbulent
spot inside an asymptotic suction boundary layer. Singer and Joslin [9] pointed out that when a
short-duration jet was ejected from a slit in a flat plate, the structures would appear in the following
order: a first hairpin vortex, a second hairpin vortex, quasistreamwise vortices, and a turbulent spot.
Cherubini et al. [10,11] obtained optimal perturbations by controlling the energies of the disturbances
introduced into the boundary layer under both linear and nonlinear conditions. They found that the
“streak-dominated” and the “hairpin-dominated” structure were optimal perturbations in the linear
and nonlinear condition, respectively.

Hairpin-shaped vortical structures have been widely observed in turbulent spots, turbulent
boundary layers, and turbulent pipe and channel flow. Singer [12] discovered many streamwise
vortices and hairpin vortices inside a turbulent spot, with streamwise vortices near the interface,
which played a vital role in pulling the surrounding fluid in the laminar region to the turbulent spot.
Farano et al. [13] looked for the nonlinear optimal perturbation in a plane Poiseuille flow, as well as
Cherubini et al. [10,11], and obtained three vortex pairs that were inclined in the streamwise direction
and symmetric in the spanwise direction. They observed that the initial optimal perturbation grew
quickly and nonlinearly into a hairpin-shaped vortical structure that created turbulence, and concluded
that the nonlinear growing process of these hairpin vortices was the reason behind observing the
hairpins frequently. Acarlar and Smith [14] performed a visualization experiment by continuously
ejecting a jet of dyed solution from the slit of a flat plate placed inside a water channel and observed
the process wherein the head of a new hairpin vortex was formed between the legs of the preceding
hairpin. Stoke et al. [15] simulated similar flow fields of laminar and turbulent boundary layers
and performed stability analyses of the velocity profiles immediately prior to the appearance of
hairpin vortices. They found that hairpin vortices were caused by an inflectional point type instability
regardless of the state of the boundary layer. The evolution of the packet of hairpin vortices has also
been investigated for pipe flows (see, e.g., Philip and Cohen [16] and Mehta and Cohen [17]) and
channel flows (see, e.g., Zhou et al. [18]).

Both transverse and crossflow jets have widely been used in flow control for boundary layers and
separations. The stability and structural characteristics of transverse jets are well described in Bagheri
et al. [19], Mahesh [20], and Karagozian [21]. In most of these applications, jets with jet-to-crossflow
velocity ratios vjet/U∞ that are much higher than unity are used. However, to be used in a laminar
boundary layer, the transverse jet of vjet/U∞ > 1 may strongly disturb the flow field. For this reason,
the strength of the short-duration jet Singer and Joslin [9] ejected was vjet/U∞ = 0.25 and that of
the continuously blowing jet Stoke et al. [15] used was vjet/U∞ = 0.2. The strengths of the jets used
in this research are also much smaller than unity.

Substantial knowledge on how vortical structures evolve during the transition process has been
accumulated. However, in our opinion, our knowledge is not sufficient. For example, we still do not
know the flow structure which plays the essential role in initiating the laminar-turbulent transition.
Hence, the present study aims to identify the key structure that triggers such a transition. Two
numerical results are prepared, changing only the velocity of the short-duration jet ejected from the
wall into a Blasius boundary layer. In the first case, the flow field became turbulent downstream,
whereas, in the second case, the flow field returned to the laminar state. The key structures and
mechanisms that led to this significant difference downstream are discussed in this paper.

II. COMPUTATIONAL METHOD

The three-dimensional incompressible Navier-Stokes equations and the continuity equation are
solved using a finite-difference method. To capture the growth of target velocity fluctuations with high
accuracy, velocity and pressure fields are decomposed into base-flow and fluctuation components,
and only the fluctuation components are computed. The Blasius boundary layer is given as the
base flow. The marker and cell (MAC) method is adopted as a computational algorithm, and the
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FIG. 1. Computational domain.

second-order accurate Crank-Nicolson semi-implicit method is used for time integration. The second-
order accurate central-difference scheme is applied to the spatial derivatives, except for the convection
terms, which are discretized by the third-order upstream difference scheme (K-K scheme [22]). The
successive over-relaxation (SOR) method with relaxation factor = 1.97 is used to solve the Poisson
equation of pressure. When the velocity of the next time step is calculated, the spatial derivatives are
computed by the multidirectional difference scheme [23], in which the derivatives of four different
coordinate systems, the original and three others rotated by an angle of 45◦ around each axis, are
added with the weighting 6:1:1:1. The computational code is parallelized by OpenMP.

Figure 1 shows a computational domain. The size of the rectangular computational domain is
294 × 25.9 × 34.6. The origin of the coordinate system is located at the spanwise center and on
the wall of the inlet boundary, where the x, y, and z axes denote the streamwise, wall-normal, and
spanwise directions, respectively. The coordinates and the physical properties used in this paper
are nondimensionalized by the uniform-flow velocity U∞ and the displacement thickness of the
Blasius boundary layer at the inlet boundary, δ∗

0 . The grid points number is 1701 × 101 × 201. The
computational grid is equally spaced in the streamwise and spanwise directions. In the wall-normal
direction, grid points are equally spaced only for the first 61 points from the plate surface, and the grid
spacing gradually increases toward the outer boundary. The maximum height of the equally spaced
grid is 5.18, which is larger than the thickness of the laminar boundary layer at the outlet boundary,
4.51. The rate of change in the grid intervals in the wall-normal direction is 1.1 at maximum. A
time interval is 0.043, which corresponds to Courant number of 0.25. It should be noted that, for
comparison, we also performed another simulation with higher resolution in which the grid numbers
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TABLE I. Jet-ejecting parameters.

Reδ∗ vjet lx × lz Tjet Transition

Reference (A) 663 0.18 1.73 × 1.73 13.0 No
Reference (B) 663 0.20 1.73 × 1.73 13.0 Yes

456 0.30 1.73 × 1.73 13.0 No
456 0.33 1.73 × 1.73 13.0 Yes
867 0.12 1.73 × 1.73 13.0 No
867 0.14 1.73 × 1.73 13.0 Yes
663 0.25 1.73 × 1.04 13.0 No
663 0.28 1.73 × 1.04 13.0 Yes
663 0.16 1.73 × 2.76 13.0 No
663 0.18 1.73 × 2.76 13.0 Yes
663 0.18 1.73 × 1.73 19.0 Yes

were 1.2 times larger in each direction, and no intrinsic differences were found in the growth of
vortical structures.

A short-duration jet is modeled by giving a uniform vertical velocity vjet through the duration of
Tjet at a small region of lx × lz in the plate surface, whose center is fixed at x = 34.6 and z = 0. The
jet is ejected into a boundary layer starting at t = 0. A typical size of the jet region is lx = lz = 1.73,
and the typical ejection duration of Tjet = 13.0, which we call the reference cases. This ejection
duration is shorter than the time needed for the first coherent structure induced by the jet to build
itself in the boundary layer. The Reynolds number based on the local displacement thickness Reδ∗ is
613 at the inlet and 663 at the hole location. The jet location is inside the supercritical region, because
the critical Reδ∗ given by the Orr-Sommerfeld stability equation is 520. In addition to the reference
case, several different cases changing the ejection duration, the aspect ratio of ejection hole, and the
ejection location are carried out for comparison. The computational conditions are summarized in
Table I.

Because the difference from the Blasius boundary layer is treated as a velocity fluctuation,
the velocity boundary conditions are set to zero at the inlet boundary and the wall surface, i.e.,
the steady-inflow condition and the nonslip condition, respectively. Also, the derivative values
of the velocity fluctuations are set to zero at the outlet boundary and the far boundary. The derivatives
of the pressure fluctuation are set to zero at the inlet, outlet, top, and wall boundaries. Periodic bound-
ary conditions are applied in the spanwise direction for both the velocity and pressure fluctuations.

III. RESULTS AND DISCUSSION

The jet-ejecting velocities vjet necessary to trigger the transition to turbulence take different values
depending on the flow conditions, such as the Reynolds number, size of the jet hole, and duration of
the jet. Simulations are performed under the conditions shown in Table I. It is known that, in general,
the jet velocity necessary to trigger the turbulent transition decreases in proportion to Reγ

δ∗ . The value
of exponent γ varies depending on the flow field. For example, γ = −1.5 for a parallel boundary
layer such as an asymptotic suction boundary layer (Levin and Henningson [8]) and γ = −1 for a
plane Poiseuille flow (Lemoult et al. [7]). The initial disturbances of the former direct numerical
simulations [8] were given in the forms of two counter-rotating vortex pairs, while the continuous
injection was used in the latter water channel experiment [7]. A similar tendency was reported by
Peixinho and Mullin [24] for a pipe Poiseuille flow. Peixinho and Mullin found that the scaling
exponent lies in the range of −1.5 � γ � −1.3 depending on the orientations of the push-pull
disturbances, which were lower than those for the simple ejections for which γ = −1. The result
of our study is shown in Fig. 2. In our case the critical velocity required to cause the transition to
turbulence scales as Re−1.38

δ∗ or expressed in a different notation, the Reynolds number based on
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FIG. 2. Jet velocities needed to trigger the transition to turbulence under different Reynolds number
conditions.

the discharge volume Rej = (vjetlx lz)/(νlz) scales as l−0.488
z . This value is close to the γ = −0.5

exponent for a pipe Poiseuille flow, obtained by Peixinho and Mullin [24].

A. Comparison of two cases under different jet velocity vjet

The time variations of vortex volumes for the reference cases are presented in Fig. 3. Throughout
this paper, unless otherwise noted, a point that satisfies Q � 0.002 is regarded as being inside a
vortex, where Q denotes the second invariant of a velocity-gradient tensor. Total vortex volume
is measured by counting the number of grid points satisfying Q � 0.002. The jet is ejected from
t = 0 through 13.0. In both the vjet = 0.18 [reference case (A)] and vjet = 0.20 [reference case (B)]
jet-velocity cases, the vortex volumes first increase and then start to decrease around t � 100. In
the vjet = 0.18 case, the total volume continues to decrease with time and the flow field eventually
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FIG. 3. Time variation of vortex volume defined as Q � 0.002.
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returns to a laminar state. However, in the vjet = 0.20 case, the vortex volume resumes increasing
after t � 190 and never decreases again.

The changes in the vortical structures are compared in Fig. 4. The surface of each structure is
painted in colors depending on the local streamwise vorticity, ωx . Here red and blue correspond
to positive and negative streamwise vorticities, respectively. Black lines on the plate surface are
drawn at a normalized interval of 10 in the streamwise direction and 5 in the spanwise direction.
At t = 34.6, in both cases, two hairpin vortices with their heads upright are generated immediately
downstream of the jet hole at z = 0. Hereafter, these hairpin vortices will be called the first-generation
hairpins. In the figure, two more vortices are found around the hairpins. Vortex A appears on the
downstream side, and vortex B appears on the upstream side, both near the wall. Vortex B resembles
the so-called “necklace vortex,” which is often observed at the bottom of bridge piers. As time passes,
new hairpin vortices are generated one after another on the upstream side of the original hairpin. A
similar phenomenon, whereby a hairpin vortex generates new ones in sequence, was observed in the
water-channel experiments of Acarlar et al. [14] and Sabatino et al. [25]. Although no remarkable
differences can be observed between the vjet = 0.18 [reference case (A)] and vjet = 0.20 [reference
case (B)] cases up until t = 103.7, the differences become obvious after t = 172.8. In the weaker-jet
(vjet = 0.18) case, vortices A and B are temporarily elongated in the streamwise direction but soon
disappear. Finally, no vortical structures survive in the flow field. On the other hand, in the stronger-jet
case [reference case (B)], vortex A appears to be much stronger, and at t = 207.4, a new hairpin
vortex appears on its upstream side.

Hereafter, we focus on the stronger-jet case [reference case (B)]. Figure 5 shows the time variation
of vortical structures after t = 172.8 for the vjet = 0.20 case [reference case (B)]. Thorns C found on
the longitudinal vortex A at t = 172.8 are the remainders of the end of longitudinal vortex B above
the legs of the vortex A as observed in Figs. 4(c) and 4(d). Two thorns C become connected to each
other and form a spanwise vortex at t = 190.1. After t = 190.1, this spanwise vortex C reconnects
with vortex pair A2, which are the upstream parts of vortex pair A, forming a new hairpin vortex,
D, found in Fig. 5(c) at t = 224.6. At t = 241.9, spanwise vortex E newly appears between the legs
of the hairpin vortex D and slightly away from the wall. Vortex E changes its shape into a V-shaped
vortex at t = 259.2. The legs of the V-shaped vortex are tilted in the opposite direction compared
with hairpin vortex D. The head part of the V-shaped vortex E located around x = 170 at t = 259.2
reconnects with the vortex pair D2, which constitute the upstream parts of the legs of the hairpin
vortex D, and at t = 276.5 forms a new hairpin vortex, F. At t = 289.4, two thorns G appear in the
middle of the legs of the hairpin vortex F, which merge into the V-shaped vortex G at t = 311.0.
The process is similar to the mechanism by which spanwise vortex C was generated. At t = 328.3,
the head part of vortex G reconnects with vortex pair F2 and forms a new hairpin vortex, H. After that,
at t = 345.6, V-shaped vortex I appears above hairpin vortex H through the process already described
above. In this way, hairpin vortices and V-shaped vortices are alternately generated. Through this
process, the boundary layer becomes filled with many vortices, which become entangled with one
another, eventually reaching a turbulent state at t = 345.6. Hereafter, the hairpin vortices generated
after hairpin vortex D will be referred to as the second-generation hairpins.

B. First-generation and second-generation hairpin vortices

Let us compare the first-generation and second-generation hairpin vortices. Although the first-
generation hairpin vortices are generated through a process of creation of a new head as a spanwise
vortex connecting the legs of a preceding hairpin vortex, as was shown in Fig. 4, the hairpins of
the second-generation are generated posterior to the creation of V-shaped vortices. The fundamental
difference is that although the first-generation hairpins dissipate downstream without causing a
transition, the second-generation hairpins produce complicated vortical structures one after another,
resulting in a turbulent transition.

The details of the difference in such vortex regeneration processes are examined. Figure 6 shows
the top and side views of the first-generation hairpins at t = 103.7. In the side view (b) of the figure,
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only the vortices within |z| � 2 are shown. The first-generation hairpin’s distinctive characteristics
are the head, which is raised nearly perpendicular to the wall, and the legs, which are close to each
other in the z direction. Figure 7 shows the top and side views of the second-generation hairpin vortex
D at t = 224.6. Only |z| � 2.5 is shown in the side view (b). Unlike the first generation, the spacing
between the legs is wide, and its head is inclined in the positive x direction.

Next, the averaged streamwise vorticity ωx , defined as

ωx ≡
∫∫∫

K

ωxdx dy dz
∫∫∫

K

dx dy dz
, (1)
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FIG. 5. Hairpin vortices of the second-generation are shown by isosurfaces of Q = 0.002 for the vjet = 0.20
case [reference case (B)]. The surfaces are colored depending on the local streamwise vorticity ωx . Maxima of
Q are (a) 0.012, (b) 0.010, (c) 0.016, (d) 0.037, (e) 0.070, (f) 0.092, (g) 0.104, (h) 0.113, (i) 0.166, and (j) 0.180.

is calculated and compared between the first- and second-generation hairpin vortices. Here the region
of integration, K , is where conditions Q � 0.002 and z � 0 are satisfied, while the head part of the
hairpin vortex is excluded. As examples, the K regions are shown as red boxes in Fig. 6(a) and
Fig. 7(a). The time variations of averaged streamwise vorticities ωx are presented in Fig. 8. The
vorticities at the legs of the first-generation hairpins nos. 1 to 5 decrease with time, regardless of
their initial values or when the hairpins are born. On the contrary, the averaged streamwise vorticity
of second-generation hairpin D increases, even though its initial value is small. The locations of both
ends of legs of the first-generation hairpins (nos. 1–5) and that of the second-generation hairpin D are
obtained from Fig. 6(b) and Fig. 7(b), respectively. The differences between the local velocities at the
two ends of the vortices can be measured. This value is found to be 0.238 for the second-generation
hairpin D, and 0.049, 0.101, 0.238, 0.104, and 0.257 for the first-generation hairpins no. 1, 2, 3, 4, and
5, respectively. This result shows that the stretching speed of the second-generation hairpin D’s leg is
not considerably different from some of the first-generation hairpin legs. Therefore, the reason why
the vorticity in the legs of the second-generation hairpin D increased while the vorticity in the legs of
the first-generation hairpins did not increase cannot be solely attributed to the leg stretching. Another
noteworthy point is the spacing between the hairpins’ legs. As shown in Fig. 6(a), at t = 103.7, the
legs of the first-generation hairpins 2 to 4 are found at z = ±0.5. On the other hand, as shown in
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FIG. 6. Top and side views of the hairpin vortices of the first generation visualized by Q = 0.002 at t = 103.7
for the vjet = 0.20 case [reference case (B)]. The surfaces are colored depending on the local streamwise vorticity
ωx . Maximum of Q is 0.028.

Fig. 7(a), at t = 224.6, the legs of second-generation hairpin D are at z = ±2. Obviously, the spacings
between the legs of the second-generation hairpins are much wider than those of the first-generation
hairpins. Because the signs of the x-direction vorticities inside the two legs of a hairpin vortex are
opposite, vorticities cancel each other with time owing to viscous diffusion. In the cases of the
first-generation hairpins with smaller distances between the legs, the canceling effect is relatively
large, causing hairpin vortices to decay quickly, while this is not so for the second-generation hairpins.
Figure 9 shows the top views around the second-generation hairpins at t = 289.4 and 328.3. The
distance between the legs at birth is large; however, the legs eventually get close together aligned
in the streamwise direction similar to the first-generation hairpins. Under this configuration, their
averaged streamwise vorticities decrease. The important point is that generations of many new vortical
structures take place before second-generation hairpin D starts to decay.

C. Detailed generation mechanism of the second-generation hairpin vortex

It has been shown that the appearance of the second-generation hairpin vortex is the key to
the generation of more complicated vortical structures leading to the turbulent transition. So, next,
the generation process of the second-generation hairpin vortices is investigated in detail, focusing
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especially on the difference between the vortical structures observed in the two cases with two
different jet velocities, vjet = 0.18 [reference case (A)] and 0.20 [reference case (B)]. Figure 10
shows the top and side views of vortical structures from t = 77.8 through t = 155.5 for both jet
conditions. At t = 77.8 in both jet-velocity cases, the downstream ends of the longitudinal vortex
pair A marked by black ellipses in the figure are found at |z| = 2–3 on the sides of a first-generation
hairpin. However, the difference can be observed at t = 103.7: in the stronger-jet case [reference case
(B)], the tips of longitudinal-vortex pair A move slightly inward, closer to the hairpin vortex. In the
weaker-jet case [reference case (A)] longitudinal vortices A gradually decay after t = 138.2. On the
other hand, in the stronger-jet case [reference case (B)], longitudinal vortices A become connected
to central hairpin vortex No. 5 and turn into its legs at t = 155.5. The newly formed hairpin vortex
is the second-generation hairpin with a wide space between its legs. It should be noted that the legs
of the second-generation hairpin are inclined as indicated by the red ellipse in Fig. 10(e), which will
be strongly stretched by the velocity difference between the two ends of the leg.

Let us briefly look into the reason why the tips of longitudinal-vortex pair A moved inward.
As shown in Fig. 11, the absolute value of the streamwise vorticity ωx of longitudinal vortex A,
which is defined in the same way as in Eq. (1), is higher for the case of vjet = 0.20 [reference
case (B)]. Therefore, in the vjet = 0.20 case [reference case (B)], the images will drive the
vortices more inward, compared to the vjet = 0.18 case [reference case (A)]. Under the flow
conditions given in this research, the key to the boundary layer transition was whether or not the
second-generation hairpins with widespread legs could be formed as a result of connections
between the head of the first-generation hairpin and longitudinal vortices nearby. Once the first
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FIG. 8. Time variation of the averaged streamwise vorticity ωx of the legs of hairpin vortices of the first and
second generations.
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FIG. 9. Top views of the hairpin vortices of the second-generation visualized by Q = 0.002 for the vjet =
0.20 case [reference case (B)]. The surfaces are colored depending on the local streamwise vorticity ωx . Maxima
of Q are 0.104 at (a) t = 289.4 and 0.166 at (b) t = 328.3.
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FIG. 10. (Continued.)

second-generation hairpin vortex was created, the new vortical structures appeared one after another.
It is obvious that the second-generation hairpin vortex is the flow structure that can start the
laminar-turbulent transition.
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D. Turbulent transition under different jet-ejecting conditions

Simulations are performed under conditions different from that of the reference cases. These
conditions are shown in Table I. The top two in Table I are the reference cases.

First, the jet location is changed to find the effect of the Reynolds number. It is found that the
location of the jet does not considerably affect the vortical structures such as the first-generation
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FIG. 10. Comparison of vortical structures around hairpin no. 5 visualized by Q = 0.002 for the vjet = 0.18
and 0.20 cases [reference cases (A) and (B)]. The surfaces are colored depending on the local streamwise vorticity
ωx . Maxima of Q are (a) 0.060 and 0.061, (b) 0.024 and 0.028, (c) 0.017 and 0.024, (d) 0.016 and 0.021, and
(e) 0.013 and 0.016, for the vjet = 0.18 and 0.20 cases, respectively.

hairpins and the second-generation hairpins, although the critical jet velocity differed from case to
case. Additionally, it is also found that whether the jet location is placed in the subcritical region
(Reδ∗ = 456) or in the supercritical region (Reδ∗ = 867) does not make much of a difference to the
vortical structures.

Second, the effect of the spanwise width of the jet region is checked. When the jet width is
narrowed from 1.73 (reference) to 1.04, no difference is found in the results except that the spacings
between the legs of the hairpins are narrower. Figure 12 shows the snapshots of vortical structures at
t = 103.7, t = 233.3, and t = 311.0 when the spanwise width of the jet region is increased from 1.73
(reference) to 2.76. Further, the weaker-jet case of vjet = 0.16 and the stronger-jet case of vjet = 0.18
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FIG. 11. Time variation of averaged streamwise vorticity ωx , of the longitudinal vortices A.
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FIG. 12. Top views of the vortical structures visualized by Q = 0.001 for the cases with jet ejection from
a wide hole. The surfaces are colored depending on the local streamwise vorticity ωx . Maxima of Q are (a)
0.046, (b) 0.036, (c) 0.003, (d) 0.029, (e) 0.002, and (f) 0.127.

are compared. Note that in this section, isosurfaces of Q = 0.001 are used for the identification of
vortical structures. At t = 103.7, similar first-generation hairpin vortices can be found in both cases.
At t = 233.3, as shown in Figs. 12(c) and 12(d), a second-generation hairpin can be found in each
of the two figures, although their strengths are different. In the weaker-jet case of vjet = 0.16, the
hairpin is apparently very weak with its head missing, while in the stronger vjet = 0.18 jet case, the
second-generation hairpin appears more robust and is surrounded by many other vortices. Later at
t = 311.0, shown in Figs. 12(e) and 12(f), the difference between the weaker and stronger-jet cases
becomes more obvious. Although the structure of vortices found in Fig. 12(f) appears to be different
from the reference case (B) (Fig. 5), there is no difference in the basic sequence, which is that the
first-generation hairpins are followed by the second-generation hairpin followed by the complicated
vortical structures.

Finally, the influence of the duration of jet ejection is investigated. The ejection duration Tjet is
increased from 13.0 up to 19.0, while keeping the jet velocity vjet the same at 0.18. Although the
flow field returns back to the laminar state when the ejection duration Tjet is 13.0 [reference case
(A)], the turbulent transition occurs when Tjet = 19.0. Figure 13 shows snapshots of the vortical
structures at t = 103.7, t = 172.8, and t = 311.0. As shown in Figs. 13(a) and 13(b), at t = 103.7
the first-generation hairpin vortices in both cases are not considerably different. At t = 172.8, the
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FIG. 13. Top views of the vortical structures visualized by Q = 0.001 for the vjet = 0.18 cases when the
duration of the jet Tjet is changed. The surfaces are colored depending on the local streamwise vorticity ωx .
Maxima of Q are (a) 0.024, (b) 0.045, (c) 0.008, (d) 0.023, (e) 0.001, and (f) 0.078.

second-generation hairpins appear only in the longer ejecting case [Fig. 13(d)]. A trace of the similar
structure can be found in x = 120–125 of Fig. 13(c); however, the vortical structure is much weaker.
At t = 311.0 shown in Figs. 13(e) and 13(f), there are no vortical structures in the Tjet = 13.0 case
[reference case (A)], whereas complicated vortical structures appear in the Tjet = 19.0 case. The
complicated structures of the vortices found in Fig. 13(f) are not the same as the reference case (B)
(Fig. 5), nor that of Fig. 12(f). This result indicates that the turbulent transition can be triggered using
an even weaker jet if the jet ejection duration is sufficiently long and that the path to turbulence is
basically not different from the reference case (B).

In all the cases studied here, the basic sequence of the appearance of the first-generation hairpins
followed by the second-generation hairpin with widespread legs and finally the generation of
complicated vortical structures, was the same. Although the complicated vortical structures created
downstream were different between the studied cases, the second-generation hairpin with widespread
legs played a key role in all cases.

IV. CONCLUSIONS

In this numerical study, short-duration jets with different velocities were ejected into a Blasius
boundary layer in order to find a vortical structure serving as the key to a laminar-turbulent transition.
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When the jet velocity exceeded a certain threshold velocity, the laminar-turbulent boundary layer
transition took place downstream, whereas, when the jet velocity fell below this value, the generated
disturbances inside the boundary layer decayed, and the disturbed boundary layer went back to the
laminar state. Thus, the reason for the large difference between the two cases was investigated in
detail. The ejection duration, the aspect ratio of ejection hole, and the ejection location were also
changed and the results were compared.

In both cases of strong and weak jets, the first-generation hairpin vortices were generated,
which did not directly lead to transition. Only in the stronger-jet case, a second-generation hairpin
vortex with widespread legs was generated. Once the second-generation hairpin vortex appeared
in the boundary layer, new vortical structures were generated one after another, leading to a
laminar-turbulent boundary layer transition. The creation process of the second-generation vortices
was studied in detail by tracking the vortex deformation and interaction. It was found that the
second-generation hairpin was created through the connection of the head of the most upstream
first-generation hairpin to a pair of nearby longitudinal vortices, which became the new legs of the
hairpin. The second-generation hairpin would become stronger because its legs would be stretched
by the velocity gradient of the boundary layer, and this vortex triggered the sequence of generations
of vortical structures.

In our studies of different jet-ejecting conditions, we found that a weaker jet could trigger the
boundary layer transition if the jet was ejected for a longer period. Changing the streamwise location,
the spanwise width of the jet hole, or the jet-ejecting duration did not affect the basic sequence
of the appearance of the first-generation hairpins followed by the second-generation hairpin with
widespread legs and finally the generation of complicated vortical structures.

These results show that the onset of turbulence could be attributed to a small difference in the
arrangement and strengths of vortical structures in a boundary layer, which determined whether
the hairpin vortices with widespread legs were generated. Although we could identify a single
structure which serves as the key for the laminar-turbulent boundary layer transition under several
flow conditions, it is difficult to believe that it is the only one for all the transition paths. We hope
further investigations may lead to the finding of a key structure that is universally important in all
boundary layer transitions.
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