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We present a new network model accounting for multidimensional assortativity. Each node is characterized by a
number of features and the probability of a link between two nodes depends on common features. We do not fix a
priori the total number of possible features. The bipartite network of the nodes and the features evolves according
to a stochastic dynamics that depends on three parameters that respectively regulate the preferential attachment in
the transmission of the features to the nodes, the number of new features per node, and the power-law behavior of
the total number of observed features. Our model also takes into account a mechanism of triadic closure. We
provide theoretical results and statistical estimators for the parameters of the model. We validate our approach by
means of simulations and an empirical analysis of a network of scientific collaborations.
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1. Introduction

Many complex systems are often described by means of a network of interacting elements, i.e. a set of nodes
connected by links [6, 15, 18, 33, 66]. A large number of scientific fields involve the study of networks in some form:
networks have been used to analyze interpersonal social relationships, communication systems, international trade,
financial systems, co-authorships and citations, protein interaction patterns, and much more. Therefore, formal
stochastic models and statistical techniques for the analysis of network data have emerged as a major topic of interest in
diverse areas of study. The distribution of the number of node’s connections is well approximated by a power-law in
many contexts and preferential attachment is generally accepted as the simplest mechanism that can reproduce such a
distribution [3, 4]. This basic mechanism, however, is only one of the many forces that can contribute to shape the
evolution of complex networks. For instance, a social network having power-law degree distribution is an exception
rather than the rule. In particular, preferential attachment is not able to reproduce the formation of social groups, or
communities, and the composition of social circles. Assortativity (or assortative mixing), called homophily in social
networks, is defined as the prevalence of network-links between nodes that are similar to each other in some respect.
Network theorists often analyze assortativity in terms of a node’s degree [2, 50, 55, 56]. Moreover, a large body of
research in sociology and, more recently, in economics, confirms the presence of a multidimensional assortativity in
socio-economic networks: homophily, along the lines of race and ethnicity, age and sex, education, professional
background and occupation, shapes complex networks such as friendship, marriage, teamwork, co-membership,
exchange and communication networks [8, 9, 11, 14, 16, 18, 19, 23, 32, 35, 37, 38, 43–45, 47, 57, 65]. The assortativity
property has been also studied in citation networks: for instance, in [13] authors analyze the citations among papers (the
nodes of the network) published in journals of the American Physical Society with respect to their PACS classification
codes, that represent the different research sub-fields. In formal models assortativity is typically represented by
partitioning nodes into different classes (also called groups, clusters, or types) related to some (observable or
unobservable) features [1, 13, 21, 25–27, 29, 30, 36, 40, 52, 61]. The assumption that each node can belong only to a
single class and/or the fact that the number of classes is finite and fixed a priori as well as the number of the possible
features restrict their applicability.

We contribute to this growing body of literature by introducing a new stochastic model accounting for
multidimensional assortativity. The study of networks of papers, such as co-authorship or citation networks
[5, 13, 22, 51], is a particularly suitable application of our model as the generative processes of features and links are
consistent with the basic aspects of the model: first, it is a growing network process where nodes appear in
chronological order and do not exit; second, the links are established at the entrance of the nodes and are unchangeable
along time; third, each node exhibits some features (for example, key-words, main topics, etc.) that are unchangeable
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during time; finally, the set of the features grows in time and the evolution of the node-feature structure is interesting
exactly as the process of the link-creation among nodes. Indeed, the description of both phenomena is very important
for the understanding of the diffusion process of ideas and discoveries inside a certain research field and among
different research fields. Anyway, as we will discuss at the end of this paper, our model can be easily modified and/or
enriched in order to get variants that better fit networks of a different type.

In particular, besides the link-creation mechanism, our model provides a stochastic dynamics for the evolution of the
features. Differently from the above quoted works (see, for instance, the model in [40] and the related discussion about
the selection problem for the dimension of the feature-space), we do not fix a priori the total number of possible
features but we allow the number of observed features to grow in time. The bipartite node-feature network (i.e. the
surrounding context) grows according to a stochastic model that depends on three parameters that respectively regulate
the preferential attachment in the transmission of the features to the nodes, the number of new features per node, and
the power-law behavior of the total number of observed features. Concerning this point, the present paper may be
considered as a companion article to [12]. Indeed, both of them provide an evolving dynamics for the feature-structure,
but they also show some differences. The main issue is that here we introduce a parameter that tunes the preferential
attachment in the transmission of the features to the nodes; while in [12] authors only consider a preferential attachment
rule. Moreover, in that paper a random ‘‘fitness’’ parameter which determines the node’s ability to transmit its own
features to other nodes (see also [7]) is attached to each node; while here we do not take into account fitness parameters
for nodes.

Coming from a structural approach, differently from other models which concentrate only on assortativity
[17, 48, 54, 59], our model also accounts for the principle, known as triadic closure or transitivity, according to which,
if A is a neighbor of B and B is a neighbor of C, then A and C have a high chance to be neighbors. This principle
is widely supported on the empirical ground and it is at the basis of many generative network models
[10, 18, 23, 28, 31, 34, 38, 44, 46, 49, 53, 58, 60, 63, 64]. It is worthwhile to note that the expression ‘‘triadic closure’’
conceptually refers to a link-formation process not depending on the features of the nodes that get attached. However,
also assortativity can naturally induce closed triplets in the network and hence evaluating assortativity and triadic
closure separately sometimes may be not easy. (For a further discussion on this issue, we refer to the next Section 5.)
Anyway models based on both mechanisms produce more realistic networks.

The paper is structured as follows. In Section 2 we describe the basic assumptions of our model and the notation used
throughout the paper. In Section 3 we present our stochastic model, that involves a dynamics for the bipartite network
of nodes-features and the mechanism underlying the formation of the unipartite (i.e. node-node) network. In Section 4
we illustrate some theoretical results and we carefully explain the meaning of each parameter inside our model. In
Section 5 we show and discuss some statistical tools in order to estimate the model parameters from the data. In
Section 6 we provide a number of simulations in order to point out the functioning of the model parameters and
the ability of the proposed estimation tools. Section 7 deals with an application of our model and instruments to a
co-authorship network. Finally, in Section 8 we give our conclusions and discuss some future developments. The paper
is enriched by an Appendix that contains a theorem and its proof, and supplementary simulation results.

2. Preliminaries

We assume new nodes sequentially join the network so that node i represents the one that comes into the network at
time step i. Each node shows a finite number of features, that can be of different kinds (key-words, main topics, spatial/
geographical contexts, profile, etc.), and different nodes can share the same features. It is worthwhile to note that we do
not specify a priori the total number of possible features but we allow the number of observed features to increase along
time. On its arrival, each new node links to some nodes already present in the system. Firstly, links are created
according to probabilities that depend on the number of common features (multidimensional assortativity). Then
additional links can be established by means of common neighbors, inducing the closure of some triangles (triadic
closure). We consider the connections as undirected, non-breakable and we omit self-loops (i.e. links of type ði; iÞ). In
particular, this means that connections are mutual or the direction is naturally predefined (for instance, only citations
from newer to older nodes are possible). We denote the adjacency matrix (symmetric by assumption) by A, so that
Ai; j ¼ 1 when there exists a link between nodes i and j, Ai; j ¼ 0 otherwise. We set

VjðiÞ ¼ f j0 ¼ 1; . . . ; i : Aj; j0 ¼ 1g

to be the set of node j’s neighbors at time step i (after the arrival of i).
We denote by F the binary bipartite network where each row Fi represents the features of node i: Fi;k ¼ 1 if node i

has feature k, Fi;k ¼ 0 otherwise. It represents the surrounding context in which the nodes interact. We assume that each
Fi is unchangeable during time. We take F left-ordered: this means that in the first row the columns for which F1;k ¼ 1

are grouped on the left and hence, if the first node has N1 features, then the columns of F with index k 2 f1; . . . ;N1g
represent these features. The second node could have some features in common with the first node (those corresponding
to indices k such that k ¼ 1; . . . ;N1 and F2;k ¼ 1) and some, say N2, new features. The latter are grouped on the right of
the set for which F1;k ¼ 1, i.e., the columns of F with index k 2 fN1 þ 1; . . . ;N2g represent the new features brought by
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the second node. This grouping structure persists throughout the matrix F and we define Ln ¼
Pn

i¼1 Ni (with L0 ¼ 0),
i.e.,

Ln ¼ overall number of different observed features for the first n nodes: ð2:1Þ

Here is an example of a F matrix with n ¼ 3 nodes:

F ¼
1 1 1 0 0 0 0 0

1 0 1 1 1 0 0 0

0 1 1 1 0 1 1 1

0B@
1CA:

In gray we show the new features brought by each node (in the example N1 ¼ 3, N2 ¼ 2, N3 ¼ 3 and so L1 ¼ 3, L2 ¼ 5,
L3 ¼ 8). Observe that, for every node i, the i-th row contains 1 for all the columns with indices k 2 fLi�1 þ 1; . . . ;Lig
(they represent the new features brought by i). Moreover, some elements of the columns with indices k 2 f1; . . . ;Li�1g
are also 1 (features brought by previous nodes adopted by node i).

3. The Model

Fix � > 0, � 2 ½0; 1�, � 2 ½0; 1�, p 2 ½0; 1� and let � : R! ½0; 1� be an increasing function. The dynamics is the
following. Node 1 arrives and shows N1 features, where N1 is Poi(�)-distributed (the symbol Poi(�) denotes the Poisson
distribution with parameter �). Then, for each i � 2,

. Feature-structure dynamics: Node i arrives and shows a number of features as follows:
– Node i exhibits some of the ‘‘old’’ features brought by the previous nodes 1; . . . ; i� 1: more precisely, each

feature k 2 f1; . . . ;Li�1g is, independently of the others, possessed by node i with probability (that we call
‘‘inclusion-probability’’)

PiðkÞ ¼ �
1

2
þ ð1� �Þ

Pi�1
j¼1 Fj;k

i
; ð3:1Þ

where Fj;k ¼ 1 if node j shows feature k and Fj;k ¼ 0 otherwise.
– Node i also shows Ni ‘‘new’’ features, where Ni is Poi(�i)-distributed with

�i ¼
�

i1��
: ð3:2Þ

(Ni is independent of N1; . . . ;Ni�1 and of the exhibited ‘‘old’’ features.)
The matrix element Fi;k is set equal to 1 if node i has feature k and equal to zero otherwise.

. Network construction: On its arrival, node i determines a set Li of neighbors among the nodes already present in
the network (so that we set Ai; j ¼ Aj;i ¼ 1 for each j 2 Li) as follows:
– (First phase) First, a set L�i of neighbors of node i is established on the basis of the features shown. Each node j

already present in the network (i.e. 1 � j � i� 1) is included in L�i , independently of the others, with
probability �ðSi; jÞ, where

Si; j ¼
XLi
k¼1

Fi;kFj;k ð3:3Þ

is the number of features that i and j have in common.
– (Second phase) Then some extra neighbors are added to Li on the basis of common neighbors. For every node

j 2 f1; . . . ; i� 1g nL�i , each node j0 2 Vjði� 1Þ \L�i (i.e. each neighbor that i and j currently share) can
induce, independently of the others, the additional link ði; jÞ with probability p.

Regarding the features allocation mechanism we note that, when � ¼ 0 and � ¼ 0, it reduces to the sequential
construction of the standard Indian Buffet Process [20, 24].

4. Meaning of the Model Parameters and Some Results

We now illustrate the meaning of the model parameters and some mathematical results regarding our model.
Let us start recalling that, for a fixed node n, its total number of features is given by the sum of two terms, that is:XLn

k¼1

Fn;k ¼
XLn�1

k¼1

Fn;k þ Nn;

where Fn;k ¼ 1 if node n has feature k and Fn;k ¼ 0 otherwise, and Ln�1 is the total number of features observed for the
first n� 1 nodes (see ð2.1Þ), and so

PLn�1

k¼1 Fn;k is the number of ‘‘old’’ features (i.e. the features brought by nodes
1; . . . ; n� 1) possessed also by node n and, finally, Nn is the number of ‘‘new’’ features brought by node n. Looking at
the model, we can realize that the probability distribution of the last term is regulated by the pair of parameters ð�; �Þ
since Nn is distributed as Pð�nÞ with �n ¼ �=n1�� (see ð3.2Þ); while the behavior of the first term is controlled by the
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parameter � since each Fn;k, independently of the others, takes value 1 with probability PnðkÞ (see ð3.1Þ). It is worth to
note that, for each fixed node, its total number of features is finite. Indeed, Nn < þ1 almost surely for each fixed n and,
consequently Ln ¼

Pn
i¼1 Ni < þ1 almost surely for each fixed n. In the next sub-section we explain the role of � and

� in the asymptotic behavior of Ln as a function of n.

4.1 The parameters � and �

The main effect of � is to regulate the asymptotic behavior of the random variable Ln, i.e. the total number of
features observed for the first n nodes, as a function of n. In particular, � > 0 is the power-law exponent of Ln. The main
effect of � is the following: the larger �, the larger the total number of new features brought by a node. Note that, as
pointed out before, also � affects the number of new features per node, but the idea is that � fits the asymptotic behavior
of Ln as a function of n and then, separately, � fits the number of new observed features per node. (In Section 6.1
we will discuss more deeply this fact.) More precisely, we prove (see the Appendix) the following asymptotic
behaviors:

a) for � ¼ 0, we have a logarithmic behavior of Ln, that is Ln=lnðnÞ �!
a:s:

�;
b) for � 2 ð0; 1�, we obtain a power-law behavior, i.e. Ln=n

� �!
a:s:

�=�.
Therefore, independently of the value of the parameter �, when � ¼ 0 we observe the same asymptotic behavior of

the Indian Buffet process [20, 24]; while for � 2 ð0; 1� we observe a power-law behavior. We refer the reader to [62]
and [7] for other variants of the Indian Buffet model that present a power-law behavior. With respect to these other
models, we point out the introduction of the parameter �, whose role is discussed in the next sections, and the simple
form of the definitions (3.1) and (3.2). The simplification in the definition of PiðkÞ and �i implies the loss of some
mathematical properties but, on the other hand, the role played by each parameter results more straightforward and easy
to be implemented.

4.2 The parameter �

The parameter � tunes the phenomenon of preferential attachment in the spreading process of features among nodes.
The value � ¼ 0 corresponds to the ‘‘pure preferential attachment case’’: the larger the weight of a feature k at time step
i� 1 (given by the numerator of the second element in (3.1), i.e., the total number of nodes that exhibit it until time step
i� 1), the greater the probability that k will be shown by the future node i. The value � ¼ 1 corresponds to the ‘‘pure
i.i.d. case’’ with inclusion probability equal to 1/2: a node includes each feature with probability 1/2 independently of
the other nodes and the other features. When � 2 ð0; 1Þ, we have a mixture of the two cases above: the smaller �, the
more significant is the role played by preferential attachment in the transmission of the observed features to new nodes.

4.3 The function � and the parameter p

According to our model, when a new node enters the system, it links to some (possibly zero, one, or more) old nodes
by means of the two phases network construction described in Section 3. In the first phase, a new node i connects itself
to some of the old nodes according to a probability depending on its own features and the ones of the others. The
function � relates the ‘‘first-phase link-probability’’ of i to j (with 1 � j � i� 1) to their ‘‘similarity’’ Si; j defined by
(3.3). Since � is assumed to be an increasing function, a higher number of common features between nodes i and j

induces a larger probability for them to connect (akin the principle of assortativity). For instance, we can take the
generalization of the logistic function, i.e. the sigmoid function

�ðsÞ ¼
1

1þ eKð#�sÞ
with K > 0, # 2 R: ð4:1Þ

The sigmoid function smoothly increases (from 0 to 1) around a threshold #, while K controls its smoothness: the
bigger K, the steeper the sigmoid. In particular, K ¼ 1 and # ¼ 0 give the logistic function and, for K !þ1, �

approaches to a step function equal to 1 or 0, if the variable s is respectively greater or smaller than # (in our model,
# � 0 means that the links are established deterministically based on whether the two involved nodes have, or not, a
similarity bigger than #). In the second phase, node i can connect to some of the nodes discarded in the first phase by
means of common neighbors (triadic closure). The parameter p regulates this phenomenon. Indeed, it represents the
probability that a node causes a link between two of its neighbors. More precisely, in the second phase, the probability
of having a link between node i and a node j 2 f1; . . . ; i� 1g nL�i is ½1� ð1� pÞCi; j�, where Ci; j ¼ cardðVjði� 1Þ \
L�i Þ is the number of common neighbors of i and j after the first phase. Consequently, the ‘‘second-phase link-
probability’’ between a pair of nodes increases with respect to p and the number of neighbors they share. The case
p ¼ 0 corresponds to the case in which the connections only depend on the similarity among nodes. The case p ¼ 1

corresponds to the case in which the connection is automatically established when Ci; j > 0.

5. Estimation of the Model Parameters

In this section we illustrate how to estimate the model parameters from the data.
Suppose we can observe the values of F1; . . . ;Fn, i.e. n rows of the matrix F, where n is the number of ob-
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served nodes. From the asymptotic behavior of Ln, we get that lnðLnÞ=lnðnÞ is a strongly consistent estimator for �,
hence we can use the slope b� of the regression line in the log–log plot (of Ln as a function of n) as an estimate for �.

After computing b�, we can estimate � as:b� ¼ b� when b� ¼ 0b� ¼ b�b� when 0 < b� � 1;
ð5:1Þ

where b� is the slope of the regression line in the plot ðlnðnÞ;LnÞ or in the plot ðnb�;LnÞ according to whether b� ¼ 0 orb� 2 ð0; 1�.
We can estimate � by means of a maximum likelihood procedure. For this purpose, we now give a general expression

of the probability of observing F1 ¼ f1; . . . ;Fn ¼ fn given the parameters �, �, and �.
The first row F1 is simply identified by L1 ¼ N1 and so

PðF1 ¼ f1Þ ¼ PðN1 ¼ n1 ¼ cardfk : f1;k ¼ 1gÞ

¼ Poið�Þfn1g ¼ e��
�n1

n1!
:

Then the second row is identified by the values F2;k, with k ¼ 1; . . . ;L1 ¼ N1, and by N2, so that

PðF2 ¼ f2jF1Þ
¼ PðF2;k ¼ f2;k for k ¼ 1; . . . ;L1, N2 ¼ n2 ¼ cardfk > L1 : f2;k ¼ 1gjF1Þ

¼
YL1

k¼1

P2ðkÞ f2;k ð1� P2ðkÞÞ1� f2;k � Poið�2Þfn2g;

where P2ðkÞ is defined in (3.1) and �2 is defined in (3.2). The general formula is

PðFi ¼ fijF1; . . . ;Fi�1Þ
¼ PðFi;k ¼ fi;k for k ¼ 1; . . . ;Li�1;

Ni ¼ ni ¼ cardfk > Li�1 : fi;k ¼ 1gjF1; . . . ;Fi�1Þ

¼
YLi�1

k¼1

PiðkÞ fi;k ð1� PiðkÞÞ1� fi;k � Poið�iÞfnig;

where PiðkÞ is defined in (3.1) and �i is defined in (3.2). Thus, for n nodes, we can write a formula for the probability of
observing F1 ¼ f1; . . . ;Fn ¼ fn:

PðF1 ¼ f1; . . . ;Fn ¼ fnÞ

¼ PðF1 ¼ f1Þ
Yn
i¼2

PðFi ¼ fijF1; . . . ;Fi�1Þ:
ð5:2Þ

Therefore, we look for b� that maximizes the likelihood function, i.e. the quantity PðF1 ¼ f1; . . . ;Fn ¼ fnÞ as a function
of � (given the observed vectors fi). Since some factors do not depend on �, we can simplify the function to be
maximized as Yn

i¼2

YLi�1

k¼1

PiðkÞ fi;k ð1� PiðkÞÞ1� fi;k ; ð5:3Þ

or, equivalently, passing to the logarithm, asXn
i¼2

XLi�1

k¼1

fi;k lnðPiðkÞÞ þ ð1� fi;kÞ lnð1� PiðkÞÞ: ð5:4Þ

Now, suppose that we are also allowed to observe the adjacency matrix A ¼ ðAi; jÞ1�i; j�n (meaning the final adjacency
matrix after the arrival of all the n observed nodes and the formation of all their links) and to know which are the links
that each of the n observed nodes formed only by means of the previously described first phase (i.e. only due to
assortativity). Denote by A0 ¼ ðA0i; jÞ1�i; j�n the adjacency matrix collecting them. Then, if we decide to model the
function � as in (4.1), we can choose K, #, and p, in order to fit some properties of the observed matrices A0 and A. For
instance, if ‘ is the number of observed (undirected) links in matrix A0 (i.e. only due to the first phase of network
construction) and

f � ¼
observed number of linked (in A0) pairs of nodes with s� features in common

observed number of pairs of nodes with s� features in common
;

where s� is a fixed value that we choose, then we can determine K > 0 and # 2 R by solving (numerically) the
following system of two equations:
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�ðs�Þ ¼ ð1þ eKð#�s
�ÞÞ�1 ¼ f �

E
X

i; j:2�i�n;1� j�i�1

A0i; j

" #
¼
Xn
i¼2

Xi�1

j¼1

�ðSi; jÞ

¼
Xn
i¼2

Xi�1

j¼1

ð1þ eKð#�s
�ÞþKðs��

PLi

k¼1
Fi;kFj;kÞÞ�1 ¼ ‘:

ð5:5Þ

By means of the first equation, we fit the probability that a pair of nodes with s� features in common establishes a link
(during the first phase of network construction); while, by the second equation, we set the expected number of links in
A0 equal to the observed ‘. From the first equation, we get the quantity Kð#� s�Þ, we then replace it in the second one
in order to obtain K and from this we get #. Note that this is not a proper estimation procedure, but rather a selection
mechanism for K and # in order to fit some observed properties of the network. After that, we can estimate p by means
of a maximum likelihood procedure based on the observed matrices.

Some important remarks follow. If in the considered situation the formation of links only occur according to the first
phase (i.e. as a result of the assortativity property), then we can set p ¼ 0 as in this case the presence of closed triplets is
only caused by common features and the matrix A coincides with A0. Then we have no problem to implement the
previous procedures for detecting all the model parameters. When we have both phases of network construction (i.e.
p > 0), the detection of K, #, and p may generate some problems since the available data are typically F and A, while,
in order to implement the above procedure, we also need to observe A0. When we cannot observe A0, we may try to
reconstruct it from A in some consistent way, if it is possible for the considered application [41]. However, every
empirical criterion used to distinguish between the two different types of links (the ones due to the first phase and the
ones induced by the second phase), obviously has some degree of arbitrariness and it can be hard to understand the bias
implied by it. An example of this problem can be found in [13] regarding a citation network. In the case no suitable
criterion is found, we may try to select K, #, and p in such a way that some properties of the adjacency matrix
generated by the model are close to the observed one. Statistical procedures that integrate out unobserved variables (in
this case, A0) or expectation-maximization (EM) algorithms are also possible and they will be subject of future
developments. Therefore, although assortativity and triadic closure are theoretically well separated concepts, in practice
there are situations in which estimating them singly is not a simple task. However, their combination is often necessary
in order to get models that produce realistic networks. The simulation of the model with the observed matrix F and
p ¼ 0 can be useful as a benchmark.

6. Simulations

In this section, we present a number of simulations performed following the dynamics for the features’ selection and
links’ creation described in Section 3. We simulated the outcome for feature matrices and for unipartite networks of
1000 nodes, on a sample of 100 realizations. Regarding the feature-selection dynamics, we analyzed the resulting
feature matrices (constructed as explained in Section 2) for different values of the model parameters �, �, and �,
responsible of the number of new features per node, the asymptotic behavior of Ln defined in ð2.1Þ, and the
phenomenon of preferential attachment in the transmission of the observed features to new nodes (see Section 4). After
that, we simulated the network construction taking � as in ð4.1Þ and analyzed its properties for different values of �, K,
and p, while # is determined according to a certain number ‘ of (undirected) links due to the first phase of the unipartite
network construction.

6.1 Simulations of the feature matrix and estimation of �, �, and �

As said before, parameter � regulates the number of new features per node: the larger �, the higher the number of
new features per node. Concerning this, it is very important to stress that also the parameter � affects the number of new
features per node (see Section 4), but the idea is that we select first �, in order to fit the asymptotic behavior of Ln, and
then � in order to fit the number of new features per node.

In the first set of simulations we kept � ¼ 0:5 and � ¼ 0:1 fixed and we built the feature matrix for different values of
� ¼ 3; 8; 13. In Fig. 1 we can see the shapes of the feature matrices (where colored points denote non-zero values, i.e.
1) for the three different values of �. It is immediate to see that the main difference among these matrices concerns the
number of features: the total number of features is 185 for � ¼ 3, 533 for � ¼ 8, and 819 for � ¼ 13. Correspondingly,
the mean number of new features per node (averaged over 100 realizations) is about 0.19 for � ¼ 3, 0.49 for � ¼ 8, and
0.8 for � ¼ 13. The mean number of (total) adopted features per node (averaged over 100 realizations) is about 19.99
for � ¼ 3, 52.66 for � ¼ 8, and 79.65 for � ¼ 13.

In Fig. 2 we show the estimates for the different values of � (with � ¼ 0:5 and � ¼ 0:1 kept fixed).
Parameter � controls the asymptotic behavior of Ln as a function of n. For this reason we plotted Ln as a function of n

in a log–log scale, results are reported in Fig. 3. In Figs. 3(a) and 3(b), we show the estimates for two different values
of � (� ¼ 0:75 and � ¼ 1), with � ¼ 3 and � ¼ 0:1. In Figs. 3(c) and 3(d), we show the estimate of �, for � ¼ 0:5 and
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� ¼ 0:75, but for a different value of � (� ¼ 10) in order to underline that � does not affect the power-law behavior of
Ln (obviously, the value of the estimate can be more or less accurate for different values of �).

Finally, parameter � regulates the phenomenon of preferential attachment in the transmission of the observed features
to new nodes: � ¼ 0 corresponds to the pure preferential attachment case; while � ¼ 1 to the pure i.i.d. case with
inclusion probability equal to 1/2. The parameter � is estimated through the maximization of the likelihood function in
Eq. ð5.4Þ. Results for the estimated parameters are reported in Table 1.

In order to assess the accuracy of our estimation procedures, we checked the Mean Squared Error (MSE) for all the
three parameters. More precisely, taking a sample of R ¼ 100 realizations, we computed the quantities

MSE� ¼
1

R

XR
r¼1

ðb�r � �Þ2; MSE� ¼
1

R

XR
r¼1

ðb�r � �Þ2; MSE� ¼
1

R

XR
r¼1

ðb�r � �Þ2;
where �; �; � are the values used to generate all the 100 realizations and b�r;b�r;b�r are the estimated values associated
with the realization r. For � ¼ 10, � ¼ 0:5, � ¼ 0:1, we obtained the following values:

MSE� ¼ 1:18; MSE� ¼ 0:0004; MSE� ¼ 9� 10�7:

In Fig. 4, we show the shapes of the feature matrices (where colored points denote non-zero values, i.e. 1) for
different values of � ¼ 0:1; 0:5; 0:95 (two different values of � ¼ 3; 8 and a fixed value of � ¼ 0:5). Although the
number of new features for each node is comparable for different values of � and a fixed value of � (indeed, the
parameter � does not affect the number of new features per node, but only the transmission of the old features to the
subsequent nodes), the number of old features selected by the nodes depends on �: the more � is near to zero, the more
the probability of showing an old feature depends on how many other nodes selected it (preferential attachment). This
fact is pointed out by the ‘‘full’’ vertical lines, that are concentrated on the left-hand side (since the preferential
attachment phenomenon, the first features are more successfully transmitted). For greater values of �, the matrices
become denser and they present a more uniform distribution of the features among the nodes. The mean number of

α = 8, β = 0.5, δ = 0.1

Features

U
se

rs

1 107 214 321 428 5331000

700

350

1

Fig. 1. An example of features matrices for n ¼ 1000, � ¼ 0:5, � ¼ 0:1, and different values of �: 3 (left), 8 (middle), 13 (right).
Colored points denote 1 and white points denote 0.

Fig. 2. Estimates of � (when � ¼ 0:5 and � ¼ 0:1) obtained as the slope of the regression line in the plot of Ln as a function of n�.
Different values of �: 3 (left), 8 (middle), 13 (right) are reported.

Table 1. Estimates of � computed as the maximum point b� of the likelihood function in formula ð5.4Þ with � ¼ 10 and � ¼ 0:5.

� 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

�̂ 0.0002 0.1002 0.2002 0.296 0.401 0.495 0.603 0.703 0.8 0.9 1
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(total) adopted features per node for � ¼ 3 and � equal to 0.1, 0.5, and 0.95 (averaged over 100 realizations) is about
19.99, 44.24, and 71.49 respectively; while for � ¼ 8 and same values of � it is approximately equal to 52.66, 128.17,
and 167.63 respectively.

In order to measure the ‘‘uniformity’’ of the distribution of the features among nodes, we simply divided the total set
of the features into two subsets: f1; . . . ; bLn=2cg and fbLn=2c þ 1; . . . ;Lng. For each feature, we computed the mean
number of nodes that adopted it (i.e. the total number of nodes that adopted the considered feature divided by the total
number of nodes that could have adopted it). Then we computed the mean value of these numbers over the two subsets
and took the difference between these two values. For different values of � and �, Table 2 contains the corresponding
values (averaged over 100 realizations) of these differences. It is clear that the smaller the reported value, the more
uniform is the distribution of the features in the matrix. We can notice that for � ¼ 0:1 and � ¼ 0:5 the obtained values
are comparable (about 0.10 and 0.11); while for � ¼ 0:95 we got a very small value.

6.2 Simulations of the unipartite network and procedure in order to recover K and #

We performed the simulations of the unipartite network as follows. Once a feature matrix F is generated, links are
created according to the two phases of the link construction described in Section 3, taking � as in ð4.1Þ. We simulated
the network for n ¼ 1 000 nodes on a sample of 100 realizations.

In the first set of experiments, we fixed a number ‘ of links and we determined the value of #, for different values of
K, by solving (numerically) the equationXn

i¼2

Xi�1

j¼1

ð1þ eKð#�
PLi

k¼1
Fi;kFj;kÞÞ�1 ¼ ‘; ð6:1Þ

in order to have the expected number of (undirected) links due to the first phase of the unipartite network construction

(a) (b)

(c) (d)

Fig. 3. Estimates of � obtained as the slope of the regression line in the log–log plot of Ln as a function of n. Different values of �
and � are reported: � ¼ 3, � ¼ 0:75 (a), � ¼ 3, � ¼ 1 (b), � ¼ 10, � ¼ 0:75 (c), and � ¼ 10, � ¼ 0:5 (d).
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equal to the given number ‘. Hence, we studied the network structure as a function of the parameters K and p (related
to the link formation). In particular, we recall that p increases the triadic closure phenomenon. We also considered
different values of �, that regulates the preferential attachment in the transmission of the features and so influences the
shape of the feature matrix F. In the Appendix we report the results.

With the second set of experiments, we studied the accuracy of the procedure (5.5) used in order to recover K and #.
Hence, we fixed � ¼ 10, � ¼ 0:5, � ¼ 0:1, K ¼ 1, # ¼ 10, and p ¼ 0 (so that A0 ¼ A) and we generated a sample of
R ¼ 100 realizations of the network. We then applied the procedure (5.5) to each realization r (with s� ¼ 101) in order
to get the corresponding values bKr and b#r. We found:

1

R

XR
r¼1

bKr ¼ 1:000462; MSEK ¼
1

R

XR
r¼1

ðbKr � KÞ2 ¼ 0:00415;

1

R

XR
r¼1

b#r ¼ 9:998843; MSE# ¼
1

R

XR
r¼1

ðb#r � #Þ2 ¼ 0:00010:

7. Application to a Co-authorship Network

We downloaded bibliographic information of papers and preprints found in the IEEE Xplore database [67]. In this
dataset a link is taken as the co-authorship of a paper between two or more authors and the contexts of the papers are
given by 2-grams (pairs of sequential words in the title or abstract). We selected the papers using search terms related to
the specific research area of autonomous cars (also called connected cars).

7.1 Description of the dataset

We downloaded (on Aug. 7, 2014) all papers in the IEEE preprint and paper archive using 17 specific search terms:
‘Lane Departure Warning’, ‘Lane Keeping Assist’, ‘Blindspot Detection’, ‘Rear Collision Warning’, ‘Front Distance
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Fig. 4. Examples of features matrices for n ¼ 1000, � ¼ 0:5, different values of �: 3 (top), 8 (bottom) and different values of �: 0.1
(left), 0.5 (middle), 0.95 (right). Colored points denote 1 and white points denote 0.

Table 2. Measure of the ‘‘uniformity’’ of the feature matrix defined as the difference (averaged over 100 realizations) between the
mean number of nodes per feature for the first and the second half of the features’ set. Considered parameters: � ¼ 3; 8, � ¼ 0:5
and � ¼ 0:1; 0:5; 0:95.

� ¼ 0:1 � ¼ 0:5 � ¼ 0:95

� ¼ 3 0.1005 0.1119 0.0099

� ¼ 8 0.1010 0.1129 0.0097

1We also consider different values for s� and we obtain similar results.
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Warning’, ‘Autonomous Emergency Braking’, ‘Pedestrian Detection’, ‘Traffic Jam Assist’, ‘Adaptive Cruise Control’,
‘Automatic Lane Change’, ‘Traffic Sign Recognition’, ‘Semi-Autonomous Parking’, ‘Remote Parking’, ‘Driver
Distraction Monitor’, ‘V2V or V2I or V2X’, ‘Co-Operative Driving’, ‘Telematics & Vehicles’, and ‘Night vision’. The
IEEE archive returned all the papers in their database that contain these terms in the title or abstract, and we
downloaded the bibliographic records for all returned papers including the authors, title, abstract, and the date on which
the paper was added to the database. This download yielded 6 129 distinct papers with a complete bibliographic record
and at least two authors. While these search terms can not be expected to yield all papers related to automated car
research, we expect to have found a relatively broad panel of related papers.

7.2 Analysis of the feature-structure

The feature matrix was built by extracting all 2-grams (pairs of words) appearing in either the title or abstract of a
paper. The text was converted to lowercase, removing all punctuation (with the exception of the ‘/’ and ‘.’ characters)
and multi-spaces, and split into individual sentences. The 2-grams occurring in any sentence in the title or abstract were
labeled as features of the paper. In order to remove spurious 2-grams (e.g. ‘this paper’ often occurs in the abstract, but it
is not relevant to connected cars), we exclude any 2-grams containing any of the words: ‘the’, ‘a’, ‘of’, ‘and’, ‘to’, ‘is’,
‘for’, ‘in’, ‘an’, ‘with’, ‘by’, ‘from’, ‘on’, ‘or’, ‘that’, ‘at’, ‘be’, ‘which’, ‘are’, ‘as’, ‘one’, ‘may’, ‘it’, ‘and/or’, ‘if’,
‘via’, ‘can’, ‘when’, ‘we’, ‘his’, ‘her’, ‘their’, ‘this’, ‘our’, ‘into’, ‘has’, ‘have’, ‘only’, ‘also’, ‘do’, ‘does’, ‘presents’,
‘paper’, ‘doesn’t’, and ‘not’. This approach gave 155 897 distinct 2-grams (features) for a total of 6 129 papers (nodes).
We ordered the papers chronologically based on their entry date into the IEEE database (which we expect to be a good
proxy for their publication date). The 2-grams were ordered in terms of their first appearance in a paper (as described in
Section 2).

Having extracted the set of the 2-grams contained in each paper, we constructed the feature-matrix F, with Fik ¼ 1 if
paper i contains the 2-gram k and Fik ¼ 0 otherwise. The resulting matrix F is shown in Fig. 5(a), with non-zero values
of F indicated by colored points. We also simulated the feature-matrix for a smaller network of 1000 nodes taking the
parameters equal to the corresponding estimated values (see Fig. 5(b)). The number of features obtained in the
simulation is 28 664, which is consistent with the observed matrix.

The growth of the cumulative count Ln of the distinct 2-grams (the number of distinct 2-grams seen until the nth

paper included, as described in Section 2) is shown in Fig. 6(b) in a log–log scale and it shows a clear power-law
behavior, with estimated parameter b� ¼ 0:98 (that corresponds to the estimated value of the model parameter �).
Regarding the model parameter �, we get the estimated value b� ¼ 32:28 and in Fig. 6(a) we show the corresponding
fit plotting the cumulative count Ln of the 2-grams as a function of n

b�. Finally, the estimated value for the parameter � isb� ¼ 0:0057. As we can see, this last value is very small and so we can conclude that the preferential attachment rule in
the transmission of the features plays an important role.

(a)

Features

A
rt

ic
le

s

1 5000 10000 15000 20000 25000
1000

700

350

1

(b)

Fig. 5. (a) Feature-matrix associated to the dataset. Dimensions: 6 129 nodes (papers) � 155 897 features (2-grams). Colored
points denote 1 and white points denote 0. (b) Feature matrix for 1000 nodes, obtained by simulation of the model with
� ¼ b� ¼ 32:28, � ¼ b� ¼ 0:98, and � ¼ b� ¼ 0:0057. Colored points denote 1 and white points denote 0. The total number of
features is 28 664, which is consistent with the observed matrix.
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7.3 Analysis of the unipartite network

Our dataset includes 6 129 papers for a total of 13 581 distinct author names. The considered unipartite network is
constructed taking the papers as nodes and drawing a link between two nodes if they share at least one author. We
harmonized the author names across different papers by ensuring that the authors’ last names are always found in the
same position and removed any stray punctuation in the names. No further disambiguation was performed, meaning
that authors who may use their full names in some papers but only their initials in other papers will be treated as
distinct. For example, the names ‘‘J. J. Anaya’’ and ‘‘Jose Javier Anaya’’ are treated as distinct authors in our dataset,
while it is possible that these distinct names refer to the same person. A full disambiguation of author names is
computationally difficult [42], and beyond the scope of this paper. This approach gave a unipartite network with 19 065
links that involve 4 712 nodes in the network. This means that there is a set of 1 417 isolated nodes, where a paper has
two or more authors that are not listed on any other paper in the dataset. However, we decided to also consider these
nodes in our analysis since we included them in the features matrix as nodes that can potentially link to other nodes.

The distribution of the 2-grams (the features) in common between two papers (the nodes) given the presence or the
absence of at least one shared author (i.e. given the presence or the absence of a link between them) is plotted in
Fig. 7(a). The curve with (red) triangles is the distribution of the number of 2-grams shared by two papers given they
have at least one co-author. More precisely, for each value on the x-axis, we have on the y-axis the fraction

num. of pairs of papers with x 2-grams in common and at least 1 shared author

num. of pairs of papers with at least 1 shared author
: ð7:1Þ

The curve with (green) stars represents the distribution of the number of 2-grams shared by two papers given they have
no authors in common, i.e. it is given by the same formula as (7.1) but with pairs of papers without shared authors. As
we can see, there is a higher probability of common 2-grams when there are shared authors.

The fraction of pairs of papers with x 2-grams in common that have at least one shared author is plotted in Fig. 7(b)
by the curve with (red) triangles. More precisely, for each value on the x-axis, we have on the y-axis the fraction

num. of pairs of papers with x 2-grams in common and at least 1 shared author

num. of pairs of papers with x 2-grams in common
: ð7:2Þ

As we can see, the plotted fraction increases with the number of features in common.
The network is composed of 586 connected components with at least one link and 1 417 isolated nodes (a total of

2 003 components). The largest connected component has 2 776 nodes and 16 108 links, so about the 45% of the nodes
can reach each other in the largest connected component and it includes about the 84% of the links. The diameter (i.e.
the maximum distance between nodes) of the largest connected component is 23. The other 585 connected components
(disconnected from the largest component but still having at least one link) globally contain 1 936 nodes, and over 90%
of the components (containing over 75% of the nodes outside of the largest connected component) contain 7 or fewer
nodes. Hence the percentage of reachable pairs (denoted by RP in the remainder of the paper) of nodes in the network is
about 20.51%.

We decided to first use the model with p ¼ 0 in order to have a benchmark and then try to guess a good value for p.
Taking p ¼ 0, we set A0 ¼ A (i.e. links are only formed by means of the first phase) and we applied the procedure (5.5)
to the observed feature-matrix F with s� ¼ 10 (the corresponding value for f � is 0.725) and ‘ ¼ 19 065 in order to
detect K and #: we found bK ¼ 0:8228 and b# ¼ 8:8201. We then generate a sample of 100 realizations of the network
by simulating the model starting from the observed matrix F and with p ¼ 0, K ¼ bK ¼ 0:8228, and # ¼ b# ¼ 8:8201.
We obtained a network structure very different from the observed one (for instance, RP ¼ 99%). This can be obviously
explained by the fact that we set p ¼ 0 (benchmark case), while a value of p strictly greater than 0 is guessable. Indeed,

Fig. 6. Estimated values of the model parameters � and �.
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an author with m � 3 papers automatically guarantees a minimum of m
3

� �
triangles. Setting p ¼ 0:7 and generating a

sample of 100 realizations of the network by simulating the model starting from the observed matrix F2, we succeeded
to capture a value for RP very near to the observed one, i.e. RP ¼ 19:61% (this value is an average over the 100
realizations). Moreover, we obtained that the largest connected component contains on average 2 689.16 nodes, again a
value near to the observed one. Finally, Fig. 7(a) contains the distribution of the features in common between two
nodes given the presence (light blue circles) or the absence (dark blue squares) of a link between them and Fig. 7(b)
depicts the fraction of pairs of nodes with x features in common that are linked. Although the curves related to real data
are obviously more irregular, the curves generated by simulations properly fit to the observed ones.

8. Conclusions and Discussion on Some Variants of the Model

In this paper, we presented a new network model, where each node is characterized by a number of features and the
probability of a link between two nodes depends on the number of features and neighbors they share, so that it includes
two of the most observed phenomena in complex systems: assortativity, i.e. the prevalence of network-links between
nodes that are similar to each other in some sense, and triadic closure, meant as the high probability of having a link
between a pair of nodes due to common neighbors. The bipartite network of nodes and features grows according to a
stochastic dynamics that depends on three parameters respectively regulating the preferential attachment in the
transmission of the features to the nodes, the number of new features per node, and the power-law behavior of the total
number of observed features. We provide theoretical results and statistical tools for the estimation of the model
parameters involved in the feature-structure dynamics. From the observation of the feature-matrix, we completely
determine the parameters, �; �; �, that regulate its evolution. We provide a procedure for recovering the two parameters,
K; #, of the function �, which relates the link probability between two nodes to their similarity in terms of common
features, and the parameter p which tunes triadic closure. However, as discussed in Section 5, for this last point, we
need to know which are the links formed by assortativity and those formed by triadic closure, but often they are not
easily distinguishable. Therefore we aim in the future to evaluate more sophisticated estimation techniques for this
issue. Nevertheless, as shown in Section 7, we can still exploit the proposed procedure in order to guess a good
combination of these parameters.

The originality and the merit of our model mainly lie in the double temporal dynamics (one for the feature-structure
and one for the network of nodes), but also in the attention given to both assortativity and triadic closure mechanisms.
We underline that, differently from other models in the literature, we do not require to specify a priori the values of
some hyperparameters, such as the total number of possible features (avoiding some selection problems discussed in
[40]). In the future, we aim at improving our model in order to make it suitable for other kind of networks, e.g. real
social networks (such as friendship networks). In particular, the following variations are possible:

. Normalizing the number of common features: We can vary the model by replacing the factor Fi;kFj;k in formula
(3.3) with

# of common features

fr
ac

tio
n

0 1 10 50

0
10

− 8
10

− 6
10

−4
10

−2
1

linked (data)
linked (simulated)
not linked (data)
not linked (simulated)

(a)

# of common features

fr
ac

tio
n

0 10 20 30 40 50

0
0.

2
0.

4
0.

6
0.

8
1

data
simulated

(b)

Fig. 7. (a) Distribution of the 2-grams (features) in common between two papers (nodes) given the presence (red triangles for the
real data and light blue circles for the simulated ones) or the absence (green stars for the real data and dark blue squares for the
simulated ones) of at least one co-author. (b) Fraction of pairs of papers with x 2-grams in common that have at least one co-
author, for the real data case (red triangles) and for the simulated one (light blue circles).

2In this case we took into account that A0 is different from A, and so the parameters K and # used for the simulations were recovered by applying the

procedure (5.5) to the observed feature-matrix F with a smaller ‘ (that corresponds to the expected number of links formed during the first phase).

We set ‘ ¼ 4 000 in order to have an averaged total number of links around the observed one. We found bK ¼ 1:019574 and b# ¼ 9:047858.
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Fi;kFj;kPi�1
j0¼1 Fj0 ;k

; 8ði; jÞ with 1 � j � i� 1;

so that the contribution of a common feature k is smaller when the number of nodes with k as a feature is larger.
. Weighted bipartite matrices: We can modify the model by replacing in the inclusion-probability and in the link-

probability the binary random number Fi;k by a random weight Wi;k of the form Wi;k ¼ Fi;kYi;k=ð
PLi

k¼1 Fi;kYi;kÞ,
where Yi;k are i.i.d. strictly positive random variables. (By convention, we set 0=0 ¼ 0.) Hence, we have

Wi;k 2 ½0; 1� and
XLi
k¼1

Wi;k ¼ 1

so that Wi;k represents the weight percentage given to feature k by node i. Therefore, the preferential attachment in
the inclusion-probability becomes a ‘‘weighted preferential attachment,’’ in the sense that it depends on the total
weight given to feature k by the previous nodes, and the link-probability depends on the weights associated to the
common features.

. Changeable links: For some real situations, we need to consider also the case in which the links among nodes can
change along time. For instance, we can combine a link-formation model and a link-dissolution model as in [39].
See also [29] for node exit.

. Exit of some features and social influence of links on features: We can modify the evolution of the feature-
structure by accounting for the fact that at each time step j (after the arrival of the node j) some features can
become ‘‘obsolete’’ and so for such a feature k we will have Fi;k ¼ 0 for all i � jþ 1. Moreover, a node could
change some features under the influence of its ‘‘friends’’ (i.e. neighbors) [29]. Hence, we can introduce a
sequence ðFðiÞÞi of bipartite matrices such that each FðiÞ provides the features before the arrival of node iþ 1, so
that in the inclusion-probabilities and in the link-probabilities for node iþ 1, the matrix F is replaced by FðiÞ.

. Different dynamics for triadic closure: We can change the second phase of our model by means of different
policies for the selection of additional neighbors of a node i among the neighbors of i’s neighbors. Indeed, in this
paper we consider a binomial model according to which each common neighbor of a pair ði; jÞ of not-linked nodes
gives, independently of the others, a probability p of inducing a link between i and j. A possible alternative is that,
with probability p, an additional link for a certain node is formed by the selection (uniformly at random) of a node
among the neighbors of its neighbors (e.g., [10]). For other possible variants, see [28, 64].

Acknowledgments and Financial Support

Authors thank the anonymous referees for their careful reading of the work and their insightful comments and
suggestions.

Authors acknowledge support from CNR PNR Project ‘‘CRISIS Lab.’’

REFERENCES

[1] Airoldi, E., Blei, D., Fienberg, S., and Xing, E., ‘‘Mixed membership stochastic block-models,’’ Journal of Machine Learning
Research, 9: 1981–2014 (2008).

[2] Bagler, G., and Sinha, S., ‘‘Assortative mixing in protein contact networks and protein folding kinetics,’’ Bioinformatics,
23(14): 1760–1767 (2007).

[3] Barabási, A. L., and Albert, R., ‘‘Statistical mechanics of complex networks,’’ Reviews of Modern Physics, 74: 47–97 (2002).
[4] Barabási, A. L., and Albert, R., ‘‘Emergence of scaling in random networks,’’ Science, 286: 509–512 (1999).
[5] Barabási, A. L., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., and Vicsek, T., ‘‘Evolution of the social network of scientific

collaborations,’’ Physica A, 311: 590–614 (2002).
[6] Barrat, A., Barthlemy, M., and Vespignani, A., Dynamical Processes on Complex Networks, Cambridge University Press

(2008).
[7] Berti, P., Crimaldi, I., Pratelli, L., and Rigo, P., ‘‘Central limit theorems for an Indian buffet model with random weights,’’ The

Annals of Applied Probability, 25(2): 523–547 (2015).
[8] Bessi, A., Caldarelli, G., Del Vicario, M., Scala, A., and Quattrociocchi, W., Social Determinants of Content Selection in the

Age of (mis)Information, Proceedings of SOCINFO 2014; abs/1409.2651 (2014).
[9] Blau, P. M., and Schwartz, J. E., Crosscutting Social Circles: Testing a Macrostructural Theory of Intergroup Relations,

Academic Press, Orlando, FL (1984).
[10] Bianconi, G., Darst, R. K., Iacovacci, J., and Fortunato, S., ‘‘Triadic closure as a basic generating mechanism of communities

in complex networks,’’ Physical Review E, 90(4): 042806 (2014).
[11] Block, P., and Grund, T., ‘‘Multidimensional homophily in friendship networks,’’ Network Science, 2(02): 189–212 (2014).
[12] Boldi, P., Crimaldi, I., and Monti, C., ‘‘A network model characterized by a latent attribute structure with competition,’’

Information Sciences, 354: 236–256 (2016).
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Appendix

A.1 Proof of the asymptotic behavior of Ln

Theorem A.1. Consider our model, the following statements hold true:
a) Ln=lnðnÞ �!

a:s:
� for � ¼ 0;

b) Ln=n
� �!

a:s:
�=� for � 2 ð0; 1�.

Proof. Set �1 ¼ � and recall that the random variables Ni are independent and each Ni has distribution Poi(�i).
The assertion b) is trivial for � ¼ 1 since, in this case, Ln is the sum of n independent random variables with

distribution Poi(�) and so, by the classical strong law of large numbers, Ln=n �!
a:s:

�.
Now, let us prove assertions a) and b) for � 2 ½0; 1Þ. Define

�ð�Þ ¼ � if � ¼ 0 and �ð�Þ ¼
�

�
if � 2 ð0; 1Þ;

anð�Þ ¼ log n if � ¼ 0 and anð�Þ ¼ n� if � 2 ð0; 1Þ:

We need to prove that Ln=anð�Þ �!
a:s:

�ð�Þ. First, we observe thatPn
i¼1 �i

anð�Þ
¼ �

Pn
i¼1 i

��1

anð�Þ
�! �ð�Þ:

Next, let us define

T0 ¼ 0 and Tn ¼
Xn
i¼1

Ni � E½Ni�
aið�Þ

¼
Xn
i¼1

Ni � �i
aið�Þ

:

Then (Tn) is a martingale with

E½T2
n � ¼

Xn
i¼1

E½ðNi � �iÞ2�
aið�Þ2

¼
Xn
i¼1

�i

aið�Þ2

and so supn E½T2
n � ¼

Pþ1
i¼1

�i
aið�Þ2

< þ1. Thus, (Tn) converges a.s. and the Kronecker’s lemma implies

1

anð�Þ

Xn
i¼1

aið�Þ
ðNi � �iÞ
aið�Þ

�!
a:s:

0;

that is
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Pn
i¼1 Ni

anð�Þ
�
Pn

i¼1 �i

anð�Þ
�!
a:s:

0:

Therefore, we can conclude that

lim
n

Ln

anð�Þ
¼ lim

n

Pn
i¼1 Ni

anð�Þ
¼ lim

n

Pn
i¼1 �i

anð�Þ
¼ �ð�Þ a.s.

�

Remark A.2. The above Theorem implies that lnðLnÞ=lnðnÞ is a strongly consistent estimator of �. Indeed, if � ¼ 0

then Ln �
a:s:
� lnðnÞ as n!þ1; hence lnðLnÞ �

a:s:
lnð�Þ þ lnðlnðnÞÞ, therefore lnðLnÞ=lnðnÞ �

a:s:
lnð�Þ=lnðnÞ þ

lnðlnðnÞÞ=lnðnÞ !
a:s:

0 ¼ �. Furthermore, if � > 0, then we have Ln �
a:s: ð�=�Þn� as n!þ1 so lnðLnÞ �

a:s:

lnð�=�Þ þ � lnðnÞ, hence lnðLnÞ=lnðnÞ �
a:s:

lnð�=�Þ=lnðnÞ þ �!
a:s:
�.

A.2 Simulations of the unipartite network: Some analysis on its structure

We generated feature matrices with n ¼ 1 000 nodes taking fixed values for � and �, i.e. � ¼ 10 and � ¼ 0:5, and
different values for � (� 2 ½0:1; 0:5�). Starting from these feature matrices, we considered the structure of the unipartite
network for three different values of K (K ¼ 1; 4; 10) and three different values of p (p ¼ 0; 0:1; 0:5). (The parameter #
is determined as described in Subsection 6.2 in order to have the expected number of (undirected) links due to the first
phase of the unipartite network construction equal to the given number ‘.)

We considered the following quantities:
. The clustering coefficient defined as:

C ¼
Number of closed triplets

Number of connected triplets of nodes
; ðA:1Þ

where a connected triplet is a set of three nodes that are connected by two or three undirected links (open and
closed triplet, respectively). See Table 3.

. The fraction of pairs of nodes at distance at most 20, i.e. the fraction of pairs of nodes that are reachable from each
other within at most 20 steps (see Table 4):

RP20 ¼
Number of couples of nodes at distance at most 20

Number of couples of nodes
: ðA:2Þ

We recorded also the observed maximum value h� of the distance between the nodes.
. The degree distribution, in the sense of the Complementary Cumulative Distribution Function (CCDF) of the

number of neighbors of each node (see Fig. 8).

Table 3. Clustering coefficient (averaged over 100 realizations) for � ¼ 10, � ¼ 0:5, ‘ ¼ 4000, and different values of �, K, and p.

� ¼ 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

p ¼ 0 0.04 0.05 0.07 0.08 0.08 0.10 0.13 0.13 0.10

K ¼ 1 p ¼ 0:1 0.13 0.17 0.20 0.23 0.23 0.24 0.26 0.27 0.30

p ¼ 0:5 0.39 0.45 0.45 0.49 0.49 0.47 0.49 0.53 0.62

p ¼ 0 0.06 0.06 0.08 0.09 0.08 0.11 0.13 0.13 0.11

K ¼ 4 p ¼ 0:1 0.15 0.18 0.21 0.24 0.23 0.25 0.26 0.28 0.30

p ¼ 0:5 0.42 0.47 0.46 0.49 0.49 0.48 0.50 0.53 0.62

p ¼ 0 0.06 0.06 0.08 0.09 0.08 0.11 0.13 0.14 0.11

K ¼ 10 p ¼ 0:1 0.15 0.18 0.21 0.24 0.23 0.25 0.26 0.28 0.30

p ¼ 0:5 0.42 0.47 0.46 0.49 0.49 0.48 0.49 0.53 0.62

Table 4. Fraction of pairs of nodes at distance at most 20 (averaged over 100 realizations) for � ¼ 10, � ¼ 0:5, ‘ ¼ 4000, and
different values of �, K, and p. For each set of parameters, the corresponding observed maximum distance h� is reported in
brackets.

K ¼ 1 K ¼ 4 K ¼ 10

� ¼ 0.1 0.5 0.1 0.5 0.1 0.5

p ¼ 0 0.439 (5) 0.128 (4) 0.350 (4) 0.118 (4) 0.349 (4) 0.117 (4)

p ¼ 0:1 0.438 (4) 0.128 (3) 0.352 (3) 0.118 (3) 0.350 (3) 0.117 (3)

p ¼ 0:5 0.437 (3) 0.128 (2) 0.351 (2) 0.118 (2) 0.349 (2) 0.117 (2)
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. The behavior of the degree of a node with respect to its age (see Fig. 9).
The clustering coefficient C strongly increases with p (as expected). For p ¼ 0 the percentage of closed triplets

increases with �, but remains smaller or equal than 13% of total triplets for all considered values of � and K. For values
of p greater than zero, the percentage of closed triplets increases with � in a range of 13–30% for p ¼ 0:1 and in a range
of 39–62% for p ¼ 0:5. The effect of K and � seems to be marginal on the clustering coefficient.

Looking at the values obtained for the fraction of pairs of nodes at distance at most 20, for the two different values
� ¼ 0:1 and � ¼ 0:5, we can notice a clear difference in the behavior (independently of K and p): indeed, the fraction of
reachable pairs for � ¼ 0:1 (when K and p are fixed) is highly greater than the corresponding fraction for � ¼ 0:5.
Moreover, the fraction of reachable pairs decreases when K increases (and the other parameters are fixed) and slightly
changes when only p varies. The complementary fraction corresponds to the pairs of nodes at distance greater than 20
or not reachable from each other.

The observed maximum distance h� (among pairs of nodes at distance at most 20) varies in range of 2–5 and
decreases when � (p and K, respectively) increases and the other parameters are fixed.

The effect of p on the total number of links is clear: when p ¼ 0 the number of links is approximately equal to the
chosen ‘ (i.e. ‘ ¼ 4000), since in this case we have only the first phase of the unipartite network construction: links are
related only to the features. The larger p the more triangles are closed and so the more links we have. Table 5 reports
the total number of links for all combinations of the parameters.

Regarding the degree distribution, Fig. 8 shows the CCDF of the number of neighbors of a node. Parameter p also
influences the shape of the degree distribution, together with � and K. Finally, Fig. 9 provides a description of the
behavior of the degree of a node with respect to its age (defined as 1000� nþ 1 where n is the arrival time of the
node). We can observe that the degree increases as the age decreases. This fact can be explained by noticing that
younger nodes can choose among a greater number of features and so they typically show a high similarity with a
greater number of nodes. This is an opposite tendency with respect to the Barabasi–Albert growing network, where
older nodes are more likely to have large degrees. Therefore, we think that it is possible to use a mixture of these two
models (our model and Barabasi–Albert model) in order to regulate this issue.
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Fig. 8. CCDF of the number of neighbors (averaged over 100 realizations) for � ¼ 10, � ¼ 0:5, ‘ ¼ 4000, and different values of K
(corresponding to different boxes) and different values of � and p (corresponding to different symbols and colors).

Table 5. Total number of links in the unipartite network (averaged over 100 realizations) for � ¼ 10, � ¼ 0:5, ‘ ¼ 4000, and �, K,
and p varying. Note that for p ¼ 0 the number is around the chosen ‘ ¼ 4000.

K ¼ 1 K ¼ 4 K ¼ 10

� ¼ 0.1 0.5 0.1 0.5 0.1 0.5

p ¼ 0 4 003.47 3 998.15 4 002.17 3 999.59 3 997.13 3 999.52

p ¼ 0:1 17 853.46 19 862.54 19 107.53 19 523.42 19 112.46 19 484.86

p ¼ 0:5 93 093.05 43 538.68 81 343.97 41 382.62 81 039.49 41 156.34

Modeling Networks with a Growing Feature-Structure 143



K = 1 K = 4 K = 10

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●
●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●
●

●
●

●●

●

●

●

●
●
●
●

●●
●

●●●
●●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●
●●●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●

●●
●

●
●

●

●●

●

●
●

●

●

●

●

●●

●
●●●

●

●
●

●
●
●

●

●
●●

●

●

●
●●●●

●

●

●

●

●

●

●

●
●
●●

●

●

●●●

●

●
●

●●

●
●

●

●

●

●●

●
●
●

●

●

●
●●

●

●●●

●

●

●●

●●

●

●

●
●●

●

●

●

●

●
●

●

●●●

●

●
●
●
●
●

●

●●
●
●
●
●

●

●

●
●
●
●

●

●

●

●

●●

●

●
●

●●

●

●●
●

●

●●

●●
●

●●

●●
●●●●

●

●
●

●

●●●

●●●●

●

●

●

●
●●●

●

●

●

●

●

●●●
●●●●
●●

●

●●
●●

●

●
●
●●

●●
●●

●

●

●●

●

●

●●
●

●

●●●●

●

●●

●

●●●

●

●●●●
●●
●
●
●●
●
●●
●
●●
●●
●

●

●●●

●

●
●
●

●

●

●

●●●●
●●
●●

●●

●●●
●●
●●●

●

●●

●

●

●

●

●

●●●

●
●
●

●

●●

●●●
●●●●
●●●●●
●

●●●
●●●●●●

●
●●

●●

●

●

●

●
●
●
●●
●

●●●●

●
●●●
●●
●
●●●●●
●●
●●
●

●
●

●●●
●
●●●●
●

●●●●●●

●

●
●
●●●●
●
●●
●
●
●
●●●

●

●●●
●●

●
●
●
●●●
●
●
●●
●●
●●●

●
●
●●●
●●

●

●●●
●
●●
●
●
●●●●●●●●●
●●●
●

●
●●●
●●
●●●●

●

●
●
●
●●●
●
●●●●●

●

●●●

●

●●●●●
●

●●
●
●●●●●●●●●●
●
●●●●
●
●

●
●●●●●●
●
●●●●●
●
●●●●●●●
●●●●●●●●●

●

●●●●●

●
●
●●●●●●●
●
●
●●●●●
●
●
●●●
●●
●
●●
●
●●
●
●●
●●●
●
●
●●
●
●●●●●●●
●●●●●●●●●

●

●●●●●●●●●
●●●
●●
●●●
●●●●●●●●●●●●●●●●●

●
●
●●●●●●
●
●●●●●●●●●●●
●
●●
●
●●●●●
●
●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●
●●

●

●

●
●

●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●
●

●●

●

●

●
●●

●
●

●

●

●

●

●

●●
●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●●

●
●

●

●

●●
●
●

●
●

●

●

●
●
●

●
●

●

●
●
●

●

●

●

●●●

●●

●

●
●
●●●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●
●
●
●●

●

●

●
●

●●●●●●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●
●
●

●
●

●

●
●

●●●

●

●●

●

●
●
●●
●

●
●

●

●●

●

●●
●
●

●●

●
●●
●
●
●

●●●

●●

●

●●

●

●
●
●

●

●
●

●

●
●●●

●●

●

●

●●
●
●

●

●

●

●
●

●

●

●
●●●

●

●●●
●●●●

●

●
●
●●

●

●●
●●
●●●
●●
●●●

●

●
●
●

●
●

●●●●
●●
●
●
●

●●

●

●

●●●●
●
●●
●
●●

●
●

●

●

●
●

●●
●
●
●
●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●●●
●●●●

●

●

●

●●●

●
●

●●

●

●

●

●

●
●
●
●●

●

●●

●

●

●

●●

●
●

●
●

●●

●

●
●

●●
●●
●

●
●
●
●

●

●

●
●
●

●

●
●●

●
●●
●
●
●●●●●

●

●

●

●
●
●●
●
●
●
●

●

●●
●

●●

●●●
●
●●
●

●

●●●●●●
●●●

●

●●

●

●●●●●●●
●●●●

●

●●●●

●
●

●

●●

●

●●●

●

●●
●
●

●
●
●●
●
●
●●●●

●●●●●●

●

●●●

●

●

●●

●●●
●
●●
●●

●●●●

●

●●●●●●
●

●

●●
●
●
●
●
●
●●●

●
●

●●●●●●
●●
●

●●●●●●
●
●●●
●
●●●●●●

●

●●

●
●

●

●●●
●
●●●
●
●

●
●
●●
●
●●

●

●●●

●●●

●●●

●●
●●
●
●●
●
●●●●●●●
●
●
●●

●
●●●●

●
●
●
●●●●●

●
●

●

●

●●●●●●●●●●

●●
●
●●●●
●
●●●●●●●●●
●
●●●●●●

●

●●●
●●●●●
●
●●

●

●●●●●●●
●
●●
●
●
●
●

●●●●●●●●●●
●
●
●
●

●●●●
●
●●●●●

●

●●●●●●●●●

●

●●
●
●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●

●
●●
●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●●●

●●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●●
●
●
●

●

●

●
●

●

●

●

●

●
●
●

●

●
●
●
●
●●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●●
●

●
●

●

●

●●

●●●●

●

●

●

●●
●

●●

●

●

●

●●

●

●●
●
●●
●

●

●

●●
●

●
●

●●
●

●

●

●
●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●●●
●
●
●

●●●

●●

●

●

●

●●
●

●●●

●

●
●
●●●

●

●

●●

●●●
●
●●

●

●
●

●
●
●●●●●●

●

●

●

●

●

●

●●

●

●

●

●●
●
●
●

●●●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●●

●
●
●
●●
●●

●

●●●

●

●●●●●●●

●●

●
●
●

●

●●

●

●
●

●
●

●●●●●
●

●●

●

●

●

●
●

●
●
●●

●
●
●
●●●

●

●

●●
●●
●●●●●●

●

●●●
●●●
●

●●●
●

●

●

●

●●●●

●
●●
●●
●
●

●●

●●●
●
●

●●
●
●

●

●
●●●●
●●●
●●●

●

●●●●●●●
●
●●●●●

●

●●●●●

●

●

●

●

●
●●●●

●●

●

●●●

●

●●
●
●
●
●

●●
●●

●
●●

●
●
●●

●

●

●

●●●●●
●
●

●●●

●

●●
●

●

●

●
●●●
●

●

●

●●●●

●

●●
●

●

●●
●●
●
●●●

●
●

●●
●

●

●
●
●
●
●

●
●
●
●●
●

●

●●

●
●
●

●●●
●
●
●
●
●

●●●
●
●

●
●●
●

●

●

●
●
●
●
●●
●
●●●●●●
●
●●●●●●●
●
●●●

●
●
●
●●●
●●●

●

●

●

●

●●●
●●
●
●
●
●●●
●●●
●
●●●●●●●●●

●

●

●
●●●●●●
●
●●●
●
●●●
●●
●●●●●●●●●●●●●●●●●●

●●●●
●
●

●

●●●●●●●●●●
●
●
●
●

●

●●●●
●
●
●
●●●●●●●●●●●
●●

●●
●
●●●●●●●
●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0

50

100

150

0
100
200
300
400

0

200

400

600

0
50

100
150
200

0
100
200
300

0
100
200
300

δ
=

0.1
δ

=
0.1

δ
=

0.1
δ

=
0.5

δ
=

0.5
δ

=
0.5

p
=

0
p

=
0.1

p
=

0.5
p

=
0

p
=

0.1
p

=
0.5

025
0

50
0

75
0

10
00 025
0

50
0

75
0

10
00 025
0

50
0

75
0

10
00

Age

D
eg

re
e

K
●

●

●

1

4

10

(δ, p)

●

(0.1, 0)

(0.1, 0.1)

(0.1, 0.5)

(0.5, 0)

(0.5, 0.1)

(0.5, 0.5)

Fig. 9. Behavior of the degree with respect to the age (averaged over 100 realizations) for � ¼ 10, � ¼ 0:5, ‘ ¼ 4000, and different
values of K (corresponding to the different columns and colors) and different values of � and p (corresponding to the different
symbols).
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