SHORT COMMUNICATION

Transforming a Matrix into a Standard Form

Akihiro MUNEMASA* and Pritta Etriana PUTRI*
Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

Abstract

We show that every matrix all of whose entries are in a fixed subgroup of the group of units of a commutative ring with identity is equivalent to a standard form. As a consequence, we improve the proof of Theorem 5 in D. Best, H. Kharaghani, H. Ramp [Disc. Math. 313 (2013), 855-864].

KEYWORDS: monomial matrix, weighing matrix, Hadamard matrix, permutation matrix

1. Introduction

Throughout this note, we let R be a commutative ring with identity. We fix a subgroup T of the group of units of R, and set $T_{0}=T \cup\{0\}$. The set of $m \times n$ matrices with entries in T_{0} is denoted by $T_{0}^{m \times n}$. If $T=\{z \in \mathbb{C}:|z|=1\}$, then $W \in T_{0}^{n \times n}$ is called a unit weighing matrix of order n with weight w provided that $W W^{*}=w I$ where W^{*} is the transpose conjugate of W. Unit weighing matrices are introduced by D. Best, H. Kharaghani, and H. Ramp in [1, 2]. Moreover, a unit weighing matrix is known as a unit Hadamard matrix if $w=n$ (see [3]). A unit weighing matrix in which every entry is in $\{0, \pm 1\}$ is called a weighing matrix. We refer the reader to [4] for an extensive discussion of weighing matrices, and to [5] for more information on applications of weighing matrices.

The study on the number of inequivalent unit weighing matrices was initiated in [1]. Also, observing the number of weighing matrices in standard form leads to an upper bound on the number of inequivalent unit weighing matrices [1]. In this work, we will introduce a standard form of an arbitrary matrix in $T_{0}^{m \times n}$ and show that every matrix in $T_{0}^{m \times n}$ is equivalent to a matrix in standard form.

We equip T_{0} with a total ordering \prec satisfying $\min \left(T_{0}\right)=1$ and $\max \left(T_{0}\right)=0$. Moreover, let $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right)$ be arbitrary row vectors with entries in T_{0}. If k is the smallest index such that $a_{k} \neq b_{k}$, then we write $\boldsymbol{a}<\boldsymbol{b}$ provided $a_{k} \prec b_{k}$. We write $\boldsymbol{a} \leq \boldsymbol{b}$ if $\boldsymbol{a}<\boldsymbol{b}$ or $\boldsymbol{a}=\boldsymbol{b}$. If $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}$ are row vectors of a matrix $A \in T_{0}^{m \times n}$ and $\boldsymbol{a}_{1}<\cdots<\boldsymbol{a}_{m}$, then we say that the rows of A are in lexicographical order.

Definition 1.1. We say that a matrix in $T_{0}^{m \times n}$ is in standard form if the following conditions are satisfied:
(S1) The first non-zero entry in each row is 1 .
(S2) The first non-zero entry in each column is 1.
(S3) The first row is ones followed by zeros.
(S4) The rows are in lexicographical order according to \prec.
The subset of $T_{0}^{m \times m}$ consisting of permutation matrices, nonsingular diagonal matrices and monomial matrices, are denoted respectively, by $\mathbb{P}_{m}, \mathbb{D}_{m}$ and \mathbb{M}_{m}. Then $\mathbb{M}_{m}=\mathbb{P}_{m} \mathbb{D}_{m}$.

Definition 1.2. For $A, B \in T_{0}^{m \times n}$, we say that A is equivalent to B if there exist monomial T_{0}-matrices M_{1} and M_{2} such that $M_{1} A M_{2}=B$.

We will restate the proof of [1, Theorem 5] as the following algorithm.
Algorithm 1.3. Let W be an arbitrary unit weighing matrix.
(1) We multiply each i th row of W by r_{i}^{-1} where r_{i} is the first non-zero entry in i th row. Denote the obtained matrix by $W^{(1)}$.
(2) Let c_{j} be the first non-zero entry in j th column of $W^{(1)}$. Let $W^{(2)}$ obtained from $W^{(1)}$ by multiplying each j th column by c_{j}^{-1}.
(3) Permute the columns of $W^{(2)}$ so that the first row has w ones. Denote the resulting matrix by $W^{(3)}$.
(4) Let $W^{(4)}$ be a matrix obtained from $W^{(3)}$ by sorting the rows of $W^{(3)}$ lexicographically with the ordering \prec.

[^0]Then $W^{(4)}$ is in standard form.
The steps (1)-(4) in Algorithm 1.3 was used in order to prove Theorem 5 in [1]. However, we provide a counterexample to show that this algorithm does not produce a standard form.

Counterexample 1.4. The matrix

$$
W=\left[\begin{array}{cccccc}
1 & -i & i & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & i & i \\
1 & 0 & 0 & -1 & -i & i \\
1 & 0 & 0 & -1 & i & -i \\
0 & 1 & 1 & 0 & -i & -i \\
1 & i & -i & 1 & 0 & 0
\end{array}\right]
$$

is a unit weighing matrix, where i is a 4 th root of unity in \mathbb{C}. Also, we equip the set $\{0, \pm i, \pm 1\}$ with a total ordering \prec defined by $1 \prec-1 \prec i \prec-i \prec 0$. Since the first nonzero entry in each row of W is one, $W^{(1)}=W$. Applying step (2), we obtain

$$
W^{(2)}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & i & -i & 0 & 1 & 1 \\
1 & 0 & 0 & -1 & -1 & 1 \\
1 & 0 & 0 & -1 & 1 & -1 \\
0 & i & -i & 0 & -1 & -1 \\
1 & -1 & -1 & 1 & 0 & 0
\end{array}\right] .
$$

Notice that the first row of $W^{(2)}$ is all ones followed by zeros. So, $W^{(3)}=W^{(2)}$. Finally, by applying the last step of the algorithm, we have

$$
W^{(4)}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & -1 & -1 & 1 & 0 & 0 \\
1 & 0 & 0 & -1 & 1 & -1 \\
1 & 0 & 0 & -1 & -1 & 1 \\
0 & i & -i & 0 & 1 & 1 \\
0 & i & -i & 0 & -1 & -1
\end{array}\right] .
$$

We see that $W^{(4)}$ is not in standard form. So, we conclude that the algorithm does not produce a matrix in standard form as claimed.

This counterexample shows that the additional steps are needed to complete the proof of Theorem 5 in [1]. In the next section, we will prove a more general theorem than [1, Theorem 5] by showing that every matrix in $T_{0}^{m \times n}$ is equivalent to a matrix that is in standard form.

2. Main Theorem

In addition to the conditions (S1)-(S4) in Definition 1.1, we will consider the following condition:
(S3)' The first nonzero row is ones followed by zeros.
Note that (S3)' is weaker than (S3). The condition (S3)' is crucial in the proof of Lemma 2.1, where we encounter a matrix whose first row consists entirely of zeros.

Lemma 2.1. Let

$$
A=\left[\begin{array}{ll}
A_{1} & A_{2}
\end{array}\right] \in T_{0}^{m \times\left(n_{1}+n_{2}\right)},
$$

where $A_{i} \in T_{0}^{m \times n_{i}}, i=1,2$. Then there exist $P \in \mathbb{P}_{m}$ and $M \in \mathbb{M}_{n_{2}}$ such that $P A_{2} M$ satisfies (S2) and (S3)', and $\left[\begin{array}{ll}P A_{1} & \left.P A_{2} M\right] \text { satisfies (} \mathrm{S} 4 \text {). }\end{array}\right.$

Proof. Without loss of generality, we may assume A_{1} satisfies (S4). Then there exist row vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}$ of A_{1} such that $\boldsymbol{a}_{1}<\cdots<\boldsymbol{a}_{k}$, and positive integers m_{1}, \ldots, m_{k} such that

$$
A_{1}=\left[\begin{array}{ccc}
\mathbf{1}_{m_{1}}^{\top} & & \\
& \ddots & \\
& & \mathbf{1}_{m_{k}}^{\top}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{a}_{1} \\
\vdots \\
\boldsymbol{a}_{k}
\end{array}\right]
$$

where $\sum_{i=1}^{k} m_{i}=m$. Write

$$
A_{2}=\left[\begin{array}{c}
B_{1} \\
\vdots \\
B_{k}
\end{array}\right]
$$

where $B_{i} \in T_{0}^{m_{i} \times n_{2}}$ for $i=1,2, \ldots, k$. We may assume $B_{1} \neq 0$, since otherwise the proof reduces to establishing the assertion for the matrix A with the first m_{1} rows deleted. Let \boldsymbol{b} be a row vector of B_{1} with maximum number of nonzero components. Then there exists $M \in \mathbb{M}_{n_{2}}$ such that the vector $\boldsymbol{b} M$ constitutes ones followed by zeros. Moreover, for each $i \in\{1, \ldots, k\}$, there exists $P_{i} \in \mathbb{P}_{m_{i}}$ such that the rows of $P_{i} B_{i} M$ are in lexicographic order. It follows that $\boldsymbol{b} M$ is the first row of $P_{1} B_{1} M$, that is also the first row of $P A_{2} M$. Set $P=\operatorname{diag}\left(P_{1}, \ldots, P_{k}\right)$. Then $P A_{2} M$ satisfies (S3). Since $P A_{1}=A_{1}$, we see that $\left[\begin{array}{ll}P A_{1} & P A_{2} M\end{array}\right]$ satisfies (S4).

With the above notation, we prove the assertion by induction on n_{2}. First we treat the case where $\boldsymbol{b} M=\mathbf{1}$. This in particular includes the case where $n_{2}=1$, the starting point of the induction. In this case, the first row of $P A_{2} M$ is $\mathbf{1}$, hence $P A_{2} M$ satisfies (S2). The other assertions have been proved already.
Next we consider the case where $\boldsymbol{b} M=\left[\begin{array}{lll}\mathbf{1}_{n_{2}-n_{2}^{\prime}} & \mathbf{0}_{2}^{\prime}\end{array}\right]$, with $0<n_{2}^{\prime}<n_{2}$. Define $A_{1}^{\prime} \in T_{0}^{m \times\left(n_{1}+n_{2}-n_{2}^{\prime}\right)}$ and $A_{2}^{\prime} \in T_{0}^{m \times n_{2}^{\prime}}$ by setting $\left[\begin{array}{ll}A_{1}^{\prime} & A_{2}^{\prime}\end{array}\right]$ to be the matrix obtained from $\left[\begin{array}{ll}A_{1} & P A_{2} M\end{array}\right]$ by deleting the first row. By inductive hypothesis, there exist $P^{\prime} \in \mathbb{P}_{m-1}$ and $M^{\prime} \in \mathbb{M}_{n_{2}^{\prime}}$ such that $P^{\prime} A_{2}^{\prime} M^{\prime}$ satisfies (S2) and (S3) , and [$\left.P^{\prime} A_{1}^{\prime} \quad P^{\prime} A_{2}^{\prime} M^{\prime}\right]$ satisfies (S4). By our choice of \boldsymbol{b}, the row vector $\boldsymbol{b} M$ is lexicographically the smallest member among the rows of $P_{1} B_{1} M$, and the same is true among the rows of the matrix $P_{1} B_{1} M^{\prime \prime}$, where

$$
M^{\prime \prime}=M\left[\begin{array}{cc}
I_{n_{2}-n_{2}^{\prime}} & 0 \\
0 & M^{\prime}
\end{array}\right]
$$

It follows that the matrix

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & P^{\prime}
\end{array}\right]\left[\begin{array}{ll}
A_{1} & P A_{2} M^{\prime \prime}
\end{array}\right]=\left[\begin{array}{cc}
* & 0 \\
P^{\prime} A_{1}^{\prime} & P^{\prime} A_{2}^{\prime} M^{\prime}
\end{array}\right]
$$

satisfies (S4). Set

$$
P^{\prime \prime}=\left[\begin{array}{cc}
1 & 0 \\
0 & P^{\prime}
\end{array}\right] P .
$$

Since $P^{\prime} A_{2}^{\prime} M^{\prime}$ satisfies (S2), while the first row of $P^{\prime \prime} A_{2} M^{\prime \prime}$ is the same as that of $P A_{2} M$ which is $\left[\mathbf{1}_{n_{2}-n_{2}^{\prime}} \mathbf{0}_{n_{2}^{\prime}}\right]$, the matrix $P^{\prime \prime} A_{2} M^{\prime \prime}$ satisfies both (S2) and (S3)'. We have already shown that the matrix $\left[P^{\prime \prime} A_{1} \quad P^{\prime \prime} A_{2} M\right]$ satisfies (S4).

Lemma 2.2. Under the same assumption as in Lemma 2.1, there exist $M_{1} \in \mathbb{M}_{m}$ and $M_{2} \in \mathbb{M}_{n_{2}}$ such that

Proof. We will prove the assertion by induction on m. Suppose $m=1$. It is clear that every single row vector always satisfies (S4). Also, every single row vector satisfying (S3)' necessarily satisfies (S2). Now, if $A_{1}=0$ or $n_{1}=0$, then there exists $M_{2} \in \mathbb{M}_{n_{2}}$ such that $A_{2} M_{2}$ satisfies (S3)' and hence (S1) is satisfied. If $A_{1} \neq 0$, then there exist $a \in T$ and $M_{2} \in \mathbb{M}_{n_{2}}$ such that $a A_{1}$ satisfies (S1) and $a A_{2} M_{2}$ satisfies (S3)'.

Assume the assertion is true up to $m-1$. First, we consider the case where $A_{1}=0$ or $n_{1}=0$. Without loss of generality, we may assume $A_{2} \neq 0$. Furthermore, we may assume that the first row and the first column of A_{2} are ones followed by zeros. Then there exists $P^{\prime} \in \mathbb{P}_{n_{2}}$ such that

$$
A_{2} P^{\prime}=\left[\right]
$$

where $B_{2} \in T_{0}^{m_{1} \times t}$ has no zero column. By Lemma 2.1, there exist $P \in \mathbb{P}_{m_{1}}$ and $M \in \mathbb{M}_{t}$ such that $P B_{2} M$ satisfies (S2) and (S3)' and $\left[\begin{array}{ll}P B_{1} & P B_{2} M\end{array}\right]$ satisfies (S4). Let

$$
C_{1}^{\prime}=C_{1}\left[\begin{array}{cc}
I_{n_{2}-n_{2}^{\prime}-t-1} & 0 \\
0 & M
\end{array}\right] .
$$

By inductive hypothesis, there exist $M_{1}^{\prime} \in \mathbb{M}_{m-m_{1}-1}$, and $M_{2}^{\prime} \in \mathbb{M}_{n_{2}^{\prime}}$ such that $\left[\begin{array}{lll}M_{1}^{\prime} C_{1}^{\prime} & M_{1}^{\prime} C_{2} M_{2}^{\prime}\end{array}\right]$ satisfies (S1) and (S4), and $M_{1}^{\prime} C_{2} M_{2}^{\prime}$ satisfies (S2) and (S3)'. By setting

$$
M_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & P & 0 \\
0 & 0 & M_{1}^{\prime}
\end{array}\right], \quad M_{2}=P^{\prime}\left[\begin{array}{ccc}
I_{n_{2}-n_{2}^{\prime}-t} & 0 & 0 \\
0 & M & 0 \\
0 & 0 & M_{2}^{\prime}
\end{array}\right]
$$

the matrix $M_{1} A_{2} M_{2}$ satisfies (S1)-(S4).
Next we consider the case $A_{1} \neq 0$. Without loss of generality, we may assume that the first nonzero column in A_{1} is ones followed by zeros. Write

$$
A_{1}=\left[\begin{array}{ccc}
& \mathbf{1}^{T} & B_{1} \\
0_{m \times t} & 0 & D_{1}
\end{array}\right]
$$

for some $t<n_{1}$, with $B_{1} \in T_{0}^{m_{1} \times\left(n_{1}-t-1\right)}$ and $D_{1} \in T_{0}^{m_{2} \times\left(n_{1}-t-1\right)}$ for some m_{1}, m_{2} with $m_{1}+m_{2}=m$ and $m_{2}<m$. Then there exists $P^{\prime} \in \mathbb{P}_{n_{2}}$ such that

$$
A_{2} P^{\prime}=\left[\begin{array}{cc}
B_{2} & 0_{m_{1} \times n_{2}^{\prime}} \\
D_{2} & C_{2}
\end{array}\right]
$$

for some $n_{2}^{\prime} \geq 0$, where $B_{2} \in T_{0}^{m_{1} \times\left(n_{2}-n_{2}^{\prime}\right)}$ has no zero column. By Lemma 2.1, there exist $P \in \mathbb{P}_{m_{1}}$ and $M \in \mathbb{M}_{n_{2}-n_{2}^{\prime}}$ such that $P B_{2} M$ satisfies (S2) and (S3) and $\left[\begin{array}{ll}P B_{1} & P B_{2} M\end{array}\right]$ satisfies (S4). Let $C_{1}=\left[\begin{array}{ll}D_{1} & D_{2} M\end{array}\right]$. Then by inductive hypothesis, there exist $M_{1}^{\prime} \in \mathbb{M}_{m_{2}}$ and $M_{2}^{\prime} \in \mathbb{M}_{n_{2}^{\prime}}$ such that $\left[M_{1}^{\prime} C_{1} \quad M_{1}^{\prime} C_{2} M_{2}^{\prime}\right]$ satisfies (S1) and (S4), and $M_{1}^{\prime} C_{2} M_{2}^{\prime}$ satisfies (S2) and (S3)'. By setting

$$
M_{1}=\left[\begin{array}{cc}
P & 0 \\
0 & M_{1}^{\prime}
\end{array}\right], \quad M_{2}=P^{\prime}\left[\begin{array}{cc}
M & 0 \\
0 & M_{2}^{\prime}
\end{array}\right],
$$

the proof is complete.
Theorem 2.3. Every matrix in $T_{0}^{m \times n}$ is equivalent to a matrix that is in standard form.
Proof. Let $W \in T_{0}^{m \times n}$. Setting $A_{1}=\varnothing$ and $A_{2}=W$ in Lemma 2.2, we see that W is equivalent to a matrix that is in standard form.

Corollary 2.4. Every unit weighing matrix is equivalent to a unit weighing matrix that is in standard form.
Proof. Setting $T=\{z \in \mathbb{C}:|z|=1\}$, the proof is immediate from Theorem 2.3.

Acknowledgments

The second author would like to acknowledge the Hitachi Global Foundation for providing a scholarship grant.

REFERENCES

[1] D. Best, H. Kharaghani, H. Ramp, "On unit matrices with small weight," Disc. Math., 313: 855-864 (2013).
[2] D. Best, H. Kharaghani, H. Ramp, "Mutually unbiased weighing matrices," Des. Codes Cryptogr., 76: 237-256 (2015).
[3] D. Best, H. Kharaghani, "Unbiased complex Hadamard matrices and bases," Cryptography and Communications, 2: 199-209 (2010).
[4] R. Craigen, H. Kharaghani, Orthogonal designs in: Handbook of Comb. Des. (C. J. Colbourn and J. H. Dinitz, eds.), 2nd Ed., Chapman \& Hall/CRC Press (2007).
[5] C. Koukouvinos, J. Seberry, "Weighing matrices and their applications," JSPI, 62: 91-101 (1997).

[^0]: Received October 24, 2016; Accepted November 8, 2016; J-STAGE Advance published November 28, 2016 2010 Mathematics Subject Classification: Primary 15B34, Secondary 05B20.
 *Corresponding author. E-mail: munemasa@math.is.tohoku.ac.jp, pritta@ims.is.tohoku.ac.jp

