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We show that every matrix all of whose entries are in a fixed subgroup of the group of units of a commutative
ring with identity is equivalent to a standard form. As a consequence, we improve the proof of Theorem 5 in
D. Best, H. Kharaghani, H. Ramp [Disc. Math. 313 (2013), 855–864].
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1. Introduction

Throughout this note, we let R be a commutative ring with identity. We fix a subgroup T of the group of units of R,
and set T0 ¼ T [ f0g. The set of m� n matrices with entries in T0 is denoted by Tm�n

0 . If T ¼ fz 2 C : jzj ¼ 1g, then
W 2 Tn�n

0 is called a unit weighing matrix of order n with weight w provided that WW� ¼ wI where W� is the transpose
conjugate of W . Unit weighing matrices are introduced by D. Best, H. Kharaghani, and H. Ramp in [1, 2]. Moreover, a
unit weighing matrix is known as a unit Hadamard matrix if w ¼ n (see [3]). A unit weighing matrix in which every
entry is in f0;�1g is called a weighing matrix. We refer the reader to [4] for an extensive discussion of weighing
matrices, and to [5] for more information on applications of weighing matrices.

The study on the number of inequivalent unit weighing matrices was initiated in [1]. Also, observing the number of
weighing matrices in standard form leads to an upper bound on the number of inequivalent unit weighing matrices [1].
In this work, we will introduce a standard form of an arbitrary matrix in Tm�n

0 and show that every matrix in Tm�n
0 is

equivalent to a matrix in standard form.
We equip T0 with a total ordering � satisfying minðT0Þ ¼ 1 and maxðT0Þ ¼ 0. Moreover, let a ¼ ða1; . . . ; anÞ and

b ¼ ðb1; . . . ; bnÞ be arbitrary row vectors with entries in T0. If k is the smallest index such that ak 6¼ bk, then we write
a < b provided ak � bk. We write a � b if a < b or a ¼ b. If a1; . . . ; am are row vectors of a matrix A 2 Tm�n

0 and
a1 < � � � < am, then we say that the rows of A are in lexicographical order.

Definition 1.1. We say that a matrix in Tm�n
0 is in standard form if the following conditions are satisfied:

(S1) The first non-zero entry in each row is 1.
(S2) The first non-zero entry in each column is 1.
(S3) The first row is ones followed by zeros.
(S4) The rows are in lexicographical order according to �.

The subset of Tm�m
0 consisting of permutation matrices, nonsingular diagonal matrices and monomial matrices, are

denoted respectively, by Pm, Dm and Mm. Then Mm ¼ PmDm.

Definition 1.2. For A;B 2 Tm�n
0 , we say that A is equivalent to B if there exist monomial T0-matrices M1 and M2 such

that M1AM2 ¼ B.

We will restate the proof of [1, Theorem 5] as the following algorithm.

Algorithm 1.3. Let W be an arbitrary unit weighing matrix.
(1) We multiply each ith row of W by r�1

i where ri is the first non-zero entry in ith row. Denote the obtained matrix
by W ð1Þ.

(2) Let cj be the first non-zero entry in jth column of W ð1Þ. Let W ð2Þ obtained from W ð1Þ by multiplying each jth
column by c�1

j .
(3) Permute the columns of W ð2Þ so that the first row has w ones. Denote the resulting matrix by W ð3Þ.
(4) Let W ð4Þ be a matrix obtained from W ð3Þ by sorting the rows of W ð3Þ lexicographically with the ordering �.
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Then W ð4Þ is in standard form.

The steps (1)–(4) in Algorithm 1.3 was used in order to prove Theorem 5 in [1]. However, we provide a
counterexample to show that this algorithm does not produce a standard form.

Counterexample 1.4. The matrix

W ¼

1 �i i 1 0 0

0 1 1 0 i i

1 0 0 �1 �i i

1 0 0 �1 i �i
0 1 1 0 �i �i
1 i �i 1 0 0

2
666666664

3
777777775

is a unit weighing matrix, where i is a 4th root of unity in C. Also, we equip the set f0;�i;�1g with a total ordering �
defined by 1 � �1 � i � �i � 0. Since the first nonzero entry in each row of W is one, W ð1Þ ¼ W . Applying step (2),
we obtain

W ð2Þ ¼

1 1 1 1 0 0

0 i �i 0 1 1

1 0 0 �1 �1 1

1 0 0 �1 1 �1

0 i �i 0 �1 �1

1 �1 �1 1 0 0

2
666666664

3
777777775
:

Notice that the first row of W ð2Þ is all ones followed by zeros. So, W ð3Þ ¼ W ð2Þ. Finally, by applying the last step of the
algorithm, we have

W ð4Þ ¼

1 1 1 1 0 0

1 �1 �1 1 0 0

1 0 0 �1 1 �1

1 0 0 �1 �1 1

0 i �i 0 1 1

0 i �i 0 �1 �1

2
666666664

3
777777775
:

We see that W ð4Þ is not in standard form. So, we conclude that the algorithm does not produce a matrix in standard
form as claimed.

This counterexample shows that the additional steps are needed to complete the proof of Theorem 5 in [1]. In the
next section, we will prove a more general theorem than [1, Theorem 5] by showing that every matrix in Tm�n

0 is
equivalent to a matrix that is in standard form.

2. Main Theorem

In addition to the conditions (S1)–(S4) in Definition 1.1, we will consider the following condition:
(S3)0 The first nonzero row is ones followed by zeros.

Note that (S3)0 is weaker than (S3). The condition (S3)0 is crucial in the proof of Lemma 2.1, where we encounter a
matrix whose first row consists entirely of zeros.

Lemma 2.1. Let

A ¼ A1 A2

� �
2 Tm�ðn1þn2Þ

0 ;

where Ai 2 Tm�ni
0 , i ¼ 1; 2. Then there exist P 2 Pm and M 2Mn2

such that PA2M satisfies (S2) and (S3)0, and
½PA1 PA2M	 satisfies (S4).

Proof. Without loss of generality, we may assume A1 satisfies (S4). Then there exist row vectors a1; . . . ; ak of A1 such
that a1 < � � � < ak, and positive integers m1; . . . ;mk such that

A1 ¼

1>m1

. .
.

1>mk

2
6664

3
7775

a1

..

.

ak

2
664

3
775;
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where
Pk

i¼1 mi ¼ m. Write

A2 ¼

B1

..

.

Bk

2
664

3
775;

where Bi 2 Tmi�n2

0 for i ¼ 1; 2; . . . ; k. We may assume B1 6¼ 0, since otherwise the proof reduces to establishing the
assertion for the matrix A with the first m1 rows deleted. Let b be a row vector of B1 with maximum number of nonzero
components. Then there exists M 2Mn2

such that the vector bM constitutes ones followed by zeros. Moreover, for each
i 2 f1; . . . ; kg, there exists Pi 2 Pmi

such that the rows of PiBiM are in lexicographic order. It follows that bM is the first
row of P1B1M, that is also the first row of PA2M. Set P ¼ diagðP1; . . . ;PkÞ. Then PA2M satisfies (S3). Since PA1 ¼ A1,
we see that ½PA1 PA2M	 satisfies (S4).

With the above notation, we prove the assertion by induction on n2. First we treat the case where bM ¼ 1. This in
particular includes the case where n2 ¼ 1, the starting point of the induction. In this case, the first row of PA2M is 1,
hence PA2M satisfies (S2). The other assertions have been proved already.

Next we consider the case where bM ¼ ½1n2�n02 0n0
2
	, with 0 < n02 < n2. Define A01 2 T

m�ðn1þn2�n02Þ
0 and A02 2 T

m�n0
2

0

by setting ½A01 A02	 to be the matrix obtained from ½A1 PA2M	 by deleting the first row. By inductive hypothesis,
there exist P0 2 Pm�1 and M0 2Mn0

2
such that P0A02M

0 satisfies (S2) and (S3)0, and ½P0A01 P0A02M
0	 satisfies (S4). By our

choice of b, the row vector bM is lexicographically the smallest member among the rows of P1B1M, and the same is
true among the rows of the matrix P1B1M

00, where

M00 ¼ M
In2�n02 0

0 M0

� �
:

It follows that the matrix

1 0

0 P0

� �
A1 PA2M

00� �
¼

� 0

P0A01 P0A02M
0

� �

satisfies (S4). Set

P00 ¼
1 0

0 P0

� �
P:

Since P0A02M
0 satisfies (S2), while the first row of P00A2M

00 is the same as that of PA2M which is ½1n2�n02 0n0
2
	, the

matrix P00A2M
00 satisfies both (S2) and (S3)0. We have already shown that the matrix ½P00A1 P00A2M	 satisfies (S4).

�

Lemma 2.2. Under the same assumption as in Lemma 2.1, there exist M1 2Mm and M2 2Mn2
such that

½M1A1 M1A2M2	 satisfies (S1) and (S4), and M1A2M2 satisfies (S2) and (S3)0.

Proof. We will prove the assertion by induction on m. Suppose m ¼ 1. It is clear that every single row vector always
satisfies (S4). Also, every single row vector satisfying (S3)0 necessarily satisfies (S2). Now, if A1 ¼ 0 or n1 ¼ 0, then
there exists M2 2Mn2

such that A2M2 satisfies (S3)0 and hence (S1) is satisfied. If A1 6¼ 0, then there exist a 2 T and
M2 2Mn2

such that aA1 satisfies (S1) and aA2M2 satisfies (S3)0.
Assume the assertion is true up to m� 1. First, we consider the case where A1 ¼ 0 or n1 ¼ 0. Without loss of

generality, we may assume A2 6¼ 0. Furthermore, we may assume that the first row and the first column of A2 are ones
followed by zeros. Then there exists P0 2 Pn2

such that

A2P
0 ¼

1 1 0 0

1T B1 B2 0

0 C1 C2

2
64

3
75

where B2 2 Tm1�t
0 has no zero column. By Lemma 2.1, there exist P 2 Pm1

and M 2Mt such that PB2M satisfies (S2)
and (S3)0 and ½PB1 PB2M	 satisfies (S4). Let

C01 ¼ C1

In2�n02�t�1 0

0 M

� �
:

By inductive hypothesis, there exist M01 2Mm�m1�1, and M02 2Mn0
2

such that ½M01C01 M01C2M
0
2	 satisfies (S1) and (S4),

and M01C2M
0
2 satisfies (S2) and (S3)0. By setting

M1 ¼
1 0 0

0 P 0

0 0 M01

2
64

3
75; M2 ¼ P0

In2�n02�t 0 0

0 M 0

0 0 M02

2
64

3
75;

Transforming a Matrix into a Standard Form 165



the matrix M1A2M2 satisfies (S1)–(S4).
Next we consider the case A1 6¼ 0. Without loss of generality, we may assume that the first nonzero column in A1 is

ones followed by zeros. Write

A1 ¼ 0m�t
1T B1

0 D1

" #

for some t < n1, with B1 2 Tm1�ðn1�t�1Þ
0 and D1 2 Tm2�ðn1�t�1Þ

0 for some m1;m2 with m1 þ m2 ¼ m and m2 < m. Then
there exists P0 2 Pn2

such that

A2P
0 ¼

B2 0m1�n02
D2 C2

� �

for some n02 
 0, where B2 2 T
m1�ðn2�n02Þ
0 has no zero column. By Lemma 2.1, there exist P 2 Pm1

and M 2Mn2�n02 such
that PB2M satisfies (S2) and (S3)0 and ½PB1 PB2M	 satisfies (S4). Let C1 ¼ ½D1 D2M	. Then by inductive
hypothesis, there exist M01 2Mm2

and M02 2Mn0
2

such that ½M01C1 M01C2M
0
2	 satisfies (S1) and (S4), and M01C2M

0
2

satisfies (S2) and (S3)0. By setting

M1 ¼
P 0

0 M01

� �
; M2 ¼ P0

M 0

0 M02

� �
;

the proof is complete. �

Theorem 2.3. Every matrix in Tm�n
0 is equivalent to a matrix that is in standard form.

Proof. Let W 2 Tm�n
0 . Setting A1 ¼ ? and A2 ¼ W in Lemma 2.2, we see that W is equivalent to a matrix that is in

standard form. �

Corollary 2.4. Every unit weighing matrix is equivalent to a unit weighing matrix that is in standard form.

Proof. Setting T ¼ fz 2 C : jzj ¼ 1g, the proof is immediate from Theorem 2.3. �
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