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SHORT COMMUNICATION

Quadratic Embedding Constants of Wheel Graphs

Nobuaki OBATA*

Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

A connected graph is said to be of QE class if it admits a quadratic embedding in a Hilbert space, or equivalently
if the distance matrix is conditionally negative definite, or equivalently if the quadratic embedding constant (QEC)
of a graph is non-positive. The QEC of wheel graphs are calculated explicitly.
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1. Introduction

Let G = (V,E) be a (finite or infinite) connected graph and D = [d(x, y)],,cv the distance matrix. An interesting
question is whether or not D is conditional negative definite. Following [6] the QF constant of G is defined by
QEC(G) = sup{{f,Df) | f € Co(V), {f.f) =1, (1, f) =0}, (1.1)

where Cy(V) is the space of R-valued functions on V with finite supports, 1 is the constant function taking value one on
V, and (-, ) is the canonical inner product. By the Schoenberg theorem [7, 8] a graph G admits a quadratic embedding
in a Hilbert space if and only if the distance matrix is conditionally negative definite, that is, QEC(G) < 0. Thus, the QE
constant is an interesting characteristic of a graph from the point of view of Euclidean distance geometry [4]. In this
paper we determine QEC(W,,) for a wheel graph W, on n + 1 vertices, n > 3. Other concrete examples of QEC(G) are
found in [1-3, 5, 6]. The main result is stated in the following

Theorem 1.1. For n > 3 we have

QEC(W,) =0 if nis even; QECW,) = —4 sin® 2£ if nis odd. (1.2)
n

2. Join of Graphs

Let G| = (V1,E)) and G, = (V,, E») be two (finite or infinite, not necessarily connected) graphs that are disjoint, i.e.,
Vi NV, =@. The join of G| and G,, denoted by G| + G, is a graph on V = V| U V, with edge set
E=E UE,U {{)C,y} |x eV, y € Vz}

The graph join G| + G, is always connected, and is not locally finite unless both G| and G, are finite. Let A| and A, be
the adjacency matrices of G| and G, respectively. Then the adjacency matrix of G = G| + G, is given by

A J

A= , 2.1)
J A

where J is the matrix whose entries are all one (this symbol is used without explicitly mentioning its size). The diameter

of G = G; + G, verifies 1 < diam(G) < 2, and diam(G) = 1 occurs if and only if both G| and G, are complete graphs.

Proposition 2.1. Let G = (V,E) be a (finite or infinite) connected graph with diameter 1 < diam(G) < 2. Let A be
the adjacency matrix of G. Then,

QEC(G) = =2 —inf{(f,Af) | f € Co(V), (f.f) =1, (L.f) =0}. 2.2

Proof. Let I denote the identity matrix (this symbol is used without explicitly mentioning its size). For a graph with
diameter 1 < diam(G) < 2 we have the following obvious relation:
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D=2J—-2I—A. 2.3)

Then, for any f € Cy(V) satisfying (f, f) = 1 and (1, f) = 0, we obtain
(f,Dfy =, QI =21 = A)f) =2(f,Jf) = 2(f. ) — ([, Af) = =2 = (f,A[), (2.4)
where the obvious relation (f,Jf) = (1, f)? is used. Taking the supremum of both sides of (2.4), we come to (2.2).
a

Proposition 2.2. Let G = (V{,E;) and G, = (V», Ey) be two arbitrary graphs that are disjoint, and A| and A, the
adjacency matrices, respectively. Let G = Gy + G, be their join, and let A and D be the adjacency and distance
matrices of G, respectively. Then we have

2J —2I — Ay J
D=2J]-2[-A= 2.5)
J 2J -2 — A,
and
. g€ CoV), (8.8 +(h,h) =1,
EC(G) = —2 — inf{ (g, A h,Ayhy — 2(1, h)? . 2.6
QEC(G) m{<g 1g) + (hoh) = 2L T 0 } 2.6)
Proof. (2.5) is a direct consequence of (2.1) and (2.3). Also from (2.1) we see that (2.2) becomes
AT Co(V1), (g h,h) =1,
QEC(G) = —2 — inf <[8]’|: 1 }[8]> g € Co(V1), (8.8 + (h.h) .
h J Ax[Lh he Co(Va), (1,g) +(1,h) =0
Since (g, Jh) = (h,Jg) = (1,h)(1,g) = —(1,h)* under condition (1,g) + (1, k) = 0, we have
gl A J[s 2
) =(g,A h,Axh) —2(1, h)*,
HIE R
from which (2.6) follows immediately. O

3. Conditional Minimum

Let V be a finite set with |V| = n > 3, and T an arbitrary real symmetric matrix with index set V. We are interested
in the conditional minimum:

M(T) = min{(f, Tf) | f € C(V), (f.f) =1, (1.f) =0}, (3.1

where C(V) stands for the space of all R-valued functions on V. Since V is a finite set with |V| =n, we have
Co(V) = C(V) = R". Employing the method of Lagrange multipliers, we set

Let 4(T) be the set of all stationary points of F, namely, the set of (f,1,u) € C(V) x R x R at which all the partial
derivatives of F vanish. After simple observation we see that §(7) consists of (f, A, u) satisfying

(T—A)f:%l, (fLfi=1L (Lf)=0. (3.3)

The next result is useful for calculating QEC(G) for a finite graph G.
Lemma 3.1. M(T) = min A(T), where A(T) = {1 € R | (f, A, n) € 8(T) for some f € C(V) and n € R}.

Proof. We first note that the conditions (f, f) = 1 and (1, f) = 0 define a sphere of n — 2 dimension in C(V) = R",
which is a smooth compact manifold for n > 3. Since the quadratic function (f,Tf) is smooth, the conditional
minimum M(T) is attained at a certain f € C(V) appearing in 4(7"). Namely,

M(T) = min{{f,Tf) | f € C(V) with (f,A, ) € 8(T) for some 1 € R and u € R}. 3.4
On the other hand, for (f, A, u) € 8(T) we have

<f,Tf>=<f,/lf+';1>=/l(f,f)+g(f,1>=/l- (3.5

Combining (3.4) and (3.5) we get the assertion. [l
Remark 3.2. In a similar manner as in the proof of Lemma 3.1 the following relation holds:

max{(f,Tf) [f € C(V), {f,f) =1, (1,f) = 0} = max A(T).
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4. Wheel Graphs

Let n > 3. A wheel graph W, is a graph on n + 1 vertices, defined as the join of a cycle C, and a singleton graph K.
In what follows, the vertex set of W, is taken to be {0, 1,2,...,n — 1,n}, where {0,1,2,...,n — 1} constitutes a cycle
C, with edge set {{0,1},{1,2},...,{n —2,n— 1},{n — 1,0}} and the vertex n becomes a hub of the wheel. The
adjacency matrices of C, and K, are given respectively by

01 0 ... 0 0 17
1 o1 ... 000
010 ... 000
e
000 ... 010
00 0 ... 1 01
1 00 ... 01 0]

with which the adjacency matrix of W, is of the form (2.1). Then, using Proposition 2.2 we obtain
QEC(W,) = —2 —min{(g,A1g) — 2k’ |g € R", h€R, (g,8) + 1’ =1, (1,g) + h=0}. 4.1

We will calculate the conditional minimum in (4.1). Setting T to be the block diagonal matrix with blocks A; and
—2I, we employ the method introduced in Sect. 3. Let 4§ be the set of all stationary points of

F(g.h,A, 1) = (g.A18) — 2h* — A({g. &) + I* — 1) — n((L,g) + h), 4.2)
namely, the set of (g,h,4, 1) € R” x R x R x R satisfying
"
A — g = ) 1, 4.3)
(=2 — Dh = % (4.4)
(g,8)+ M =1, 4.5)
(1,2) +h =0, (4.6)

and put A ={21 €R|(g,h,A,u) e S for some g € R", h € R and u € R}. Then by Lemma 3.1 we have
min{(g,A1g) —2h* | g€ R", heR, (g.g) +h* =1, (1,g) +h =0} = min A. “.7)

Now we will determine the set A. Taking the inner product of (4.3) with 1, we obtain (1,(A; — 4)g) = (1/2) (1,1).
Then using (1,A1g) = (A11,¢) = 2(1,g), (1,1) =n and (1, g) = —h by (4.6) we obtain

A —2h= % (4.8)

On the other hand, for (4.3) we consider the difference equation:

%
81— Agk + g1 = 5 kelZ. 4.9)
Any solution to (4.9) satisfying the periodic condition g; = g, gives rise to a solution g = [go g1 ... g,,_l]T e R" to

(4.3), and vice versa. The characteristic equation of (4.9) is given by & — A&+ 1 =0, and we consider three cases
according to the characteristic roots.

(Case 1) 4 = 2 and the characteristic root is £ = 1 (multiplicity two). We see first from (4.8) that © = 0. Using the
characteristic root £ = 1 and periodicity, we see that a general solution to (4.9) is given by g = C (constant), and hence
g = C1. On the other hand, we have =0 by u =0 and (4.4). Then (4.5) and (4.6) become C?>(1,1) =1 and
C(1,1) = 0, respectively, from which we come to contradiction. Consequently, 1 =2 ¢ A.

(Case 2) 4 = —2 and the characteristic root is £ = —1 (multiplicity two). Note first that u = 0 by (4.4), and hence
h =0 by (4.8). In this case a general solution to (4.9) is given by g = (C; + Col)(—1F, where C; and C, are
constants. Taking the periodicity into account, we obtain

0, if n is odd,
k= Cl(—l)k, if n is even.
Then (4.5) is not fulfilled if n is odd, and it is fulfilled with C; = 1/4/n if n is even. Consequently, A = -2 & A if n is

odd, and 1 = -2 € A if n is even.
(Case 3) 4 # £2. Let «, B be the characteristic roots, where o« # 8, « + 8 = A and o8 = 1. Then a general solution
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to (4.9) is given by
I

=G + O+ 4.10
8k 1o+ G +2(2—/l) (4.10)
where C; and C, are constants. The periodic conditions gy = g, and g; = g,+1 give rise to
1—-o"C 1-8C, =0,
{( oC + (1= pHC @.11)
a(l —a")Cy + B(1 — g1C, = 0.

The determinant of the coefficient matrix is (1 — o™)(1 — f")(B — ).
(Case 3-1) &" # 1, also 8" # 1 by a8 = 1. We then see from (4.11) that C; = C; = 0. If u = 0, we have g = 0 by
(4.10) and also & = 0 by (4.4). Then (4.5) is not fulfilled. Hence p # 0, and we have

0 w
g§=—"71, h=———.
22— 2) 21 +2)
These satisfy (4.5) and (4.6) if and only if
2—2n 4 2 64n
A= = — + _—, = 3~
n+1 n+1 (n+ 1y

Consequently, the above A belongs to A. (This corresponds to the case of g; = const.)
(Case 3-2) a" = B" = 1. In this case we may set « = e*™P/* and B = e~ >"P/" with p =0,1,2,...,n — 1. Then,

2pm
A=a+pB=2cos—. 4.12)
n
Since A # £2 by assumption, we choose p from {1,2,...,n — 1}\{n/2} and we have «, 8 & {£1}. Now we show that
ok + gt
= 0’ h = O’ = ———:
K 8k o

together with (4.12) satisfy (4.3)—(4.6). In fact, (4.3) follows since g; in (4.10) is periodic for any choice of C; and C;.
(4.4) is obvious. (4.5) follows from the obvious relations 1 +a+---+a" '=1+8+---+ 81 =0. Similarly,
(4.6) is verified. Consequently, every A in (4.12) belongs to A.

Noting that 4 = —2 is obtained by setting p = n/2 in (4.12), we may summarize the above three cases as follows:

2pm
Uj2cos— |1 <p<n—1y.
n

Now we compute QEC(W,) = —2 —min A, see (4.1) and (4.7). If n is even, we have min A = —2 so that
QEC(W,) = 0. Suppose that n is odd, say, n = 2m — 1 with m > 2. Note that

A:{—z—i—

n+1

. 2pm 2mm b4 . b1
ming2cos— |1 <p<n—1; =2cos = —2cos =—-244sin" ———. 4.13)
n 2m — 1 2m — 1 22m —1)

Using the obvious inequality sin6 < 6 for § > 0, we see by easy calculus that
4

4 gin? il < , m>72.
22m—1) " Cm—-1)+1
Therefore, min A is given by (4.13) and
QEC(Way_1) = —2 —min A = —4sin® ———— = —4sin*
=)= - 220m—1) o’

which completes the proof of Theorem 1.1.
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