SHORT COMMUNICATION

Quadratic Embedding Constants of Wheel Graphs

Nobuaki OBATA*
Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

Abstract

A connected graph is said to be of QE class if it admits a quadratic embedding in a Hilbert space, or equivalently if the distance matrix is conditionally negative definite, or equivalently if the quadratic embedding constant (QEC) of a graph is non-positive. The QEC of wheel graphs are calculated explicitly.

KEYWORDS: conditionally negative definite matrix, distance matrix, quadratic embedding, QE constant, wheel graph

1. Introduction

Let $G=(V, E)$ be a (finite or infinite) connected graph and $D=[d(x, y)]_{x, y \in V}$ the distance matrix. An interesting question is whether or not D is conditional negative definite. Following [6] the $Q E$ constant of G is defined by

$$
\begin{equation*}
\operatorname{QEC}(G)=\sup \left\{\langle f, D f\rangle \mid f \in C_{0}(V),\langle f, f\rangle=1,\langle\mathbf{1}, f\rangle=0\right\}, \tag{1.1}
\end{equation*}
$$

where $C_{0}(V)$ is the space of \mathbb{R}-valued functions on V with finite supports, $\mathbf{1}$ is the constant function taking value one on V, and $\langle\cdot, \cdot\rangle$ is the canonical inner product. By the Schoenberg theorem $[7,8]$ a graph G admits a quadratic embedding in a Hilbert space if and only if the distance matrix is conditionally negative definite, that is, $\mathrm{QEC}(G) \leq 0$. Thus, the QE constant is an interesting characteristic of a graph from the point of view of Euclidean distance geometry [4]. In this paper we determine $\operatorname{QEC}\left(W_{n}\right)$ for a wheel graph W_{n} on $n+1$ vertices, $n \geq 3$. Other concrete examples of $\mathrm{QEC}(G)$ are found in $[1-3,5,6]$. The main result is stated in the following

Theorem 1.1. For $n \geq 3$ we have

$$
\begin{equation*}
\operatorname{QEC}\left(W_{n}\right)=0 \quad \text { if } n \text { is even; } \quad \operatorname{QEC}\left(W_{n}\right)=-4 \sin ^{2} \frac{\pi}{2 n} \quad \text { if } n \text { is odd } . \tag{1.2}
\end{equation*}
$$

2. Join of Graphs

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two (finite or infinite, not necessarily connected) graphs that are disjoint, i.e., $V_{1} \cap V_{2}=\emptyset$. The join of G_{1} and G_{2}, denoted by $G_{1}+G_{2}$, is a graph on $V=V_{1} \cup V_{2}$ with edge set

$$
E=E_{1} \cup E_{2} \cup\left\{\{x, y\} \mid x \in V_{1}, y \in V_{2}\right\} .
$$

The graph join $G_{1}+G_{2}$ is always connected, and is not locally finite unless both G_{1} and G_{2} are finite. Let A_{1} and A_{2} be the adjacency matrices of G_{1} and G_{2}, respectively. Then the adjacency matrix of $G=G_{1}+G_{2}$ is given by

$$
A=\left[\begin{array}{cc}
A_{1} & J \tag{2.1}\\
J & A_{2}
\end{array}\right]
$$

where J is the matrix whose entries are all one (this symbol is used without explicitly mentioning its size). The diameter of $G=G_{1}+G_{2}$ verifies $1 \leq \operatorname{diam}(G) \leq 2$, and $\operatorname{diam}(G)=1$ occurs if and only if both G_{1} and G_{2} are complete graphs.

Proposition 2.1. Let $G=(V, E)$ be a (finite or infinite) connected graph with diameter $1 \leq \operatorname{diam}(G) \leq 2$. Let A be the adjacency matrix of G. Then,

$$
\begin{equation*}
\operatorname{QEC}(G)=-2-\inf \left\{\langle f, A f\rangle \mid f \in C_{0}(V),\langle f, f\rangle=1,\langle\mathbf{1}, f\rangle=0\right\} \tag{2.2}
\end{equation*}
$$

Proof. Let I denote the identity matrix (this symbol is used without explicitly mentioning its size). For a graph with diameter $1 \leq \operatorname{diam}(G) \leq 2$ we have the following obvious relation:

[^0]\[

$$
\begin{equation*}
D=2 J-2 I-A \tag{2.3}
\end{equation*}
$$

\]

Then, for any $f \in C_{0}(V)$ satisfying $\langle f, f\rangle=1$ and $\langle\mathbf{1}, f\rangle=0$, we obtain

$$
\begin{equation*}
\langle f, D f\rangle=\langle f,(2 J-2 I-A) f\rangle=2\langle f, J f\rangle-2\langle f, f\rangle-\langle f, A f\rangle=-2-\langle f, A f\rangle \tag{2.4}
\end{equation*}
$$

where the obvious relation $\langle f, J f\rangle=\langle\mathbf{1}, f\rangle^{2}$ is used. Taking the supremum of both sides of (2.4), we come to (2.2).

Proposition 2.2. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two arbitrary graphs that are disjoint, and A_{1} and A_{2} the adjacency matrices, respectively. Let $G=G_{1}+G_{2}$ be their join, and let A and D be the adjacency and distance matrices of G, respectively. Then we have

$$
D=2 J-2 I-A=\left[\begin{array}{cc}
2 J-2 I-A_{1} & J \tag{2.5}\\
J & 2 J-2 I-A_{2}
\end{array}\right]
$$

and

$$
\operatorname{QEC}(G)=-2-\inf \left\{\begin{array}{l|l}
\left\langle g, A_{1} g\right\rangle+\left\langle h, A_{2} h\right\rangle-2\langle\mathbf{1}, h\rangle^{2} & \begin{array}{l}
g \in C_{0}\left(V_{1}\right),\langle g, g\rangle+\langle h, h\rangle=1, \\
h \in C_{0}\left(V_{2}\right),\langle\mathbf{1}, g\rangle+\langle\mathbf{1}, h\rangle=0
\end{array} \tag{2.6}
\end{array}\right\} .
$$

Proof. (2.5) is a direct consequence of (2.1) and (2.3). Also from (2.1) we see that (2.2) becomes

$$
\operatorname{QEC}(G)=-2-\inf \left\{\left\langle\left[\begin{array}{l}
g \\
h
\end{array}\right],\left[\begin{array}{cc}
A_{1} & J \\
J & A_{2}
\end{array}\right]\left[\begin{array}{l}
g \\
h
\end{array}\right]\right\rangle \left\lvert\, \begin{array}{l}
g \in C_{0}\left(V_{1}\right),\langle g, g\rangle+\langle h, h\rangle=1, \\
h \in C_{0}\left(V_{2}\right),\langle\mathbf{1}, g\rangle+\langle\mathbf{1}, h\rangle=0
\end{array}\right.\right\} .
$$

Since $\langle g, J h\rangle=\langle h, J g\rangle=\langle\mathbf{1}, h\rangle\langle\mathbf{1}, g\rangle=-\langle\mathbf{1}, h\rangle^{2}$ under condition $\langle\mathbf{1}, g\rangle+\langle\mathbf{1}, h\rangle=0$, we have

$$
\left\langle\left[\begin{array}{l}
g \\
h
\end{array}\right],\left[\begin{array}{cc}
A_{1} & J \\
J & A_{2}
\end{array}\right]\left[\begin{array}{l}
g \\
h
\end{array}\right]\right\rangle=\left\langle g, A_{1} g\right\rangle+\left\langle h, A_{2} h\right\rangle-2\langle\mathbf{1}, h\rangle^{2},
$$

from which (2.6) follows immediately.

3. Conditional Minimum

Let V be a finite set with $|V|=n \geq 3$, and T an arbitrary real symmetric matrix with index set V. We are interested in the conditional minimum:

$$
\begin{equation*}
M(T)=\min \{\langle f, T f\rangle \mid f \in C(V),\langle f, f\rangle=1,\langle\mathbf{1}, f\rangle=0\} \tag{3.1}
\end{equation*}
$$

where $C(V)$ stands for the space of all \mathbb{R}-valued functions on V. Since V is a finite set with $|V|=n$, we have $C_{0}(V)=C(V) \cong \mathbb{R}^{n}$. Employing the method of Lagrange multipliers, we set

$$
\begin{equation*}
F(f, \lambda, \mu)=\langle f, T f\rangle-\lambda(\langle f, f\rangle-1)-\mu\langle\mathbf{1}, f\rangle . \tag{3.2}
\end{equation*}
$$

Let $\delta(T)$ be the set of all stationary points of F, namely, the set of $(f, \lambda, \mu) \in C(V) \times \mathbb{R} \times \mathbb{R}$ at which all the partial derivatives of F vanish. After simple observation we see that $\delta(T)$ consists of (f, λ, μ) satisfying

$$
\begin{equation*}
(T-\lambda) f=\frac{\mu}{2} \mathbf{1}, \quad\langle f, f\rangle=1, \quad\langle\mathbf{1}, f\rangle=0 . \tag{3.3}
\end{equation*}
$$

The next result is useful for calculating $\operatorname{QEC}(G)$ for a finite graph G.
Lemma 3.1. $M(T)=\min \Lambda(T)$, where $\Lambda(T)=\{\lambda \in \mathbb{R} \mid(f, \lambda, \mu) \in f(T)$ for some $f \in C(V)$ and $\mu \in \mathbb{R}\}$.
Proof. We first note that the conditions $\langle f, f\rangle=1$ and $\langle\mathbf{1}, f\rangle=0$ define a sphere of $n-2$ dimension in $C(V) \cong \mathbb{R}^{n}$, which is a smooth compact manifold for $n \geq 3$. Since the quadratic function $\langle f, T f\rangle$ is smooth, the conditional minimum $M(T)$ is attained at a certain $f \in C(V)$ appearing in $s(T)$. Namely,

$$
\begin{equation*}
M(T)=\min \{\langle f, T f\rangle \mid f \in C(V) \text { with }(f, \lambda, \mu) \in s(T) \text { for some } \lambda \in \mathbb{R} \text { and } \mu \in \mathbb{R}\} \tag{3.4}
\end{equation*}
$$

On the other hand, for $(f, \lambda, \mu) \in s(T)$ we have

$$
\begin{equation*}
\langle f, T f\rangle=\left\langle f, \lambda f+\frac{\mu}{2} \mathbf{1}\right\rangle=\lambda\langle f, f\rangle+\frac{\mu}{2}\langle f, \mathbf{1}\rangle=\lambda . \tag{3.5}
\end{equation*}
$$

Combining (3.4) and (3.5) we get the assertion.
Remark 3.2. In a similar manner as in the proof of Lemma 3.1 the following relation holds:

$$
\max \{\langle f, T f\rangle \mid f \in C(V),\langle f, f\rangle=1,\langle\mathbf{1}, f\rangle=0\}=\max \Lambda(T)
$$

4. Wheel Graphs

Let $n \geq 3$. A wheel graph W_{n} is a graph on $n+1$ vertices, defined as the join of a cycle C_{n} and a singleton graph K_{1}. In what follows, the vertex set of W_{n} is taken to be $\{0,1,2, \ldots, n-1, n\}$, where $\{0,1,2, \ldots, n-1\}$ constitutes a cycle C_{n} with edge set $\{\{0,1\},\{1,2\}, \ldots,\{n-2, n-1\},\{n-1,0\}\}$ and the vertex n becomes a hub of the wheel. The adjacency matrices of C_{n} and K_{1} are given respectively by

$$
A_{1}=\left[\begin{array}{ccccccc}
0 & 1 & 0 & \ldots & 0 & 0 & 1 \\
1 & 0 & 1 & \ldots & 0 & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 & 0 \\
0 & 0 & 0 & \ldots & 1 & 0 & 1 \\
1 & 0 & 0 & \ldots & 0 & 1 & 0
\end{array}\right], \quad A_{2}=[0]
$$

with which the adjacency matrix of W_{n} is of the form (2.1). Then, using Proposition 2.2 we obtain

$$
\begin{equation*}
\operatorname{QEC}\left(W_{n}\right)=-2-\min \left\{\left\langle g, A_{1} g\right\rangle-2 h^{2} \mid g \in \mathbb{R}^{n}, h \in \mathbb{R},\langle g, g\rangle+h^{2}=1,\langle\mathbf{1}, g\rangle+h=0\right\} . \tag{4.1}
\end{equation*}
$$

We will calculate the conditional minimum in (4.1). Setting T to be the block diagonal matrix with blocks A_{1} and $-2 I$, we employ the method introduced in Sect. 3. Let $\&$ be the set of all stationary points of

$$
\begin{equation*}
F(g, h, \lambda, \mu)=\left\langle g, A_{1} g\right\rangle-2 h^{2}-\lambda\left(\langle g, g\rangle+h^{2}-1\right)-\mu(\langle\mathbf{1}, g\rangle+h) \tag{4.2}
\end{equation*}
$$

namely, the set of $(g, h, \lambda, \mu) \in \mathbb{R}^{n} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ satisfying

$$
\begin{align*}
& \left(A_{1}-\lambda\right) g=\frac{\mu}{2} \tag{4.3}\\
& (-2-\lambda) h=\frac{\mu}{2} \tag{4.4}\\
& \langle g, g\rangle+h^{2}=1 \tag{4.5}\\
& \langle\mathbf{1}, g\rangle+h=0 \tag{4.6}
\end{align*}
$$

and put $\Lambda=\left\{\lambda \in \mathbb{R} \mid(g, h, \lambda, \mu) \in \delta\right.$ for some $g \in \mathbb{R}^{n}, h \in \mathbb{R}$ and $\left.\mu \in \mathbb{R}\right\}$. Then by Lemma 3.1 we have

$$
\begin{equation*}
\min \left\{\left\langle g, A_{1} g\right\rangle-2 h^{2} \mid g \in \mathbb{R}^{n}, h \in \mathbb{R},\langle g, g\rangle+h^{2}=1,\langle\mathbf{1}, g\rangle+h=0\right\}=\min \Lambda \tag{4.7}
\end{equation*}
$$

Now we will determine the set Λ. Taking the inner product of (4.3) with $\mathbf{1}$, we obtain $\left\langle\mathbf{1},\left(A_{1}-\lambda\right) g\right\rangle=(\mu / 2)\langle\mathbf{1}, \mathbf{1}\rangle$. Then using $\left\langle\mathbf{1}, A_{1} g\right\rangle=\left\langle A_{1} \mathbf{1}, g\right\rangle=2\langle\mathbf{1}, g\rangle,\langle\mathbf{1}, \mathbf{1}\rangle=n$ and $\langle\mathbf{1}, g\rangle=-h$ by (4.6) we obtain

$$
\begin{equation*}
(\lambda-2) h=\frac{\mu n}{2} . \tag{4.8}
\end{equation*}
$$

On the other hand, for (4.3) we consider the difference equation:

$$
\begin{equation*}
g_{k-1}-\lambda g_{k}+g_{k+1}=\frac{\mu}{2}, \quad k \in \mathbb{Z} \tag{4.9}
\end{equation*}
$$

Any solution to (4.9) satisfying the periodic condition $g_{k}=g_{n+k}$ gives rise to a solution $g=\left[\begin{array}{llll}g_{0} & g_{1} & \ldots & g_{n-1}\end{array}\right]^{\mathrm{T}} \in \mathbb{R}^{n}$ to (4.3), and vice versa. The characteristic equation of (4.9) is given by $\xi^{2}-\lambda \xi+1=0$, and we consider three cases according to the characteristic roots.
(Case 1) $\lambda=2$ and the characteristic root is $\xi=1$ (multiplicity two). We see first from (4.8) that $\mu=0$. Using the characteristic root $\xi=1$ and periodicity, we see that a general solution to (4.9) is given by $g_{k}=C$ (constant), and hence $g=C \mathbf{1}$. On the other hand, we have $h=0$ by $\mu=0$ and (4.4). Then (4.5) and (4.6) become $C^{2}\langle\mathbf{1}, \mathbf{1}\rangle=1$ and $C\langle\mathbf{1}, \mathbf{1}\rangle=0$, respectively, from which we come to contradiction. Consequently, $\lambda=2 \notin \Lambda$.
(Case 2) $\lambda=-2$ and the characteristic root is $\xi=-1$ (multiplicity two). Note first that $\mu=0$ by (4.4), and hence $h=0$ by (4.8). In this case a general solution to (4.9) is given by $g_{k}=\left(C_{1}+C_{2} k\right)(-1)^{k}$, where C_{1} and C_{2} are constants. Taking the periodicity into account, we obtain

$$
g_{k}= \begin{cases}0, & \text { if } n \text { is odd } \\ C_{1}(-1)^{k}, & \text { if } n \text { is even }\end{cases}
$$

Then (4.5) is not fulfilled if n is odd, and it is fulfilled with $C_{1}=1 / \sqrt{n}$ if n is even. Consequently, $\lambda=-2 \notin \Lambda$ if n is odd, and $\lambda=-2 \in \Lambda$ if n is even.
(Case 3) $\lambda \neq \pm 2$. Let α, β be the characteristic roots, where $\alpha \neq \beta, \alpha+\beta=\lambda$ and $\alpha \beta=1$. Then a general solution
to (4.9) is given by

$$
\begin{equation*}
g_{k}=C_{1} \alpha^{k}+C_{2} \beta^{k}+\frac{\mu}{2(2-\lambda)}, \tag{4.10}
\end{equation*}
$$

where C_{1} and C_{2} are constants. The periodic conditions $g_{0}=g_{n}$ and $g_{1}=g_{n+1}$ give rise to

$$
\left\{\begin{array}{l}
\left(1-\alpha^{n}\right) C_{1}+\left(1-\beta^{n}\right) C_{2}=0 \tag{4.11}\\
\alpha\left(1-\alpha^{n}\right) C_{1}+\beta\left(1-\beta^{n}\right) C_{2}=0 .
\end{array}\right.
$$

The determinant of the coefficient matrix is $\left(1-\alpha^{n}\right)\left(1-\beta^{n}\right)(\beta-\alpha)$.
(Case 3-1) $\alpha^{n} \neq 1$, also $\beta^{n} \neq 1$ by $\alpha \beta=1$. We then see from (4.11) that $C_{1}=C_{2}=0$. If $\mu=0$, we have $g=0$ by (4.10) and also $h=0$ by (4.4). Then (4.5) is not fulfilled. Hence $\mu \neq 0$, and we have

$$
g=\frac{\mu}{2(2-\lambda)} \mathbf{1}, \quad h=-\frac{\mu}{2(\lambda+2)} .
$$

These satisfy (4.5) and (4.6) if and only if

$$
\lambda=\frac{2-2 n}{n+1}=-2+\frac{4}{n+1}, \quad \mu^{2}=\frac{64 n}{(n+1)^{3}} .
$$

Consequently, the above λ belongs to Λ. (This corresponds to the case of $g_{k}=$ const.)
(Case 3-2) $\alpha^{n}=\beta^{n}=1$. In this case we may set $\alpha=e^{2 \pi i p / n}$ and $\beta=e^{-2 \pi i p / n}$ with $p=0,1,2, \ldots, n-1$. Then,

$$
\begin{equation*}
\lambda=\alpha+\beta=2 \cos \frac{2 p \pi}{n} . \tag{4.12}
\end{equation*}
$$

Since $\lambda \neq \pm 2$ by assumption, we choose p from $\{1,2, \ldots, n-1\} \backslash\{n / 2\}$ and we have $\alpha, \beta \notin\{ \pm 1\}$. Now we show that

$$
\mu=0, \quad h=0, \quad g_{k}=\frac{\alpha^{k}+\beta^{k}}{\sqrt{2 n}}
$$

together with (4.12) satisfy (4.3)-(4.6). In fact, (4.3) follows since g_{k} in (4.10) is periodic for any choice of C_{1} and C_{2}. (4.4) is obvious. (4.5) follows from the obvious relations $1+\alpha+\cdots+\alpha^{n-1}=1+\beta+\cdots+\beta^{n-1}=0$. Similarly, (4.6) is verified. Consequently, every λ in (4.12) belongs to Λ.

Noting that $\lambda=-2$ is obtained by setting $p=n / 2$ in (4.12), we may summarize the above three cases as follows:

$$
\Lambda=\left\{-2+\frac{4}{n+1}\right\} \cup\left\{\left.2 \cos \frac{2 p \pi}{n} \right\rvert\, 1 \leq p \leq n-1\right\} .
$$

Now we compute $\operatorname{QEC}\left(W_{n}\right)=-2-\min \Lambda$, see (4.1) and (4.7). If n is even, we have $\min \Lambda=-2$ so that $\operatorname{QEC}\left(W_{n}\right)=0$. Suppose that n is odd, say, $n=2 m-1$ with $m \geq 2$. Note that

$$
\begin{equation*}
\min \left\{\left.2 \cos \frac{2 p \pi}{n} \right\rvert\, 1 \leq p \leq n-1\right\}=2 \cos \frac{2 m \pi}{2 m-1}=-2 \cos \frac{\pi}{2 m-1}=-2+4 \sin ^{2} \frac{\pi}{2(2 m-1)} \tag{4.13}
\end{equation*}
$$

Using the obvious inequality $\sin \theta \leq \theta$ for $\theta \geq 0$, we see by easy calculus that

$$
4 \sin ^{2} \frac{\pi}{2(2 m-1)} \leq \frac{4}{(2 m-1)+1}, \quad m \geq 2
$$

Therefore, $\min \Lambda$ is given by (4.13) and

$$
\operatorname{QEC}\left(W_{2 m-1}\right)=-2-\min \Lambda=-4 \sin ^{2} \frac{\pi}{2(2 m-1)}=-4 \sin ^{2} \frac{\pi}{2 n},
$$

which completes the proof of Theorem 1.1.

REFERENCES

[1] Jaklič, G., and Modic, J., "On properties of cell matrices," Appl. Math. Comput., 216: 2016-2023 (2010).
[2] Jaklič, G., and Modic, J., "On Euclidean distance matrices of graphs," Electron. J. Linear Algebra, 26: 574-589 (2013).
[3] Jaklič, G., and Modic, J., "Euclidean graph distance matrices of generalizations of the star graph," Appl. Math. Comput., 230: 650-663 (2014).
[4] Liberti, L., Lavor, G., Maculan, N., and Mucherino, A., "Euclidean distance geometry and applications," SIAM Rev., 56: 3-69 (2014).
[5] Młotkowski, W., and Obata, N., On Quadratic Embedding Constants of Star Product Graphs, preprint (2017).
[6] Obata, N., and Zakiyyah, A. Y., Distance Matrices and Quadratic Embedding of Graphs, preprint (2017).
[7] Schoenberg, I. J., "Remarks to Maurice Fréchet's article "Sur la définition axiomatique d'une classe d'espace distanciés vectoriellement applicable sur l'espace de Hilbert"," Ann. of Math., 36: 724-732 (1935).
[8] Schoenberg, I. J., "Metric spaces and positive definite functions," Trans. Amer. Math. Soc., 44: 522-536 (1938).

[^0]: Received October 19, 2017; Accepted November 6, 2017
 2010 Mathematics Subject Classification: Primary 05C50, Secondary 05B20, 05C76.
 This work is supported by JSPS Open Partnership Joint Research Project "Extremal Graph Theory, Algebraic Graph Theory and Mathematical Approach to Network Science" (2017-18) and JSPS Grant-in-Aid for Scientific Research (B) 16H03939.
 *Corresponding author. E-mail: obata@math.is.tohoku.ac.jp

