
SHORT COMMUNICATION

Quadratic Embedding Constants of Wheel Graphs
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A connected graph is said to be of QE class if it admits a quadratic embedding in a Hilbert space, or equivalently
if the distance matrix is conditionally negative definite, or equivalently if the quadratic embedding constant (QEC)
of a graph is non-positive. The QEC of wheel graphs are calculated explicitly.
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1. Introduction

Let G ¼ ðV ;EÞ be a (finite or infinite) connected graph and D ¼ ½dðx; yÞ�x;y2V the distance matrix. An interesting
question is whether or not D is conditional negative definite. Following [6] the QE constant of G is defined by

QECðGÞ ¼ supfh f ;Df i j f 2 C0ðVÞ; h f ; f i ¼ 1; h1; f i ¼ 0g; ð1:1Þ

where C0ðVÞ is the space of R-valued functions on V with finite supports, 1 is the constant function taking value one on
V , and h�; �i is the canonical inner product. By the Schoenberg theorem [7, 8] a graph G admits a quadratic embedding
in a Hilbert space if and only if the distance matrix is conditionally negative definite, that is, QECðGÞ � 0. Thus, the QE
constant is an interesting characteristic of a graph from the point of view of Euclidean distance geometry [4]. In this
paper we determine QECðWnÞ for a wheel graph Wn on nþ 1 vertices, n � 3. Other concrete examples of QECðGÞ are
found in [1–3, 5, 6]. The main result is stated in the following

Theorem 1.1. For n � 3 we have

QECðWnÞ ¼ 0 if n is even; QECðWnÞ ¼ �4 sin2 �

2n
if n is odd: ð1:2Þ

2. Join of Graphs

Let G1 ¼ ðV1;E1Þ and G2 ¼ ðV2;E2Þ be two (finite or infinite, not necessarily connected) graphs that are disjoint, i.e.,
V1 \ V2 ¼ ;. The join of G1 and G2, denoted by G1 þ G2, is a graph on V ¼ V1 [ V2 with edge set

E ¼ E1 [ E2 [ ffx; yg j x 2 V1; y 2 V2g:
The graph join G1 þ G2 is always connected, and is not locally finite unless both G1 and G2 are finite. Let A1 and A2 be
the adjacency matrices of G1 and G2, respectively. Then the adjacency matrix of G ¼ G1 þ G2 is given by

A ¼
A1 J

J A2

� �
; ð2:1Þ

where J is the matrix whose entries are all one (this symbol is used without explicitly mentioning its size). The diameter
of G ¼ G1 þ G2 verifies 1 � diamðGÞ � 2, and diamðGÞ ¼ 1 occurs if and only if both G1 and G2 are complete graphs.

Proposition 2.1. Let G ¼ ðV ;EÞ be a (finite or infinite) connected graph with diameter 1 � diamðGÞ � 2. Let A be
the adjacency matrix of G. Then,

QECðGÞ ¼ �2� inffh f ;Af i j f 2 C0ðVÞ; h f ; f i ¼ 1; h1; f i ¼ 0g: ð2:2Þ

Proof. Let I denote the identity matrix (this symbol is used without explicitly mentioning its size). For a graph with
diameter 1 � diamðGÞ � 2 we have the following obvious relation:
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D ¼ 2J � 2I � A: ð2:3Þ
Then, for any f 2 C0ðVÞ satisfying h f ; f i ¼ 1 and h1; f i ¼ 0, we obtain

h f ;Df i ¼ h f ; ð2J � 2I � AÞ f i ¼ 2h f ; J f i � 2h f ; f i � h f ;Af i ¼ �2� h f ;Af i; ð2:4Þ
where the obvious relation h f ; J f i ¼ h1; f i2 is used. Taking the supremum of both sides of ð2.4Þ, we come to ð2.2Þ.

�

Proposition 2.2. Let G1 ¼ ðV1;E1Þ and G2 ¼ ðV2;E2Þ be two arbitrary graphs that are disjoint, and A1 and A2 the
adjacency matrices, respectively. Let G ¼ G1 þ G2 be their join, and let A and D be the adjacency and distance
matrices of G, respectively. Then we have

D ¼ 2J � 2I � A ¼
2J � 2I � A1 J

J 2J � 2I � A2

� �
ð2:5Þ

and

QECðGÞ ¼ �2� inf hg;A1gi þ hh;A2hi � 2h1; hi2
����� g 2 C0ðV1Þ; hg; gi þ hh; hi ¼ 1;

h 2 C0ðV2Þ; h1; gi þ h1; hi ¼ 0

( )
: ð2:6Þ

Proof. ð2.5Þ is a direct consequence of ð2.1Þ and ð2.3Þ. Also from ð2.1Þ we see that ð2.2Þ becomes

QECðGÞ ¼ �2� inf
g

h

� �
;

A1 J

J A2

� �
g

h

� �� � ����� g 2 C0ðV1Þ; hg; gi þ hh; hi ¼ 1;

h 2 C0ðV2Þ; h1; gi þ h1; hi ¼ 0

( )
:

Since hg; Jhi ¼ hh; Jgi ¼ h1; hih1; gi ¼ �h1; hi2 under condition h1; gi þ h1; hi ¼ 0, we have

g

h

� �
;

A1 J

J A2

� �
g

h

� �� �
¼ hg;A1gi þ hh;A2hi � 2h1; hi2;

from which ð2.6Þ follows immediately. �

3. Conditional Minimum

Let V be a finite set with jV j ¼ n � 3, and T an arbitrary real symmetric matrix with index set V . We are interested
in the conditional minimum:

MðTÞ ¼ minfh f ;Tf i j f 2 CðVÞ; h f ; f i ¼ 1; h1; f i ¼ 0g; ð3:1Þ

where CðVÞ stands for the space of all R-valued functions on V . Since V is a finite set with jVj ¼ n, we have
C0ðVÞ ¼ CðVÞ ¼� Rn. Employing the method of Lagrange multipliers, we set

Fð f ; �; �Þ ¼ h f ; T f i � �ðh f ; f i � 1Þ � �h1; f i: ð3:2Þ

Let SðTÞ be the set of all stationary points of F, namely, the set of ð f ; �; �Þ 2 CðVÞ 	 R	 R at which all the partial
derivatives of F vanish. After simple observation we see that SðTÞ consists of ð f ; �; �Þ satisfying

ðT � �Þ f ¼
�

2
1; h f ; f i ¼ 1; h1; f i ¼ 0: ð3:3Þ

The next result is useful for calculating QECðGÞ for a finite graph G.

Lemma 3.1. MðTÞ ¼ min �ðTÞ, where �ðTÞ ¼ f� 2 R j ð f ; �; �Þ 2 SðTÞ for some f 2 CðVÞ and � 2 Rg.

Proof. We first note that the conditions h f ; f i ¼ 1 and h1; f i ¼ 0 define a sphere of n� 2 dimension in CðVÞ ¼� Rn,
which is a smooth compact manifold for n � 3. Since the quadratic function h f ; T f i is smooth, the conditional
minimum MðTÞ is attained at a certain f 2 CðVÞ appearing in SðTÞ. Namely,

MðTÞ ¼ minfh f ; T f i j f 2 CðVÞ with ð f ; �; �Þ 2 SðTÞ for some � 2 R and � 2 Rg: ð3:4Þ

On the other hand, for ð f ; �; �Þ 2 SðTÞ we have

h f ;T f i ¼ f ; � f þ
�

2
1

� �
¼ �h f ; f i þ

�

2
h f ; 1i ¼ �: ð3:5Þ

Combining ð3.4Þ and ð3.5Þ we get the assertion. �

Remark 3.2. In a similar manner as in the proof of Lemma 3.1 the following relation holds:

maxfh f ;T f i j f 2 CðVÞ; h f ; f i ¼ 1; h1; f i ¼ 0g ¼ max �ðTÞ:
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4. Wheel Graphs

Let n � 3. A wheel graph Wn is a graph on nþ 1 vertices, defined as the join of a cycle Cn and a singleton graph K1.
In what follows, the vertex set of Wn is taken to be f0; 1; 2; . . . ; n� 1; ng, where f0; 1; 2; . . . ; n� 1g constitutes a cycle
Cn with edge set ff0; 1g; f1; 2g; . . . ; fn� 2; n� 1g; fn� 1; 0gg and the vertex n becomes a hub of the wheel. The
adjacency matrices of Cn and K1 are given respectively by

A1 ¼

0 1 0 . . . 0 0 1

1 0 1 . . . 0 0 0

0 1 0 . . . 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 . . . 0 1 0

0 0 0 . . . 1 0 1

1 0 0 . . . 0 1 0

2
6666666666664

3
7777777777775
; A2 ¼ ½0�;

with which the adjacency matrix of Wn is of the form ð2.1Þ. Then, using Proposition 2.2 we obtain

QECðWnÞ ¼ �2�minfhg;A1gi � 2h2 j g 2 Rn; h 2 R; hg; gi þ h2 ¼ 1; h1; gi þ h ¼ 0g: ð4:1Þ

We will calculate the conditional minimum in ð4.1Þ. Setting T to be the block diagonal matrix with blocks A1 and
�2I, we employ the method introduced in Sect. 3. Let S be the set of all stationary points of

Fðg; h; �; �Þ ¼ hg;A1gi � 2h2 � �ðhg; gi þ h2 � 1Þ � �ðh1; gi þ hÞ; ð4:2Þ

namely, the set of ðg; h; �; �Þ 2 Rn 	 R	 R	 R satisfying

ðA1 � �Þg ¼
�

2
1; ð4:3Þ

ð�2� �Þh ¼
�

2
; ð4:4Þ

hg; gi þ h2 ¼ 1; ð4:5Þ
h1; gi þ h ¼ 0; ð4:6Þ

and put � ¼ f� 2 R j ðg; h; �; �Þ 2 S for some g 2 Rn, h 2 R and � 2 Rg. Then by Lemma 3.1 we have

minfhg;A1gi � 2h2 j g 2 Rn; h 2 R; hg; gi þ h2 ¼ 1; h1; gi þ h ¼ 0g ¼ min �: ð4:7Þ

Now we will determine the set �. Taking the inner product of ð4.3Þ with 1, we obtain h1; ðA1 � �Þgi ¼ ð�=2Þ h1; 1i.
Then using h1;A1gi ¼ hA11; gi ¼ 2h1; gi, h1; 1i ¼ n and h1; gi ¼ �h by ð4.6Þ we obtain

ð� � 2Þh ¼
�n

2
: ð4:8Þ

On the other hand, for ð4.3Þ we consider the difference equation:

gk�1 � �gk þ gkþ1 ¼
�

2
; k 2 Z: ð4:9Þ

Any solution to ð4.9Þ satisfying the periodic condition gk ¼ gnþk gives rise to a solution g ¼ ½g0 g1 . . . gn�1�T 2 Rn to
ð4.3Þ, and vice versa. The characteristic equation of ð4.9Þ is given by �2 � ��þ 1 ¼ 0, and we consider three cases
according to the characteristic roots.

(Case 1) � ¼ 2 and the characteristic root is � ¼ 1 (multiplicity two). We see first from ð4.8Þ that � ¼ 0. Using the
characteristic root � ¼ 1 and periodicity, we see that a general solution to ð4.9Þ is given by gk ¼ C (constant), and hence
g ¼ C1. On the other hand, we have h ¼ 0 by � ¼ 0 and ð4.4Þ. Then ð4.5Þ and ð4.6Þ become C2h1; 1i ¼ 1 and
Ch1; 1i ¼ 0, respectively, from which we come to contradiction. Consequently, � ¼ 2 62 �.

(Case 2) � ¼ �2 and the characteristic root is � ¼ �1 (multiplicity two). Note first that � ¼ 0 by ð4.4Þ, and hence
h ¼ 0 by ð4.8Þ. In this case a general solution to ð4.9Þ is given by gk ¼ ðC1 þ C2kÞð�1Þk, where C1 and C2 are
constants. Taking the periodicity into account, we obtain

gk ¼
0; if n is odd,

C1ð�1Þk; if n is even.

�

Then ð4.5Þ is not fulfilled if n is odd, and it is fulfilled with C1 ¼ 1=
ffiffiffi
n
p

if n is even. Consequently, � ¼ �2 62 � if n is
odd, and � ¼ �2 2 � if n is even.

(Case 3) � 6¼ 
2. Let �; � be the characteristic roots, where � 6¼ �, �þ � ¼ � and �� ¼ 1. Then a general solution
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to ð4.9Þ is given by

gk ¼ C1�
k þ C2�

k þ
�

2ð2� �Þ
; ð4:10Þ

where C1 and C2 are constants. The periodic conditions g0 ¼ gn and g1 ¼ gnþ1 give rise to

ð1� �nÞC1 þ ð1� �nÞC2 ¼ 0;

�ð1� �nÞC1 þ �ð1� �nÞC2 ¼ 0:

�
ð4:11Þ

The determinant of the coefficient matrix is ð1� �nÞð1� �nÞð�� �Þ.
(Case 3-1) �n 6¼ 1, also �n 6¼ 1 by �� ¼ 1. We then see from ð4.11Þ that C1 ¼ C2 ¼ 0. If � ¼ 0, we have g ¼ 0 by
ð4.10Þ and also h ¼ 0 by ð4.4Þ. Then ð4.5Þ is not fulfilled. Hence � 6¼ 0, and we have

g ¼
�

2ð2� �Þ
1; h ¼ �

�

2ð� þ 2Þ
:

These satisfy ð4.5Þ and ð4.6Þ if and only if

� ¼
2� 2n

nþ 1
¼ �2þ

4

nþ 1
; �2 ¼

64n

ðnþ 1Þ3
:

Consequently, the above � belongs to �. (This corresponds to the case of gk ¼ const.)
(Case 3-2) �n ¼ �n ¼ 1. In this case we may set � ¼ e2�i p=n and � ¼ e�2�i p=n with p ¼ 0; 1; 2; . . . ; n� 1. Then,

� ¼ �þ � ¼ 2 cos
2p�

n
: ð4:12Þ

Since � 6¼ 
2 by assumption, we choose p from f1; 2; . . . ; n� 1gnfn=2g and we have �; � 62 f
1g. Now we show that

� ¼ 0; h ¼ 0; gk ¼
�k þ �kffiffiffiffiffi

2n
p

together with ð4.12Þ satisfy ð4.3Þ–ð4.6Þ. In fact, ð4.3Þ follows since gk in ð4.10Þ is periodic for any choice of C1 and C2.
ð4.4Þ is obvious. ð4.5Þ follows from the obvious relations 1þ �þ � � � þ �n�1 ¼ 1þ �þ � � � þ �n�1 ¼ 0. Similarly,
ð4.6Þ is verified. Consequently, every � in ð4.12Þ belongs to �.

Noting that � ¼ �2 is obtained by setting p ¼ n=2 in ð4.12Þ, we may summarize the above three cases as follows:

� ¼ �2þ
4

nþ 1

� 	
[ 2 cos

2p�

n

���� 1 � p � n� 1

� 	
:

Now we compute QECðWnÞ ¼ �2�min �, see ð4.1Þ and ð4.7Þ. If n is even, we have min � ¼ �2 so that
QECðWnÞ ¼ 0. Suppose that n is odd, say, n ¼ 2m� 1 with m � 2. Note that

min 2 cos
2p�

n

���� 1 � p � n� 1

� 	
¼ 2 cos

2m�

2m� 1
¼ �2 cos

�

2m� 1
¼ �2þ 4 sin2 �

2ð2m� 1Þ
: ð4:13Þ

Using the obvious inequality sin � � � for � � 0, we see by easy calculus that

4 sin2 �

2ð2m� 1Þ
�

4

ð2m� 1Þ þ 1
; m � 2:

Therefore, min � is given by ð4.13Þ and

QECðW2m�1Þ ¼ �2�min � ¼ �4 sin2 �

2ð2m� 1Þ
¼ �4 sin2 �

2n
;

which completes the proof of Theorem 1.1.
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