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We consider random Schrödinger operators with Dirichlet boundary conditions outside lattice approximations of
a smooth Euclidean domain and study the behavior of its lowest-lying eigenvalues in the limit when the lattice
spacing tends to zero. Under a suitable moment assumption on the random potential and regularity of the spatial
dependence of its mean, we prove that the eigenvalues of the random operator converge to those of a deterministic
Schrödinger operator. Assuming also regularity of the variance, the fluctuation of the random eigenvalues around
their mean are shown to obey a multivariate central limit theorem. This extends the authors’ recent work where
similar conclusions have been obtained for bounded random potentials.
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1. Introduction and Results

This note is a continuation of our recent paper [3] where we studied the statistics of low-lying eigenvalues of
Anderson Hamiltonians in the ‘‘homogenization’’ regime, i.e., under the conditions when a non-trivial continuum limit
can be taken. The derivations of [3] were restricted to the class of bounded potentials; here we extend the main
conclusions — namely, the convergence of the individual eigenvalues to their continuum (and deterministic)
counterparts as well as a proof of Gaussian fluctuations around their mean — to a class of unbounded random potentials
satisfying suitable, and essentially sharp, moment conditions.

Our setting is as follows: Let D be a bounded open subset of Rd whose boundary is C1;� for some � > 0. For any
� > 0, we define the discretized version of D as

D� :¼ fx 2 Zd: dist1ð�x;DcÞ > �g; ð1:1Þ

where dist1 is the ‘1-distance in Rd. Given any potential �:D�! R, we now consider the linear operator (a matrix)
HD�;� acting on the linear space of functions f :Zd ! R that vanish outside D� via

ðHD�;� f ÞðxÞ :¼ ��
�2ð�(d) f ÞðxÞ þ �ðxÞ f ðxÞ; x 2 Zd ; ð1:2Þ

where �(d) is the lattice Laplacian

ð�(d) f ÞðxÞ :¼
X

y:jx�yj¼1

½ f ðyÞ � f ðxÞ� ð1:3Þ

with j � j denoting the Euclidean distance. Throughout we will take the potential � ¼ �ð�Þ random, defined on some
probability space ð�;F ;PÞ, with an �-dependent law satisfying one or both of the following requirements (depending
on the context):

Assumption 1.1. For each � > 0, f�ð�ÞðxÞ: x 2 D�g are independent with

9K > 1 _ d=2: sup
�2ð0;1Þ

max
x2D�

Eðj�ð�ÞðxÞjKÞ <1: ð1:4Þ

Moreover, there is U 2 CbðD;RÞ ¼ f f :D! R; bounded and continuousg such that
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E�ð�ÞðxÞ ¼ Uðx�Þ; x 2 D�: ð1:5Þ

Assumption 1.2. The bound ð1.4Þ holds for some K > 2 _ d=2. Moreover, there is V 2 CbðD; ½0;1ÞÞ such that

Varð�ð�ÞðxÞÞ ¼ Vðx�Þ; x 2 D�: ð1:6Þ

To ease our notations, we will often omit marking the �-dependence of �. We are interested in the behavior of the
eigenvalues � ð1ÞD�;�

< � ð2ÞD�;�
� � ð3ÞD�;�

� . . . of HD�;� in the limit as � # 0.
Let � denote the continuum Laplacian with Dirichlet boundary conditions outside D. As it turns out, the continuum

(homogenized) counterpart of HD�;� is the operator

HD;U :¼ ��þ UðxÞ ð1:7Þ

acting on the space H1
0ðDÞ := closure of C10 ðDÞ in the norm ½k fk2L2ðDÞ þ kr fk

2
L2ðDÞ�

1=2, where r denotes the continuum
gradient. The operator HD;U is self-adjoint and, thanks to our conditions on D and U, of compact resolvent. In
particular, its spectrum is real-valued and discrete with no eigenvalue more than finitely degenerate — we will thus
write � ðkÞD to denote the k-th smallest eigenvalue of HD;U . Our first conclusion is as follows:

Theorem 1.3. Under Assumption 1.1, for each k 2 N,

� ðkÞD�;�
�!
P

�#0
� ðkÞD : ð1:8Þ

Remark 1.3. As we will show in the Appendix, the moment condition ð1.4Þ is more or less optimal for ð1.8Þ to hold.
More precisely, if the negative part of � fails to have d=2-nd moment in d � 3, we get � ð1ÞD�;�

!�1 as � # 0. We expect
(although have not addressed mathematically) this to be a result of appearance of localized states, since the above
divergence is proved by considering a test function of the form 1fxg in the variational formula for the eigenvalue.

The formula ð1.8Þ determines the leading-order deterministic behavior of the spectrum of HD�;�. The control of the
subleading orders (or even an expansion in powers of �) is a challenging task which we will not tackle here. We will
content ourself with a description of the asymptotic behavior of the leading random correction. For reasons to be
explained later, we will do this only for any collection of (asymptotically) simple eigenvalues. In order to state the
result, we need to fix � 2 ðd=K; 2 ^ d=2Þ and define the truncated potential

�ðxÞ :¼ �ðxÞ1fj�ðxÞj����g: ð1:9Þ

Our second main result is then:

Theorem 1.4. Suppose Assumptions 1.1–1.2 hold, fix n 2 N and let k1; . . . ; kn 2 N be distinct indices such that the
eigenvalues � ðk1Þ

D ; . . . ; � ðknÞD of HD;U are simple. Then, in the limit as � # 0, the law of the random vector

� ðk1Þ
D�;�
� E� ðk1Þ

D�;�

�d=2
; . . . ;

� ðknÞD�;�
� E� ðknÞ

D�;�

�d=2

0@ 1A ð1:10Þ

tends weakly to a multivariate normal with mean zero and covariance matrix �2
D ¼ f�2

ijg
n
i; j¼1 given by

�2
ij :¼

Z
D

’ðkiÞD ðxÞ
2’
ðkjÞ
D ðxÞ

2 VðxÞ dx; ð1:11Þ

where for each i ¼ 1; 2; . . . ; n, ’ðkiÞD is an L2-normalized eigenfunction of HD;U associated with � ðkiÞD and V is the function
from ð1.6Þ.

We note that, for simple eigenvalues, the eigenfunctions are determined up to an overall sign (they can always be
chosen real valued). In particular, all choices of the eigenfunctions lead to the same value of the integral ð1.11Þ. A
deeper, albeit related, reason for excluding degenerate eigenvalues is the fact that we work directly with ordered
eigenvalues (and not, e.g., the resolvent or some other symmetric function thereof). We expect that, for degenerate
eigenvalues, the individual fluctuations are still Gaussian but the order is decided by combining the fluctuation with the
expected value (which we control only to the leading order). We do not find this restriction much of a loss as, for
generic D and U, all eigenvalues of HD;U will be non-degenerate.

Remark 1.4. Under Assumption 1.1, we will see in ð2.1Þ below that the truncation ð1.9Þ has no effect, with probability
tending to 1 as � # 0. However, it turns out that the truncation does affect the mean value E� ð1ÞD�;�

for small K, see again
the Appendix. Therefore it is necessary to retain the truncated potential inside the expectations in ð1.10Þ.

We refer the reader to our earlier paper [3] for a thorough discussion of the above problem as well as related
references. We will only mention to papers where we feel an update is necessary. First, an earlier work of Bal [2]
derived very similar homogenization and fluctuation results for the eigenvalues of a continuum Anderson Hamiltonian.
However, there are a number of important differences:
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(1) the weak convergence in [2] is proved around the homogenized eigenvalues rather than mean values,
(2) the results hold also for sufficiently fast mixing random potentials,
(3) the spatial dimension is assumed to be less than or equal to three, d � 3, and
(4) stronger moment assumption than ours are required.

In particular, if one applies the method of [2] to discrete independent potentials, it requires boundedness of the fourth
moments. We believe this is because we use a completely different, mostly probabilistic approach.

Second, related results concerning the low-lying eigenvalues of a random Laplacian arising from random
conductances have recently been obtained by Flegel, Haida and Slowik [8]. Also there homogenization of the
individual eigenvalues to those of a continuum (albeit ‘‘homogenized’’) Laplacian is obtained under more or less
optimal moment condition on the random conductances.

Notations

Let us collect the notations that will be needed throughout this work. We write k f kp for the canonical ‘p-norm of R-
or Rd-valued functions f on Zd. When p ¼ 2, we use h f ; hi to denote the associated inner product in ‘2ðZdÞ. All
functions defined a priori only on D� will be regarded as extended by zero to Zd

r D�. In order to control convergence
to the continuum problem, it will sometimes be convenient to work with the scaled ‘p-norm,

k fk�;p :¼ �d
X
x2Zd

j f ðxÞjp
 !1=p

: ð1:12Þ

For p ¼ 2, we will write h f ; gi�;2 to denote the inner product associated with k � k�;2. For functions f ; g of a continuum
variable, we write the norms as k fkLpðRdÞ and the inner product in L2ðRdÞ as h f ; giL2ðRdÞ. The discrete gradient r(d) f ðxÞ is
defined as the vector in Rd whose i-th component is f ðxþ êiÞ � f ðxÞ, where fêigdi¼1 is the canonical basis of Rd.

Some of our computations in the proofs below will require suitable block averaging. For L 2 N and x 2 Zd, let
BLðxÞ :¼ xþ f0; . . . ;L� 1gd and for any f :Zd ! R, define

fLðxÞ :¼
X
y2LZd

1BLðyÞðxÞ
X

z2BLðyÞ
L�d f ðzÞ: ð1:13Þ

Note that, for each given x, exactly one y contributes to the first sum; the resulting function is then constant on square
blocks of side L and is equal to the average of f on each of them.

Recall that we assumed D to be a bounded open set in Rd with C1;�-boundary for some � > 0. This ensures a
corresponding level of regularity of the eigenfunctions. Indeed, by, e.g., Corollary 8.36 of Gilbarg and Trudinger [6],
the eigenfunctions ’ðkÞD of HD;U obey

’ðkÞD 2 C1;�ðDÞ; ð1:14Þ

that is, they are continuously differentiable in D with the gradient uniformly �-Hölder continuous. In particular, the
integral ð1.11Þ is convergent. Concerning the discrete problem, we denote by gðkÞD�;� an (real-valued) eigenfunction of
HD�;� normalized in ‘2ðZdÞ; this is again determined up to a sign whenever the k-th eigenvalue is non-degenerate.

Finally, throughout the paper c denotes a constant depending only on d, D, K and k whose value may change from
line to line. We write �0� (�0þ) for a negative (resp. positive) power of � for simplicity, and N for the set of positive
integers f1; 2; 3; . . .g.

2. Convergence to Homogenized Eigenvalues

We are now in a position to start the exposition of the proofs. Here we will prove Theorem 1.3 dealing with the
convergence of the random eigenvalues to those of the continuum problem.

2.1 Truncation

As is common whenever unbounded random variables get involved, we will deal with large values of the potential
via a suitable truncation. We begin by noting:

Lemma 2.1. Under Assumption 1.1, for each � 2 ðd=K; d ^ 2Þ we have

Pðmax
x2D�
j�ðxÞj > ���Þ �!

�#0
0: ð2:1Þ

Proof. This follows from a union bound, Chebyshev’s inequality, the bound ð1.4Þ and the fact that definition ð1.1Þ
implies that jD�j is order ��d. �

We henceforth fix a � 2 ðd=K; d ^ 2Þ so that ð2.1Þ holds, pick r satisfying

1 _ d=2 < r < d=� ð2:2Þ

and assume
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max
x2D�
j�ðxÞj � ���: ð2:3Þ

This is tantamount to working with the truncated potential � in place of �, which we will however ignore notationally;
thanks to Lemma 2.1, it suffices to prove Theorem 1.3 under this additional assumption.

Given any choice of the normalized eigenfunctions f’ð jÞD gj�1 of the operator ð1.7Þ, for each � > 0 and each � 2 ð0; 1Þ
define the event

Ek;�;� :¼ �:
max
1� j�k
jh�� Uð��Þ; ’ð jÞD ð��Þ

2i�;2j < �

k�k�;r < 4jDjmax
x2D�

E½j�ðxÞjr�

8<:
9=;: ð2:4Þ

Remark 2.1. The constant 4 above plays no special role in the proof. Any larger constant would work as well. We will
make use of this observation (only) in the proof of Lemma 3.4 below.
Then we observe:

Lemma 2.2. Under Assumption 1.1 and ð2.3Þ, for all k 2 N and all � > 0, and all � > 0 sufficiently small,

PðEc
k;�;�Þ � expf��0�g: ð2:5Þ

Proof. The proof is based on a number of elementary concentration-of-measure arguments. Let us fix
a0 < a1 < � � � < aN :¼ � < d=r such that

0 < a0 <
d

2
and

an�1

an
>

1

K
; n ¼ 1; . . . ;N: ð2:6Þ

Using this sequence, we write

�ðxÞ � Uð�xÞ ¼ ð�ðxÞ � Uð�xÞÞ1fj�ðxÞj<��a0 g þ
XN
n¼1

ð�ðxÞ � Uð�xÞÞ1f��an�1�j�ðxÞj<��an g

¼: 	ðxÞ þ
XN
n¼1


nðxÞ
ð2:7Þ

so that

Pðjh�� Uð��Þ; ’ð jÞD ð��Þ
2i�;2j � �Þ

� P
X
x2D�

�d	ðxÞ’ð jÞD ð�xÞ
2

�����
����� � �2

 !
þ
XN
n¼1

P

X
x2D�

�dj
nðxÞj’ð jÞD ð�xÞ
2 �

�

2N

 !
:

ð2:8Þ

First, the Azuma–Hoeffding inequality shows

P

X
x2D�

�d	ðxÞ’ð jÞD ð�xÞ
2

�����
����� � �2

 !
� 2 expf�c��dþ2a0g

� expf��0�g

ð2:9Þ

for all sufficiently small �. Note that due to our use of the truncated potential, a proper use of Azuma–Hoeffding
requires an additional intermediate step reflecting on the fact that E½	ðxÞ� may not be zero. This is handled by replacing
�=2 above with �=4 and noting that the difference E½	ðxÞ� converges to zero uniformly in x. Our implicit truncation
ð2.3Þ also sometimes requires this type of considerations and they will be done implicitly in what follows.

Next, we deal with the second term in ð2.8Þ. When � is sufficiently small, we can bound each summand by

P

X
x2D�

�dj
nðxÞj �
�

2Nk’ð jÞD k21

 !
� P

X
x2D�

1f
nðxÞ6¼0g � ��dþan
�

4Nk’ð jÞD k21

 !
: ð2:10Þ

Since f1f
nðxÞ6¼0ggx2D� are stochastically dominated by independent Bernoulli variables with success probability

Pð
nðxÞ 6¼ 0Þ � Pðj�ðxÞj > ��an�1Þ � �an�1K sup
�2ð0;1Þ

sup
x2D�

E½j�ðxÞjK� ð2:11Þ

and an�1K > an, a simple application of the Bernstein inequality tells us that the right-hand side of ð2.10Þ is bounded by
expf��0�g for sufficiently small �.

The argument for k�k�;r is almost the same. We write M :¼ jDjmaxx2D� E½j�ðxÞjr� and, using the above sequence,
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j�ðxÞjr ¼ j�ðxÞjr1fj�ðxÞj<��a0 g þ
XN
n¼1

j�ðxÞjr1f��an�1�j�ðxÞj<��an g

¼: 	ðxÞ þ
XN
n¼1


nðxÞ
ð2:12Þ

so that

P

X
x2D�

�dj�ðxÞjr � 4M

 !
� P

X
x2D�

�d	ðxÞ � 3M

 !
þ
XN
n¼1

P

X
x2D�

�d
nðxÞ �
M

N

 !
: ð2:13Þ

When � is sufficiently small, we have X
x2D�

�dE½	ðxÞ� � 2M ð2:14Þ

and we can again appeal to the Azuma–Hoeffding inequality to get

P

X
x2D�

�d	ðxÞ � 3M

 !
� P

X
x2D�

�dð	ðxÞ � E½	ðxÞ�Þ � M

 !
� 2 expf�c��dþ2a0g:

ð2:15Þ

The rest of the argument is very similar to above and we omit further details. �

2.2 Upper bound by homogenized eigenvalue

We will now prove the upper bound in Theorem 1.3. Instead of individual eigenvalues, we will work with their sums

��
kð�Þ :¼

Xk
i¼1

� ðiÞD�;� and �k :¼
Xk
i¼1

� ðiÞD : ð2:16Þ

These quantities are better suited for dealing with degeneracy because they admit a variational characterization (a.k.a.
the Ky Fan Maximum Principle [7]) of the form

��
kð�Þ ¼ inf

h1;...;hk
ONS

Xk
i¼1

ð��2kr(d)hik22 þ h�; h
2
i iÞ ð2:17Þ

and

�k ¼ inf
 1;...; k

ONS

Xk
i¼1

ðkr ik2L2ðRdÞ þ hU;  
2
i iL2ðRdÞÞ; ð2:18Þ

where the acronym ‘‘ONS’’ imposes that the k-tuple of functions (all assumed in the domain of the gradient in the latter
case) forms an orthonormal system in the subspace corresponding to Dirichlet boundary conditions.

The infima in (2.17–2.18) are both achieved by a collection of lowest-k eigenfunctions of operators HD�;�, resp.,
HD;U . This offers a strategy for comparing the two quantities: Take the eigenfunctions of one problem and use them,
after discretizing/undiscretizing, as trial functions in the other variational problem. Starting from the continuum
problem, this strategy is relatively easy to implement as attested by:

Proposition 2.3. For any k 2 N and any � > 0,

Ek;�;� � f��
kð�Þ � �k þ 3�g ð2:19Þ

holds for all sufficiently small � > 0. In particular, under Assumption 1.1, for any � > 0,

lim
�#0
Pð��

kð�Þ � �k þ �Þ ¼ 1: ð2:20Þ

Proof. Consider (a choice of) an ONS of the first k eigenfunctions ’ð1ÞD ; . . . ; ’
ðkÞ
D of HD;U . Recall that all of these are in

C1;�ðDÞ. Now define

fiðxÞ :¼
’ðiÞD ðx�Þ; if x 2 D�,
0; otherwise.

�
ð2:21Þ

Thanks to uniform continuity of the eigenfunctions, we then have

h fi; fji�;2�!
�#0
h’ðiÞD ; ’

ð jÞ
D iL2ðDÞ ¼ �ij ð2:22Þ
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and so for � small the functions f1; . . . ; fk are nearly mutually orthogonal. Applying the Gram–Schmidt
orthogonalization procedure, we conclude that there are functions h�1; . . . ; h

�
k and coefficients aijð�Þ, 1 � i; j � k, such

that

h�i ¼
Xk
j¼1

ð�ij þ aijð�ÞÞ fj; i ¼ 1; . . . ; k; ð2:23Þ

with

hh�i ; h
�
j i�;2 ¼ �ij and max

i; j
jaijð�Þj �!

�#0
0: ð2:24Þ

Moreover, the definition of fi and the C1;�-regularity of the eigenfunctions imply

sup
y2D

dist1ðy;DcÞ>2�

jr’ðiÞD ðyÞ � �
�1ðr(d) fiÞðby=�cÞj �!

�#0
0 ð2:25Þ

and the same applies to h�i instead of fi as well. Since r’ðiÞD and ��1ðr(d) fiÞ are also bounded, we thus get

��1kr(d)h�i k�;2�!
�#0
kr’ðiÞD kL2ðRdÞ: ð2:26Þ

The continuity of U shows that, also

hUð��Þ; ðh�i Þ
2i�;2�!

�#0
hU; ð’ðiÞD Þ

2iL2ðRdÞ: ð2:27Þ

Therefore, given any � > 0, as soon as � > 0 is sufficiently small (independent of �) the variational characterization
ð2.17Þ yields

��
kð�Þ � �k þ � þ

Xk
i¼1

h�� Uð��Þ; ðh�i Þ
2i�;2: ð2:28Þ

The summands on the right-hand side are bounded as

jh�� Uð��Þ; ðh�i Þ
2i�;2j

� jh�� Uð��Þ; f 2
i i�;2j þ ð max

i; j¼1;...;k
jaijð�ÞjÞð max

‘¼1;...;k
k’ð‘ÞD k

2
1Þðk�k�;1 þ kUð��Þk�;1Þ:

ð2:29Þ

Noting that the first term is at most � and k�k�;1 is bounded on Ek;�;� , this will be less than 2� as soon as � is sufficiently
small (again, independent of �). �

Corollary 2.4. For each k 2 N and each � > 0 there is ck;� > 0 such that for all � 2 ð0; 1Þ,

Ek;�;� � f��
kð�Þ � ck;�g ð2:30Þ

Proof. For small-enough �, this follows from ð2.19Þ and the fact that �k is deterministic. In the complementary range
of � 2 ð0; 1Þ, we note that ð2.3Þ gives h�; ðhiÞ2i � ��� for each i ¼ 1; . . . ; k. This reduces the problem to bounding the
sum of the first k eigenvalues of ��2-times the (negative) Dirichlet Laplacian in square-domains of side-length
proportional to ��1, for which the spectrum is explicitly computable (and the eigenvalues are bounded uniformly in �).

�

2.3 Elliptic regularity for eigenfunctions

For the corresponding lower bound of ��
k by �k, we will start with the collection of the eigenfunctions of HD�;� and

turn these into functions over the continuum domain D. The main technical obstacle is that the discrete eigenfunctions
are random and so the derivation of the needed regularity estimates (which for the upper bound were supplied by the
fact that the eigenfunctions of HD;U are C1;�) require a non-trivial use of elliptic regularity theory. As usual, a starting
point for these is a suitable functional inequality:

Lemma 2.5 (Sobolev inequality). Let q 2 ½2;1Þ obey q < 2d=ðd � 2Þ if d � 3. Then there is cðD; qÞ > 0 such that

��2kr(d) fk2�;2 þ k fk
2
�;2 � cðD; qÞk fk2�;q ð2:31Þ

holds for all � 2 ð0; 1Þ and all f :Zd ! R with supp f � D�.

Although this is quite standard, we provide a (short) proof in the Appendix (this will also make it clear that our
normalizations are legitimate). A considerably deeper use of elliptic regularity theory is required to control the
individual eigenfunctions of HD�;�. In order to state our first such estimate, pick � 2 ð0; 1� �r=dÞ, where r is as in ð2.2Þ,
set L :¼ ��� and, recalling the definition of block-averaged function ð1.13Þ, define

�LðxÞ :¼ ðUð��Þ � �ð�ÞÞLðxÞ: ð2:32Þ

Consider the event
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F�;� :¼ f�: k�Lk�;r < �g: ð2:33Þ

Then we have:

Proposition 2.6. Suppose Assumption 1.1. For all p > 1, all k 2 N, and any choice of the k-th eigenfunction gðkÞD�;� of
HD�;�, we have

sup
0<�<1

sup
�2Ek;�;�\F�;�

k��d=2gðkÞD�;�k�;p <1 ð2:34Þ

uniformly in sufficiently small � > 0.

Remark 2.6. In Lemma 2.2 we showed that Ek;�;� will occur with overwhelming probability for small enough � and �,
and a similar statement will be shown for F�;� in Lemma 2.9. The reason why event F�;� needs to be included in the
statement above is that it ensures, via Proposition 2.10 with k ¼ 1 below, a lower bound on the principal eigenvalue
(uniform in � 2 Ek;�;� \ F�;�). Combining with Corollary 2.4 we then get an upper bound on the individual eigenvalues
for each k � 2, which then feeds into the proof of ð2.34Þ for k � 2. Since, for k ¼ 1, Corollary 2.4 bounds the principal
eigenvalue directly, the inclusion of event F�;� in ð2.34Þ is redundant and no logical conflict arises.

Proof of Proposition 2.6. The proof is based on the Moser iteration scheme for solutions of elliptic PDEs. This
technique needs to be adapted to the discrete setting which has fortunately already been done in a recent paper of
Andres, Deuschel and Slowik [1] on homogenization of the random conductance model with general ergodic random
conductances subject (only) to suitable moment conditions. We cite both notation and conclusions at liberty from there.

Given s � 1, let us write a½s� :¼ jajs signðaÞ for the signed-power function and f ½s�ðxÞ for ð f ðxÞÞ½s�. By equation (40)
of [1], there is a constant cðsÞ depending only on s such that for any function :Zd ! R with finite supportX

x2Zd

jr(d)½s�ðxÞj2 � cðsÞ
X
x2Zd

Xd
i¼1

ð½s�1�ðxÞ þ ½s�1�ðxþ êiÞÞ2jr(d)
i ðxÞj

2; ð2:35Þ

where r(d)
i is the i-th component of the discrete gradient. We further use equation (42) of [1] — with the specific

choices � :¼ 2s� 2 and � :¼ 1 — to get

ð½s�1�ðxÞ þ ½s�1�ðxþ êiÞÞ2jr(d)
i ðxÞj � 2ðjðxÞj2s�2 þ jðxþ êiÞj2s�2Þjr(d)

i ðxÞj

� 2jr(d)
i 
½2s�1�ðxÞj:

ð2:36Þ

The key point of using the signed-power function is that r(d)
i ðxÞ and r(d)

i 
½2s�1�ðxÞ are of the same sign. This permits us

to wrap ð2.35Þ as X
x2Zd

jr(d)½s�ðxÞj2 � 2cðsÞ
X
x2Zd

Xd
i¼1

jr(d)
i 
½2s�1�ðxÞjjr(d)

i ðxÞj

¼ 2cðsÞhr(d)½2s�1�;r(d)i;

ð2:37Þ

where we recall that the brackets stand for the usual inner product in ‘2ðZdÞ.
Now let us assume that  solves the equation ð���2�(d) þ �Þ ¼ � in D� and vanishes outside D�. Then we have

�dhr(d)½2s�1�;r(d)i ¼ �dh½2s�1�;��(d)i ¼ �2þdh½2s�1�; ð� � �Þi: ð2:38Þ

Since ½2s�1� and  have the same sign, the right-hand side is bounded by

�2þdhjj2s; ð�þ � �Þi � �2
X
x2D�

�dj�þ � �ðxÞjr
 !1=r X

x2D�

�djðxÞj2sr
0

 !1=r0

¼ �2k�þ � �k�;rkk2s�;2sr0 ;

ð2:39Þ

where �þ stands for the positive part of � and r0 is the Hölder conjugate of r. On the other hand, by Lemma 2.5, for any
q satisfying 2 � q < 2d=ðd � 2Þ (with the right-hand inequality dropped in d ¼ 1; 2) we have

X
x2D�

�dð��2jr(d)½s�ðxÞj2 þ j½s�ðxÞj2Þ � cðD; qÞ
X
x2D�

�dj½s�ðxÞjq
 !2=q

; ð2:40Þ

for some constant cðD; qÞ > 0. The right-hand side is a multiple of kk2s�;sq while, in light of (2.37–2.39), the left-hand
side is bounded by a term involving kk2s�;2sr0 . This turns ð2.40Þ into a recursion relation

kk�;sq � ĉkk�;2sr0 ð2:41Þ

for ĉ :¼ ½2cðsÞcðD; qÞ�1ð�þ þ k�k�;rÞ�
1
2s . For r as in ð2.2Þ we get r0 < d=ðd � 2Þ in d � 3 and so, in all d � 1, we can

find q with 2r0 < q < 2d=ðd � 2Þ and get an improvement in regularity.
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Now pick s > 1 and let ðxÞ :¼ ��d=2gðkÞD�;�ðxÞ and � :¼ � ðkÞD�;�
and invoke the argument alluded to in Remark 2.3: For

k ¼ 1, both k�k�;r and ð� ð1ÞD�;�
Þþ are bounded on Ek;�;� uniformly in � by definition and Corollary 2.4, and so ĉ is bounded

by an absolute constant. Moreover, kk�;2 ¼ 1 by definition and, since sr0 2 ð1; sq=2Þ, for ~� 2 ð0; 1Þ such that
2 ~�þ sqð1� ~�Þ ¼ 2sr0, Hölder’s inequality yields

kk�;2sr0 � kk ~�
�;2kk

1� ~�
�;sq � ĉ1� ~�kk ~�

�;2kk
1� ~�
�;2sr0 ; ð2:42Þ

where the second inequality follows from ð2.41Þ. This bounds kk�;2sr0 by ĉ ~��1�1; an iterative use of ð2.41Þ then yields
ð2.34Þ, as desired.

For k � 2, we first use the conclusion for k ¼ 1 to complete the proof of Proposition 2.10, which shows that � ð1ÞD�;�
is

bounded from below on Ek;�;� \ F�;� . Then combining with Corollary 2.4, we obtain the boundedness of ð� ðkÞD�;�
Þþ on

Ek;�;� \ F�;� and the rest of the computation is the same as before. �

As a corollary, we get a regularity result for gradients of eigenfunctions as well:

Corollary 2.7. Under Assumption 1.1, for all k 2 N, and any choice of the k-th eigenfunction gðkÞD�;� of HD�;�,

sup
0<�<1

sup
�2Ek;�;�\F�;�

��2kr(d)gðkÞD�;�k
2
2 <1; ð2:43Þ

uniformly in � 2 ð0; 1Þ.

Proof. Just plug ð2.34Þ in (2.37–2.39) with s :¼ 1. �

Our final regularity lemma addresses approximations of functions by their piecewise-constant counterparts. Recall
the definition of fL from ð1.13Þ. Then we have:

Lemma 2.8. There is CðdÞ <1 such that, for any p 2 ð1; 2Þ, any L 2 N and any f :Zd ! R with finite support,

k f 2 � f 2
L kp < CðdÞLkr(d) fk2k fk 2p

2�p
: ð2:44Þ

Proof. For any 1 � p < 2, Hölder’s inequality shows

k f 2 � f 2
L kp � k f � fLk2k f þ fLk 2p

2�p
: ð2:45Þ

The first term on the right is bounded by cLkr(d) fk2 due to the Poincaré inequality and our definition of fL, while the
second terms is at most 2k fk 2p

2�p
since f 7! fL is a contraction. �

2.4 Lower bound by homogenized eigenvalue

We are now ready to tackle the lower bound in Theorem 1.3. We start by showing that the event F�;� from ð2.33Þ
occurs with overwhelming probability when � is sufficiently small:

Lemma 2.9. Under Assumption 1.1 and ð2.3Þ, for any � > 0 and all � > 0 sufficiently small,

PðFc
�;�Þ � expf��0�g: ð2:46Þ

Proof. Recall that L :¼ ��� for � 2 ð0; 1� �r=dÞ with r as in ð2.2Þ. Introducing

�LðyÞ :¼
X

z2BLðyÞ
L�dðUðz�Þ � �ðzÞÞ

�����
�����
r

ð2:47Þ

we may write

k�Lkr�;r ¼
X
y2LZd

ð�LÞd�LðyÞ: ð2:48Þ

Note that ð�LÞd is the reciprocal of the number of y’s with �LðyÞ 6¼ 0 up to a multiplicative constant. In addition, note
also that lim�#0 �LðyÞ ¼ 0 in probability for each y 2 Zd (by the Law of Large Numbers and the fact that the truncated-
field expectations converge to U), supy �LðyÞ � 2���r by ð2.3Þ and

sup
�2ð0;1Þ

sup
y2Zd

E½�LðyÞK=r� � L�d
X

z2BLðyÞ
E½jUðz�Þ � �ðzÞjK� <1 ð2:49Þ

by Assumption 1.1. Given these inputs, we will now prove

P

X
y2LZd

ð�LÞd�LðyÞ > �

0@ 1A � expf��0�g ð2:50Þ

for sufficiently small � > 0, which by ð2.48Þ (and redefinition of �) yields the desired claim.
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To get ð2.50Þ, we proceed very much in the same way as in the proof of Lemma 2.2. For r and � as above, fix real
numbers a0 < a1 < � � � < aJ :¼ �r < d satisfying

0 < a0 <
dð1� �Þ

2
and

aj�1

aj
>

r

K
ð2:51Þ

and write

�LðyÞ ¼ �LðyÞ1f�LðyÞ<��a0 g þ
XJ
j¼1

�LðyÞ1f��aj�1��LðyÞ<��aj g

¼: 	ðyÞ þ
XJ
j¼1


jðyÞ:
ð2:52Þ

The union bound then shows

P

X
y2LZd

�dj�LðyÞjr � �

0@ 1A � P X
y2LZd

ð�LÞd	ðyÞ �
�

2

0@ 1AþXJ
j¼1

P

X
y2LZd

ð�LÞd
jðyÞ �
�

2J

0@ 1A: ð2:53Þ

Since the above ‘‘inputs’’ yield supy E½	ðyÞ� ¼ oð1Þ as � # 0, the Azuma–Hoeffding inequality implies

P

X
y2LZd

ð�LÞd	ðyÞ �
�

2

0@ 1A � 2 expf�c��dð1��Þþ2a0g ð2:54Þ

for any � > 0. On the other hand, by definition of 
jðxÞ we have

P

X
y2LZd

ð�LÞd
jðyÞ �
�

2J

0@ 1A � P X
y2LZd

1f
jðyÞ6¼0g �
�

2J
��dð1��Þþaj

0@ 1A: ð2:55Þ

Noting that �dð1� �Þ þ aJ < 0 and that f1f
jðyÞ6¼0ggy2LZd are stochastically dominated by independent Bernoulli
variables with success probability bounded by

Pð
jðyÞ 6¼ 0Þ � Pð�LðyÞ > ��aj�1Þ � �aj�1K=r sup
�2ð0;1Þ

sup
y2LZd

E½�LðyÞK=r� ð2:56Þ

an application of the Bernstein inequality along with aj�1K=r > aj again bounds the right-hand side of ð2.55Þ by
expf��0�g for sufficiently small �. �

The key estimate in this section is again encapsulated into:

Proposition 2.10. For all k 2 N there is c > 0 such that for all sufficiently small � > 0 and all sufficiently small
� > 0,

Ek;�;� \ F�;� � f��
kð�Þ � �k � ck�g: ð2:57Þ

In particular, under Assumption 1.1, for any � > 0,

Pð��
kð�Þ � �k � �Þ �!

�#0
0: ð2:58Þ

In light of our general strategy of playing the variational problems (2.17–2.18) against each other, the proof starts
with a conversion of discrete eigenfunctions to functions over Rd. This following lemma will be quite useful in this
vain:

Lemma 2.11. There is a constant C ¼ CðdÞ for which the following holds: For any function f :Zd ! R and any
� 2 ð0; 1Þ, there is a function ef :Rd ! R such that
(1) the map f 7! ef is linear,
(2) ef is continuous on Rd and ef ðx�Þ ¼ f ðxÞ for all x 2 Zd,
(3) for any x 2 Zd and any y 2 �xþ ½0; �Þd we have

jef ðyÞj � max
z2xþf0;1gd

j f ðzÞj; ð2:59Þ

and

jef ðyÞ � f ðxÞj � d max
z2xþf0;1gd

jr(d) f ðzÞj; ð2:60Þ

(4) for all p 2 ½1;1� we have
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kefkLpðRdÞ � CðdÞkfk�;p; ð2:61Þ
and X

x2Zd

Z
�xþ½0;�Þd

jef ðyÞ � f ðxÞj2dy � CðdÞkr(d)f k2�;2; ð2:62Þ

(5) ef is piece-wise linear and thus almost everywhere differentiable with

krefkL2ðRdÞ ¼ �
�1kr(d)fk�;2: ð2:63Þ

Proof. This is a restatement of Lemma 3.3 of [3] (with a history of similar statements described there). �

With this in hand, we are ready to give:

Proof of Proposition 2.10. The proof will be based on Corollary 2.7 derived along with Proposition 2.6 whose
k � 2-part is in turn proved using the k ¼ 1-part of the statement under consideration. This poses no logical conflict
since (as described in Remark 2.3), we first use Corollary 2.7 for k ¼ 1, where no reference to the present statement
is required, in the argument below to establish the present statement for k ¼ 1. This then validates the proof of
Proposition 2.6 and Corollary 2.7 for k � 2 which subsequently validates also the k � 2-version of the proof below.

Let gð1ÞD�;�; . . . ; g
ðkÞ
D�;�

be (a choice of) an ONS of the first k eigenfunctions of HD�;� and let eg �1;�; . . . ;eg �k;� be functions on
R

d associated with ��d=2gð1ÞD�;�; . . . ; �
�d=2gðkÞD�;�, respectively, as described in Lemma 2.11. Corollary 2.7 ensures

sup
0<�<1

sup
�2Ek;�;�\F�;�

��2kr(d)gðiÞD�;�k
2
2 <1 ð2:64Þ

and so, in light of parts (1) and (4) of Lemma 2.11,

sup
�2Ek;�;�\F�;�

jheg �i;�;eg �j;�iL2ðRdÞ � �ijj �!
�#0

0: ð2:65Þ

Invoking again the Gram–Schmidt orthogonalization, we can thus find functions eh �1;�; . . . ;eh �k;� and coefficients aijð�; �Þ,
1 � i; j � k, such that

eh �i;� ¼Xk
j¼1

ð�ij þ aijð�; �ÞÞeg �j;�; i ¼ 1; . . . ; k; ð2:66Þ

and

heh �i;�;eh �j;�iL2ðRdÞ ¼ �ij and max
i; j

sup
�2Ek;�;�\F�;�

jaijð�; �Þj �!
�#0

0: ð2:67Þ

Thanks to the definition of D�, Lemma 2.11(3) and ð2.66Þ, both eg �i;� and eh �i;� are supported in D.
Lemma 2.11(5) along with ð2.64Þ and (2.66–2.67) in turn guarantee

sup
�2Ek;�;�\F�;�

jkreh �i;�k2L2ðRdÞ � �
�2kr(d)gðiÞD�;�k

2
2j �!

�#0
0 ð2:68Þ

while ð2.62Þ ensures

sup
�2Ek;�;�\F�;�

jhU; ðeh �i;�Þ2iL2ðRdÞ � hUð��Þ; ðg
ðiÞ
D�;�
Þ2ij �!

�#0
0: ð2:69Þ

Using eh �i;� as the  i’s in ð2.18Þ and noting that the gðiÞD�;�’s achieve the infimum in ð2.17Þ, we find

�k � ��
kð�Þ þ � þ

Xk
i¼1

hUð��Þ � �; ðgðiÞD�;�Þ
2i ð2:70Þ

when � is sufficiently small. Now we apply the piece-wise constant approximation defined in ð1.13Þ to the function gðiÞD�;�
and invoke Hölder’s inequality with conjugate exponents ðr; r0Þ, where r is as in ð2.2Þ, to obtain

hUð��Þ � �; ðgðiÞD�;�Þ
2i � hUð��Þ � �; ððgðiÞD�;�ÞLÞ

2i

þ ��d=rkUð��Þ � �k�;rkðg
ðiÞ
D�;�
Þ2 � ððgðiÞD�;�ÞLÞ

2kr0 :
ð2:71Þ

Using Lemma 2.8, Corollary 2.7 and Proposition 2.6, we find

kðgðiÞD�;�Þ
2 � ððgðiÞD�;�ÞLÞ

2kr0 � cL�kgðiÞD�;�k 2r0

2�r0

¼ cL�1þd=rk��d=2gðiÞD�;�k�; 2r0

2�r0

� cL �1þd=r:

ð2:72Þ

Since L ¼ oð��1Þ, the second term on the right-hand side of ð2.71Þ is negligible. On the event Ek;�;� \ F�;� , the first term
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on the right-hand side of ð2.71Þ is also bounded as

jhUð��Þ � �; ððgðiÞD�;�ÞLÞ
2ij � k�Lk�;rk��d=2ðg

ðiÞ
D�;�
ÞLk2�;2r0 � c�; ð2:73Þ

again by Lemma 2.8. We thus get ��
kð�Þ � �k � c� on Ek;�;� \ F�;� for sufficiently small �, as desired. �

Proof of Theorem 1.3. By Propositions 2.3 and 2.10, for any � > 0 and k 2 N we have

Pðj��
kð�Þ ��kj > �Þ �!

�#0
0: ð2:74Þ

Since

� ðkÞD�;�
¼ ��

kð�Þ ���
k�1ð�Þ and � ðkÞD ¼ �k ��k�1; ð2:75Þ

the convergence of the individual eigenvalue follows. �

The proof of Proposition 2.10 gives us the following additional fact:

Corollary 2.12. Given any choice of the orthonormal system gð1ÞD�;�; . . . ; g
ðkÞ
D�;�

, let eg �1;�; . . . ;eg �k;� denote the continuum

interpolations of ��d=2gð1ÞD�;�; . . . ; �
�d=2gðkÞD�;� as constructed in Lemma 2.11. Assume � ðkþ1Þ

D > � ðkÞD and let �̂k denote the

orthogonal projection on f’ð1ÞD ; . . . ; ’
ðkÞ
D g
?. Then, for any � > 0, whenever � > 0 and � > 0 are sufficiently small,

�:
Xk
i¼1

k�̂keg �i;�kL2ðRdÞ > �

( )
� ðEk;�;� \ F�;�Þc: ð2:76Þ

Proof. This is proved in the same way as Corollary 3.8 of [3]. �

We close this subsection with an ‘1-bound for the eigenfunction. Compared with the case of bounded � (cf.
Lemma 3.2 of [3]), the bound is weaker but it is still useful in the proof of Theorem 1.4.

Lemma 2.13. For all p > 1, all k 2 N and all sufficiently small � > 0 there is ck;p;� > 0 such that for all � 2 ð0; 1Þ,

Ek;�;� \ F�;� � fkgðkÞD�;�k
2
1 � ck;p;� �

d=pg: ð2:77Þ

Proof. Let fXt: t � 0g denote the (constant speed) continuous-time simple symmetric random walk on Zd killed upon
exiting from D�. The eigenvalue equation and the Feynman–Kac formula imply

gðkÞD�;�ðxÞ ¼ et�
ðkÞ
D� ;�ðe�tHD� ;�gðkÞD�;�ÞðxÞ

¼ et�
ðkÞ
D� ;�Ex exp �

Z t��2

0

�2�ðXsÞds

( )
gðkÞD�;�ðXt��2 Þ

 !
;

ð2:78Þ

where Ex denotes the expectation over the walk started at x. Writing ptðx; yÞ for the probability that the walk started at x
is at y at time t, Hölder’s inequality with conjugate indices ðp; qÞ yields

jgðkÞD�;�ðxÞj � et�
ðkÞ
D� ;�Ex exp �

Z t��2

0

q�2�ðXsÞds

( ) !1=q

ExðjgðkÞD�;�ðXt��2 ÞjpÞ1=p

� et�
ðkÞ
D� ;�h�x; e�tHD� ;q�1i1=q

X
y2D�

pt��2 ðx; yÞjgðkÞD�;�ðyÞj
p

 !1=p

:

ð2:79Þ

The (1=q-th power of the) inner product on the right-hand side is bounded by

ðk�xk2ke�tHD� ;q�k‘2!‘2k1k2Þ1=q � ce�t�
ð1Þ
D� ;q�

=q��d=2q: ð2:80Þ

On the other hand, invoking the Cauchy-Schwarz inequality and using Proposition 2.6 we get

X
y2D�

pt��2 ðx; yÞjgðkÞD�;�ðyÞj
p

 !2

�
X
y2D�

pt��2 ðx; yÞ2
X
y2D�

jgðkÞD�;�ðxÞj
2p

� cp2t��2 ðx; xÞ�dðp�1Þ on Ek;�;� ;

ð2:81Þ

where in the second inequality we have used the fact that pt��2 ð�; �Þ is symmetric. Since p is bounded by the transition
kernel of the random walk without killing, the local central limit theorem yields p2t��2 ðx; xÞ � ct�d=2�d . Summarizing
the above bounds, we arrive at

jgðkÞD�;�ðxÞj
2 � c expft� ðkÞD�;�

� t� ð1ÞD�;q�
=qgt�d=2p�dð1�1=qÞ: ð2:82Þ

The desired bound follows by taking t :¼ 1 and noting that, by Corollary 2.4 and Proposition 2.10, the eigenvalues are
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bounded on Ek;�;� \ F�;� uniformly in �. �

Remark 2.13. For d ¼ 1, the bound ð2.77Þ holds (with a finite constant) even for p ¼ 1. This follows from
Corollary 2.7 and a discrete version of Morrey’s inequality.

3. Gaussian Limit Law

We are now finally ready to address the second main aspect of this work, which is the limit theorem for fluctuations
of asymptotically non-degenerate eigenvalues. Just as Lemma 2.1, we have the following fact that allows us to work
with a truncated potential.

Lemma 3.1. Under Assumption 1.2, for each � 2 ðd=K; 2 ^ d=2Þ we have

Pðmax
x2D�
j�ðxÞj > ���Þ �!

�#0
0: ð3:1Þ

We fix � 2 ðd=K; 2 ^ d=2Þ and assume

max
x2D�
j�ðxÞj � ��� ð3:2Þ

in what follows.
As in our earlier work [3] (and drawing inspiration from [4]), the main idea is to use a martingale central limit

theorem. Consider an ordering of the vertices in D� into a sequence x1; . . . ; xjD�j and let F m :¼ �ð�ðx1Þ; . . . ; �ðxmÞÞ. Then

� ðkÞD�;�
� E� ðkÞD�;�

¼
XjD�j
m¼1

ZðkÞm ; where ZðkÞm :¼ Eð� ðkÞD�;�
jF mÞ � Eð� ðkÞD�;�

jF m�1Þ; ð3:3Þ

represents the fluctuation of the k-th eigenvalue as a martingale. We shall appeal to the Martingale Central Limit
Theorem due to Brown [5] which yields Theorem 1.4 under the following conditions:
(1) if � ðiÞD and � ð jÞD are simple, then

��d
XjD�j
m¼1

EðZðiÞm Zð jÞm jF m�1Þ �!
P

�#0
�2
ij; ð3:4Þ

(2) for each � > 0 and each i � 1,

��d
XjD�j
m¼1

EððZðiÞm Þ
21fjZðiÞm j>��d=2gjF m�1Þ �!

P

�#0
0: ð3:5Þ

In order to control the limits in (1) and (2), we rewrite the martingale difference by using an independent copyb� of � as

ZðiÞm ¼ bEð� ðiÞD�;b� ðmÞ � � ðiÞD�;b� ðm�1Þ Þ; ð3:6Þ

where bE is the expectation corresponding to b� and b� ðmÞ denotes the configuration

b� ðmÞðxiÞ :¼ �ðxiÞ; if i � m,b�ðxiÞ; if i > m.

�
ð3:7Þ

Lemma 3.2. The function � 7! � ðkÞD�;�
is everywhere right and left differentiable with respect to each �ðxÞ. For each �,

the set of values of �ðxÞ where the right and left partial derivatives with respect to �ðxÞ disagree is finite; else the
derivative exists and is continuous in �ðxÞ. At the point of differentiability, the partial derivative @

@�ðxÞ �
ðkÞ
D�;�

obeys

@

@�ðxÞ
� ðkÞD�;�
¼ gðkÞD�;�ðxÞ

2 ð3:8Þ

for any possible choice of gðkÞD�;�. (I.e., all choices give the same result.)

Proof. This is a classical result in the matrix analysis called Hadamard’s first variation formula. In the analytic
perturbation theory of self-adjoint operators, it is also called Feynman-Herman formula. See, for example, Reed and
Simon [9], Theorem XII.3 and the computation of the Rayleigh–Schrödinger coefficients presented on pages 5–8
thereof. An elementary proof of a slightly weaker assertion can be found in [3]. �

This lemma allows us to further rewrite the martingale difference, by using the fundamental theorem of calculus, as

bEð� ðiÞ
D�;

b� ðmÞ � �
ðiÞ
D�;

b� ðm�1Þ Þ ¼ bE Z �ðxmÞ

b�ðxmÞ
gðiÞ
D�;

e�ðmÞ ðxmÞ2d ~�

� �
; ð3:9Þ
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where e� ðmÞ is the configuration that equals � on fx1; . . . ; xm�1g, coincides with b� on fxmþ1; . . . ; xjD�jg and takes value ~� at
xm. The integral is to be understood in the Riemann sense, meaning in particular that the sign changes upon exchanging
the limits of integration.

For condition (1), we will proceed by replacing the square of the discrete eigenfunction by its corresponding
continuum counterpart. As in [3], the main task is to get rid of the dummy variable ~� by showing that changing the
value of � at one point causes little effect on the eigenfunction.

Lemma 3.3. Given k 2 N and a configuration �, suppose that � ðkÞD�;�
remains simple as �ðxÞ varies in ½����; ����. Then

for any �0 satisfying �ðyÞ ¼ �0ðyÞ for y 6¼ x and for any �ðxÞ and �0ðxÞ,

jgðkÞD�;�0 ðxÞj ¼ jg
ðkÞ
D�;�
ðxÞj exp

Z �0ðxÞ

�ðxÞ
GðkÞD� ðx; x; ~�Þ d ~�ðxÞ

� �
; ð3:10Þ

where ~� is the configuration that agrees with � (and �0) outside x where it equals ~�ðxÞ and

GðkÞD� ðx; y; �Þ :¼ h�x; ðHD�;� � �
ðkÞ
D�;�
Þ�1ð1� bPkÞ�yi‘2ðZdÞ ð3:11Þ

with bPk denoting the orthogonal projection on Kerð� ðkÞD�;�
� HD�;�Þ.

Proof. This follows from the so-called Hadamard’s second variation formula. See Lemma 5.2 of [3] for a direct proof.
�

Our next lemma shows that when � ðkÞD is simple, the random eigenvalue � ðkÞD�;�
indeed remains simple as �ðxÞ varies in

½����; ���� and also the term in the exponent of ð3.10Þ tends to zero as � # 0 with very high probability. Let us fix
p > 1 such that

d=p� � > d=2 and d=p� �þ 2 ^ d > d; ð3:12Þ

recalling ð3.2Þ. Further, we set

� :¼
1

3
minf� ðkÞD � �

ðk�1Þ
D ; � ðkþ1Þ

D � � ðkÞD g ð3:13Þ

and define the events

A1
k;� :¼

\
x2D�

f�: sup
�ðxÞ
j� ðiÞD�;� � �

ðiÞ
D j < � for all 1 � i � k þ 1g; ð3:14Þ

A2
k;� :¼

\
x2D�

f�: sup
�ðxÞ
jGðkÞD� ðx; x; �Þj � Gð�Þg ð3:15Þ

with the suprema over �ðxÞ are restricted to ½����; ���� and

Gð�Þ :¼ cG 	

�; d ¼ 1,

�2 log
1

�
; d ¼ 2,

�2; d � 3,

8>><>>: ð3:16Þ

where cG is to be determined momentarily. Abbreviate

Ak;�;� :¼ A1
k;� \ A

2
k;� \ Ek;�;� \ F�;� : ð3:17Þ

We then have:

Lemma 3.4. If � ðkÞD is simple and cG in ð3.16Þ is chosen sufficiently large, then for all � > 0 and � > 0 sufficiently
small,

PðAk;�;�Þ � 1� expf��0�g: ð3:18Þ

Proof. It readily follows from Propositions 2.3 and 2.10 that, for some constant c > 0,

sup
�2Ek;�;�\F�;�

max
1�i�kþ1

j� ðiÞD�;� � �
ðiÞ
D j < c� ð3:19Þ

holds for sufficiently small � > 0 and � > 0. Now for any 	 which differs from � 2 Ek;�;� \ F�;� only at x, one can easily
check that 	 2 Ek;�;2� \ F�;2� up to a change of the constant explained in Remark 2.1. For instance, if k�k�;r <
4jDjmaxx2D� E½j�ðxÞjr�, then for small enough � > 0,

sup
�ðxÞ
k�k�;r � k�k�;r þ �d=r�� � 5jDjmax

x2D�
E½j�ðxÞjr� ð3:20Þ

follows from our choice r < d=�. Therefore, by Lemmas 2.2 and 2.9, for each x 2 D� and with the supremum over �ðxÞ
restricted to ½����; ����,
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Pðsup
�ðxÞ
j� ðiÞD�;� � �

ðiÞ
D j < � for all 1 � i � k þ 1Þ � 1� expf��0�g: ð3:21Þ

Since jD�j ¼ Oð��dÞ, the union bound yields

PðA1
k;�Þ � 1� expf��0�g ð3:22Þ

for all � > 0 and � > 0 sufficiently small.
Next, we estimate the probability of A2

k;�. Hereafter, we assume that � 2 A1
k;�. Then mini2Nnfkg j� ðiÞD�;� � �

ðkÞ
D�;�
j is at least

� and if we choose � so that � þ � ð1ÞD > �, then for some constant c > 0 depending only on � and k,

jGðkÞD� ðx; x; �Þj �
X
i�1
i6¼k

1

j� ðiÞD�;� � �
ðkÞ
D�;�
j
gðiÞD�;�ðxÞ

2 � c
X
i�1

1

� þ � ðiÞD�;�
gðiÞD�;�ðxÞ

2; � 2 A1
k;�: ð3:23Þ

The sum on the right-hand side is nothing but the �-Green kernel of HD�;� evaluated at ðx; xÞ. Let us define

It;zð�Þ :¼ Ez

Z t��2

0

�2j�jðXsÞds

" #
¼ �2

Z t��2

0

X
y2D�

ptðz; yÞj�jðyÞds; ð3:24Þ

where p and X are the same as in the proof of Lemma 2.13. Using the Cauchy-Schwarz inequality and a standard heat
kernel bound, we obtain

jIt;zð�Þ � It;zð	Þj � �2
Z t��2

0

X
y2D�

ptðz; yÞ2
 !1=2 X

y2D�

j�ðyÞ � 	ðyÞj2
 !1=2

ds

¼ �2
Z t��2

0

p2tðz; zÞ1=2ds

 !
k�� 	k2

� ck�� 	k2 	
t1�d=4�d=2; d � 3,

�2 logðt��2Þ; d ¼ 4,

�2; d � 5.

8><>:
ð3:25Þ

Noting also that It;zð�Þ is linear and jIt;zj � t��� thanks to ð3.2Þ, we may use Talagrand’s concentration inequality
(Theorem 6.6 of Talagrand [11]) and ð3.2Þ to get

max
z2D�

PðjIt;zð�Þ �medðIt;zÞj > RÞ � 4 expf�cR2�2��4^d=logð��1Þg

� expf�cR2�0�g
ð3:26Þ

for all R > 0, where c is a constant depending only on t and the bound holds for all � > 0 sufficiently small. By
integrating this bound, we first find jEðIt;zÞ �medðIt;zÞj < 1=16 for � > 0 small. Then for t ¼ ð16 maxx2D� Eðj�ðxÞjÞÞ�1,
we have jEðIt;zÞj � 1=16 and hence jmedðIt;zÞj < 1=8. By using this in ð3.26Þ and choosing R ¼ 1=8, we obtain the
bound

max
z2D�

P It;zð�Þ >
1

4

� �
� expf��0�g ð3:27Þ

for all sufficiently small � > 0. Since ð3.25Þ ensures that varying �ðxÞ over ½���; ��� brings only oð1Þ change to It;zð�Þ
and since jD�j ¼ Oð��dÞ, the union bound yields

P

[
x2D�

sup
�ðxÞ

sup
z2D�

It;zð�Þ >
1

3

( ) !
� expf��0�g ð3:28Þ

for � > 0 sufficiently small. Now if supz2D� jIt;zð�Þj � 1=3, a standard argument using Khas’minskii’s lemma (see, e.g.,
Proposition 3.1 in Chapter 1 of Sznitman [10]) tells us that

e�sHD� ;�ðx; xÞ � 
�1e
sp2s��2ðx; xÞ ð3:29Þ

for some universal constant 
 > 0. Multiplying both sides of this inequality by e��s with � > 2
 _ ð�� � ð1ÞD�;�
Þ and

integrating over s 2 ð0;1Þ, we obtain

ð� � HD�;�Þ
�1ðx; xÞ �

c



ð
 � ��2�(d)Þ�1ðx; xÞ 


�; d ¼ 1,

�2 log
1

�
; d ¼ 2,

�2; d � 3.

8>><>>: ð3:30Þ

Using this in ð3.23Þ then yields a corresponding bound on PðA2
k;�Þ. �
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Now we are in position to check the conditions of the Martingale Central Limit Theorem. Let us first check the
condition (2).

Proposition 3.5. For each � > 0 and i � 1,

��d
XjD�j
m¼1

EððZðiÞm Þ
21fjZðiÞm j>��d=2gjF m�1Þ �!

P

�#0
0: ð3:31Þ

Proof. On the event Ak;�;� , by using Lemma 2.13 in ð3.9Þ, we have

sup
�2Ak;�;�

jZðiÞm j � c�d=p��: ð3:32Þ

Thanks to ð3.12Þ, the right-hand side is oð�d=2Þ. On the other hand, sup� jZðkÞm j1 � 2��� due to the truncation. From these
bounds and Lemma 3.4, we obtain

��d
XjD�j
m¼1

EððZðkÞm Þ
21fjZðkÞm j>��d=2gÞ � �

�d
XjD�j
m¼1

EððZðkÞm Þ
21Ac

k;�;�
Þ � expf��0�g ð3:33Þ

for sufficiently small �. This shows that the desired convergence holds in L1ðPÞ, and thus also in probability. �

Next we address condition (1) of the Martingale Central Limit Theorem:

Proposition 3.6. Suppose � ðiÞD and � ð jÞD are simple. Abbreviate B�ðxÞ :¼ �xþ ½0; �Þd . Then

E

XjD�j
m¼1

Eðð��dZðiÞm Þð�
�dZð jÞm ÞjF m�1Þ �

Z
B�ðxmÞ

VðyÞ’ðiÞD ðyÞ
2’ð jÞD ðyÞ

2dy

� ������
������!�#0 0: ð3:34Þ

The proof of this proposition will be done in several steps. Recall the definition of event Ak;�;� and note that, on Ak;�;�

the eigenfunction gðkÞD�;� is unique up to a sign and, in particular, there is a unique measurable version of � 7! gðkÞD�;�ðxÞ
2 for

each x. We first eliminate the dummy variable ~�.

Lemma 3.7. Suppose � ðkÞD is simple. Then

��d
XjD�j
m¼1

EðjZðkÞm � ð�ðxmÞ � Uð�xmÞÞEðgðkÞD�;�ðxmÞ
21Ak;�;�

jF mÞj2Þ �!
�#0

0: ð3:35Þ

Proof. Inserting the indicator of fb� ðmÞ 2 Ak;�;�g and/or its complement into the right-hand side of ð3.9Þ and using the
obvious bound sup� kg

ðkÞ
D�;�
k1 � 1, we get

ZðkÞm �bE 1fb� ðmÞ2Ak;�;�g

Z �ðxmÞ

b�ðxmÞ
gðkÞ
D�;

e�ðmÞ ðxmÞ2d ~�

� ������
����� � 2��� Eð1Ac

k;�;�
jF mÞ: ð3:36Þ

Abbreviate temporarily

Fmð ~�ðmÞÞ :¼ exp 2

Z ~�

�ðxmÞ
GðkÞD� ðxm; xm; ~�0Þd ~�0

( )
: ð3:37Þ

On the event fb� ðmÞ 2 Ak;�;�g, Lemma 3.3 yieldsZ �ðxmÞ

b�ðxmÞ
gðkÞ
D�;

e�ðmÞ ðxmÞ2d ~�

� �
� ð�ðxmÞ �b�ðxmÞÞgðkÞ

D�;
b� ðmÞ ðxmÞ

2

¼
Z �ðxmÞ

b�ðxmÞ
ðgðkÞ

D�;
e�ðmÞ ðxmÞ2 � gðkÞ

D�;
b� ðmÞ ðxmÞ

2Þd ~�

¼ gðkÞ
D�;

b�ðmÞ ðxmÞ
2

Z �ðxmÞ

b�ðxmÞ
ðFmð ~�ðmÞÞ � 1Þd ~�

ð3:38Þ

and the last integral is estimated by using Lemma 3.4 asZ �ðxmÞ

b�ðxmÞ
ðFmð ~�ðmÞÞ � 1Þd ~�

�����
����� � 4j�ðxmÞ �b�ðxmÞj���Gð�Þ: ð3:39Þ

This and ð3.36Þ, together with Lemma 2.13, yield
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jZðkÞm �bEð1fb�ðmÞ2Ak;�;� g
ð�ðxmÞ �b�ðxmÞÞgðkÞ

D�;
b�ðmÞ ðxmÞ

2Þj2

� cð���Eð1Ac
k;�;�
jF mÞ2 þ �2d=p�2�Gð�Þ2bEðj�ðxmÞ �b�ðxmÞj2ÞÞ: ð3:40Þ

As the configuration b� ðmÞ does not depend on b�ðxmÞ, we may take expectation with respect to b�ðxmÞ and effectively
replace it by Uð�xÞ. Taking the expectation over � and summing over x 2 D�, we find that the left-hand side of ð3.35Þ is
bounded by

��d
XjD�j
m¼1

c ���PðAc
k;�;�Þ þ �

2ðd=p��þ2^dÞ log
1

�

� �
� ��2d�2� expf��0�g þ �0þ ð3:41Þ

by Lemma 3.4 and ð3.12Þ. �

Next we bound the difference between the continuum eigenfunction and the discrete random eigenfunction without
the dummy variable.

Lemma 3.8. Suppose � ðkÞD is simple. Then

lim
�#0

lim sup
�#0

XjD�j
m¼1

Z
B�ðxmÞ

Eðj�ðxmÞ � Uð�xmÞj2j’ðkÞD ðyÞ
2 � ��dgðkÞD�;�ðxmÞ

21Ak;�;�
j2Þdy ¼ 0: ð3:42Þ

Proof. Recall the setting of Corollary 2.12 and, in particular, given (a choice of) the scaled discrete eigenfunctions
��d=2gð1ÞD�;�; . . . ; �

�d=2gðkÞD�;�, let eg �1;�; . . . ;eg �k;� denote their continuum interpolations. Then ð2.60Þ givesXjD�j
m¼1

Z
B�ðxmÞ

Eðjeg �k;�ðyÞ � ��d=2gðkÞD�;�ðxmÞj21Ak;�;�
Þdy � CðdÞEðkr(d)gðkÞD�;�k

2
21Ak;�;�

Þ; ð3:43Þ

which tends to zero proportionally to �2, due to Corollary 2.7. Thus it suffices to show that the following tends to zero
as � # 0 and � # 0: Z

D

Eðj�ðxmÞ � Uð�xmÞj2j’ðkÞD ðyÞ
2 �eg �k;�ðyÞ21Ak;�;�

j2Þdy

� ��2�
PðAc

k;�;�Þk’
ðkÞ
D ðyÞk

4
L4

þ Eðk�� Uð��Þkr�;r1Ak;�;�
Þ2=rEðkj’ðkÞD j � jeg �k;�jkrLr1Ak;�;�

Þ2=r

	 Eðkj’ðkÞD j þ jeg �k;�jk2r0L2r01Ak;�;�
Þ1=r

0
:

ð3:44Þ

The first term on the right-hand side tends to zero as � # 0 because of Lemma 3.4 and the boundedness of ’ðkÞD . As for
the second term, the definition of Ak;�;� and Proposition 2.6 imply that all the random variables in the expectations are
bounded. As � ðkÞD is simple, Corollary 2.12 guarantees that when � 2 Ak;�;� and � and � are small, feg �j;�g‘j¼1 projects
almost entirely onto the closed linear span of f’ð jÞD g

‘
j¼1 for both ‘ ¼ k � 1 and ‘ ¼ k. This implies that we can make

kjeg �k;�j � j’ðkÞD jkL2ðDÞ1Ak;�;�
ð3:45Þ

as small as we wish by making � and � small. Since the Hölder inequality yields

kjeg �k;�j � j’ðkÞD jkrLr � kjeg �k;�j � j’ðkÞD jk1=2L2 kjeg �k;�j � j’ðkÞD jk1=2L2ðr�1Þ ð3:46Þ

and L2ðr�1Þ-norm above is bounded due to Lemma 2.6, we are done. �

Proof of Proposition 3.6. Combining Lemmas 3.7 and 3.8, and using that the conditional expectation is a contraction
in L2ðPÞ, we get XjD�j

m¼1

Z
B�ðxmÞ

Eðj��dZðkÞm � ð�ðxmÞ � Uð�xmÞÞ’ðkÞD ðyÞ
2j2Þdy�!

�#0
0 ð3:47Þ

for both k ¼ i; j. The claim now reduces toXjD�j
m¼1

Z
B�ðxmÞ
jVðyÞ � Vð�xmÞj’ðiÞD ðyÞ

2’ð jÞD ðyÞ
2dy�!

�#0
0; ð3:48Þ

which follows by uniform continuity of y 7! VðyÞ and the boundedness of the eigenfunctions. �

Proof of Theorem 1.4. The condition (2) of the Martingale Central Limit Theorem is verified in Proposition 3.5.
Thanks to Proposition 3.6 and the fact that jB�ðxmÞj ¼ �d,
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��d
XjD�j
m¼1

EðZðkiÞm ZðkjÞm jF m�1Þ �!
�#0

Z
D

VðyÞ’ðkiÞD ðyÞ
2’
ðkjÞ
D ðyÞ

2 dy ð3:49Þ

in L1ðPÞ and thus in probability. This verifies the condition (1) of the Martingale Central Limit Theorem and the result
follows. �

Appendix

Here we collect some proofs from earlier parts of this paper. We begin by the proof of the Sobolev inequality.

Proof of Lemma 2.5. Since D is bounded we may regard D� as a subset of the torus T� :¼ Zd=ðLZÞd, where L is an
integer at most twice the ‘1-diameter of D�. This makes the discrete Fourier transform conveniently available. Writing

f̂ ðkÞ :¼ jT�j�1=2
X
x2T�

e2�ik�x=Lf ðxÞ; k 2 T�; ðA:1Þ

we get k f̂kT�;2 ¼ k fkT�;2 and k f̂ kT�;1 � cðDÞ��d=2k fkT�;1. The Riesz-Thorin Interpolation Theorem then shows

~cðD; qÞk f̂kT�;q � ð�
�d=2Þ

q�2
q k fkT�;p; ðA:2Þ

where ~cðD; qÞ > 0 and every q 2 ½2;1� and p such that 1=pþ 1=q ¼ 1. As ^̂
f ðxÞ ¼ f ð�xÞ, we may freely interchange f̂

with f in ðA·2Þ.
Let â�ðkÞ :¼ ��2

Pd
j¼1 2 sinð�kj=LÞ2 be the eigenvalue of ���2�(d) on T� associated with the k-th Fourier mode.

Applying ðA·2Þ and the Hölder inequality, for any q � 2 we get

~cðD; qÞð�d=2Þ
q�2
q k fkT�;q � k f̂kT�; q

q�1

� kð1þ â�Þ�1=2k
q�2
2q

T�;
2q�2
q�2

kð1þ â�Þ1=2 f̂kT�;2

¼ kð1þ â�Þ�1=2k
q�2
2q

T�;
2q�2
q�2

ðk fk2
T�;2
þ ��2kr(d)fk2

T�;2
Þ1=2

ðA:3Þ

Comparing with ð2.31Þ, it thus suffices to show that

sup
0<�<1

X
k2T�

ð1þ â�ðkÞÞ
q�1
q�2 <1: ðA:4Þ

As �L is bounded between two positive numbers, this is equivalent to summability of jkj�2
q�1
q�2 on k 2 Zd n f0g. This

requires 2 q�1
q�2

> d which in d � 3 needs q < 2d
d�2

. �

Our next item of business is optimality of the moment condition and the effect of the truncation. Let us first check
that our moment assumption is nearly optimal for Theorem 1.3. For the cases d ¼ 1 and 2, it is only a little more than
the natural integrability assumption. Let d � 3 and suppose that the distributions of �ð�ÞðxÞ (x 2 D�) depend neither on
x 2 D� nor on � > 0. If we assume E½�ðxÞK�� ¼ 1 for some K < d=2 in addition, thenZ 1

0

tK�1
Pð��ðxÞ > tÞdt ¼ 1 ) lim sup

t!1
t�K

0
Pð��ðxÞ > tÞ > 0 ðA:5Þ

for any K 0 > K. Taking K 0 < d=2, we find

lim sup
�#0

Pðmin
x2D�

�ðxÞ � ����Þ ¼ 1� lim inf
�#0

Y
x2D�

Pð��ðxÞ � ���Þ

� 1� lim inf
�#0
ð1� ��K

0
ÞjD�j > 0

ðA:6Þ

for 2 < � < d=K 0. Suppose �ðxÞ � ���� at x 2 D�. Then, by simply taking h1 ¼ 1fxg in ð2.17Þ with k ¼ 1, we obtain

� ð1ÞD�;�
� ��2kr(d)1fxgk22 � h1fxg; �1fxgi � ��

��=2: ðA:7Þ

This and ðA·6Þ implies that Theorem 1.3 fails to hold.
Next, we shall show that the truncation may affect the mean value E½� ð1ÞD�;�

�. Suppose for simplicity that f�ðxÞgx2Zd are
identically distributed and

Pð�ðxÞ � �rÞ ¼ jrj�K ^ 1 ðA:8Þ

for some K > 1 _ d=2. This distribution clearly satisfies Assumption 1.1 with U being a constant function and

Pðmin
x2D�

�ðxÞ � �rÞ ¼ ð1� jrj�K ^ 1Þ#D� � c�djrj�K ðA:9Þ
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provided that the last line is much smaller than 1. As is seen in the above argument, if �ðxÞ � �M��2 for some large
M > 0 and x 2 D�, then h1 ¼ 1fxg is almost the optimal choice in ð2.17Þ and � ð1ÞD�;�

� ��ðxÞ=2.

E½� ð1ÞD�;�
� �

1

2
E½min

x2D�
�ðxÞ: min

x2D�
�ðxÞ � �M��2�

¼ �
Z �M��2

�1
Pðmin

x2D�
�ðxÞ � �rÞdr

. ���d
Z 1
M��2

r�Kdr 
 ���dþ2ðK�1Þ:

ðA:10Þ

If K < d=2þ 1 (this is possible when d � 3), the right-hand side goes to �1.
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