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In this note, we give some restrictions on the number of vectors of weight d=2þ 1 in the shadow of a singly
even self-dual ½n; n=2; d� code. This eliminates some of the possible weight enumerators of singly even self-dual
½n; n=2; d� codes for ðn; dÞ ¼ ð62; 12Þ, ð72; 14Þ, ð82; 16Þ, ð90; 16Þ and ð100; 18Þ.
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1. Introduction

Let C be a singly even self-dual code and let C0 denote the subcode of codewords having weight � 0 (mod 4Þ. Then
C0 is a subcode of codimension 1. The shadow S of C is defined to be C?0 n C. Shadows for self-dual codes were
introduced by Conway and Sloane [6] in order to derive new upper bounds for the minimum weight of singly even self-
dual codes, and to provide restrictions on the weight enumerators of singly even self-dual codes. The largest possible
minimum weights of singly even self-dual codes of lengths n � 72 were given in [6, Table I]. The work was extended
to lengths 74 � n � 100 in [9, Table VI]. We denote by dðnÞ the largest possible minimum weight given in [6, Table I]
and [9, Table VI] throughout this note. The possible weight enumerators of singly even self-dual codes having
minimum weight dðnÞ were also given in [6] for lengths n � 64 and n ¼ 72 (see also [9] for length 72), and the work
was extended to lengths up to 100 in [9]. It is a fundamental problem to find which weight enumerators actually occur
among the possible weight enumerators (see [6] and [11]).

Some restrictions on the number of vectors of weight d=2 in the shadow of a singly even self-dual ½n; n=2; d� code
were given in [10]. Also, some restrictions on the number of vectors of weight d=2þ 1 in the shadow of a singly even
self-dual ½n; n=2; d� code were given in [2] for n � 0 (mod 4Þ. In this note, we improve the result in [2] about the
restriction on the number of vectors of weight d=2þ 1 in the shadow of a singly even self-dual ½n; n=2; d� code for
n � 0 (mod 4Þ. We also give a restriction on the number of vectors of weight d=2þ 1 in the shadow of a singly even
self-dual ½n; n=2; d� code for n � 2 (mod 4Þ. These restrictions eliminate some of the possible weight enumerators
determined in [6] and [9] for the parameters ðn; dÞ ¼ ð62; 12Þ, ð72; 14Þ, ð82; 16Þ, ð90; 16Þ and ð100; 18Þ.

2. Preliminaries

A (binary) ½n; k� code C is a k-dimensional vector subspace of Fn2, where F2 denotes the finite field of order 2. All
codes in this note are binary. The parameter n is called the length of C. The weight wtðxÞ of a vector x 2 Fn2 is the
number of non-zero components of x. A vector of C is a codeword of C. The minimum non-zero weight of all
codewords in C is called the minimum weight dðCÞ of C and an ½n; k� code with minimum weight d is called an ½n; k; d�
code. The dual code C? of a code C of length n is defined as C? ¼ fx 2 Fn2 j x � y ¼ 0 for all y 2 Cg, where x � y is the
standard inner product. A code C is called self-dual if C ¼ C?. A self-dual code C is doubly even if all codewords of C
have weight divisible by four, and singly even if there exists at least one codeword of weight � 2 (mod 4Þ. Rains [12]
showed that the minimum weight d of a self-dual code C of length n is bounded by d � 4b n

24
c þ 6 if n � 22 (mod 24Þ,

d � 4b n
24
c þ 4 otherwise. In addition, if n � 0 (mod 24Þ and C is singly even, then d � 4b n

24
c þ 2. A self-dual code

meeting the bound is called extremal. Let Ai and Bi be the numbers of vectors of weight i in C and S, respectively. The
weight enumerators of C and S are given by

Pn
i¼0 Aiy

i and
Pn�dðSÞ

i¼dðSÞ Biy
i, respectively, where dðSÞ denotes the minimum

weight of S.
Let C be a singly even self-dual code of length n and let S be the shadow of C. Let C0 denote the subcode of

codewords having weight � 0 (mod 4Þ. There are cosets C1;C2;C3 of C0 such that C?0 ¼ C0 [ C1 [ C2 [ C3, where
C ¼ C0 [ C2 and S ¼ C1 [ C3.
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Lemma 1 (Conway and Sloane [6]). Let x1; y1 be vectors of C1 and let x3 be a vector of C3. Then x1 þ y1 2 C0,
x1 þ x3 2 C2 and wtðx1Þ � wtðx3Þ � n

2
(mod 4Þ.

Lemma 2 (Brualdi and Pless [5]). Let x1; y1 be vectors of C1 and let x3 be a vector of C3.
1) Suppose that n � 0 (mod 4Þ. Then x1 � y1 ¼ 0 and x1 � x3 ¼ 1.
2) Suppose that n � 2 (mod 4Þ. Then x1 � y1 ¼ 1 and x1 � x3 ¼ 0.

3. n � 2 (mod 4Þ and dðSÞ ¼ dðCÞ
2
þ 1

Recall that the Johnson graph Jðv; dÞ has the collection X of all d-subsets of f1; 2; . . . ; vg as vertices, and two distinct
vertices are adjacent whenever they share d � 1 elements in common. Assume v � 2d and set

Ri ¼ fðx; yÞ 2 X 	 X j jx \ yj ¼ d � ig:

Then fRigdi¼0 is a partition of X 	 X. The following lemma is known as Delsarte’s inequalities since it is the basis of
Delsarte’s linear programming bound. We refer the reader to [7] for an explicit formula for the second eigenmatrix Q

appearing in the lemma.

Lemma 3 ([4, Proposition 2.5.2]). Let Y be a subset of vertices of Jðv; dÞ, and set

ai ¼
1

jY j
jðY 	 YÞ \ Rij ð0 � i � dÞ:

If we denote by Q ¼ ðqðvÞj ðiÞÞ the second eigenmatrix of Jðv; dÞ, then every entry of the vector ða0; . . . ; adÞQ is
nonnegative.

Suppose that Y is a subset of vertices of Jðv; dÞ such that two distinct members intersect at exactly one element. Then
by Lemma 3, every entry of the vector

ð1; 0; . . . ; 0; 0; jY j � 1; 0ÞQ

is nonnegative, i.e.,

qðvÞj ð0Þ þ ðjYj � 1ÞqðvÞj ðd � 1Þ � 0 ð1 � j � dÞ:

Thus, we obtain

jYj � Mv;d; ð3:1Þ

where

Mv;d ¼ min 1�
qðvÞj ð0Þ

qðvÞj ðd � 1Þ
j 1 � j � d and qðvÞj ðd � 1Þ < 0

( )
:

If we define

Mv;d ¼
2 if v ¼ 2d � 1,

1 if d � v � 2d � 2,

0 if 0 � v � d � 1,

8<
:

then ð3.1Þ also holds for all v; d.
Now, let C be a singly even self-dual code of length n and let S be the shadow of C. For the remainder of this section,

we assume that

n � 2 (mod 4Þ and dðSÞ ¼
dðCÞ

2
þ 1: ð3:2Þ

By Lemma 1, dðCÞ � n� 2 (mod 8Þ, and hence dðSÞ is odd.
For each of i ¼ 1; 3, let Yi be the set of supports of vectors of weight dðSÞ in Ci, and let Si be the union of the

members of Yi. From Lemma 2 and ð3.2Þ, we have the following:

jx \ yj ¼
1 if x; y 2 Yi, x 6¼ y,

0 if x 2 Y1, y 2 Y3.

�
ð3:3Þ

Then by ð3.1Þ, we have

jYij � MjSij;dðSÞ:
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It follows from ð3.3Þ that S1 \ S3 ¼ ;. Thus, we have

BdðSÞ ¼ jY1j þ jY3j � maxfMv;dðSÞ þMn�v;dðSÞ j 0 � v � n=2g: ð3:4Þ

For 42 � n � 98 and dðCÞ ¼ dðnÞ, the parameters ðn; dðCÞ; dðSÞÞ satisfying Condition ð3.2Þ are listed in Table 1,
where the values dðnÞ are also listed in the table. For some lengths n, the existence of a singly even self-dual code of
length n and minimum weight dðnÞ is currently not known. In this case, we consider the case dðCÞ ¼ dðnÞ � 2. We
calculated the upper bound ð3.4Þ, where the results are listed in Table 1. This calculation was done by the program
written in MAGMA [1], where the program is listed in Appendix A.

We discuss the possible weight enumerators for the case dðnÞ ¼ dðCÞ in Table 1. The possible weight enumerators
W42 and S42 of an extremal singly even self-dual ½42; 21; 8� code with dðSÞ � 5 and its shadow are as follows [6]:

W42 ¼ 1þ ð84þ 8�Þy8 þ ð1449� 24�Þy10 þ � � � ;
S42 ¼ �y5 þ ð896� 8�Þy9 þ ð48384þ 28�Þy13 þ � � � ;

respectively, where � is an integer. It was shown in [3] that 0 � � � 42. Table 1 gives an alternative proof.
The possible weight enumerators W62 and S62 of an extremal singly even self-dual ½62; 31; 12� code with dðSÞ � 7

and its shadow are as follows [6] (see also [8]):

W62 ¼ 1þ ð1860þ 32�Þy12 þ ð28055� 160�Þy14 þ � � � ;
S62 ¼ �y7 þ ð1116� 12�Þy11 þ ð171368þ 66�Þy15 þ � � � ;

respectively, where � is an integer with 0 � � � 93. Table 1 gives the following:

Proposition 4. If there exists an extremal singly even self-dual ½62; 31; 12� code with weight enumerator W62, then
0 � � � 48.

It is known that there exists an extremal singly even self-dual ½62; 31; 12� code with weight enumerator W62 for
� ¼ 0; 2; 9; 10; 15; 16 (see [13]).

The possible weight enumerators W82 and S82 of an extremal singly even self-dual ½82; 41; 16� code with dðSÞ � 9

and its shadow are as follows [9]:

W82 ¼ 1þ ð39524þ 128�Þy16 þ ð556985� 896�Þy18 þ � � � ;
S82 ¼ �y9 þ ð1640� �Þy13 þ ð281424þ 120�Þy17 þ � � � ;

respectively, where � is an integer with 0 � � � b556985
896
c ¼ 621. Table 1 gives the following:

Proposition 5. If there exists an extremal singly even self-dual ½82; 41; 16� code with weight enumerator W82, then
0 � � � 74.

It is unknown whether there exists an extremal singly even self-dual code for any of these cases.
The possible weight enumerators W90 and S90 of an extremal singly even self-dual ½90; 45; 16� code with dðSÞ � 9

and its shadow are as follows [9]:

W90 ¼ 1þ ð9180þ 8�Þy16 þ ð�512�� 24�þ 224360Þy18 þ � � � ;
S90 ¼ �y9 þ ð�� 18�Þy13 þ ð112320þ 153�� 16�Þy17 þ � � � ;

respectively, where � and � are integers with 0 � � � 1
18
� � b224360

24
c ¼ 9348. Table 1 gives the following:

Proposition 6. If there exists an extremal singly even self-dual ½90; 45; 16� code with weight enumerator W90, then
0 � � � 76.

It is unknown whether there exists an extremal singly even self-dual code for any of these cases.

Table 1. Parameters satisfying ð3.2Þ.

n dðnÞ dðCÞ dðSÞ BdðSÞ

42 8 8 5 �42

62 12 12 7 �48

70 14 12 7 �52

82 16 16 9 �74

90 16 16 9 �76

98 18 16 9 �78
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4. n � 0 (mod 4Þ and dðSÞ ¼ dðCÞ
2
þ 1

Let C be a singly even self-dual code of length n and let S be the shadow of C. In this section, we write dðCÞ ¼ d and
dðSÞ ¼ s for short, and assume that

n � 0 (mod 4Þ and s ¼
d

2
þ 1: ð4:1Þ

By Lemma 1, d � n� 2 (mod 8Þ, and hence s is even.

Proposition 7 ([2]). Suppose that n � 0 (mod 4Þ and s ¼ d
2
þ 1. Let Bs denote the number of vectors of weight s in S.

(i) If 2n > ðd þ 2Þ2, then

Bs �
2n

d þ 2
:

(ii) If ðd þ 2Þ2 � 4n � 2ðd þ 2Þ2, then

Bs � d þ 2; Bs 6¼ d þ 1:

(iii) If 4n < ðd þ 2Þ2, then

Bs � 2
2n� d � 2

d
:

The above proposition was essentially established by showing Bs � maxfl1; l2g, where

l1 ¼
2n

d þ 2
;

l2 ¼ min d þ 2; 2
2n� d � 2

d

� �
:

We recall part of the proof of Proposition 7 for later use. Denote the set of all vectors in Ci of weight s by Bi (i ¼ 1; 3).
Denote by v � w the entrywise product of two vectors v;w. If v;w 2 Bi, then wtðv �wÞ ¼ 0 and hence these vectors
have disjoint supports. This implies

jBij � l1 ði ¼ 1; 3Þ: ð4:2Þ

If v 2 B1 and w 2 B3, then wtðv � wÞ ¼ 1. Thus, if B1 and B3 are both nonempty, then

jBij � s: ð4:3Þ

Using the following lemmas, we give an improvement of the upper bound by showing Bs � maxfl01; l02g, where

l01 ¼
l1 if n is divisible by 2s,

2
n� d þ 2

d þ 2

� �
� 1 otherwise,

8<
:

l02 ¼
d þ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd þ 2Þ2 � 4n

q� �
if 4n < ðd þ 2Þ2,

min d þ 2; 4
n� d þ 2

d þ 2

� �
� 2

� �
otherwise.

8>>><
>>>:

Since

n� d þ 2

d þ 2

� �
¼

n=4� ðs=2� 1Þ
s=2

� �
�

n

2s
; ð4:4Þ

we have

l01 � l1; ð4:5Þ

and

4
n� d þ 2

d þ 2

� �
� 2 �

2n

s
� 2 < 2

2n� d � 2

d
:

The latter implies l02 � l2 provided 4n � ðd þ 2Þ2. If 4n < ðd þ 2Þ2, then
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2
2n� d � 2

d
�
�
d þ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd þ 2Þ2 � 4n

q �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd þ 2Þ2 � 4n

p
d

�
d �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd þ 2Þ2 � 4n

q �
� 0:

Thus l02 � l2 holds in this case as well. Therefore, the bound Bs � maxfl01; l02g which will be shown in Proposition 10
below is an improvement of the bound given in Proposition 7.

Lemma 8. Let

k ¼
n� d þ 2

2s

� �
:

If n is not divisible by 2s, then jBij � 2k � 1 for i ¼ 1; 3.

Proof. Suppose, to the contrary, jBij � 2k. Then the sum of the all-one vector and the 2k vectors of weight s belongs to
C0 and has weight n� 2ks � d � 2. This forces n� 2ks ¼ 0, contradicting the assumption. �

Lemma 9. Let n and s be positive integers with n < s2. Then

maxfaþ b j a; b 2 Z; 0 � a; b � s; sðaþ bÞ � ab � ng ¼ 2s�
	
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � n
p 


:

Proof. Since n < s2, we have

maxfaþ b j a; b 2 R; 0 � a; b � s; sðaþ bÞ � ab � ng
¼ maxfaþ b j 0 � a; b � s; ðs� aÞb � n� sag
¼ maxfaþminfðn� saÞ=ðs� aÞ; sg j 0 � a < sg

¼ maxfðn� a2Þ=ðs� aÞ j 0 � a < sg:

The function f ðxÞ ¼ ðn� x2Þ=ðs� xÞ defined on the interval ½0; sÞ has maximum f ð�Þ ¼ 2�, where � ¼ s�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � n
p

.
Thus, we have

maxfaþ b j a; b 2 Z; 0 � a; b � s; sðaþ bÞ � ab � ng
� bmaxfaþ b j a; b 2 R; 0 � a; b � s; sðaþ bÞ � ab � ngc
¼ b2�c:

Define a; b 2 Z by a ¼ b�c and

b ¼ b�c if �� b�c < 1
2
,

b�c þ 1 otherwise.

�

Then aþ b ¼ b2�c ¼ 2s�
	
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � n
p 


. Since � < s, we have b � s. It remains to show sðaþ bÞ � ab � n, or
equivalently,

ab� sðaþ bÞ þ n � 0: ð4:6Þ

Observe

s� b�c ¼
	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � n
p 


:

If �� b�c < 1
2
, then

ab� sðaþ bÞ þ n ¼ b�c2 � 2sb�c þ n

¼ ðs� b�cÞ2 � ðs2 � nÞ

¼
	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � n
p 
2 � ðs2 � nÞ

� 0:

Thus, ð4.6Þ holds.
If �� b�c � 1

2
, then

s� b�c �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � n
p

þ
1

2
:

Thus
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ab� sðaþ bÞ þ n ¼ b�cðb�c þ 1Þ � sð2b�c þ 1Þ þ n

¼ ðb�c � sÞðb�c þ 1� sÞ � ðs2 � nÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � n
p

þ
1

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � n
p

�
1

2

� �
� ðs2 � nÞ

¼ �
1

4
:

Since ab� sðaþ bÞ þ n is an integer, ð4.6Þ holds. �

Proposition 10. Suppose that n � 0 (mod 4Þ and s ¼ d
2
þ 1. Let Bs denote the number of vectors of weight s in S.

Then

Bs � maxfl01; l
0
2g: ð4:7Þ

More precisely,
(i) If 2n > d2 þ 6d, then

Bs �

2n

d þ 2
if n is divisible by 2s,

2
n� d þ 2

d þ 2

� �
� 1 otherwise.

8>><
>>:

(ii) If ðd þ 2Þ2 < 2n � d2 þ 6d, then

Bs �
2n

d þ 2
if n is divisible by 2s,

d þ 2 otherwise.

8<
:

(iii) If d2 þ 8d � 4 < 4n � 2ðd þ 2Þ2, then

Bs � d þ 2; Bs 6¼ d þ 1:

(iv) If ðd þ 2Þ2 � 4n � d2 þ 8d � 4, then

Bs � 4
n� d þ 2

d þ 2

� �
� 2:

(v) If 4n < ðd þ 2Þ2, then

Bs � d þ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd þ 2Þ2 � 4n

q� �
:

Proof. If one of B1 and B3 is empty, then ð4.2Þ and Lemma 8 imply Bs � l01. If B1 and B3 are both nonempty, then by
ð4.3Þ, we have Bs � 2s ¼ d þ 2. Moreover, suppose n < s2. Observe[

x2B1[B3

suppðxÞ












 ¼ sðjB1j þ jB3jÞ � jB1jjB3j;

and this is at most n. By ð4.3Þ, we can apply Lemma 9 to conclude

Bs � 2s�
	
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � n
p 


:

Thus Bs � l02. Therefore, ð4.7Þ holds.
Next, we determine maxfl01; l02g. If 2n > d2 þ 6d, then

n� d þ 2

d þ 2
>

1

2
ðd þ 2Þ 2 Z;

so

l01 � 2
n� d þ 2

d þ 2

� �
� 1 (by (4.4))

� 2
1

2
ðd þ 2Þ þ 1

� �
� 1

¼ d þ 3

� l02:

Thus maxfl01; l02g ¼ l01, and (i) holds.
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Next suppose ðd þ 2Þ2 < 2n � d2 þ 6d. Since

4
n� d þ 2

d þ 2

� �
� 2� ðd þ 2Þ � 4

n� d þ 2

d þ 2
� 2� ðd þ 2Þ

>
d2 � 2d þ 8

d þ 2

> 0;

we have l02 ¼ d þ 2. Since

n� d þ 2

d þ 2
�

1

2
ðd þ 2Þ 2 Z;

we have

2
n� d þ 2

d þ 2

� �
� 1 < d þ 2 < l1:

These imply

maxfl01; l
0
2g ¼

l1 if n is divisible by 2s,

l02 otherwise,

�

and (ii) holds.
Next suppose ðd þ 2Þ2 � 4n � 2ðd þ 2Þ2. We claim

l02 ¼
d þ 2 if 4n � d2 þ 8d � 4,

4
n� d þ 2

d þ 2

� �
� 2 otherwise.

8<
:

Indeed, since ðd þ 4Þ=4 ¼ ðsþ 1Þ=2 =2 Z, we have

d þ 2 > 4
n� d þ 2

d þ 2

� �
� 2()

s

2
�

n� d þ 2

d þ 2

� �

()
s

2
�

n� d þ 2

d þ 2

() 4n � d2 þ 8d � 4:

Since 4n � ðd þ 2Þ2 and d 6¼ 4, we have n � 3d � 2. Thus

4
n� d þ 2

d þ 2

� �
� 2 �

2n

d þ 2
:

This, together with 2n � ðd þ 2Þ2 implies l1 � l02. Therefore, maxfl01; l02g ¼ l02. Now (iii) and (iv) hold by Proposition 7
(ii).

Finally, suppose 4n < ðd þ 2Þ2. Then it is easy to verify

2n

d þ 2
� d þ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd þ 2Þ2 � 4n

q
;

hence maxfl01; l02g ¼ l02 by ð4.5Þ. Thus (v) holds. �

Remark 11. In Proposition 10 (v), it is sometimes possible to draw a stronger conclusion

jBij ¼
1

2

�
d þ 2�

l ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd þ 2Þ2 � 4n

q m�
ði ¼ 1; 3Þ:

This is when a pair fa; bg achieving the maximum in Lemma 9 is unique. For the parameters ðn; d; sÞ ¼ ð128; 22; 12Þ,
we necessarily have jBij ¼ 8 for i ¼ 1; 3. In general, a pair fa; bg achieving the maximum in Lemma 9 is not unique.
For example, when ðn; d; sÞ ¼ ð120; 22; 12Þ, both f6; 8g and f7; 7g achieve the maximum.

For only the parameters ðn; d; sÞ ¼ ð72; 14; 8Þ and ð100; 18; 10Þ, Proposition 10 gives an improvement over
Proposition 7, for 44 � n � 100 and d ¼ dðnÞ. The bounds on Bs obtained by Proposition 10 are listed in Table 2 for
these parameters, together with the part of Proposition 10 used, where the bounds by Proposition 7 are listed in the last
column. The values dðnÞ are also listed in the table.

We discuss the possible weight enumerators for the case dðnÞ ¼ d in Table 2. The possible weight enumerators of an
extremal singly even self-dual ½72; 36; 14� code with s � 8 and the shadow are as follows:

Some Restrictions on Weight Enumerators of Singly Even Self-Dual Codes II 83



W72 ¼ 1þ ð8640� 64�Þy14 þ ð124281þ 384�Þy16 þ � � � ;
S72 ¼ �y8 þ ð546� 14�Þy12 þ ð244584þ 91�Þy16 þ � � � ;

respectively, where � is an integer with 0 � � � b546
14
c ¼ 39 [9]. We remark that Conway and Sloane [6] give only two

weight enumerators as the possible weight enumerators of an extremal singly even self-dual ½72; 36; 14� code with
s � 8 without reason, namely � ¼ 0; 1 in W72. Table 2 shows the following:

Proposition 12. If there exists an extremal singly even self-dual ½72; 36; 14� code with weight enumerator W72, then
0 � � � 14.

It is unknown whether there exists an extremal singly even self-dual code for any of these cases.
The possible weight enumerators of a singly even self-dual ½100; 50; 18� code with s � 10 and the shadow are as

follows:

W100 ¼ 1þ ð16�þ 52250Þy18 þ ð1024�� 64�þ 972180Þy20 þ � � � ;
S100 ¼ �y10 þ ð�20�� �Þy14 þ ð190�þ 104500þ 18�Þy18 þ � � � ;

respectively, where �; � are integers with 0 � � � �1
20
� � 5225

32
[9]. Table 2 shows the following:

Proposition 13. If there exists a singly even self-dual ½100; 50; 18� code with weight enumerator W100, then
0 � � � 18.

It is unknown whether there exists a singly even self-dual ½100; 50; 18� code for any of these cases.
We give more sets of parameters for which the bound on Bs obtained by Proposition 10 improves the bound obtained

by Proposition 7:

ðn; d; sÞ ¼ ð108; 18; 10Þ; ð116; 18; 10Þ; ð128; 22; 12Þ:

These bounds are also listed in Table 2.
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Table 2. Parameters satisfying ð4.1Þ.

n dðnÞ d s Proposition 10 Proposition 7

72 14 14 8 Bs � 14 (iv) Bs � 16, 6¼15

100 18 18 10 Bs � 18 (iv) Bs � 20, 6¼19

108 — 18 10 Bs � 18 (iv) Bs � 20, 6¼19

116 — 18 10 Bs � 18 (iv) Bs � 20, 6¼19

128 — 22 12 Bs � 16 (v) Bs � 21
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Appendix A

HahnPolynomial:=function(v,k,l,x)

return (Binomial(v,l)-Binomial(v,l-1))*

&+[ (-1)̂ i*Binomial(l,i)*Binomial(v+1-l,i)*

Binomial(k,i)̂ (-1)*Binomial(v-k,i)̂ (-1)*

Binomial(x,i) : i in [0..l] ];

end function;

Qmatrix:=function(v,k)

return Matrix(Rationals(),k+1,k+1,

[[HahnPolynomial(v,k,l,x) : l in [0..k] ]: x in [0..k]]);

end function;

boundM:=function(v,ds)

if v le ds-1 then

return 0;

elif v le ds*2-2 then

return 1;

elif v eq ds*2-1 then

return 2;

else

Q:=Qmatrix(v,ds);

return Min( { 1-Q[1][i+1]/Q[ds][i+1] : i in [0..ds]

| Q[ds][i+1] lt 0 } );

end if;

end function;

res:=function(n,ds)

bounds:=[ Floor(boundM(v,ds)+boundM(n-v,ds)):

v in {0..(n div 2)} ];

max:=Max(bounds);

return max;

end function;

X:=[[42,5],[62,7],[70,7],[82,9],[90,9],[98,9]];

[res(x[1],x[2]): x in X] eq [42,48,52,74,76,78];
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