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In this note, we give some restrictions on the number of vectors of weight d/2 + 1 in the shadow of a singly
even self-dual [n,n/2,d] code. This eliminates some of the possible weight enumerators of singly even self-dual
[n,n/2,d] codes for (n,d) = (62,12), (72, 14), (82, 16), (90, 16) and (100, 18).
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1. Introduction

Let C be a singly even self-dual code and let Cyy denote the subcode of codewords having weight = 0 (mod 4). Then
Cy is a subcode of codimension 1. The shadow S of C is defined to be Cy \ C. Shadows for self-dual codes were
introduced by Conway and Sloane [6] in order to derive new upper bounds for the minimum weight of singly even self-
dual codes, and to provide restrictions on the weight enumerators of singly even self-dual codes. The largest possible
minimum weights of singly even self-dual codes of lengths n < 72 were given in [6, Table I]. The work was extended
to lengths 74 < n < 100 in [9, Table VI]. We denote by d(n) the largest possible minimum weight given in [6, Table I]
and [9,Table VI] throughout this note. The possible weight enumerators of singly even self-dual codes having
minimum weight d(n) were also given in [6] for lengths n < 64 and n = 72 (see also [9] for length 72), and the work
was extended to lengths up to 100 in [9]. It is a fundamental problem to find which weight enumerators actually occur
among the possible weight enumerators (see [6] and [11]).

Some restrictions on the number of vectors of weight d/2 in the shadow of a singly even self-dual [r,n/2,d] code
were given in [10]. Also, some restrictions on the number of vectors of weight d/2 + 1 in the shadow of a singly even
self-dual [n,n/2,d] code were given in [2] for n = 0(mod4). In this note, we improve the result in [2] about the
restriction on the number of vectors of weight d/2 + 1 in the shadow of a singly even self-dual [n,7n/2,d] code for
n = 0(mod4). We also give a restriction on the number of vectors of weight d/2 4 1 in the shadow of a singly even
self-dual [n,n/2,d] code for n = 2(mod4). These restrictions eliminate some of the possible weight enumerators
determined in [6] and [9] for the parameters (n,d) = (62, 12), (72, 14), (82, 16), (90, 16) and (100, 18).

2. Preliminaries

A (binary) [n, k] code C is a k-dimensional vector subspace of [F;, where IF, denotes the finite field of order 2. All
codes in this note are binary. The parameter n is called the length of C. The weight wt(x) of a vector x € IF; is the
number of non-zero components of x. A vector of C is a codeword of C. The minimum non-zero weight of all
codewords in C is called the minimum weight d(C) of C and an [n, k] code with minimum weight d is called an [n, k, d]
code. The dual code C* of a code C of length n is defined as C* = {x € F; | x-y = 0 for all y € C}, where x - y is the
standard inner product. A code C is called self-dual if C = C*. A self-dual code C is doubly even if all codewords of C
have weight divisible by four, and singly even if there exists at least one codeword of weight = 2 (mod 4). Rains [12]
showed that the minimum weight d of a self-dual code C of length n is bounded by d < 4| 57| + 6 if n = 22 (mod 24),
d < 4|5;] + 4 otherwise. In addition, if n = 0(mod24) and C is singly even, then d < 4[| + 2. A self-dual code
meeting the bound is called extremal. Let A; and B; be the numbers of vectors of weight i in C and S, respectively. The
weight enumerators of C and S are given by Y 1, A;y" and Z;’:—ﬁﬁg) B;y', respectively, where d(S) denotes the minimum
weight of S.

Let C be a singly even self-dual code of length n and let S be the shadow of C. Let Cy denote the subcode of
codewords having weight = 0 (mod4). There are cosets C;, C», C3 of Cy such that COL = CyU Cy UCy,U C3, where
C=CyU(Cyand S =C; UCs.
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Lemma 1 (Conway and Sloane [6]). Let x1,y; be vectors of Cy and let x3 be a vector of Cs. Then x; +y; € Cy,
x1 +x3 € Cy and wit(xy) = wit(x3) = 5 (mod 4).
Lemma 2 (Brualdi and Pless [5]). Let x1,y; be vectors of Cy and let x5 be a vector of Cs.

1) Suppose that n = 0 (mod4). Then x; -y; =0 and x; - x3 = 1.

2) Suppose that n = 2(mod4). Then x, -y =1 and x; - x3 = 0.

3. n=2(mod4) and d(S) =% +1

Recall that the Johnson graph J(v, d) has the collection X of all d-subsets of {1,2,..., v} as vertices, and two distinct
vertices are adjacent whenever they share d — 1 elements in common. Assume v > 2d and set

Ri={(ny) eXxX|lxNyl=d—i},

Then {R,-};’l:0 is a partition of X x X. The following lemma is known as Delsarte’s inequalities since it is the basis of
Delsarte’s linear programming bound. We refer the reader to [7] for an explicit formula for the second eigenmatrix Q
appearing in the lemma.

Lemma 3 ([4, Proposition 2.5.2]). Let Y be a subset of vertices of J(v,d), and set
1
aimeYX VNR| O0=<i=<d.
If we denote by Q = (qj(-”)(i)) the second eigenmatrix of J(v,d), then every entry of the vector (ay,...,as)Q is

nonnegative.

Suppose that Y is a subset of vertices of J(v, d) such that two distinct members intersect at exactly one element. Then
by Lemma 3, every entry of the vector

(1,0,...,0,0,1Y| — 1,000
is nonnegative, i.e.,
") + (Y| - g d -1 =0 (1<j<a).
Thus, we obtain
Y] < Mya, 3.1

where

q"(0)

———|l<j<dandg”@—-1) <0y.
g"(d—1) /

M, s = minj 1
If we define
2 ifv=2d—1,
Myy,=31 ifd<v<2d-2,
0 if0<v<d-—1,
then (3.1) also holds for all v, d.

Now, let C be a singly even self-dual code of length n and let S be the shadow of C. For the remainder of this section,
we assume that

do)
n=2(mod4) and d(S) = > + 1. 3.2)

By Lemma 1, d(C) = n — 2 (mod 8), and hence d(S) is odd.
For each of i = 1,3, let ¥; be the set of supports of vectors of weight d(S) in C;, and let S; be the union of the
members of Y;. From Lemma 2 and (3.2), we have the following:
1 ifx,yeY,x#y,
xNy| = ) (3.3)
0 ifxeY,yeYs.
Then by (3.1), we have

1Yi| < Mg, acs)-
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It follows from (3.3) that S; N S3 = @. Thus, we have
Byiy = V1] + |Y3| < max{M, 4s) + Mu_vas) | 0 < v < n/2}. 3.4

For 42 <n <98 and d(C) = d(n), the parameters (n,d(C), d(S)) satisfying Condition (3.2) are listed in Table 1,
where the values d(n) are also listed in the table. For some lengths n, the existence of a singly even self-dual code of
length n and minimum weight d(n) is currently not known. In this case, we consider the case d(C) = d(n) — 2. We
calculated the upper bound (3.4), where the results are listed in Table 1. This calculation was done by the program
written in MAGMA [1], where the program is listed in Appendix A.

Table 1. Parameters satisfying (3.2).

n d(n) d(C) d(S) Bys)
42 8 8 5 <42
62 12 12 7 <48
70 14 12 7 <52
82 16 16 9 <74
90 16 16 9 <76
98 18 16 9 <78

We discuss the possible weight enumerators for the case d(n) = d(C) in Table 1. The possible weight enumerators
Wy, and Sy of an extremal singly even self-dual [42,21, 8] code with d(S) > 5 and its shadow are as follows [6]:

Wi =1+ (84 +8B)y° + (1449 — 24p)y"" + - - -,
Syz = By’ + (896 — 88)y° + (48384 + 28B)y"> + - - -,
respectively, where § is an integer. It was shown in [3] that 0 < 8 < 42. Table 1 gives an alternative proof.

The possible weight enumerators Wg, and Sg, of an extremal singly even self-dual [62,31, 12] code with d(S) > 7
and its shadow are as follows [6] (see also [8]):

Wer = 1 + (1860 + 328)y'% + (28055 — 1608)y™* + - - -,
Ser = By + (1116 — 128)y'! + (171368 + 668)y"> + - - -,

respectively, where 8 is an integer with 0 < 8 < 93. Table 1 gives the following:

Proposition 4. If there exists an extremal singly even self-dual [62,31,12] code with weight enumerator We, then
0<pB=<4.

It is known that there exists an extremal singly even self-dual [62,31, 12] code with weight enumerator Ws, for
B8=0,2,9,10,15,16 (see [13]).

The possible weight enumerators Wg, and Sg, of an extremal singly even self-dual [82,41, 16] code with d(S) > 9
and its shadow are as follows [9]:

W = 1 + (39524 + 128a)y'® + (556985 — 896a)y'® + - - -,
Sgr = oy’ + (1640 — a)y" + (281424 + 120c0)y'” + - - -,
respectively, where « is an integer with 0 < o < [358| = 621. Table 1 gives the following:

Proposition 5. If there exists an extremal singly even self-dual [82,41,16] code with weight enumerator Wy, then
0<a<74

It is unknown whether there exists an extremal singly even self-dual code for any of these cases.
The possible weight enumerators Wog and Sop of an extremal singly even self-dual [90, 45, 16] code with d(S) > 9
and its shadow are as follows [9]:

Woo = 14 (9180 + 88)y'® + (—=512c — 248 + 224360)y' + - - -,
Soo = ay’ + (B — 18a)y" + (112320 + 153c — 168)y' + - - -,
respectively, where o and B are integers with 0 < o < 7 8 < [#233%] = 9348. Table 1 gives the following:

Proposition 6. If there exists an extremal singly even self-dual [90,45,16] code with weight enumerator Wy, then
0<acxT6.

It is unknown whether there exists an extremal singly even self-dual code for any of these cases.
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4. n=0(mod4) and d(S) =4 +1

Let C be a singly even self-dual code of length n and let S be the shadow of C. In this section, we write d(C) = d and
d(S) = s for short, and assume that

d
n=0(mod4)and s = +1. .1

By Lemma 1, d = n — 2 (mod 8), and hence s is even.

Proposition 7 ([2]). Suppose that n = 0(mod4) and s = % + 1. Let By denote the number of vectors of weight s in S.
() If2n > (d + 2)% then

(i) If (d +2)* < 4n < 2(d + 2)%, then
By <d+2, By;#d+1.

(iii) If 4n < (d + 2)*, then
2n—d —2
B, <2———.
d
The above proposition was essentially established by showing By < max{/;,/}, where
2n
I =——,
d+?2

. 2n—d —2
L =min{d+2,2—— .
We recall part of the proof of Proposition 7 for later use. Denote the set of all vectors in C; of weight s by B; (i = 1, 3).
Denote by v * w the entrywise product of two vectors v, w. If v, w € 8B;, then wt(v * w) = 0 and hence these vectors
have disjoint supports. This implies

[Bil <l (=13 (4.2)
If ve 8y and w € B3, then wt(v * w) = 1. Thus, if B; and B; are both nonempty, then
|Bi] <s. 4.3)
Using the following lemmas, we give an improvement of the upper bound by showing B, < max{l{,[,}, where
I if n is divisible by 2s,
"= —d+2
b 2 u — 1 otherwise,
d+2
d+2—[,/(d+2)2—4n—‘ if 4n < (d + 2)%,
I, =
2 . n—d+2 .
min{d +2,4| ——— | — 2} otherwise.
d+2
Since
—d+2 4—(s/2—-1
n + _ n/ (s/ ) - n , @.4)
d+2 s/2 2s
we have
I <k, 4.5)
and
n—d+?2 2n 2n—d—2
_ 2= ——2<2—.
d+2 s d

The latter implies 7, < I, provided 4n > (d + 22 If 4n < d+ 2)%, then
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2%—@—1—2—\/&1—%2)2—%)
=V(d+621)2_4n<d—\/M)

> 0.

Thus 7, < [, holds in this case as well. Therefore, the bound B, < max{/;,,} which will be shown in Proposition 10
below is an improvement of the bound given in Proposition 7.

k=”n—d+2_"
2s

If n is not divisible by 2s, then |8B;| <2k —1 fori=1,3.

Lemma 8. Let

Proof. Suppose, to the contrary, |8B;| > 2k. Then the sum of the all-one vector and the 2k vectors of weight s belongs to
Cy and has weight n — 2ks < d — 2. This forces n — 2ks = 0, contradicting the assumption. O

Lemma 9. Let n and s be positive integers with n < s*. Then

max{a+b|la,beZ, 0<a,b<s, s(a+b)—ab§n}=2s—[ZVSZ—n].

Proof. Since n < s%, we have
max{a+b|a,beR, 0<ab<s, s(a+b)—ab <n}
=max{a+b|0<ab<s, (s—ab<n-—sa}
= max{a + min{(n — sa)/(s — a),s} | 0 < a < s}
=max{(n —a®)/(s—a) | 0 < a < s}.
The function f(x) = (n — xz)/ (s — x) defined on the interval [0, s) has maximum f(a) = 20, where o = s — v/s2 — n.

Thus, we have
max{a+b|abeZ, 0<a,b<s, s(a+b)—ab < n}
< |max{a+b|abeR, 0<a,b<s, s(a+b)—ab <n}]
= [2a].
Define a,b € Z by a = |«] and
b:{LaJ if o — |oe] <1,
la] + 1 otherwise.

Then a+b = [2a] = 25— [2+/s> —n|. Since a <s, we have b <s. It remains to show s(a+b) —ab <n, or
equivalently,

ab—s(a+b)+n=>0. (4.6)
Observe
s— |la) = [ s2—n—|.
If o — |a] < 1, then
ab—s(a+b)+n=|a)* —2s|la] +n
== la)’ =" =n)
= |_x/s—2———r—z-|2 —(s* —n)
> 0.
Thus, (4.6) holds.
fo—|a] > %, then

1
s — |af 2\/s2—n+5.

Thus
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ab—s(a+b)+n=|a|(la]+1)—sQla]+1)+n
= (o] =9)(la) +1 =9 — (> —n)

> (Vsz—n+%)<\/s2—n—%)—(sz—n)
1

-7
Since ab — s(a + b) + n is an integer, (4.6) holds. O
Proposition 10. Suppose that n = 0(mod4) and s = % + 1. Let By denote the number of vectors of weight s in S.
Then

B, < max{l},}. 4.7)

More precisely,
() If 2n > d*> + 6d, then

2n
j is divisible by 2s,
. i1 if n is divisible by 2s
= n—d-+2 )
2| ———— | = 1 otherwise.
d+2

(i) If (d+2)* <2n < d® + 6d, then

2
5, < d—~|,—12 if n is divisible by 2s,

d—+2 otherwise.
(i) Ifd*> 4 8d — 4 < 4n < 2(d + 2)?, then
B;<d+2, By#d+1.
(iv) If (d+2)* < 4n < d® + 8d — 4, then

—d+2
B, <44t _,
d+2

(V) If4n < (d + 2), then

B, <d+2-— ’7‘/(d+2)2—4n—‘.

Proof. If one of B and Bj is empty, then (4.2) and Lemma 8 imply B, < [;. If 8, and B; are both nonempty, then by
(4.3), we have B; < 2s = d + 2. Moreover, suppose n < s2. Observe

U suppo)

XeBIUB3

= 5(|B1| + |Bs]) — |B1][Bs],

and this is at most n. By (4.3), we can apply Lemma 9 to conclude
By <2s — [Zx/s2 - n—|

Thus B, < I,. Therefore, (4.7) holds.
Next, we determine max{/},/,}. If 2n > d* + 6d, then

n—d+2 liyen
d+2 2
SO
[ > 2["_””2} —1 (by (4.4))
=% Td+2

22(%(d+2)+1)—1

Thus max{/},,} =/}, and (i) holds.
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Next suppose (d + 2)* < 2n < d*> + 6d. Since

P il S S S S S S
d+?2 - d+?2
d?—2d+38
d+?2
> 0,
we have /), = d + 2. Since
"otz _liger
d+2 2 ’
we have
n—d+?2
— | —-1<d+2<].
[ d+2 —‘ <dtz<h

These imply
ly if n is divisible by 2s,
max{l},,} =1 , .
I, otherwise,
and (ii) holds.
Next suppose (d + 2)* < 4n < 2(d + 2)>. We claim
d+2 if 4n < d* +8d —4,
I, = —d+2
2 4 n—d+2
d+2
Indeed, since (d +4)/4 = (s + 1)/2 ¢ Z, we have

—d+2 —d+2

—‘ — 2 otherwise.

+2 d+2
— s>n—d+2
27 d+2

= dn<d*+8d—4.
Since 4n > (d + 2)2 and d # 4, we have n > 3d — 2. Thus
4 n—d+2 2= 2n .
d+2 d+2
This, together with 2n < (d + 2)* implies [; < I5. Therefore, max{l,l;} = ;. Now (iii) and (iv) hold by Proposition 7

(ii).
Finally, suppose 4n < (d + 2)°. Then it is easy to verify

2 442 Jd+272—4
In _ _an,
d+2°

hence max{/;,l;} = I, by (4.5). Thus (v) holds. O

Remark 11. In Proposition 10 (v), it is sometimes possible to draw a stronger conclusion

|£4=%(d+2—(Jw+2f—mﬂ) (=13

This is when a pair {a, b} achieving the maximum in Lemma 9 is unique. For the parameters (n,d,s) = (128,22, 12),
we necessarily have |B;| = 8 for i = 1, 3. In general, a pair {a, b} achieving the maximum in Lemma 9 is not unique.
For example, when (n,d, s) = (120,22, 12), both {6, 8} and {7,7} achieve the maximum.

For only the parameters (n,d,s) = (72,14,8) and (100, 18, 10), Proposition 10 gives an improvement over
Proposition 7, for 44 < n < 100 and d = d(n). The bounds on By obtained by Proposition 10 are listed in Table 2 for
these parameters, together with the part of Proposition 10 used, where the bounds by Proposition 7 are listed in the last
column. The values d(n) are also listed in the table.

We discuss the possible weight enumerators for the case d(n) = d in Table 2. The possible weight enumerators of an
extremal singly even self-dual [72,36, 14] code with s > 8 and the shadow are as follows:
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Table 2. Parameters satisfying (4.1).

n d(n) d s Proposition 10 Proposition 7
72 14 14 8 B; < 14 (iv) B; < 16, #15
100 18 18 10 B, < 18 (iv) B <20, #19
108 — 18 10 B; < 18 (iv) B, <20, #19
116 — 18 10 B, <18 (iv) B <20, #19
128 — 22 12 By <16 (v) B; <21

Wiy = 1 4 (8640 — 64a)y'* + (124281 + 384a)y'® + - - -,
S72 = ay® + (546 — 14a)y'? + (244584 4+ 91a)y'® + - - -,

respectively, where « is an integer with 0 < o < L%J = 39 [9]. We remark that Conway and Sloane [6] give only two
weight enumerators as the possible weight enumerators of an extremal singly even self-dual [72,36, 14] code with
s > 8 without reason, namely « = 0, 1 in Wy,. Table 2 shows the following:

Proposition 12. [f there exists an extremal singly even self-dual [72, 36, 14] code with weight enumerator Wr,, then
0<a<l14

It is unknown whether there exists an extremal singly even self-dual code for any of these cases.
The possible weight enumerators of a singly even self-dual [100, 50, 18] code with s > 10 and the shadow are as
follows:

Wio = 1 + (168 + 52250)y'® + (10240 — 648 + 972180)y° + - - -,
S100 = ay'® 4+ (—20a — B)y'™ + (190« + 104500 + 188)y'S + - - -,

respectively, where «, B are integers with 0 < o < E—(} < % [9]. Table 2 shows the following:
Proposition 13. If there exists a singly even self-dual [100,50,18] code with weight enumerator Wigy, then
0<acx<l8

It is unknown whether there exists a singly even self-dual [100, 50, 18] code for any of these cases.
We give more sets of parameters for which the bound on B, obtained by Proposition 10 improves the bound obtained
by Proposition 7:

(n,d,s) = (108,18, 10), (116, 18, 10), (128,22, 12).

These bounds are also listed in Table 2.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number 15H03633.

REFERENCES

[1] Bosma, W., Cannon, J., and Playoust, C., “The Magma algebra system I: The user language,” J. Symbolic Comput., 24: 235—
265 (1997).
[2] Bouyuklieva, S., Harada, M., and Munemasa, A., “Restrictions on the weight enumerators of binary self-dual codes of length
4m,” In: Proc. International Workshop Optimal Codes and Related Topics, White Lagoon (2007) pp. 40-44.
[3] Bouyuklieva, S., Harada, M., and Munemasa, A., “Determination of weight enumerators of binary extremal self-dual
[42,21, 8] codes,” Finite Fields Appl., 14: 177-187 (2008).
[4] Brouwer, A. E., Cohen, A. M., and Neumaier, A., Distance-Regular Graphs, Springer-Verlag (1989).
[5]1 Brualdi, R., and Pless, V., “Weight enumerators of self-dual codes,” IEEE Trans. Inform. Theory, 37: 12221225 (1991).
[6] Conway, J. H., and Sloane, N. J. A., “A new upper bound on the minimal distance of self-dual codes,” IEEE Trans. Inform.
Theory, 36: 1319-1333 (1990).
[7]1 Delsarte, P., “An algebraic approach to the association schemes of coding theory,” Philips Research Reports Suppl., 10 (1973).
[8] Dontcheva, R., and Harada, M., “New extremal self-dual codes of length 62 and related extremal self-dual codes,” IEEE
Trans. Inform. Theory, 48: 2060-2064 (2002).
[9]1 Dougherty, S. T., Gulliver, T. A., and Harada, M., “Extremal binary self-dual codes,” IEEE Trans. Inform. Theory, 43: 2036—
2047 (1997).
[10] Harada, M., and Munemasa, A., “Some restrictions on weight enumerators of singly even self-dual codes,” IEEE Trans.
Inform. Theory, 52: 1266-1269 (2006).
[11] Huffman, W. C., “On the classification and enumeration of self-dual codes,” Finite Fields Appl., 11: 451-490 (2005).
[12] Rains, E. M., “Shadow bounds for self-dual codes,” IEEE Trans. Inform. Theory, 44: 134—139 (1998).
[13] Yankov, N., “Self-dual [62,31, 12] and [64, 32, 12] codes with an automorphism of order 7,” Adv. Math. Commun., 8: 73-81
(2014).



Some Restrictions on Weight Enumerators of Singly Even Self-Dual Codes II

Appendix A

HahnPolynomial :=function(v,k,1,x)
return (Binomial(v,1)-Binomial(v,1-1))*

&+[ (-1)"i*Binomial(1l,i)*Binomial (v+1-1,1i)*
Binomial (k,i)"(-1)*Binomial (v-k,i)"(-1)*
Binomial(x,i) : i in [0..1] 1;

end function;
Qmatrix:=function(v,k)
return Matrix(Rationals() ,k+1,k+1,
[[HahnPolynomial(v,k,1,x) : 1 in [0..k] J: x in [0..k]]);
end function;
boundM:=function(v,ds)
if v 1le ds-1 then
return O;
elif v 1le ds*2-2 then
return 1;
elif v eq ds*2-1 then
return 2;
else
Q:=Qmatrix(v,ds);
return Min( { 1-Q[1] [i+1]/Q[ds] [i+1] : i in [0..ds]
| Qds] [i+1] 1t 01} );
end if;
end function;
res:=function(n,ds)
bounds:=[ Floor (boundM(v,ds)+boundM(n-v,ds)):
vin {0..(ndiv2)} ];
max :=Max (bounds) ;
return max;
end function;

X:=[[42,5],[62,71,[70,71,[82,9]1,[90,91,[98,91];
[res(x[1],x[2]): x in X] eq [42,48,52,74,76,78];
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