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Fixed points of the self-power map over a finite field have been studied in cryptology as a special case of
modular exponentiation. In this note, we define an elliptic-curve version of the self-power map, enumerate the
number of curves that contain at least one fixed point, and give its upper and lower bounds. Our result is a partial
solution to the open question raised by Glebsky and Shparlinski in 2010.
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1. Introduction

For p prime, define the modular exponentiation as fgðxÞ ¼ gx over the finite field Fp. An h is said to be a fixed point
of fg if fgðhÞ ¼ h. For example, if h 2 F�p generates F�p and h is also in ðZ=ðp� 1ÞZÞ�, then we may define fg so that h
can be a fixed point by putting g ¼ hh, where hh � 1 (mod p� 1Þ. The number of such pairs ðg; hÞ and other properties
have been well studied [4–6] because too many fixed points could affect the security of cryptosystems based on the
difficulty of discrete logarithm problem, which is the problem to compute f�1

g . As a variant of fg, we can define the
self-power map modulo a prime: fsðxÞ ¼ xx mod p. The fixed points of fs have been explored also from a cryptographic
viewpoint [1, 3].

In 2010, Glebsky and Shparlinski [4] improved the result on the fixed points of fg and proposed to extend the
discussion to cover elliptic curves. Let EðFpÞ be an elliptic curve defined over a finite field Fp with p prime, and let N
be the order of the group, namely N ¼ #EðFpÞ. They defined the map

fgs : Z=NZ! Fp; t 7! xðtGÞ;

where G 2 EðFpÞ is a base point and for P ¼ ðu; vÞ 2 EðFpÞ, xðPÞ ¼ u. Their interests were in the property of pairs ðG; tÞ
leading to fixed points such that fgsðtÞ ¼ t, but they left it as an open question.

In this note, we will tackle this open question in a restricted setting. Namely, we define

f : EðFpÞ ! EðFpÞ; G 7! xðGÞG;

which is obtained by replacing t-multiple in fgs above with xðGÞ-multiple. We investigate the fixed point P such that
f ðPÞ ¼ P. Clearly, if P is a fixed point of f , such P leads to a fixed point of fgs by putting G ¼ P and t ¼ xðPÞ, i.e. for
such ðG; tÞ, fgsðtÞ ¼ t. Note that our f can be regarded as an elliptic-curve version of fs.

We will enumerate the number of elliptic curves that contain at least one fixed point of f and estimate its lower and
upper bounds.

2. Preliminaries

In this section we will give notions and notations used in this note, and then mention our key idea to investigate the
fixed points.

Throughout this note we assume that p is a prime >3. This enables us to keep discussion based on the same
Wierstrass form E : y2 ¼ x3 þ axþ b where ða; bÞ is in Fp � Fp but is excluded if the discriminant �ðEÞ ¼
4a3 þ 27b2 ¼ 0, i.e. the curve becomes singular for such ða; bÞ. The elliptic curve defined over Fp, denoted by EðFpÞ, is
formed as the union of Fp-rational points of E and fOg, where O is the identity of the elliptic-curve group EðFpÞ.
Concerning the order of EðFpÞ, denoted by N, we have N ¼ #EðFpÞ ¼ pþ 1� ap where japj � 2

ffiffiffi
p
p

. If we disregard
isomorphisms among the curves, the number of elliptic curves defined over Fp, denoted by Nc is given as Nc ¼
#fða; bÞ 2 F2

pg � #fða; bÞ 2 F2
pj�ðEÞ ¼ 0g ¼ p2 � p.
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An elliptic-curve version of the self-power map is defined as f : EðFpÞ ! EðFpÞ by f ðGÞ ¼ xðGÞG. We want to
enumerate the number of curves that contain at least one fixed point P 2 EðFpÞ such that f ðPÞ ¼ P. We attempt to
achieve this in two ways.

One is to count curves that have an Fp-rational point at x ¼ 1. For P ¼ ð1; vÞ, we have f ðPÞ ¼ xðPÞP ¼ P. We call
such point a trivial fixed point, and denote by N1 the number of curves that have such trivial fixed point.

The other approach is to count curves that have points of order 2. Suppose P 2 EðFpÞ is a point of order 2, that is
2P ¼ O. Since this implies P ¼ �P, the generic form of P is expressed as P ¼ ðu; 0Þ, which means that u is a zero of E.
Further, if u is odd, then we have for some k � 0, f ðPÞ ¼ uP ¼ ð2k þ 1ÞP ¼ kð2PÞ þ P ¼ P. Therefore P is a fixed
point of f if P is a point of order 2 and xðPÞ is odd. We call such point an order-based fixed point and denote by N2 the
number of curves that have at least one order-based fixed point.

3. Main Result

Theorem 3.1. For p > 3,

(i)
pðpþ 1Þ

2
> N1 �

pðp� 1Þ
2

and

(ii) N2 �
ðp� 1Þðp� 2Þ

6
.

Proof. (i) Recall that N1 denotes the number of elliptic curves that have a trivial fixed point, in other words an
Fp-rational point at x ¼ 1. We are to enumerate E : y2 ¼ x3 þ axþ b such that �ðEÞ 6¼ 0 and E has a point ð1; vÞ, that is
v2 ¼ aþ bþ 1 and 4a3 þ 27b2 6¼ 0. The former condition is equivalent to that aþ bþ 1 is in QRp [ f0g, where QRp

denotes the set of quadratic residues modp. Therefore the generic form of such curves should be

E1 : y2 ¼ x3 þ sxþ t2 � s� 1;

where s; t 2 Fp. Then we have

N1 ¼ #fsg � #ft2g � #fsingular curvesg
¼ #Fp � #ðQRp [ f0gÞ � #fðs; tÞ 2 F2

pj�ðE1Þ ¼ 0g

¼ p
p� 1

2
þ 1

� �
� #fðs; tÞ 2 F2

pj�ðE1Þ ¼ 0g:

Note that

p � #fðs; tÞ 2 F2
pj�ðE1Þ ¼ 0g > 0;

where the right inequality follows from the fact that there exists at least one ðs; tÞ such that �ðE1Þ ¼ 0 for any p > 3,
namely ðs; tÞ ¼ ð0; 1Þ.

Thus,

p
p� 1

2
þ 1

� �
> N1 � p

p� 1

2
þ 1

� �
� p;

and the statement follows.
(ii) Define the n-multiple map ½n� : EðFpÞ ! EðFpÞ by P 7! nP, where Fp is the algebraic closure of Fp. We write E½n�
to designate the n-torsion group defined as E½n� ¼ fP 2 EðFpÞjnP ¼ Og ¼ Kerð½n�Þ 	 EðFpÞ. We also use EðFpÞ½n� to
express the set of Fp-rational points in E½n�, namely EðFpÞ½n� ¼ E½n� \ EðFpÞ.

We are interested in P such that its order is 2 and xðPÞ is odd. A point of order 2 can be found in E½2� but may not be
Fp-rational. However, if E½2� 	 EðFpÞ½2�, i.e., every point in E½2� is Fp-rational, then we have E½2� ¼ fO;P1;P2;P3g
such that P1 ¼ ð�; 0Þ, P2 ¼ ð�; 0Þ, P3 ¼ ð�; 0Þ with �; �; � 2 Fp. By the group law in EðFpÞ we also have P3 ¼ P1 þ P2.
This implies that

�þ �þ � ¼ 0:

Since p > 3, at least one of �; �; � is odd. The order-based fixed point always exists among such P1, P2, and P3.
Consider the elliptic curve of the following form:

E2 : y2 ¼ ðx� �Þðx� �Þðx� �Þ;

with �; �; � 2 Fp. Without loss of generality, we hereafter assume 0 � � < � < � < p so that �ðE2Þ 6¼ 0. By the
discussion above, every such E2ðFpÞ has at least one order-based fixed point P ¼ ðu; 0Þ with odd u.

As �þ �þ � � 0 (mod pÞ, the number of elliptic curves of the form E2 is equivalent to the number of integer
partitions of p or 2p into three distinct parts. It is easily seen that the number of partitions of n into m distinct parts is
equal to the number of partition of n� mðm� 1Þ=2 into m parts. We denote by dðk; ‘Þ the number of integer partitions
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of k into ‘ parts. Formulas for ‘ ¼ 2; 3 can be found in [2]: dðk; 2Þ ¼ bk=2c þ 1 and dðk; 3Þ ¼ fðk þ 3Þ2=12g, where bxc
is the floor function and fxg denotes the integer nearest to x.

We are now ready to enumerate E2ðFpÞ to estimate the lower bound of N2. First, consider the following set:

Dp ¼ fð�; �:�Þ 2 F3
p j ð�þ �þ � ¼ pÞ ^ ð0 � � < � < � < pÞg:

It is clear that #Dp is equivalent to the number of partitions of p into three distinct parts. By the formula, we have

#Dp ¼ dðp� 3; 3Þ ¼
ðp� 3þ 3Þ2

12

� �
:

Since p > 3, it holds that p � 
1 (mod 6Þ, so

#Dp ¼
p2

12

� �
¼

p2

12
�

1

12
:

We next investigate the set

D2p ¼ fðe�;e�:e� Þ 2 F3
p j ðe�þ e�þe� ¼ 2pÞ ^ ð0 < e� < e� < e� < pÞg;

where e� cannot be 0 because there exists no partition satisfying the condition if e� ¼ 0. Note that e�þ e�þe� ¼ 2p is
equivalent to ðp�e�Þ þ ðp� e� Þ þ ðp�e� Þ ¼ p. Therefore, if ð�; �:�Þ with � > 0 is in Dp, then ðp� �; p� �; p� �Þ
is in D2p. Conversely, if ðe�;e�:e� Þ is in D2p, then ðp�e�; p� e�; p�e�Þ is in Dp.

Hence,

#D2p ¼ #Dp � #fð0; �; �Þ 2 Dpg

¼
p2 � 1

12
� dðp� 3; 2Þ

¼
p2 � 1

12
�

p� 3

2

� �
þ 1

� �

¼
p2 � 1

12
�

p� 1

2
:

We finally get

N2 � #Dp þ #D2p ¼
ðp� 1Þðp� 2Þ

6
:

�

We now return to the open question raised by Glebsky and Shparlinski. Recall that they considered a map fgs sending
t 2 Z=NZ to xðtGÞ 2 Fp, where N ¼ #EðFpÞ, G 2 EðFpÞ is a base point and for P ¼ ðu; vÞ 2 EðFpÞ, xðPÞ ¼ u. Their
interests are in the pairs ðG; tÞ leading to fixed points such that fgsðtÞ ¼ t.

Assume that P is a fixed point of f . Then we can define fgsðtÞ ¼ xðtPÞ, and for t ¼ xðPÞ, it holds that fgsðtÞ ¼ t. In
other words, for every fixed point P of f , ðP; xðPÞÞ is a pair for a fixed point of fgs. Hence an immediate corollary to
Theorem 3.1 follows.

Corollary 3.2. For fgsðtÞ ¼ xðtGÞ defined over EðFpÞ with p > 3, the following statements hold.
(i) If the base point G is of the form G ¼ ð1; vÞ, then t ¼ 1 is a fixed point of fgs, i.e., fgsð1Þ ¼ xð1 � GÞ ¼ xðGÞ ¼ 1.

The number of elliptic curves containing such G is at least pðp� 1Þ=2, a half of elliptic curves defined over Fp.
(ii) If the base point G is of the form G ¼ ðu; 0Þ with u ¼ 2k þ 1 for some k � 0, then t ¼ u is a fixed point of fgs, i.e.,

fgsðuÞ ¼ xðuGÞ ¼ xðGÞ ¼ u. The number of elliptic curves containing such G is at least ðp� 1Þðp� 2Þ=6.

4. Concluding Remarks

We have explored the fixed points of f , an elliptic-curve version of the self-power map defined over Fp with p > 3,
and estimated as mentioned in Theorem 3.1 the number of elliptic curves containing at least one fixed point in two
ways. Those fixed points can also be the fixed points of fgs that Glebsky and Shparlinski [4] left as an open question, so
our result gives a partial solution to it, but is clearly far from the expected complete solution. Therefore we have a lot of
things to do: for example, is there an efficient way to recognize that EðFpÞ½n� contains a point P such that xðPÞ ¼ knþ 1

for some k? and further, is there an elliptic curve that contains no fixed point of f or fgs for any p > 3?
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