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The framework of (combinatorial) reconfiguration models several “dynamic” situations, where we wish

to find a step-by-step transformation between two feasible solutions of a combinatorial search problem

such that all intermediate solutions are also feasible and each step respects a fixed reconfiguration rule.

In this thesis, we mainly study the reconfiguration problem for the well-known constraint satisfaction

problem (CSP), which is a generalization of several combinatorial search problems including graph coloring,

Boolean satisfiability, graph homomorphism, and so on. In the reconfiguration problem for CSP, we are

given an instance of CSP together with its two satisfying assignments, and asked to determine whether one

assignment can be transformed into the other by changing a single variable assignment at a time, while

always remaining satisfying assignment. We also study several special cases of the problem, especially the
reconfiguration problems for graph coloring, graph homomorphism, and their list variants. In this thesis,

we study these problems from the viewpoints of polynomial-time solvability and parameterized complexity,

and give several interesting boundaries of tractable and intractable cases.

1. Introduction

Since the 2000s, the framework of (combinato-
rial) reconfiguration® ©) has been extensively stud-
ied in the field of theoretical computer science.
This framework models several “dynamic” situa-
tions where we wish to find a step-by-step trans-
formation between two feasible states such that all
intermediate states are also feasible and each step
respects a fixed reconfiguration rule. Generally,
a (combinatorial) reconfiguration problem can be
considered as a problem asking the reachability of
two vertices in a solution graph defined as follows.
The vertex set of a solution graph corresponds to
the set of feasible states and the edge set repre-
sents a reconfiguration rule. The set of feasible
states may often be defined as a set of feasible so-
lutions for an instance of a (combinatorial) search
problem. Indeed, several reconfiguration prob-
lems based on search problems are studied well,
such as BOOLEAN SATISFIABILITY RECONFIGURA-
TION, SHORTEST PATH RECONFIGURATION, INDE-
PENDENT SET RECONFIGURATION, VERTEX COVER
RECONFIGURATION, and DOMINATING SET RECON-
FIGURATION.

1.1 Our problems

In this thesis, we mainly study CONSTRAINT
SATISFIABILITY RECONFIGURATION, and its spe-
cial cases including (LIST) COLORING RECONFIG-
URATION and (LIST) HOMOMORPHISM RECONFIG-

URATION from the viewpoints of polynomial-time
solvability and parameterized complexity. Due to
the page limitation, we only give an informal defini-
tion of CONSTRAINT SATISFIABILITY RECONFIGU-
RATION, which is a reconfiguration problem for the
well-known constraint satisfaction problem (CSP,
for short).

Let G = (V,E) be a hypergraph. Let D be a
set, called a domain; each element of D is called
a value and we always denote by k the size of a
domain. In CSP, each hyperedge X € FE has a
constraint which represents the values allowed to
be assigned to the vertices in X at the same time,
and we wish to find a mapping f: V — D which
satisfies the constraints of all hyperedges in G. In
CONSTRAINT SATISFIABILITY RECONFIGURATION,
the vertex set of a solution graph is the set of all
mappings satisfying all constraints, and two solu-
tions (vertices in the solution graph) are adjacent
if the one is obtained from the other by changing
a value of a single vertex in G at a time. Then,
for a given hypergraph G, a domain D of size k, a
constraint for each hyperedge X, and two solutions
fs and f;, the problem asks whether there exists a
walk between f, and f; in the corresponding solu-
tion graph; such a walk is called a reconfiguration
sequence. In the remainder of the thesis, we use
the following abbreviations for problems we deal
with:

e CSR for (original) CONSTRAINT SATISFIABIL-
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Figure 1. (a) Relationships between problems.
Each dotted line between P (lower) and Q (up-
per) means that P is a special case of Q. (b) Re-
lationships between graph parameters. cw, mw,
tw, pw, td, vc, bw and n are the cliquewidth, the
modular-width, the treewidth, the pathwidth, the
tree-depth, the size of a minimum vertex cover, the
bandwidth and the number of vertices of a graph,
respectively. Each arrow a — ( means that « is
stronger than (3, that is, if « is bounded by a con-
stant then [ is also bounded by some constant.

ITY RECONFIGURATION;

e BCSR for BOOLEAN CONSTRAINT SATISFIA-
BILITY RECONFIGURATION;

e -CSR for 7-ARY CONSTRAINT SATISFIABIL-
ITY RECONFIGURATION for each integer r > 1;

e (L)HR for (LIST) HOMOMORPHISM RECON-
FIGURATION; and

e (L)CR for (LIST) COLORING RECONFIGURA-
TION.

Relationships between problems are illustrated in
Figure 1(a).

In particular, COLORING RECONFIGURATION
(CR) can be defined as follows. Let G = (V, E)
be a graph and let C' be a set of k colors. A k-
coloring (or simply a wvertex coloring) of G is a
mapping f: V — C such that f(v) # f(w) holds
for every edge vw € E. In CR, the vertex set of a
solution graph is the set of all k-colorings of G, and
two k-colorings f and f’ are adjacent in the solu-
tion graph if f” is obtained from f by changing the
color assignment on a single vertex, and vice versa.
Then, for a given graph G, a color set C' of size k,
and two k-colorings fs and f; of G, the problem
CR asks whether there exists a walk between f
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Figure 2. A reconfiguration sequence of
4-colorings. A vertex which is recolored from
the immediate left 4-coloring is depicted by a
thick circle.

and f; in the corresponding solution graph. (See
Figure 2 for example.) For an integer k > 1, we
define k-CR as a special case of CR where |C| = k.

1.2 Our contribution

In this thesis, we investigate the complexity of
CSR and its spacial cases, especially 3-CSR, 2-
CSR, (L)HR and (L)CR, from the viewpoints
of polynomial-time solvability and parameterized
complexity, and give several interesting boundaries
of tractable and intractable cases.

1.2.1 Polynomial-time solvability

We first classify the complexity of the problems
for each fixed size k of a domain in a given in-
stance of CSR; recall that k corresponds to the
number of colors in (L)CR. Together with known
results, our results give interesting boundaries of
(in)tractability as summarized in Table 1.

In order to give more detailed analyses, we also
focus on the structure of an input (hyper)graph,
and explore the structures which make the prob-
lems hard. We first analyze the complexities of
CR and LCR from the viewpoint of graph classes.
(See Figures 3 and 4.) In particular, the PSPACE-
completeness of CR for chordal graphs answers the
open question posed by Bonsma and Paulusma?.
Moreover, we show the boundary of the com-
plexity of LCR with respect to pathwidth; we
give a polynomial-time algorithm for graphs with
pathwidth one, while it is PSPACE-complete for
graphs with pathwidth two®. We next investigate
the complexity of more general problems, that is,
(L)HR, 2-CSR, 3-CSR and CSR, for graphs with
pathwidth one or two. (See Table 2.)

1.2.2 Parameterized complexity

We first show that HR parameterized by the
number of vertices and LCR parameterized by the
size of a minimum vertex cover are both W[1]-hard.



Table 1. Computational complexities with respect to the

size k of a domain.
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Table 2. Computational complexity for
graphs with pathwidth at most two.

k>4 k=3 k=2 pw = 2 pw =1
CSR PSPACE-c. PSPACE-c. | PSPACE-c. CSR PSPACE-c. PSPACE-c.
3-CSR | PSPACE-c. PSPACE-c. | PSPACE-c. ¥ 3-CSR | PSPACE-c. PSPACE-c.
2-CSR | PSPACE-c. PSPACE-c. | P [Ours] 2-CSR | PSPACE-c. PSPACE-c.
[Ours] LHR | PSPACE-c. | PSPACE-.
LHR PSPACE-c. P [Ours] P [Ours]
LCR | PSPACE-c. P P LCR | PSPACE-c. ® | P [Ours]
HR PSPACE-c. P 3 HR PSPACE-.® | P ®
CR PSPACE-c. U | P P CR P [Ours] P
b} ] 1) 1
[Ours] | chordal | | planar | | 3-degenerate | | chordal | | planar | | 2-degenerate | )
PSPACE-complete
"""""""""""""""""""""""""""""""""""""""" [Ours]

Open

2-degenerate

[Ours]

g-tree
P
[Ours] series-parallel

[Ours]

trivially perfect

:l. 8)
pathwidth two

PSPACE-
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threshold | [Ours] pathwidth one

Figure 3. Known and our results for CR with respect
to graph classes. Each arrow A — B represents that
the graph class B is a subclass of the graph class A.

Figure 4. Known and our results for LCR with
respect to graph classes.

These imply that fixed-parameter algorithms are
unlikely to exist for almost all graph parameters
in Figure 1(b); note that tractability (resp., in-
tractability) result propagates downward (resp.,
upward). Therefore, we take as parameters k
plus several graph parameters, and summarize the
known and our results in Table 3.

We next consider another parameter which is not
graph structural, that is, the number nb of “non-
Boolean” vertices, in order to extend the analysis
for k = 2 presented in the previous subsection.
Roughly speaking, nb reflects how an instance is
close to that of BCSR. The parameterized com-
plexity regarding nb is summarized in Table 3.

Finally, we prove that 2-CSR cannot be solved
in time O*((k 4+ n)°**+™) under the exponential
time hypothesis (ETH). This lower bound matches
the running times of some of our algorithms.

Due to the page limitation, we omit almost all
theorems and proofs, and give only one result in
the next section.

2. PSPACE-completeness of CR

In this section, we prove the following theorem.

Theorem 1 There exists a fized constant k' such
that k-CR is PSPACE-complete for chordal graphs
and every k > k'.

It is known that k-CR belongs to the complex-
ity class PSPACEY. Therefore, as a proof of The-
orem 1, we show that there exists a fixed constant
k" such that k-CR is PSPACE-hard for chordal
graphs and any k > £/, by giving a polynomial-
time reduction from LCR, which is defined as fol-
lows. Let G = (V, E) be a graph and let C' be a
set of k colors. Assume that each vertex v € V' has
a list L(v) C C (of v). A k-coloring f: V — C
of G is called an L-coloring (or a list coloring) if
f(v) € L(v) holds for every vertex v € V. Then,
LCR is the reconfiguration problem in which the
vertex set of a solution graph is the set of all L-
colorings of G, and the edge set is the same as CR.

By modifying the proof of the PSPACE-
completeness of LCR by Wrochna®), we can prove
the following theorem.

Theorem 2 There exists a constant b such that
LCR is PSPACE-complete for interval graphs even
when each list is a subset of b colors.

We then construct an instance (G, fs, ft) of k-
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Table 3. Parameterized complexity with respect to k, graph parameters, and the number nb of non-Boolean

vertices.
Parameter | k+ mw k+td | k+vc | k+bw k +nb nb
CSR PSPACE-c. | FPT FPT | PSPACE-c. PSPACE-c. PSPACE-c.
[Ours] | [Ours]
3-CSR PSPACE-c. | FPT FPT | PSPACE-c. PSPACE-c. ¥ | PSPACE-c.
2-CSR PSPACE-c. | FPT FPT | PSPACE-c. FPT [Ours| W(1]-hard, XP [Ours]
[Ours
LHR FPT [Ours| | FPT FPT | PSPACE-c. FPT W(1]-hard, XP
LCR FPT FPT FPT | PSPACE-c. FPT W{1]-hard, XP
HR FPT FPT® | FPT | PSPACE-c. FPT W(1]-hard [Ours], XP
CR FPT FPT FPT | PSPACE-c. ® | FPT FPT [Ours]
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